
An Advanced Hybrid Peer-to-Peer Botnet
Ping Wang Sherri Sparks Cliff C. Zou

School of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL

{pwang, ssparks, czou}@cs.ucf.edu

Abstract— A “botnet” consists of a network of compromised
computers controlled by an attacker (“botmaster”). Recently
botnets have become the root cause of many Internet attacks.
To be well prepared for future attacks, it is not enough to study
how to detect and defend against the botnets that have appeared
in the past. More importantly, we should study advanced botnet
designs that could be developed by botmasters in the near future.
In this paper, we present the design of an advanced hybrid peer-
to-peer botnet. Compared with current botnets, the proposed
botnet is harder to be shut down, monitored, and hijacked. It
provides robust network connectivity, individualized encryption
and control traffic dispersion, limited botnet exposure by each
bot, and easy monitoring and recovery by its botmaster. Possible
defenses against this advanced botnet are suggested.

I. INTRODUCTION

In the last several years, Internet malware attacks have
evolved into better organized and more profit-centered endeav-
ors. Email spam, extortion through denial-of-service attacks
[1], and click fraud [2] represent a few examples of this
emerging trend. “Botnets” are a root cause of these problems
[3], [4], [5]. A “botnet” consists of a network of compromised
computers (“bots”) connected to the Internet that is controlled
by a remote attacker (“botmaster”) [6], [5]. Since a botmaster
could scatter attack tasks over hundreds or even tens of
thousands of computers distributed across the Internet, the
enormous cumulative bandwidth and large number of attack
sources make botnet-based attacks extremely dangerous and
hard to defend against.

Compared to other Internet malware, the unique feature of a
botnet lies in its control communication network. Most botnets
that have appeared until now have had a common centralized
architecture. That is, bots in the botnet connect directly to
some special hosts (called “command-and-control” servers, or
“C&C” servers). These C&C servers receive commands from
their botmaster and forward them to the other bots in the
network. From now on we will call a botnet with such a control
communication architecture a “C&C botnet”. Fig. 1 shows the
basic control communication architecture for a typical C&C
botnet (in reality, a C&C botnet usually has more than two
C&C servers). Arrows represent the directions of network
connections.

As botnet-based attacks become popular and dangerous,
security researchers have studied how to detect, monitor, and
defend against them [3], [6], [1], [4], [7], [5]. Most of the
current research has focused upon the C&C botnets that have
appeared in the past, especially Internet Relay Chat (IRC)
based botnets. It is necessary to conduct such research in

order to deal with the threat we are facing today. However,
it is equally important to conduct research on advanced botnet
designs that could be developed by attackers in the near future.
Otherwise, we will remain susceptible to the next generation
of internet malware attacks.

From a botmaster’s perspective, the C&C servers are the
fundamental weak points in current botnet architectures. First,
a botmaster will lose control of his or her botnet once the
limited number of C&C servers are shut down by defenders.
Second, defenders could easily obtain the identities (e.g., IP
addresses) of all C&C servers based on their service traffic to
a large number of bots [7], or simply from one single captured
bot (which contains the list of C&C servers). Third, an entire
botnet may be exposed once a C&C server in the botnet is
hijacked or captured by defenders [4]. As network security
practitioners put more resources and effort into defending
against botnet attacks, hackers will develop and deploy the
next generation of botnets with a different control architecture.

A. Current P2P Botnets and Their Weaknesses

Considering the above weaknesses inherent to the cen-
tralized architecture of current C&C botnets, it is a natural
strategy for botmasters to design a peer-to-peer (P2P) control
mechanism into their botnets. In the last several years, botnets
such as Slapper [8], Sinit [9], Phatbot [10] and Nugache [11]
have implemented different kinds of P2P control architectures.
They have shown several advanced designs. For example,
in order to remove the bootstrap process which is easily
exploited by defenders to shut down a botnet, the Slapper
worm builds a list of known bots for each infected computer
during propagation [8]. Sinit likewise lacks a bootstrap process
and uses public key cryptography for update authentication
[9]. Nugache attempts to thwart detection by implementing an
encrypted/obsfucated control channel [11].

Nevertheless, simply migrating available P2P protocols will
not generate a sound botnet, and the P2P designs in those
botnets appeared before are not mature and have many weak-
nesses. A Sinit bot uses random probing to find other Sinit
bots to communicate with. This results in poor connectivity for
the constructed botnet and easy detection due to the extensive
probing traffic [9]. Phatbot utilizes Gnutella cache servers
for its bootstrap process. This also makes the botnet easy
to shut down. In addition, its underlying WASTE peer-to-
peer protocol is not scalable across a large network [10].
Nugache’s weakness lies in its reliance on a seed list of 22
IP addresses during its bootstrap process [11]. Slapper fails to

Fig. 1. Command and control architecture of a C&C botnet Fig. 2. Command and control architecture of the proposed hybrid P2P
botnet

implement encryption and command authentication enabling it
to be easily hijacked by others. In addition, its list of known
bots contains all (or almost all) members of the botnet. Thus,
one single captured bot would expose the entire botnet to
defenders [8]. Furthermore, its complicated communication
mechanism generates a lot traffic, rendering it susceptible to
monitoring via network flow analysis.

Some other available robust distributed systems include
“censorship-resistant” system and “anonymous” P2P system.
However, their design goal of robustness is different from a
botnet. For example, these robust distributed systems try to
hide the source node of a message within a crowd of nodes.
However, they do not bother to hide the identities of this
crowd. On the other hand, a botnet needs to try it best to
hide IP addresses of all bots in it.

B. Proposed Hybrid P2P Botnet

Considering the problems encountered by C&C botnets and
previous P2P botnets, the design of an advanced botnet, from
our understanding, should consider the following practical
challenges faced by botmasters: (1). How to generate a robust
botnet capable of maintaining control of its remaining bots
even after a substantial portion of the botnet population has
been removed by defenders? (2). How to prevent significant
exposure of the network topology when some bots are captured
by defenders? (3). How to easily monitor and obtain the
complete information of a botnet by its botmaster? (4). How to
prevent (or make it harder) defenders from detecting bots via
their communication traffic patterns? In addition, the design
should also consider many network related issues such as
dynamic or private IP addresses and the diurnal online/offline
property of bots [4].

By considering all the challenges listed above, in this paper,
we present our research on the possible design of an advanced
hybrid P2P botnet. The proposed hybrid P2P botnet has the
following features:

• The botnet requires no bootstrap procedure.
• The botnet communicates via the peer list contained in

each bot. However, unlike Slapper [8], each bot has a
fixed and limited size peer list and does not reveal its
peer list to other bots. In this way, when a bot is captured

by defenders, only the limited number of bots in its peer
list are exposed.

• A botmaster could easily monitor the entire botnet by
issuing a report command. This command instructs all (or
partial) bots to report to a specific compromised machine
(which is called a sensor host) that is controlled by the
botmaster. The IP address of the sensor host, which is
specified in the report command, will change every time
a report command is issued to prevent defenders from
capturing or blocking the sensor host beforehand.

• After collecting information about the botnet through
the above report command, a botmaster, if she thinks
necessary, could issue an update command to actively let
all bots contact a sensor host to update their peer lists.
This effectively reorganizes the botnet such that it has
a balanced and robust connectivity, and/or reconnects a
broken botnet.

• Only bots with static global IP addresses that are ac-
cessible from the Internet are candidates for being in
peer lists (they are called servent bots according to P2P
terminologies [12] since they behave with both client and
server features). This design ensures that the peer list in
each bot has a long lifetime.

• Each servent bot listens on a self-determined service port
for incoming connections from other bots and uses a
self-generated symmetric encryption key for incoming
traffic. This individualized encryption and individualized
service port design makes it very hard for the botnet to
be detected through network flow analysis of the botnet
communication traffic.

C. Paper Organization

The rest of the paper is organized as follows. Section II
introduces related studies. Section III introduces the control
communication architecture of the proposed botnet. Section IV
discusses the designs to ensure the authentication and security
of command communication. In Section V, we present how
a botmaster is able to monitor his or her botnet easily. We
present how to construct the proposed botnet in Section VI
and study its robustness against defense in Section VII. We
present possible defenses against the botnet in Section VIII.

We give a few discussions in Section IX and finally conclude
the paper in Section X.

II. RELATED WORK

Botnets are an active research topic in recent years. In 2003,
Puri [13] presented an overview of bots and botnets, and
McCarty [14] discussed how to use a honeynet to monitor
botnets. Arce and Levy presented a good analysis of how the
Slapper worm built its P2P botnet. Barford and Yegneswaran
[15] gave a detailed and systematic dissection of many well-
known botnets that have appeared in the past.

Current research on botnets is mainly focused on monitoring
and detection. [6], [3], [16], [17] presented comprehensive
studies on using honeypots to join botnets in order to monitor
botnet activities in the Internet. With the help from Dynamic
DNS service providers, [4] presented a botnet monitoring
system by redirecting the DNS mapping of a C&C server to
a botnet monitor. Ramachandran et al. [5] presented how to
passively detect botnets by finding botmasters’ queries to spam
DNS-based blackhole list servers (DNSBL).

Since most botnets nowadays use Internet Relay Chat (IRC)
for their C&C servers, many people have studied how to detect
them by detecting their IRC channels or traffic. Binkley and
Singh [7] attempted to detect them through abnormal IRC
channels. Strayer [18] used machine-learning techniques to
detect botnet IRC-based control traffic and tested the system
on trace-driven network data. Chen [19] presented a system to
detect botnet IRC traffic on high-speed network routers.

Nevertheless, few people have studied how botmasters
might improve their attack techniques. [8], [9], [10], [11], [15]
only introduced the attack techniques already implemented in
several botnets appearing in the past. Zou and Cunningham
[20] studied how botmasters might improve their botnets to
avoid being monitored by a honeypot. Our research presented
in this paper belongs to this category.

Our research is conducted at the same time and independent
with the work done by Vogt et al. [21]. In [21], the authors
presented a “super-botnet”, which is a super-size botnet by
inter-connecting many small botnets together in a peer-to-
peer fashion. However, [21] largely ignored two important
practical issues that have been addressed in our work: (1). The
majority of compromised computers cannot be used as C&C
servers since they are either behind firewall or have dynamic
IP addresses; (2). The robust botnet control topology cannot
be set up through reinfection mechanism, if a botnet does not
have substantive reinfections during its built-up, which is the
case for most botnets in reality.

III. PROPOSED HYBRID P2P BOTNET ARCHITECTURE

A. Two Classes of Bots

The bots in the proposed P2P botnet are classified into
two groups. The first group contains bots that have static,
non-private IP addresses and are accessible from the global
Internet. Bots in the first group are called servent bots since
they behave as both clients and servers1. The second group

1In a traditional peer-to-peer file sharing system, all hosts behave both as
clients and servers and are called “servents” [22].

contains the remaining bots, including: (1). Bots with dy-
namically allocated IP addresses; (2). Bots with private IP
addresses; (3). Bots behind firewalls such that they cannot
be connected from the global Internet. The second group of
bots are called client bots since they will not accept incoming
connections.

Only servent bots are candidates in peer lists. All bots,
including both client bots and servent bots, actively contact the
servent bots in their peer lists to retrieve commands. Because
servent bots normally do not change their IP addresses, this
design increases the network stability of a botnet. This bot
classification will become more important in the future as a
larger proportion of computers will sit behind firewall, or use
DHCP or private IP addresses due to shortage of IP space.

A bot could easily determine the type of IP address used
by its host machine. For example, on a Windows machine,
a bot could run the command “ipconfig /all”. Not all
bots with static global IP addresses are qualified to be servent
bots—some of them may stay behind firewall, inaccessible
from the global Internet. A botmaster could rely on the col-
laboration between bots to determine such bots. For example,
a bot runs its server program and requests the servent bots in
its peer list to initiate connections to its service port. If the bot
could receive such test connections, it labels itself as a servent
bot. Otherwise, it labels itself as a client bot.

B. Botnet Command and Control Architecture

Fig. 2 illustrates the command and control architecture of
the proposed botnet. The illustrative botnet shown in this figure
has 5 servent bots and 3 client bots. The peer list size is 2
(i.e. each bot’s peer list contains the IP addresses of 2 servent
bots). An arrow from bot A to bot B represents bot A initiating
a connection to bot B.

A botmaster injects his or her commands through any
bot(s) in the botnet. Both client and servent bots actively and
periodically connect to the servent bots in their peer lists in
order to retrieve commands issued by their botmaster. When a
bot receives a new command that it has never seen before (e.g.,
each command has a unique ID), it immediately forwards the
command to all servent bots in its peer list.

This description of command communication means that,
in terms of command forwarding, the proposed botnet has an
undirected graph topology. A botmaster’s command could pass
via the links shown in Fig. 2 in both directions. If the size of
the botnet peer list is denoted by M , then this design makes
sure that each bot has at least M venues to receive commands.

C. Relationship Between Traditional C&C Botnets and the
Proposed Botnet

Compared to a C&C botnet (see Fig. 1), it is easy to see that
the proposed hybrid P2P botnet shown in Fig. 2 is actually
an extension of a C&C botnet. The hybrid P2P botnet is
equivalent to a C&C botnet where servent bots take the role
of C&C servers: the number of C&C servers (servent bots)
is greatly enlarged, and they interconnect with each other.
Indeed, the large number of servent bots is the primary reason
why the proposed hybrid P2P botnet is very hard to be shut

down. We will explain these properties in detail later in Section
VI and Section VII.

IV. BOTNET COMMAND AND CONTROL

The essential component of a botnet is its command and
control communication. Compared to a C&C botnet, the pro-
posed botnet has a more robust and complex communication
architecture. The major design challenge is to generate a botnet
that is difficult to be shut down, or monitored by defenders or
other attackers.

A. Command Authentication

Compared with a C&C botnet, because bots in the proposed
botnet do not receive commands from predefined places,
it is especially important to implement a strong command
authentication. A standard public-key authentication would be
sufficient. A botmaster generates a pair of public/private keys,
〈K+,K−〉, and hard codes the public key K+ into the bot
program before releasing and building the botnet. There is no
need for key distribution because the public key is hard-coded
in bot program. Later, the command messages sent from the
botmaster could be digitally signed by the private key K− to
ensure their authentication and integrity.

This public-key based authentication could also be readily
deployed by current C&C botnets. So botnet hijacking is not
a major issue.

B. Individualized Encryption Key

In the proposed botnet, each servent bot i randomly gener-
ates its symmetric encryption key Ki. Suppose the peer list
on bot A is denoted by LA. It will not only contain the IP
addresses of M servent bots, but also the symmetric keys used
by these servent bots. Thus, the peer list on bot A is:

LA = {(IPi1 ,Ki1), (IPi2 ,Ki2), · · · (IPiM
,KiM

)} (1)

where (IPij
,Kij

) are the IP address and symmetric key used
by servent bot ij . With such a peer list design, each servent
bot uses its own symmetric key for incoming connections from
any other bot. This is applicable because if bot B connects to
a servent bot A, bot B must have (IPA,KA) in its peer list.

This individualized encryption guarantees that if defenders
capture one bot, they only obtain keys used by M servent bots
in the captured bot’s peer list. Thus the encryption among the
remaining botnet will not be compromised.

C. Individualized Service Port

The peer-list based architecture also enables the proposed
botnet to disperse its communication traffic in terms of service
port. Since a servent bot needs to accept connections from
other bots, it must run a server process listening on a service
port. The service port number on servent bot i, denoted by Pi,
could be randomly picked by the bot. Considering this, a peer
list needs to contain the service port information as well. For
example, the peer list on bot A is:

LA = {(IPi1 ,Ki1 , Pi1), · · · , (IPiM
,KiM

, PiM
)} (2)

The individualized service port design has two benefits for
botmasters:

• Dispersed network traffic: Since service port is a critical
parameter in classifying network traffic, this individual-
ized port design makes it extremely hard for defenders to
detect a botnet based on monitored network traffic. When
combined with the individualized encryption design, a
P2P botnet has a strong resistance against most (if not
all) network traffic flow based detection systems, such as
the ones introduced in [19], [18].

• Secret backdoor: The individualized port design also
ensures that servent bots in a P2P botnet keep their
backdoors “secret”. Otherwise, defenders could scan the
specific port used by a botnet to detect potential servent
bots, or monitor network traffic targeting this service port
to facilitate their botnet detection.

A randomly-generated service port may not always be good
for botnets since network traffic going to a rarely used port is
abnormal. To overcome this, a botmaster can specify a set of
service ports for each bot to choose, preferably choosing from
those standard encrypted ports such as port 22 (SSH), port 443
(HTTPS), or port 993 (IMAPS). Furthermore, a sophisticated
botmaster could even program bot code to mimic the protocol
format of the service port as what “honeyd” [23] does.

V. BOTNET MONITORING BY ITS BOTMASTER

Another major challenge in botnet design is making sure
that a botnet is difficult to be monitored by defenders, but
at the same time, easily monitored by its botmaster. With
detailed botnet information, a botmaster could (1). Conduct
attacks more effectively according to the bot population,
distribution, bandwidth, on/off status, IP address types, etc;
(2). Keep tighter control over the botnet when facing various
counterattacks from defenders. In this section, we present
a simple but effective way for botmasters to monitor their
botnets whenever they want, and at the same time, resist being
monitored by others.

A. Monitoring Via a Dynamically Changeable Sensor

To monitor the proposed hybrid P2P botnet, a botmaster
issues a special command, called a report command, to the
botnet thereby instructing every bot to send its information to
a specified machine that is compromised and controlled by the
botmaster. This data collection machine is called a sensor.

The IP address (or domain name) of the centralized sensor
host is specified in the report command. Every round of
report command issued by a botmaster could potentially utilize
a different sensor host. This would prevent defenders from
knowing the identity of the sensor host before seeing the actual
report command. After a report command has been sent out by
a botmaster, it is possible that defenders could quickly know
the identity of the sensor host (e.g., through honeypot joining
the botnet [3], [6]), and then either shut it down or monitor
the sensor host. To deal with this threat, a botmaster may
implement any of the following procedures:

• Use a popular Internet service, such as HTTP or Email,
for report to a sensor. The sensor is chosen such that

it normally provides such a service to avoid exhibiting
abnormal network traffic.

• Use several sensor machines instead of a single sensor.
• Select sensor hosts that are harder to be shut down or

monitored, for example, compromised machines in other
countries with minimum Internet security and Interna-
tional collaboration.

• Manually verify the selected sensor machines are not
honeypots (see further discussion in Section IX).

• Wipe out the hard drive on a sensor host immediately
after retrieving the report data.

• Specify expiration time in report command to prevent any
bot exposing itself after that time.

• Issue another command to the botnet to cancel the previ-
ous report command once the botmaster knows that the
sensor host has been captured by defenders.

If a botmaster simply wants to know the current size of a
botnet, a probabilistic report would be preferred: each bot uses
a small probability p specified in a report command to decide
whether to report. Then the botnet has roughly X/p bots if
X bots report. Such a probabilistic report could minimize the
telltale traffic to the report sensor.

Each bot could use its hard-coded public key K+ to ensure
the confidentiality of its report data. In addition, a botmaster
could use several compromised machines as stepping stones
in retrieving the data on sensors. These are standard practices
so we will not explain more.

B. Additional Monitoring Information

From our understanding, there are three additional measure-
ments directly affecting the efficiency of botnet attacks: attack
bandwidth, IP address type, and diurnal dynamics.

First, to conduct an effective denial-of-service attack, a
botmaster may want to measure the actual bandwidth from
each bot to a target machine. It could be done by letting each
bot to have a couple of normal connections with the target
machine, based on any available bandwidth measurement
techniques.

Second, each bot could have its randomly-generated unique
ID2 and report its ID with other information to its botmaster’s
sensor. In this way, a botmaster could obtain an accurate report,
and also know the properties of bots with DHCP or NAT
addresses. With this information, a botmaster could conduct
fine-tuned attacks, e.g., only letting bots that frequently change
their IP addresses to send out email spam in order to avoid
being blocked by DNSBL-based spam filter [5].

Third, as pointed out by [4], the online population of a
botnet exhibits a clear “diurnal” dynamics due to many users
shutting down their computers at night. In a time zone, the
peak online population of a botnet could be as much as four
times of the bottom level online population. To maximize
botnet attack strength, a botmaster may launch a denial-
of-service attack at the right time when the botnet online
population reaches its peak level, or spread a new malware

2To make sure each bot has a unique ID, a simple way is to let every bot
randomly generate a very large number for its ID—one or two collisions do
not matter much.

at an optimal release time to maximize its propagation speed
[4]. Since bots could function as spyware, it’s not hard for a
bot to obtain its host machine’s diurnal dynamics.

VI. BOTNET CONSTRUCTION

A. Basic construction procedures

Botnet connectivity is solely determined by the peer list in
each bot. A natural way to build peer lists is to construct them
during propagation. To make sure that a constructed botnet is
connected, the initial set of bots should contain some servent
bots whose IP addresses are in the peer list on every initial
bot. Suppose the size of peer list in each bot is configured to
be M . As a bot program propagates, the peer list in each bot
is constructed according to the following procedures:

• New infection: Bot A passes its peer list to a vulnerable
host B when compromising it. If B is a servent bot, A
adds B into its peer list (by randomly replacing one bot
if its peer list is full). Similarly, if A is a servent bot, B
adds A into its peer list in the same way.

• Reinfection: If reinfection is possible and bot A reinfects
bot B, bot B will then replace R (R ≤ M −1) randomly-
selected bots in its peer list with R bots from the peer
list provided by A. Again, bot A and B will add each
other into their respective peer lists if the other one is a
servent bot.

The reinfection procedure makes it harder for defenders to
infer the infection time order (“traceback”) among bots based
on captured peer lists. In this process, a bot does not provide
its peer list to those who reinfect it. This is important, because,
if not, defenders could recursively infect (and monitor) all
servent bots in a botnet based on a captured bot in their
honeypot in the following way: Defenders use a firewall
redirecting the outgoing infection attempts from captured bot
A to reinfect the servent bots in A’s peer list; then subsequently
get the peer lists from these servent bots and reinfect servent
bots in these peer lists in turn.

In order to study a constructed botnet topology and its ro-
bustness via simulations, we first need to determine simulation
settings. First, Bhagwan et al. [24] studied P2P file sharing
systems and observed that around 50% of computers changes
their IP addresses within four to five days. So we expect the
fraction of bots with dynamic addresses is around the similar
range. In addition, some other bots are behind firewalls or
NAT boxes so that they cannot accept Internet connections.
We cannot find a good source specifying this statistics, so in
this paper we assume that 25% of bots are servent bots.

Second, as pointed out in [25], [26], botnets in recent years
have dropped their sizes to an average of 20,000, even though
the potential vulnerable population is much larger. Thus we
assume a botnet has a potential vulnerable population of
500,000, but stops growing after it reaches the size of 20,000.
In addition, we assume that the peer list has a size of M = 20
and that there are 21 initial servent hosts to start the spread
of the botnet. In this way, the peer list on every bot is always
full.

From our simulation experiments, we find that a botnet
constructed only with the above two procedures is not robust

enough. Because a botnet stops growing after reaching the
size of 20,000, the reinfection events rarely happen (around
600). Due to this phenomenon, connections to servent bots
are extremely unbalanced: more than 80% (4000) of servent
bots have degrees less than 30, while each of the 21 initial
servent bots have a degree between 14,000 and 17,500. This
is not an ideal botnet. The constructed hybrid P2P botnet is
approximately degraded to a C&C botnet where the initial set
of servent bots behave as C&C servers.

Vogt et al. [21] constructed a super-botnet only with the
algorithms that are similar to the “new infection” and “re-
infection” procedures presented above. Although authors in
[21] showed that their constructed super-botnet is robust,
they have an implicit assumption that the super-botnet will
have abundant reinfections during its construction period. We
believe this assumption is incorrect in a real world scenario—
botmasters would want their botnets generating as few as
possible reinfections to avoid wasting infection power and
being detected by defenders.

To illustrate this argument, we have simulated another
botnet scenario where the potential vulnerable population is
20,000 instead of 500,000 used in the previous simulation.
The botnet stops propagation after all vulnerable hosts have
been infected. In this simulation, 210,000 reinfection events
happened. This time, because there are plenty of reinfections,
the constructed botnet has a well-balanced connectivity—the
degree distribution of all servent bots roughly follows normal
distribution, and 80% of servent bots have degrees between
30 and 150.

B. Advanced construction procedure

One intuitive way to improve the network connectivity
would be letting bots keep exchanging and updating their peer
lists frequently. However, such a design makes it very easy for
defenders to obtain the identities of all servent bots, if one or
several bots are captured by defenders.

As introduced in Section V, a botmaster could monitor his
botnet easily whenever he wants by issuing a report command.
With the detailed botnet information, a botmaster could easily
update the peer list in each bot to have a strong and balanced
connectivity. The added new procedure is:

• Peer-list updating: After a botnet spreads out for a
while, a botmaster issues a report command to obtain
the information of all currently available servent bots.
These servent bots are called peer-list updating servent
bots. Then, the botmaster issues another command, called
update command, enabling all bots to obtain an updated
peer list from a specified sensor host. Entries in the
updated peer list in each bot are randomly chosen from
those peer-list updating servent bots.

A botmaster could run this procedure once or a few times
during or after botnet propagation stage. After each run of
this procedure, all current bots will have uniform and balanced
connections to peer-list updating servent bots.

When and how often should this peer-list updating proce-
dure be run? First, this procedure should be executed once
shortly after the release of a botnet to prevent defenders

from removing all initial servent bots. Second, as a botnet
spreads out, each round of this updating procedure makes
the constructed botnet have a stronger and more balanced
connectivity, but at the same time, it incurs an increasing
risk of exposing the botnet to defenders. It is therefore up
to a botmaster to strike a comfortable balance. In addition, a
botmaster could run this procedure to conveniently reconnect
a broken botnet.

2 4 6 8 10
0

1000

2000

3000

4000

log (# of degrees)

of

 s
er

ve
nt

 b
ot

s

Fig. 3. Servent bot degree distribution

Fig. 3 shows the degree distribution for servent bots (client
bots always have a degree of M) when a botnet uses all three
construction procedures. We assume the peer-list updating
procedure is executed just once when 1,000 (25% of) servent
bots have been infected. This figure shows that although
those 4000 servent bots infected after the peer-list updating
procedure still have small degrees, the first 1000 servent bots
used in peer-list updating have large and balanced connection
degrees, ranging from 300 to 500. They form the robust
backbone, connecting the hybrid P2P botnet tightly together.

VII. BOTNET ROBUSTNESS STUDY

Next, we study the robustness property of a constructed
hybrid P2P botnet. Two factors affect the connectivity of
a botnet: (1). Some bots are removed by defenders; and
(2). Some bots are off-line (for example, due to the diurnal
phenomenon [4]). These two factors, even though completely
different, have the same impact on botnet connectivity when
the botnet is used by its botmaster at a specific time. For this
reason, we do not distinguish them in the following study.

Since servent bots, especially the servent bots used in peer-
list updating procedure, are the backbone connecting a botnet
together, we study botnet connectivity when a certain fraction
of peer-list updating servent bots are removed (that is to say,
either removed by defenders or off-line).

Let C(p) denote the connected ratio and D(p) denote the
degree ratio after removing top p fraction of mostly-connected
bots among those peer-list updating servent bots—this is the
most efficient and aggressive defense that could be done when
defenders have the complete knowledge (topology, bot IP
addresses ...) of the botnet. C(p) and D(p) are defined as:

C(p) =
of bots in the largest connected graph

of remaining bots
(3)

D(p) =
Average degree of the largest connected graph

Average degree of the original botnet
(4)

The metric C(p) shows how well a botnet survives a defense
action; the metric D(p) exhibits how densely the remaining
botnet is connected together.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of removed peer−list updating servent bots: p

connected ratio: C(p)
degree ratio: D(p)

Fig. 4. Botnet robustness study

Fig. 4 shows the robustness study. The botnet is the one
shown in Fig. 3 that has a vulnerable population of 500,000
and runs the peer-list updating procedure once when 1,000
servent bots are infected. As shown in this figure, if all
1000 peer-list updating servent bots are removed, the botnet
will be completely broken. This result shows the importance
of the peer-list updating procedure. The botnet will largely
stay connected (C(p) > 95%) if less than 700 of those
1000 peer-list updating servent bots are removed, although it
has a gradually decreasing connectivity with further removal
(as exhibited by D(p)). This experiment shows the strong
resistance of the proposed botnet against defense, even if
defenders know the identities of all bots and the complete
botnet topology.

A. Robustness Mathematical Analysis

We provide a simple analytical study of the botnet robust-
ness. Assume that each peer list contains M servent bots. It is
hard to provide a formula when removing the top p fraction
of mostly-connected nodes. However, we could provide the
formula of C(p) when randomly removing p fraction of peer-
list updating servent bots.

As we discussed before, the servent bots not used in peer-
list updating procedure have very few extra links besides the
M links given by their own peer lists. We simplify the analysis
by assuming that each bot in the botnet connects only to peer-
list updating servent bots. Then, when we consider removing
a fraction of peer-list updating servent bots, more links will
be removed compared to the original botnet network. Because
of this bias, the analytical formula presented below slightly
underestimates C(p) in the case of random removal.

A bot is disconnected from the others when all M servent
bots in its peer list have been removed. Because of the random
removal, each peer-list updating servent bot has the equal

probability p to be removed. Thus, the probability that a bot
is disconnected is pM . Therefore, any remaining bot has the
same probability 1−pM to stay connected, i.e., the mean value
of C(p) is (in case of random removal):

C(p) = 1 − pM (5)

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of peer list: M

C(p)

p=85%: random removal
p=85%: formula
p=85%: top removal
p=95%: random removal
p=95%: formula
p=95%: top removal

Fig. 5. Comparison of the analytical formula (5) and simulation results

Fig. 5 shows the analytical result from (5), comparing with
the simulation result C(p) of the random removal, and the sim-
ulation result C(p) of the removal of top p fraction of mostly-
connected peer-list updating servent bots. The analytical curve
lies between those two simulated robustness metrics. It shows
that the analytical formula indeed has a small underestimation
bias compared with the random removal. Because removing
top p fraction will remove more links from the botnet network
than a random removal, the simulation results C(p) from the
top removal scenario are slightly lower than the derived results
from (5). In summary, this figure shows that, even though the
analytical formula (5) is not very accurate, it provides a good
first-hand estimate of the robustness of a botnet.

This figure also shows that the proposed botnet does not
need a large peer list to achieve a strong robustness.

The robustness study presented here is a static study and
analysis. We have not considered how a botnet behave if bots
are removed by defenders gradually, or when bots are removed
as the botnet spreads. For this reason, the botnet infection rate
and spreading speed does not matter to our robustness study,
and we will study these issues in the future.

VIII. DEFENSE AGAINST THE PROPOSED HYBRID P2P
BOTNET

A. Annihilating

We introduce possible annihilating defense in three ways.
First, the proposed hybrid P2P botnet relies on “servent bots”
in constructing its communication network. If the botnet is
unable to acquire a large number of servent bots, the botnet
will be degraded to a traditional C&C botnet (the relationship
of these two botnets is discussed in Section III-C), which is
much easier to shut down. For this reason, defenders should
focus their defense effort on computers with static global

IP addresses, preventing them from being compromised, or
removing compromised ones quickly.

Second, as shown in Section VI, before a botmaster issues
an update command for the first time, a botnet is in its
most vulnerable state since it is mainly connected through the
small set of initial servent bots. Therefore, defenders should
develop quick detection and response systems, enabling them
to quickly shut down the initial set of servent bots in a newly
created botnet before its botmaster issues the first update
command.

Third, defenders could try to poison the communication
channel of a P2P botnet based on honeypot techniques. If they
let their infected honeypots join the botnet and claim to have
static global IP addresses (these honeypots are configured to
accept connections from other bots on their claimed global
IP addresses), they will be treated as servent bots. As a
result, they will occupy positions in peer lists in many bots,
decreasing the number of valid communication channels in the
hybrid P2P botnet.

As discussed in Section VII, the strong robustness of the
proposed botnet relies heavily on the peer-list updating pro-
cedure. Servent bots used in the peer-list updating procedure
form the backbone of the communication network of a botnet.
Therefore, the best strategy to disrupt the communication
channel of a botnet, perhaps, is to poison the peer-list updating
procedure with the following steps. First, once a honeypot
is infected by a bot program, defenders quickly let the bot
program to infect many other honeypots (for example, by
redirecting the bot’s outgoing infection traffic to other hon-
eypots). Then, when receiving a report command from the
botmaster, all honeypot bots report as servent bots so that they
will be used in the peer-list updating procedure. Defenders
would achieve better poisoning defense if they have distributed
honeypots and a large number of IP addresses.

B. Monitoring

In this area, defenders hold a better position with the help
from honeypots. If they utilize a honeypot on a large IP space,
they may be able to trap a large number of botnet infection
attempts. If the bot program cannot detect the honeypot and
passes its peer list in each infection attempt, the defenders
could get many copies of peer lists, obtaining the important
information (IP addresses, encryption key, service port) of
many servent bots in a botnet.

Second, based on honeypot bots, defenders may be able
to obtain the plain text of commands issued by a botmaster.
Once the meaning of the commands is understood, defenders
are able to: (1). Quickly find the sensor machines used by
a botmaster in report commands. If a sensor machine can be
captured by defenders before the collected information on it is
erased by its botmaster, they might be able to obtain detailed
information of the entire botnet; (2). Know the target in an
attack command so that they could implement corresponding
countermeasures quickly right before (or as soon as) the actual
attack begins.

Another honeypot-based monitoring opportunity happens
during peer-list updating procedure. First, defenders could

let their honeypot bots claim to be servent bots in peer-list
updating. By doing this, these honeypots will be connected
by many bots in the botnet. Second, during peer-list updating,
each honeypot bot could get a fresh peer list, which means the
number of bots revealed to each honeypot could be doubled.

For the simulated botnet shown in Fig. 3, we conduct
another set of simulations where one of its servent bot is a
honeypot. If the honeypot is one of the initial servent bot,
the honeypot knows the identity of on average 20% of bots
in the botnet after the botnet propagation stops (the botnet
has 20,000 bots). If the honeypot joins in the botnet before
the peer-list updating procedure (when the botnet infects 500
servent bots), it knows on average 2.3% of bots in the botnet
after the botnet propagation stops. If the honeypot joins in
the botnet right after the one and only one peer-list updating
procedure, the honeypot could only know around 30 bots in
the botnet.

A possible weakness point of the proposed botnet is its
centralized monitoring sensor. If defenders have set up a good
traffic logging system, it is possible that they could capture the
traffic to a botnet sensor. We call such a monitoring system as
a botnet sensor monitor. Even though defenders may not be
able to capture a botnet sensor before its botmaster destroying
the sensor (after completing botmaster’s monitoring task), they
still could use the captured traffic log to figure out the IP
addresses of potential bots who contacted the sensor in the
past. In this way, defenders could get a relatively complete
picture of a botnet.

Not like the other monitoring methods, the above traffic
logging and analysis approach does not rely on honeypot
systems. This makes it important to conduct further research
on this approach since we must be prepared in case a future
smart botnet can detect and disable honeypot.

IX. DISCUSSIONS

From the defense discussion in previous section, we see
that honeypot plays a critical role in most defense methods
against the proposed hybrid P2P botnet. Botmasters might de-
sign countermeasures against honeypot defense systems. Such
countermeasures might include detecting honeypots based
on software or hardware fingerprinting [27], [28], [29], or
exploiting the legal and ethical constraints held by honeypot
owners [20]. Most of current botnets do not attempt to avoid
honeypots—it is simply because attackers have not feel the
threat from honeypot defense yet. As honeypot-based defense
becomes popular and being widely deployed, we believe
botmasters will eventually add honeypot detection mechanisms
in their botnets. The war between honeypot-based defense and
honeypot-aware botnet attack will come soon and intensify in
the near future.

For botnet defense, current research shows that it is not
very hard to monitor Internet botnets [4], [15], [30]. The hard
problem is: how to defend against attacks sent from botnets,
since it is normally very hard to shut down a botnet’s control?
Because of legal and ethical reason, we as security defenders
cannot actively attack or compromise a remote bot machine
or a botnet C&C server, even if we are sure a remote machine

is installed with a bot program. For example, the well-known
“good worm” approach is not practical in the real world. The
current practice of collaborating with the ISPs containing bot-
infected machines is slow and resource-consuming. There are
still significant challenges in botnet defense research in this
aspect.

X. CONCLUSION

To be well prepared for future botnet attacks, we should
study advanced botnet attack techniques that could be de-
veloped by botmasters in the near future. In this paper, we
present the design of an advanced hybrid peer-to-peer botnet.
Compared with current botnets, the proposed one is much
harder to be shut down or monitored. It provides robust net-
work connectivity, individualized encryption and control traffic
dispersion, limited botnet exposure by each captured bot, and
easy monitoring and recovery by its botmaster. To defend
against such an advanced botnet, we point out that honeypot
may play an important role. We should, therefore, invest more
research into determining how to deploy honeypots efficiently
and avoid their exposure to botnets and botmasters.

ACKNOWLEDGEMENT

This work was supported by NSF Cyber Trust Grant CNS-
0627318. The authors would like to thank the anonymous
reviewers for their helpful comments for improving this paper.

REFERENCES

[1] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-sale: Surviving
organized ddos attacks that mimic flash crowds,” in 2nd Symposium on
Networked Systems Design and Implementation (NSDI), May 2005.

[2] C. T. News, “Expert: Botnets no. 1 emerging internet threat,” 2006,
http://www.cnn.com/2006/TECH/internet/01/31/furst/.

[3] F. Freiling, T. Holz, and G. Wicherski, “Botnet tracking: Exploring a
root-cause methodology to prevent distributed denial-of-service attacks,”
CS Dept. of RWTH Aachen University, Tech. Rep. AIB-2005-07, April
2005.

[4] D. Dagon, C. Zou, and W. Lee, “Modeling botnet propagation using
time zones,” in Proceedings of 13th Annual Network and Distributed
System Security Symposium (NDSS), Feburary 2006, pp. 235–249.

[5] A. Ramachandran, N. Feamster, and D. Dagon, “Revealing botnet
membership using dnsbl counter-intelligence,” in USENIX 2nd Workshop
on Steps to Reducing Unwanted Traffic on the Internet (SRUTI 06), June
2006.

[6] E. Cooke, F. Jahanian, and D. McPherson, “The zombie roundup:
Understanding, detecting, and disrupting botnets,” in Proceedings of
SRUTI: Steps to Reducing Unwanted Traffic on the Internet, July 2005.

[7] J. R. Binkley and S. Singh, “An algorithm for anomaly-based botnet
detection,” in USENIX 2nd Workshop on Steps to Reducing Unwanted
Traffic on the Internet (SRUTI 06), June 2006.

[8] I. Arce and E. Levy, “An analysis of the slapper worm,” IEEE Security
& Privacy Magazine, Jan.-Feb. 2003.

[9] Sinit P2P trojan analysis. Http://www.lurhq.com/sinit.html.
[10] Phatbot trojan analysis. Http://www.lurhq.com/phatbot.html.
[11] R. Lemos. (2006, May) Bot software looks to improve peerage.

Http://www.securityfocus.com/news/11390.
[12] “Servent,” http://en.wikipedia.org/wiki/Servent.
[13] R. Puri, “Bots & botnet: An overview,” 2003,

http://www.sans.org/rr/whitepapers/malicious/1299.php.
[14] B. McCarty, “Botnets: Big and bigger,” IEEE Security & Privacy

Magazine, vol. 1, no. 4, July 2003.
[15] P. Barford and V. Yegneswaran, An Inside Look at Botnets, To appear

in Series: Advances in Information Security. Springer, 2006.
[16] H. Project, “Know your enemy: Tracking botnets,” 2005,

http://www.honeynet.org/papers/bots/.

[17] F. Monrose. (2006) Longitudinal analysis of botnet dynamics.
ARO/DARPA/DHS Special Workshop on Botnet.

[18] T. Strayer. (2006) Detecting botnets with tight command and control.
ARO/DARPA/DHS Special Workshop on Botnet.

[19] Y. Chen. (2006) IRC-based botnet detection on high-speed routers.
ARO/DARPA/DHS Special Workshop on Botnet.

[20] C. Zou and R. Cunningham, “Honeypot-aware advanced botnet con-
struction and maintenance,” in Proceedings of International Conference
on Dependable Systems and Networks (DSN), June 2006.

[21] R. Vogt, J. Aycock, and M. Jacobson, “Army of botnets,” in Proceedings
of 14th Annual Network and Distributed System Security Symposium
(NDSS)”, month = ”Feburary”, year=”2007”.

[22] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE Com-
munications Surveys and Tutorials, vol. 7, no. 2, 2005.

[23] N. Provos, “A virtual honeypot framework,” in Proceedings of 13th
USENIX Security Symposium, August 2004.

[24] R. Bhagwan, S. Savage, and G. M. Voelker, “Understanding availability,”
in Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS), Feburary 2003.

[25] C. News. (2005, November) Bots slim down to get tough.
Http://news.com.com/2104-7355 3-5956143.html.

[26] (2006, February) Washington post: The botnet trackers.
http://www.washingtonpost.com/wp-dyn/
content/article/2006/02/16/AR2006021601388.html.

[27] K. Seifried, “Honeypotting with VMware basics,” 2002,
http://www.seifried.org/security/index.php/
Honeypotting With VMWare Basics.

[28] J. Corey, “Advanced honey pot identification and exploitation,” 2004,
http://www.phrack.org/fakes/p63/p63-0x09.txt.

[29] “Honeyd security advisory 2004-001: Remote detection via simple probe
packet,” 2004, http://www.honeyd.org/adv.2004-01.asc.

[30] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted
approach to understanding the botnet phenomenon,” in Internet Mea-
surement Conference, October 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

