
Peer-to-Peer Botnets: Overview and Case Study

Julian B. Grizzard
julian.grizzard@jhuapl.edu

The Johns Hopkins University
Applied Physics Laboratory

Vikram Sharma, Chris Nunnery,
and Brent ByungHoon Kang

{vsharma, cenunner, bbkang}@uncc.edu
University of North Carolina at Charlotte

David Dagon
dagon@cc.gatech.edu

Georgia Institute of Technology

Abstract

Botnets have recently been identified as one of the most
important threats to the security of the Internet. Tradi-
tionally, botnets organize themselves in an hierarchical
manner with a central command and control location.
This location can be statically defined in the bot, or it
can be dynamically defined based on a directory server.
Presently, the centralized characteristic of botnets is use-
ful to security professionals because it offers a central
point of failure for the botnet. In the near future, we be-
lieve attackers will move to more resilient architectures.
In particular, one class of botnet structure that has en-
tered initial stages of development is peer-to-peer based
architectures. In this paper, we present an overview of
peer-to-peer botnets. We also present a case study of a
Kademlia-based Trojan.Peacomm bot.

1 Introduction

One of the most significant threats to the Internet today
is the threat of botnets, which are networks of compro-
mised machines under the control of an attacker. It is dif-
ficult to measure the extent of damage caused on the In-
ternet by botnets, but it is widely accepted that the dam-
age done is significant. Further, the potential for orders
of magnitude more damage exists in the future.

The beginning of botnets can be traced back to basic
forms of benign bots. TheEggDrop bot is one of the
earliest popular bots used for automating basic tasks on
Internet relay chat (IRC). Today, there are many botnets
that use IRC as a form of centralized command and con-
trol (C&C). The basic scripting tasks that a benign bot
such asEggDropoffers can also be used to coordinate
bots.

A number of ad hoc methods exist to detect and stop
botnets, and these methods continue to mature. As tech-
niques for botnet detection and mitigation advance, the
robustness and resiliency of botnets will also advance.

Today, the most easily detected botnets use IRC as a form
of communication for command and control (C&C). IRC
has many properties that make it attractive for an attacker
such as its redundancy, scalability, and versatility. Fur-
ther, there is a large base of knowledge and source code
for developing IRC-based bots. Many botnet authors
reuse existing code in order to create their own botnet.

One key property of IRC-based botnets is the use of
IRC as a form of central C&C. This property provides
the attackers with very efficient communication. How-
ever, the property also serves as a major disadvantage to
the attacker. The threat of the botnet can be mitigated
and possibly eliminated if the central C&C is incapaci-
tated. It is likely that new architectures will emerge as
the ability to stop IRC-based botnets matures.

One such architecture that is beginning to appear is
a peer-to-peer structure for botnet communication. In a
peer-to-peer architecture, there is no centralized point for
C&C. Nodes in a peer-to-peer network act as both clients
and servers such that there is no centralized coordination
point that can be incapacitated. If nodes in the network
are taken offline, the gaps in the network are closed and
the network continues to operate under the control of the
attacker. In this paper, we focus our work on peer-to-peer
botnets.

Today, attackers are able gain control of significant
portions of the Internet using centralized C&C architec-
tures. However, we are beginning to see peer-to-peer ar-
chitectures with bots such as the Trojan.Peacomm that
we study in this work. The long term goal of our work is
to develop methods of detecting, mitigating, and prevent-
ing peer-to-peer botnets. In order to reach this goal, this
work focuses on increasing the understanding of peer-to-
peer botnets by (1) providing an overview and histori-
cal perspective and (2) presenting a case study of a Tro-
jan.Peacomm bot.

1

2 Background and History

In order to better understand botnets, we first define some
key terms. Then, we present a timeline of the signifi-
cant events that relate to bots and peer-to-peer protocols
in terms of technological developments. Based on this
review of historical trends, we believe that peer-to-peer
botnets will be one of the most significant threats on the
Internet in the near future.

2.1 Definitions

We define peer-to-peer, bot, and botnet below.

• peer-to-peer– A peer-to-peer network is a network
in which any node in the network can act as both a
client and a server.

• bot – A bot is a program that performs user centric
tasks automatically without any interaction from a
user.

• botnet– A botnet is a network ofmaliciousbots that
illegally control computing resources.

Some definitions of peer-to-peer networks require no
form of centralized coordination. Our definition is more
relaxed because the attacker may be interested in hybrid
architectures. Our definition of a bot is not inherently
malicious. However, the malicious nature of a bot is im-
plicit under some contexts. Finally, we do define a botnet
to be malicious in nature.

2.2 History

Table 1 provides an overview of some important bots
and peer-to-peer protocols. The timeline ranges from
the one of the earliest bots,EggDrop, through the Tro-
jan.Peacomm peer-to-peer bot recently released. More
recent years have seen significant developments of ma-
licious bots. In particular, the first peer-to-peer bots are
beginning to emerge, such as the Trojan.Peacomm bot.

Not shown in Table 1 is a timeline of worms. Worms
can serve as one form of a delivery mechanism for bots.
Although worms are relevant to the development of bot-
nets, they are more relevant to the spread of bots than
to the botnet communication after infection. Our work
focuses on the communication mechanism in place after
the botnet has spread to its victims. Kienzle et al. provide
a survey of worms [1].

During the early stages of the Internet, a non-
malicious bot was developed calledEggDrop. There
were likely many other bots developed prior toEggDrop.
However, EggDrop is recognized as one of the first
popular Internet relay chat (IRC) bots. Example non-
malicious uses ofEggDrop include playing games (i.e.,

Turing test), coordinating file transfer (legally transferred
files), automating channel admin commands, etc. Thus,
the early bot developments seem to have been motivated
by simply improving automation on the Internet.

TheGTBotvariants are one of the earliest wide-known
malicious bots. There are likely many prior malicious
bots. GTBotvariants included an IRC client,mIRC.exe,
as part of the bot [2]. This bot represents some of the
early trends to use IRC as a form of coordinating botnets.

Independent of botnet activity, we believe that peer-to-
peer protocols came into prominence with the release of
Napster. The Napster client was built as an application
that allowed peers to find and share music files with other
peers in the network. File indexing was done on a cen-
tralized server, so Napster is not entirely a peer-to-peer
service. Users would connect to the centralized server
in order to upload an index of their files and search for
files on other user’s computers. If a particular file was
found, the user would directly connect to another peer
in order to retrieve the file. Because many of the music
files shared between users were illegally traded, a court
foundNapster’sservice illegal and the service was shut-
down. Later variants of peer-to-peer file sharing focused
on evading authorities by avoiding centralized control.

Although not entirely motivated by the shutdown of
Napster, completely decentralized peer-to-peer services
began to emerge afterNapster was shutdown. The
Gnutella protocol marks the beginning of completely
decentralized peer-to-peer services. There are numer-
ous peer-to-peer protocols developed since the release of
Gnutella, as seen in Table 1, which were designed to be
as resilient, efficient, and reliable as possible. Recent
peer-to-peer protocols such as Chord [3] and Kadem-
lia [4] have introduced distributed hash table as effi-
cient methods for finding information in peer-to-peer net-
works. Peer-to-peer networks offer design characteristics
that are attractive to attackers.

Malicious bots have seen much development in the re-
cent years.Agobotvariants are possibly one of the most
widespread bots due to its well designed and modular
code base [2]. In our opinion,Agobotmarks a turning
point in which botnets have become a more significant
threat.

Finally, as Table 1 shows, peer-to-peer bots are now
under widespread development. Some peer-to-peer bots
have used existing peer-to-peer protocols while others
have developed custom protocols. We predict that peer-
to-peer botnets will mature to a level in which they might
become more widespread than traditional decentralized
C&C architectures.

2

Date Name Type Distinguishing Description
12/1993 EggDrop Non-Malicious Bot Recognized as early popular non-maliciousIRC bot

04/1998 GTbot Variants Malicious Bot IRC bot based on mIRC executables and scripts

05/1999 Napster Peer-to-Peer First widely used hybrid central and peer-to-peer service

11/1999 Direct Connect Peer-to-Peer Variation of Napster hybrid model

03/2000 Gnutella Peer-to-Peer First decentralized peer-to-peer protocol

09/2000 eDonkey Peer-to-Peer Used checksum directory lookup for file resources

03/2001 Fast Track Peer-to-Peer Use of supernodes within the peer-to-peer architecture

05/2001 WinMX Peer-to-Peer Proprietary protocol similar to FastTrack

06/2001 Ares Peer-to-Peer Has ability to penetrate NATs with UDP punching

07/2001 BitTorrent Peer-to-Peer Uses bandwidth currency to foster quick downloads

04/2002 SDbot Variants Malicious Bot Provided own IRC client for better efficiency

10/2002 Agobot Variants Malicious Bot Incredibly robust, flexible, and modular design

04/2003 Spybot Variants Malicious Bot Extensive feature set based on Agobot

05/2003 WASTE Peer-to-Peer Small VPN-style network with RSA public keys

09/2003 Sinit Malicious Bot Peer-to-peer bot using random scanning to find peers

11/2003 Kademlia Peer-to-Peer Uses distributed hash tables for decentralized architecture

03/2004 Phatbot Malicious Bot Peer-to-peer bot based on WASTE

03/2006 SpamThru Malicious Bot Peer-to-peer bot using custom protocol for backup

04/2006 Nugache Malicious Bot Peer-to-peer bot connecting to predefined peers

01/2007 Peacomm Malicious Bot Peer-to-peer bot based on Kademlia

Table 1: Timeline of Peer-to-Peer Protocols and Bots

3 Goals and Metrics

Botnets have a set of common goals and metrics. Peer-
to-peer botnets are distinctive from centralized C&C bot-
nets in that they focus on resiliency through the uses of
a peer-to-peer network. However, peer-to-peer botnets
are similar to centralized botnets in most other aspects.
Below is an overview of the goals and metrics of botnets
with distinctive highlights for peer-to-peer botnets.

The primary goals of botnets fall under one of three
categories:information dispersion, information harvest-
ing, andinformation processing. An attacker may not be
motivated by these goals and perhaps creates the botnet
for fun or fame; however, we focus on goals that clearly
indicate economic incentive as we believe these goals are
the most dangerous. The goal ofinformation dispersion
includes sending out spam, creating denial of service
attacks, providing false information from illegally con-
trolled sources, etc. The goal ofinformation harvesting
includes obtaining identity data, financial data, password
data, relationship data (i.e., email addresses of friends),
and any other type of data available on the host. The
goal of information processingis to process data such as
cracking a password stored as a MD5 hash.

Information dispersionhas economic benefit because
a buyer may wish to pay a botnet controller to disperse
spam in some cases or to halt a denial of service attack in
other cases.Information harvestinghas direct economic
benefits because a buyer may wish to pay the botnet con-

troller for the information or the botnet controller may be
able to get money directly (i.e., a harvested credit card
number). An attacker could sellinformation process-
ing as a service or could use the processing capability
to crack passwords for access to additional hosts.

A botnet needs basic computing resources to accom-
plish its goals includingCPU cycles, network, mem-
ory, andother resources. Table 2 summarizes these re-
sources. The table also lists metrics for each resource
that can be used to characterize botnets. The distinguish-
ing characteristics of peer-to-peer botnets are the net-
work characteristics. In particular, peer-to-peer botnets
communicate with other peer bots rather than a central
server, so the communication graph will be distinctive.
Also, we would expect the command latency to be higher
for peer-to-peer botnets.

Table 3 shows methods of infection. The table sum-
marizes the method of primary infection upon which
many different methods of secondary infection can be ex-
ecuted. In our case study, the Trojan.Peacomm bot uses
a Trojan horse as a method of primary infection and a
peer-to-peer network for secondary infection.

4 Case Study: Trojan.Peacomm

The Trojan.Peacomm bot is the most recently known
peer-to-peer bot to date. The Trojan.Peacomm botnet
uses the Overnet peer-to-peer protocol for controlling
the bots. The Overnet protocol implements a distributed

3

Resource Metrics
CPU cycles MIPS

Command list
network Mbps

IP list
Port list
Communication graph
Command latency

memory MB storage
MB information
Value/bit

other Time unit, size unit, etc.

Table 2: Botnet Resource Requirements and Metrics

Type Description
server Actively exploit remote service
client Passively exploit client process
Trojan horse Exploit trust of privileged program
physical Tamper with physical computer
other Other methods to control execution

Table 3: Infection Vectors

hash table based on the Kademlia algorithm as described
in [4]. After infection, secondary injections are automat-
ically downloaded from the peer-to-peer network, which
provides a basic communication primitive from the at-
tacker to the infected hosts. This peer-to-peer com-
munication primitive enables the attacker to arbitrarily
upgrade, control, or otherwise command infected hosts
without relying on a central server.

In January 2007, we observed a production machine
that was infected with aTrojan.Peacommbot. We ana-
lyzed the malicious Trojan horse binary, the secondary
injections, and the network traces of the infection. Fur-
ther, we ran the malicious binary in a controlled honey-
pot environment at the UNCC Honeynet Laboratory. We
believe this malicious bot represents a significant step to-
ward more sophisticated peer-to-peer botnets. Below is
our analysis and discussion of this bot.

4.1 Experimental Setup

In order to examine the Peacomm specimen, it was exe-
cuted within a honeypot environment [5]. The honeypot
consisted of a VMWare GSX 3.2 virtual machine running
Windows XP. The connection to the Internet was filtered
with a honeywall in order to prevent the honeypot from
attacking machines on the Internet. The PerilEyez mal-
ware analysis tool was used to detect changes in the sys-
tem [6]. Further, a pcap log of the entire session was kept

for network analysis. The specimen was run for a period
of two weeks under a carefully controlled environment.

4.2 Initial Bot

The Trojan.Peacomm binary is an executable that installs
the initial bot on a victim. The initial bot has enough
functionality to maintain persistence and connect to the
peer-to-peer network in order to download secondary in-
jections containing the payload functionality. The at-
tacker can change the secondary injections in order to
change functionality of bots on infected hosts.

Typically, the binary is distributed in the form of a
Trojan horse email in order to infect victims, but any in-
fection vector described in Table 3 is possible. In most
observed cases, a victim receives an email with an at-
tachment that is named “FullVideo.exe,” or some variant,
along with some enticing text that urges the user to open
the seemingly innocent attachment. The attachment ap-
pears to be a video, but in fact it installs the initial bot on
the user’s computer. The Trojan targets Windows operat-
ing systems including Windows 95/98/ME/2000/NT/XP
[7].

We analyzed the Trojan.Peacomm binary using the
PerilEyez tool [6]. Instances of the file system, open
ports, and running services on the system are captured
prior to and following malware infection. Comparing
these two images reveals changes made to the system en-
vironment as a result of the malware’s execution.

The Trojan.Peacomm binary sets up the initial bot
by adding the system driver “wincom32.sys” to the
host. This driver is injected into the Windows process
“services.exe”. This service then acts as the peer-to-peer
client that downloads the secondary payload injections.
Additionally, Trojan.Peacomm disables the Windows
firewall. The setting for the ICF/ICS service (Internet
Connection Firewall / Internet Connection Sharing) is
changed from “manual” to “disabled.” Presumably, this
step is taken to ensure proper communication with peers.
The following ports are opened:

TCP: 139, 12474
UDP: 123, 137, 138, 1034, 1035, 7871, 8705, 19013, 40519

The first packets sent by this piece of malware are
for the bootstrap process to become part of the Over-
net network. In order to bootstrap onto the Overnet
network, the bot includes a list of nodes that are pre-
sumably Overnet nodes likely to be online. The initial
peer list is created by the installation process into the
file %windir%\system32\wincom32.ini. This peer list
is hard-coded into the bot’s installation binary. It is not
clear how the attacker chose these nodes. Conceivably,
the list could be updated with each successful propaga-
tion cycle. The inclusion of initial Overnet bootstrap

4

[peers]
1: <128 bit md4 hash>=<IP address><Port><2 byte flag>
2: <128 bit md4 hash>=<IP address><Port><2 byte flag>

...
N: <128 bit md4 hash>=<IP address><Port><2 byte flag>

Figure 1: Format of wincom32.ini file

nodes could prove to be a centralized point of failure if
the attacker does not have a method to change the boot-
strap nodes for different infections.

Figure 1 shows the format of the peer list file. The peer
list in our specimen contains 146 lines, each composed
of two segments: a 128 bit MD4 peer hash represented
in hexadecimal format and a node ID consisting of an IP
address, port number, and an unknown flag. An equals
sign acts as a delimiter between the two. These peers are
used to bootstrap onto the Overnet network. Although
the nodes as a collection act as a central point of failure,
the file contains 146 nodes, so it may prove difficult to
ensure all 146 nodes fail. However, monitoring traffic to
these nodes could provide a measurement for the size of
the Trojan.Peacomm botnet.

4.3 Communication Protocol

A botnet needs a basic communication protocol between
the attacker and the bots. In centralized architectures, the
protocol is fairly simple. The clients connect to the cen-
tral server and wait for commands. Peer-to-peer botnets
have more flexibility. The Trojan.Peacomm bot provides
one such method for the attacker to issue commands to
bots in a peer-to-peer architecture. Essentially, the bot
downloads a secondary injection that can be arbitrary,
which allows flexibility in the payload of the bot.

In order to download the secondary injection, the bot
uses the Overnet network. Overnet is a Kademlia-based
protocol, which provides an efficient method to locate
values that correspond to given search keys [4]. For
a more detailed discussion of Kademlia, see [4]. The
important concepts of the Kademlia-based Overnet
protocol are summarized below.

– A common 128-bit numeric space is used.
– Node IDs are within the numeric space.
– Values are mapped into numeric space with keys.
– Key/value pairs are stored on the “closest” nodes.
– “Close” is calculated by an XOR function.
– List of nodes kept for each bucket in numeric space.

Based on our analysis of the network trace data, the
communication protocol for the Trojan.Peacomm bot can
be divided into five important steps as described below:

1. Connect to Overnet– The bot publishes itself on the

Overnet network and connects to peers. The initial
list of peers is hard coded in the bot.

2. Download Secondary Injection URL– The bot uses
hard coded keys to search for and download a value
on the Overnet network. The value is an encrypted
URL that points to the location of a secondary in-
jection executable.

3. Decrypt Secondary Injection URL– The bot uses
a hard coded key to decrypt the downloaded value,
which is a URL.

4. Download Secondary Injection– The bot down-
loads the secondary injection from a web server us-
ing the decrypted URL.

5. Execute Secondary Injection– The bot executes the
secondary injection, possibly scheduling future up-
grades on the peer-to-peer network or scheduling
bot stat tracking at some other resource.

There are a few interesting properties with the com-
munication protocol. First, the initial list of peers is a
weakness. If these peers stop responding to requests to
join the Overnet network, then the Trojan.Peacomm bi-
nary will fail to bootstrap and download secondary injec-
tions. Also, these nodes could be monitored in order to
detect possible infected hosts.

Another interesting observation is that the peer-to-peer
protocol is essentially being used as a name resolution
server for upgrading the bot. In previous bots that used
DNS or dynamic DNS, the botnet can be incapacitated if
the owner of the DNS registry cooperates with author-
ities. In the case of the equivalent peer-to-peer DNS,
there is not a clear authority that can control the peer-
to-peer content, especially since the data is encrypted. If
the data is encrypted/decrypted with a public/private key
pair, then it would also be challenging to fake the URL.

4.4 Secondary Injections

At the time of writing, Peacomm is designed to progress
through a variety of secondary injections, including: (1)
downloader and rootkit component, (2) SMTP email
spamming component, (3) email address harvester for
the previous spamming stage, (4) email propagation
component, and (5) distributed denial of service tool [8].
These secondary injections can all be rooted from one
secondary injection retrieved from the peer-to-peer net-
work. Also, the secondary injections can be changed if
the value is changed for the given key. Further, the bot
can be programmed so that it periodically updates itself
by searching through the peer-to-peer network. These
basic primitives provide the attacker with botnet com-
mand and control.

5

The peers transfer files that contain URLs for the ac-
tual payload. To successfully exchange secondary in-
jection URLs, Peacomm requires only the search re-
sponse containing the meta tag and result hash as de-
scribed in [8], and we also see these results. Follow-
ing the delivery of a secondary injection URL, the sec-
ondary payloads are downloaded via HTTP on the com-
promised machine. In our analysis, secondary injections
were downloaded from the URLhttp://XXX.XXX.XXX.XXX/aff/dir/

whereXXX.XXX.XXX.XXXis an IP address. There were differ-
ent payloads for the production machine infection than
our later tests showed, which seems to indicate that the
attacker upgraded the secondary injections.

According to [8], the search key for secondary injec-
tion is generated using a built-in algorithm that uses the
current date and a random number from [0..31] as input
to the algorithm. This means that the botmaster needs
to publish a new URL under 32 different keys for a par-
ticular day. One interesting problem with this algorithm
is that some machines do not keep accurate clocks. We
have not studied exactly how the algorithm uses the date
as input, but presumably this could prevent bots from lo-
cating the secondary injections if their clock is not accu-
rate.

An interesting defense strategy for this Overnet archi-
tecture is index poisoning. Liang et. al describe index
poisoning in Overnet and FastTrack in [9]. In the case
they describe, the motivations for index poisoning are
different as they are analyzing techniques related to file
sharing of copyrighted materials. However, index poi-
soning could also be applied to bots such as the Peacomm
bot. For example, index poisoning could be used in order
to slow the infection rate of the bot or possibly to mea-
sure the number of bots infected. We plan to study these
methods in our future work.

4.5 Network Trace Analysis

We have analyzed a trace of an infection of the Tro-
jan.Peacomm on a production machine. The network
trace contains normal traffic as well as the infection traf-
fic of both the host of interest and approximately 10 ad-
ditional hosts. All additional local hosts in the trace have
the same local IP address as the infected host because the
machines were located behind a NAT. Figure 2 shows
a trace of the number of unique IP addresses contacted
over time. The trace starts at time zero, which is a short
period before the point of infection.

The slope of the curve in Figure 2 changes rapidly at
800s, which indicates the time of infection. At this point,
there is a significant increase in the number of unique
IPv4 addresses contacted over time. At some short pe-
riod of time preceding the infection, the user has opened
the Trojan horse “FullVideo.exe” from an attachment in

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000 5000

N
um

be
r

of
 U

ni
qu

e
R

em
ot

e
IP

v4
 A

dd
re

ss
es

Time (s)

Figure 2: Number of Remote IPv4 Addresses Contacted
Over Time for Duration of Infection

their email. The first operation of the executable is to join
the peer-to-peer network in order to retrieve secondary
injections. Therefore, the spike in traffic at 800s rep-
resents the initial peer-to-peer traffic as the host begins
contacting peers.

In the figure, the slope of the curve decreases around
2000s and continues to decline. The reason for decreas-
ing slope is that the peer-to-peer botnet is saturating its
list of known peers. As time progresses, the bot begins to
maintain a more steady list of peers. Many of the peers
in the original spike never respond because they are ei-
ther no longer part of the Overnet network or they are
unreachable. If the trace of infection had a longer dura-
tion, we would expect to continue to see new unique IPs
as the nature of peer-to-peer networks is fairly dynamic.

In order to provide a deeper understanding of the trace,
we wrote a tool to parse the Overnet packets in the net-
work trace. Using the tool to analyze the trace, we found
that the bot searches for five unique keys during its activ-
ity. Table 4 lists the five hashes that the bot searches for
denotedh1 throughh5. The h1 hash is special because
this is the node’s own ID hash. Part of the Overnet algo-
rithm specifies that nodes should periodically search for
their own ID in order to make sure they know the clos-
est nodes to themselves. As for the other keys, two of
them are never found and two of them are found. Of the
two that are found, there are five total responses and four
unique responders. All of the responses are equivalent
and direct the bot to a secondary injection URL.

One of the most interesting observations from the data
is that forh3, it only takes 6 seconds for the value to be
found after the first related search packet is sent. Sim-
ilarly, the h5 hash is also quickly located. It only takes
3 seconds to find. These observations indicate that the
command latency metric for peer-to-peer bots can be

6

Hash Found Search Search Reply Get Search Results No Result Result
h1 (self ID) N/A N/A N/A N/A N/A N/A

h2 no 5 2 2 2 0
h3 yes 39 13 13 11 2
h4 no 30 7 6 7 0
h5 yes 39 13 13 7 3

Table 4: Hash Search Results

quite low although perhaps not as low as centralized
command and control.

In our analysis, the Overnet packets included 10,105
unique IPs in the Overnet network. Not all of these hosts
are directly contacted since our trace only shows packets
sent or received from approximately 4200 unique hosts.
The number of unique Overnet IPs includes all peers de-
scribed in fields of the Overnet protocol packets. It is
not certain what percentage of these peers are part of the
botnet. In fact, it is difficult to get information about
many other peers in the botnet from just the network
trace data. We know that of the five Result values re-
turned, there were four unique hosts. We do not know if
those hosts are infected with the bot. By the end of the
trace, there is a new machine that sends our bot a search
request looking for the same hash value that we previ-
ously requested. We think it is safe to conclude that host
is infected with the Trojan.Peacomm bot. Thus, since
we can only confirm one additional bot with reasonable
certainty, we conclude that it is difficult to detect other
infected hosts. We plan to develop detection methods in
future work.

5 Related Work

Rajab et al. presented a measurement methodology that
can be used to study botnets [10]. One of primary re-
sults of this study shows IRC as the prevalent C&C. We
believe that peer-to-peer will likely be prevalent in the
future, so our work is focused on understanding of peer-
to-peer C&C.

Vogt et al. describe a botnet architecture called the
super-botnet[11]. The basic idea of their architecture
is that rather than having one large botnet, the botnet
consists of many smaller botnets for some size param-
eter. The smaller botnets route commands to each other
and can collectively achieve the same results as a larger
botnet but with more resiliency. The communication ar-
chitecture they describe could be classified as a hybrid
peer-to-peer and centralized command and control archi-
tecture.

Dagon, et al. offered an analytical model for diurnal
botnet propagation and population growth rate in the In-
ternet [12]. This work is especially relevant to our study

given the regional bias and usage trends of peer sharing
application are skewed towards regions with higher com-
puter penetration and better network bandwidths. We
suspect that the diurnal botnet propagation and growth
rate may impact peer-to-peer botnet growth.

In a seminal paper, Cooke et al. pointed out the po-
tential threat posed by bots using peer-to-peer protocols
for their C&C [13]. This work identifies some of the
foundational analysis techniques for handling botnets in-
cluding incapacitation of the botnet itself, monitoring the
C&C channels, and tracking the propagation and attack
mechanisms. This work highlights the underlying dif-
ficulties in monitoring the channel that may lead back
to the bot controller [13]. Monitoring centralized C&C
topologies is easier relatively but still difficult. In our
work, the challenges in detecting the bot controller in a
peer-to-peer network is more difficult due to the dynamic
and distributed design of the architecture.

John Canavan describes attacks that use user decep-
tion techniques such as spreading bots by placing them
in shared directories to be replicated and copied across
the peer network [14]. This method describes the use of
peer-to-peer applications for bot propagation. Our work
focuses on the communication after infection, which can
also be established via peer-to-peer networks.

Distributed denial-of-service (DDoS) attacks are a
well known research problem. Much of the research
concludes that simple checks such as IP header, packet
content, or packet arrival rates can distinguish between
legitimate and malicious traffic [15]. However, attack-
ers continue to defeat these defenses. Our current work
has been in studying peer-to-peer botnets, which enable
DDoS attacks. Our goal is to develop methods of detect-
ing, preventing, or mitigating peer-to-peer botnets. De-
rived techniques that accomplish these goals can likely
be coupled with techniques for DDoS attack detection.

Constantinou et al. presented a novel approach for
peer-to-peer traffic identification that relies on the fun-
damental characteristics of peer-to-peer protocols as op-
posed to application-specific details. These characteris-
tics include large network diameters and large numbers
of entities acting as both as clients and servers [16]. Fu-
ture work will examine application of their techniques
for the detection of peer-to-peer botnets.

7

A recent work by Barford et al. presented the source
code analysis for effective understanding of mechanisms
used by malware [2]. This work shows the increased so-
phistication in bots such as their modular design and en-
capsulated functionality. For example, the Agobot fam-
ily has shown polymorphic obfuscations and a highly
modular design. We believe that peer-to-peer botnets
will likely become a more serious threat once a highly
modular design becomes available.

6 Conclusions and Future Work

We have presented an overview of peer-to-peer botnets.
Peer-to-peer botnets have the same basic goals of cen-
tralized C&C botnets, which include information disper-
sion, information harvesting, and information process-
ing. Peer-to-peer botnets are distinctive from centralized
C&C botnets in that there is no central point of failure
for a peer-to-peer botnet; however, peer-to-peer botnets
must communicate with many different peers. There has
been a recent trend in increased development of peer-to-
peer botnets, and we expect the level of sophistication
to increase. Agobot is one of the most successful IRC-
based botnets, which created a wealth of IRC botnets.
We imagine that the peer-to-peer equivalent of Agobot
may be released in the near future and will show a simi-
lar trend.

Our case study of the Trojan.Peacomm bot demon-
strates one implementation of peer-to-peer functional-
ity used by a botnet. The bot uses a peer-to-peer net-
work to download secondary injection payloads. These
secondary injections provide the basic primitive needed
for command and control. Follow on work will include
methods of detecting peer-to-peer botnets and simulation
results to better study the resiliency of peer-to-peer bot-
nets.

7 Acknowledgments

We would like to acknowledge the anonymous review-
ers for their helpful comments. Additionally, we would
like to thank Vernon Stark and Kevin Wenchel for their
useful conversations. Finally, we would like to thank
UNCC’s Department of Software and Information Sys-
tem for their support through the Honeynet Lab and NSF
award (DUE- 0415571) which partly funded this work at
UNCC.

References

[1] D. M. Kienzle and M. C. Elder, “Recent worms: a sur-
vey and trends,” inWORM’03: Proceedings of the 2003
ACM workshop on Rapid Malcode, pp. 1–10, ACM Press,
2003.

[2] P. Barford and V. Yegneswaran, “An inside look at bot-
nets,” in Special Workshop on Malware Detection, Ad-
vances in Information Security, 2006.

[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for Internet applications,” inACM SIGCOMM
2001, pp. 149–160, August 2001.

[4] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-
peer information system based on the XOR metric,” in1st
International Workshop on Peer-to-Peer Systems, pp. 53–
62, March 2002.

[5] “The honeynet project.”http://www.honeynet.org,
February 2007.

[6] “Perileyez.” http://www.digitalninjitsu.com/
downloads.html, February 2007.

[7] M. Suenaga and M. Ciubotariu, “Symantec: Tro-
jan.peacomm.” http://www.symantec.com/
security response/writeup.jsp?docid=
2007-011917-1403-99, February 2007.

[8] J. Stewart, “Storm worm DDoS attack.”http:
//www.secureworks.com/research/threats/view.
html?threat=storm-worm, February 2007.

[9] J. Liang, N. Naoumov, and K. W. Ross, “The index poi-
soning attack in P2P file-sharing systems,” inInfocom
2006, 2006.

[10] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A
multifaceted approach to understanding the botnet phe-
nomenon,” inProceedings of ACM SIGCOMM/USENIX
Internet Measurement Conference (IMC), pp. 41–52,
2006.

[11] R. Vogt, J. Aycock, and M. J. Jacobson, Jr., “Army
of botnets,” in Proceedings of the 2007 Network and
Distributed System Security Symposium (NDSS 2007),
pp. 111–123, february 2007.

[12] D. Dagon, C. Zou, and W. Lee, “Modeling botnet prop-
agation using time zones,” inProc. of the 13th An-
nual Network and Distributed System Security Sympo-
sium (NDSS’06), 2006.

[13] E. Cooke, F. Jahanian, and D. McPherson, “The zombie
roundup: Understanding, detecting, and disrupting bot-
nets,” inProceedings of USENIX WOrkshop on Steps to
Reducinng Unwanted Traffic on the Internet, pp. 39–44,
USENIX, July 2005.

[14] J. Canavan, “The evolution of malicious IRC bots,” in
Proceedings of Virus Bulletin Conference 2005, pp. 104–
114, October 2005.

[15] S. Kandula, D. Katabi, M. Jacob, and A. W. Berger,
“Botz-4-sale: Surviving organized DDoS attacks that
mimic flash crowds,” in2nd Symposium on Networked
Systems Design and Implementation (NSDI), May 2005.

[16] F. Constantinou and P. Mavrommatis, “Identifying known
and unknown peer-to-peer traffic,” inProc. of Fifth IEEE
International Symposium on Network Computing and Ap-
plications, pp. 93–102, 2006.

8

