
A Case Study of the Rustock Rootkit and Spam Bot

Ken Chiang, Levi Lloyd
Sandia National Laboratories∗

Livermore, CA 94550
{kchiang,llloyd}@sandia.gov

Abstract

In this paper we present a case study of the steps leading
up to the extraction of the spam bot payload found within
a backdoor rootkit known as Backdoor.Rustock.B or
Spam-Mailbot.c. Following the extraction of the spam
module we focus our analysis on the steps necessary to
decrypt the communications between the command and
control server and infected hosts. Part of the discussion
involves a method to extract the encryption key from
within the malware binary and use that to decrypt the
communications. The result is a better understanding of
an advanced botnet communications scheme.

1 Introduction
The threat produced by botnets has escalated in recent
years. Not only has the number of infected machines
grown to catastrophic levels, but the sophistication level
of the tools used to infect and control vulnerable sys-
tems has also increased. Traditionally, botnets have used
the Internet Relay Chat (IRC) protocol for command
and control [1, 2, 3]. This method is losing popularity
among bot creators and herders since it is generally easy
to detect, monitor, and block IRC traffic. New meth-
ods for hiding the command and control communica-
tions include HTTP based communications, encryption,
and peer-to-peer network models [3, 4, 5, 6].

In this analysis we examine a backdoor rootkit known
as Backdoor.Rustock.B [7] or Spam-Mailbot.c [8] but
hereafter referred to simply as rustock. While work has
been done to deobfuscate the malware and study the
rootkit [7, 9], little information is available about the
functionality of the spam bot that is contained within
rustock. We are particularly interested in the communi-
cations between the command and control (C&C) server
and infected hosts since they provide a glimpse into an
advanced botnet communications scheme. The remain-
der of this paper presents a case study of the steps nec-
essary to extract and reverse engineer the spam bot com-
ponent.

∗Sandia is a multiprogram laboratory operated by Sandia Corpora-
tion, a Lockheed Martin Company, for the United States Department
of Energy’s National Nuclear Security Administration underContract
DE-AC04-94AL85000.

First, we provide some information gleaned from ob-
serving the network traffic produced by the bot. Then,
we walk through the three phases of deobfuscation lead-
ing to the extraction of the spam bot component. Next,
we describe the reverse engineering of the spam bot
leading up to the extraction of the session encryption
key from memory that makes it possible to decrypt the
C&C communications between client and server. Fi-
nally we summarize a sample decrypted C&C commu-
nication session between client and server.

2 Network Traffic Analysis

Before we begin the static analysis of the rustock mal-
ware we are able to learn a lot about the functionality of
the spam bot through direct observation of the network
traffic between the client and server. By looking through
a network traffic dump we determine that all C&C com-
munications are encrypted. The communications can be
divided into two phases: key exchange and instructions.
Both phases are initiated by the client in the form of
HTTP POSTs. Figure 1 gives a general overview of the
encrypted communications.

Infected Host

C&C Server

login.php

data.php

.

.

.

96 bytes

16 bytes

Key 

Exchange

Encrypted

Instructions

Figure 1: Spam bot command and control

The key exchange phase is similar in all C&C ses-
sions we observed. The HTTP POST from the client



contains a 96-byte encrypted payload and is sent to the
login.php page on the server. This is followed by a
response from the server containing a 16-byte payload.

The instruction phase of the C&C communications
consists of a variable number of HTTP POSTs from
the client and corresponding responses from the server.
The size of the payloads contained within these packets
is also variable and therefore assumed to be dependent
upon the variable nature of the underlying C&C instruc-
tions.

In addition to the information we gained through ob-
servation of the network traffic the people at Symantec
helped us recognize that the encryption algorithm used
to encrypt the data was RC4.

3 Static Analysis of the Malware

By combining the information we gather from static
and dynamic analyses, we are able to ultimately de-
cipher the communications between the client and
server. This section describes the static analysis
portion of the investigation into rustock. We per-
form the static analysis on this malware by study-
ing the obfuscated disassembly code of the binary file
lzx32.sys . The MD5 sum of this particular variant
is: FDAFB3A14338B2B612C4E5C4F94B3677.

As shown in Figure 2, the malware contains four
main components: the initial deobfuscation routine, the
rootkit loader, the rootkit, and the spam module.

IDA Pro 5.0 Standard Edition [10], an interactive dis-
assembly tool is used to study the code. A useful plug-
in to the disassembly tool called idax86emu [11] is also
employed to deobfuscate the malware. The plug-in tool
emulates the x86 CPU instruction set and can modify the
disassembly as it walks through the obfuscated code.

3.1 Initial Deobfuscation Routine

The Portable Executable (PE) header found within the
lzx32.sys executable points to an entry point lo-
cated at address0x00011000 . This is the starting
point of the first deobfuscation routine. The code at
the entry point consists of a series of nested loops that
contain instructions to self-modify the code starting at
0x000114AF (note: this address and all future refer-
ences to addresses in this section are virtual addresses as
seen by the disassembler and may be different with other
versions of the malware).

Using the emulator, we follow the deobfuscation rou-
tine to address0x000114AF . At this address, the de-
obfuscated code looks different and makes more sense
than the code prior to running through deobfuscation,
see Figure 3. This is the beginning of the rootkit loader.

PE Header

DOBF Routine 1

Rootkit Loader
DOBF Routine 2

Rootkit
DOBF Routine 3

bot_uncompressed_size

xor key

bot_compressed_size

0x11000

0x114AF

0x11926

Spam Module D

C

B

A

lzx32.sys

Figure 2: Overview of the lzx32.sys malware. In our analysis
we break it down into four parts: A. The first deobfuscation
routine, B. The rootkit loader which contains the second deob-
fuscation routine, C. The rootkit containing the third deobfus-
cation routine, and D. The spam module.

3.2 The Rootkit Loader
After a careful study of the code contained within the
rootkit loader, we learn it takes the following steps:

1. Searches for the ntoskernl.exe image in memory
and imports the functions:ExAllocatePool ,
ZwQuerySystemInformation ,
ExFreePool , andstricmp .

2. Using these imported functions, the malware allo-
cates a chunk of memory of about 34k (0x8800
bytes) and deobfuscates the memory chunk starting
at address0x00011926 into the allocated mem-
ory. The deobfuscation routine used at this stage
(DOBF Routine 2 in Figure 2) can be recognized
by the parameters passed to the function; they are
the address of the encrypted0x8800 bytes embed-
ded in the binary and the address of the0x8800
bytes of newly allocated memory. The deobfus-
cation routine is called at0x00011593 . The
deobfuscated memory turns out to be another PE
executable, which is then mapped back to loca-
tion 0x00011926 . This executable is the embed-



De-obfuscate

Figure 3: View of the disassembled code at the rootkit
loader’s entrypoint before and after deobfuscation.

ded rootkit component that we will discuss in sec-
tion 3.3.

3. Using the PE header of the embedded rootkit
component starting at0x00011926 , the rootkit
loader sets up the import tables by using the
strings table located within the deobfuscated rootkit
component. Some example function names
are ZwEnumerateKey , ZwCreateKey , and
ZwQueryKey . These functions will be used by the
rootkit component later to hide itself. The rootkit
loader then does any necessary relocation using the
relocation section of the embedded binary.

4. Since the rookit component is now decoded and
mapped into the malware, its PE header is no longer
needed. Therefore, in an attempt to defeat RAM
forensics, the rootkit loader deletes the MZ and
PE signatures bytes from the decoded rootkit exe-
cutable from memory before passing control to the
embedded rootkit binary.

5. The rootkit loader now jumps to0x00011D92 ,
the entry point of the rootkit component, which will
be discussed next.

3.3 The Rootkit Component

The rootkit component’s primary purpose is to
hide traces of itself from the user. For exam-
ple, in our dynamic test environment, the reg-
istry key HKLM\system\CurrentControlSet\
services\pe386 used to start the malware disap-
pears from the registry as soon as the malware is loaded.
A detailed discussion of the rootkit’s functionality is out-
side of the scope of this paper, however, a general dis-

cussion of the steps it takes that lead up to the extraction
and execution of the spam component is discussed here.

The rootkit component entry function at
0x00011D92 takes two arguments:

• A pointer to an object representing the original mal-
ware driver file, i.e.lzx32.sys . It appears that
this object is created by the Windows operating sys-
tem when driver files are loaded into memory as a
service.

• The registry path pointing to the registry key that
loaded the malware driver file into the operating
system. This path is Unicode encoded.

Knowing that the first argument is a pointer to the
file object representing the original malware driver file
is key in understanding how a modular component can
be loaded and executed by the rootkit component.

After storing the two arguments in global variables, a
system thread is created. This thread has the following
functionality:

1. Creates a handle to the rootkit kernel driver named:
\BaseNamedObjects \{DC5E72A0-6D41-4
7E4-C56D-024587F4523B } (Since this handle
name is hard-coded into the binary, it may serve as
a way to detect the presence of the rootkit module).

2. Checks whether the loaded malware driver file is
stored in an Alternate Data Stream (ADS).

3. Deletes all sub-keys in the hive: HKLM\
system\CurrentControlSet\Enum\
Root\Legacy_lzx32.sys

4. Replaces the registry functions to hide the registry
key created to load the malware at boot.

5. Creates a notify routine using
PsSetCreateProcessNotifyRoutine
which gets called for all process activity. This
notify routine creates at most two threads to inject
the spam component into the services.exe process.
By doing this, the malware ensures its survivability.

6. The rootkit then replaces the
ZwQuerySystemInformation , and
ZwTerminateProcess functions.

7. The same routine that injects the spam component
discussed in step 5 is called at this point to start the
spam component. This routine will be discussed in
detail next.

The spam component is encrypted and appended to
the original driver filelzx32.sys . The rootkit uses the
first argument to extract this encrypted executable. One
way to detect the presence of the appended component is
to parse the PE header of the original malware driver file.
By so doing, one will notice that there is additional data
past the end of the PE executable. To extract and decrypt
the appended data, the rootkit takes the following steps:



1. Reads the last four bytes of the original file, this
is the size of the encrypted and compressed exe-
cutable, we will call itbot compressed size .

2. Moves the file pointer back by
bot compressed size + 4 , and reads in
four bytes that represent the xor key.

3. Reads in the next four bytes after the xor key, this
is the uncompressed size of the appended file, we
will call it bot uncompressed size .

4. The xor key is then used to xor-decrypt the data
four bytes at a time, starting from the byte after
bot uncompressed size .

5. Allocates and uses a memory chunk of size
bot uncompressed size , the xor-decrypted
data is then deobfuscated using deobfuscation rou-
tine 3 (DOBF Routine 3 is the same as DOBF Rou-
tine 2).

The resulting file is another PE executable that is the
modular spam bot component. To properly extract this
module, it is important to use the size variables detailed
above. Using the wrong sizes results in an incomplete
spam module.

It was previously mentioned that the spam module is
injected into theservices.exe process, this is an-
other step taken by the malware to thwart detection. The
rootkit component follows these steps to inject the mod-
ule into theservices.exe process:

1. Finds the process ID ofservices.exe by using
the ZwQuerySystemInformation API func-
tion to return all system thread and process infor-
mation and searching the returned results. Once
found the process ID is stored in a global variable.

2. Creates another copy of theservices.exe pro-
cess.

3. Sets up networking capabilities by hooking the
tcpip.sys , wanarp.sys , and ndis.sys
driver functions.

4. Extracts, decrypts, and deobfuscates the spam mod-
ule as described above.

5. Maps the spam module into non-paged allocated
memory.

6. CallsKeAttachProcess to switch the memory
context to theservices.exe process.

7. The rootkit then sets up an asynchronous procedu-
ral call that provides a method to run the spam mod-
ule code.

3.4 The Spam Module

Now that we have extracted and decrypted the spam
module, we use our observations of the network traf-
fic generated by the bot and our dynamic analysis to
determine where to focus our static analysis. We tar-
get the function calls that post to thelogin.php and

data.php server files. By analyzing these functions
with the knowledge that the symmetric encryption algo-
rithm is RC4, we are able to locate the code that ran-
domly generates the session key and a location where
the prepared form of the RC4 session key is stored in
memory.

The RC4 encryption algorithm consists of two main
parts, the key-scheduling algorithm, and the pseudo-
random generation algorithm [12]. To generate the
keystream the two algorithms make use of an internal
state consisting of two parts, a permutation of all 256
possible bytes, and two 8-bit index pointers. By com-
paring the two functions found within the assembly code
with a C code implementation of RC4 [13], we are able
to determine that the assembly functions are direct im-
plementations of the two algorithms that make up RC4.
Additionally, the struct stored in global memory is the
secret internal state consisting of a 256 byte char ar-
ray and two index pointers into the array. The function
containing the key-scheduling algorithm is called once
during login.php . This function initializes the inter-
nal state variable and stores it in the global struct. The
session key itself is not stored in global memory and is
therefore difficult to extract. Fortunately, having the in-
ternal state variables is as good as having the original
key generated by the infected host.

The code snippet in Figure 4 is from the IDA
pro disassembly and shows the instructions leading
up to the storage of the global struct containing the
state variables. We have named the global struct
g prepped session key .

The instructionjz short loc 405CE4 is the in-
struction that precedes the code that prepares the session
key and stores it in global memory. Converting this in-
struction and subsequent instructions to hexadecimal re-
sults in a unique signature0x74 0x11 0xA1 0x64
that we will use later to search and extract from memory
the internal state variables used to decrypt the encrypted
network communications.

4 Key Extraction
Now that we know what we are looking for we need to
search through memory to find the RC4 internal state
variable. Based on information gathered through the
analysis of the rustock rootkit we know that the spam
module is injected into theservices.exe process. A
thorough overview of live memory forensics is beyond
the scope of this paper but we will discuss one method
we used to extract the RC4 state variable from the mem-
ory of a running machine infected with the spam bot.

We used Microsoft’s User Mode Process Dumper [14]
to dump the memory space of theservices.exe pro-
cess to a file. Timing of the memory dump is critical
since it must occur after the key exchange and instruc-



CODE:00405CC2 008                 lea     eax, [ebp+L_MD5_CTX_Struct]

CODE:00405CC8 008                 call    Check_message_digest ; returns 1 if match

CODE:00405CCD 008                 mov     ebx, eax

CODE:00405CCF 008                 test    bl, bl

CODE:00405CD1 008                 jz      short populate_eax

CODE:00405CD3 008                 mov     eax, ds:g_prepped_session_key

CODE:00405CD8 008                 push    eax

CODE:00405CD9 00C                 push    47

CODE:00405CDB 010                 lea     eax, [ebp-37h]

CODE:00405CDE 010                 push    eax

CODE:00405CDF 014                 call    Prep_session_key_and_store_in_global_memory

CODE:00405CE4

CODE:00405CE4     populate_eax:                           ; CODE XREF: Login_php+E0j

CODE:00405CE4                                             ; Login_php+109j

CODE:00405CE4 008                 mov     eax, esi

CODE:00405CE6 008                 call    @@FreeMem       ; __linkproc__ FreeMem

CODE:00405CEB

CODE:00405CEB     Clear_eax:                              ; CODE XREF: Login_php+A7j

CODE:00405CEB                                             ; Login_php+DAj

CODE:00405CEB 008                 xor     eax, eax

CODE:00405CED 008                 pop     edx

CODE:00405CEE 004                 pop     ecx

CODE:00405CEF 000                 pop     ecx

CODE:00405CF0 -04                 mov     fs:[eax], edx

CODE:00405CF3 -04                 push    offset cleanup

Figure 4: Disassbled code for the routine that stores the prepared session key in a global struct. The hex equivalent of the first
4-bytes of the highlighted code is used to generate a signature that will be used later to extract the prepared key.

tion phases of the C&C session but before the next key
exchange. Because the client typically initiates another
C&C session with the server every few minutes it is im-
portant to keep track of the various sessions and the cor-
responding memory dumps. In order to prevent the pos-
sibility of the state variable being overwritten one could
use a remote kernel debugger to break execution after
the C&C session has completed rather than dumping the
memory. The disadvantage of this method is that it af-
fects the timing of subsequent C&C sessions and could
be noticed by the server.

Once we have a memory dump and a corresponding
network capture of the C&C session, we load the mem-
ory dump into Microsoft’s windbg [15]. The log file
shown in Figure 5 enumerates the steps we took to ex-
tract the key. First, we locate the signature isolated in the
previous section (0x74 0x11 0xA1 0x64 ). Next,
we disassemble several instructions starting at the mem-
ory address we just found. Themov instruction at ad-
dress0x00d35cd3 loads a pointer to the struct con-
taining the RC4 state variables, so to find the key we
simply dereference the pointer. Finally we dump the
state variables to a file.

5 Decryption

Now that we have the RC4 state variables we decrypt the
C&C communications. For each call to thedata.php
routine, there are two parts. First, the client copies the
global struct containing the RC4 state variables to a lo-
cal instance located on the stack and calls the RC4 en-
cryption/decryption function on the string it wishes to
encrypt. The C&C server receives the encrypted pay-
load and decrypts it. Both the encryption on the client
end and the decryption on the server end modify the
state variables in precisely the same fashion, so the state
is synchronized on both ends before and after encryp-
tion/decryption. From this point the server encrypts the
response using the modified state variables and sends it
to the client where it is decrypted. Again, the state vari-
ables are modified in the same way on both the server
and client ends. Each call to thedata.php function
starts with a fresh copy of the global state variable struct.

To decrypt the captured C&C session we use the
global struct we have extracted from the memory dump
containing the state variables. We modify the C code
implementation of RC4 [13] to read the key-scheduling
state variables from disk rather then generating a new in-
stance. For us to decrypt the communication we need to
apply the RC4 encryption/decryption function (pseudo
random generation algorithm) to the POST message



0:000> s 00000000 L?30000000 74 11 a1 64
00d35cd1  74 11 a1 64 47 d4 00 50-6a 2f 8d 45 c9 50 e8 2c  t..dG..Pj/.E.P.,
0:000> u 00d35cd1
00d35cd1 7411            je      00d35ce4
00d35cd3 a16447d400      mov     eax,dword ptr ds:[00D44764h]
00d35cd8 50              push    eax
00d35cd9 6a2f            push    2Fh
00d35cdb 8d45c9          lea     eax,[ebp-37h]
00d35cde 50              push    eax
00d35cdf e82cf8ffff      call    00d35510
00d35ce4 8bc6            mov     eax,esi
0:000> db 00D44764 00D44767
00d44764  a0 5d 0d 00                                      .].. 
0:000> db 000d5da0 000d5ea1
000d5da0  e0 6d 55 4f 88 f2 6b 0a-45 bf 65 f8 a5 37 58 a0  .mUO..k.E.e..7X.
000d5db0  33 13 93 79 5a 4e 18 66-2f d4 fd a1 49 d1 22 3f  3..yZN.f/...I."?
000d5dc0  c7 31 32 21 fe 3c 73 1a-91 4b a8 bb 67 a3 c2 53  .12!.<s..K..g..S
000d5dd0  2a ad 6e 8d 4a 43 b0 7a-ec 46 b6 92 25 8f 35 db  *.n.JC.z.F..%.5.
000d5de0  5b 6c c4 a6 e3 83 f6 eb-8c 61 71 f1 84 56 e8 c9  [l.......aq..V..
000d5df0  8b 7d fa 05 c3 39 30 36-8a 7f f9 b2 a9 00 27 3e  .}...906......'>
000d5e00  ae b3 e5 b8 a2 ce 44 ff-2b 40 ed 2e 08 8e d9 9d  ......D.+@......
000d5e10  9f 69 c1 a4 0b 4d bd 02-9a 0c 89 df 16 dd 41 95  .i...M........A.
000d5e20  1c 14 86 9b c0 c6 0e 06-26 b4 85 1d 80 20 ca 59  ........&.... .Y
000d5e30  c5 a7 dc cb ea 09 50 19-7e d5 62 47 ab 9c 94 5f  ......P.~.bG..._
000d5e40  75 d2 de e7 fc 78 0f 81-b7 9e f4 af 64 87 98 cc  u....x......d...
000d5e50  90 b1 c8 ee 7b 1b d7 be-d6 97 e6 6f 99 23 cd 48  ....{......o.#.H
000d5e60  6a 15 e9 52 12 3b ef 29-01 03 60 f3 f5 e1 4c aa  j..R.;.)..`...L.
000d5e70  bc 68 24 10 d0 38 7c 74-1f e2 d8 e4 da 54 f7 5e  .h$..8|t.....T.^
000d5e80  82 fb 3d 1e 5d b9 5c 76-96 11 d3 cf 70 2d 2c 77  ..=.].\v....p-,w
000d5e90  57 3a ba 42 b5 17 f0 51-07 ac 63 72 28 34 0d 04  W:.B...Q..cr(4..
000d5ea0  00 00                                            .. 
0:000> .writemem d:\key.bin 000d5da0 000d5ea1
Writing 102 bytes.

Find 

Pointer

Address of

struct pointer

Search for

signature

Dump

Key

Figure 5: windbg log file with comments. This shows how to extract the RC4 state variables from memory.

from the client followed by the response from the server.
This keeps the state variables synchronized and allows
us to decrypt both sides of the communication. Each
exchange consisting of a POST todata.php and re-
ply from the server can be decrypted separately since
the state variable is copied from the global struct to the
stack each time.

One thing to note is that the first fourteen bytes of
the client message are ignored when encrypting the mes-
sage. This was noticed during the static analysis of the
spam module. In order to keep the state variables syn-
chronized, we also must ignore the first fourteen bytes
of the message.

Table 1 is a summary of a sample C&C session
we decrypted and consists of seven data exchanges.
The client initiates the conversation by sending the
“kill.txt” string for which the server responds with
a list of processes to terminate and files to delete
from the client. Some examples of processes are
CAPP.exe , syswire.exe , Ravmond.exe . Some
examples of files aremhook.sys , comdlj32.dll ,

andsecure32.html . Web searches for the processes
and file names indicate that these are other malicious
programs that the client may be infected with. This pro-
vides a way to eliminate other infections that may con-
flict with this bot.

Next, the client sends information about itself to the
server including bandwidth, OS version, SMTP avail-
ability (if outbound TCP/25 is allowed), if it is a vir-
tual machine, and if it is blacklisted on a DNS blacklist.
The server responds with additional information includ-
ing the client’s external IP address, machine name, task
id that the server assigns to the client for a given spam-
ming job, whether an update of the client is available,
and names of additional command strings that the client
can use for subsequent communications. An example
of the command strings are “filesnames=neutral.txt” and
“unluckystrings=unlucky.txt”.

The next packet sent by the client is “neutral.txt”, this
request results in a list of domain names from the server.
The client puts these domain names in a double-linked
list and queries them for the presence of mail servers.



Message Message Contents or Summary
Client 1 “kill.txt”
Server 1 Server response specifies processes to ter-

minate and files to delete from the client
Client 2 Information about the client
Server 2 Information for the client about the client

and file names to create or request
for subsequent communications with the
server

Client 3 “neutral.txt”
Server 3 List of domain names to query for mail

servers to use
Client 4 “unlucky.txt”
Server 4 List of SMTP server responses that indi-

cate failure
Client 5 “tmpcode.bin”
Server 5 Binary data that specifies the formatting

of spam message to be sent by the client
Client 6 “tmpcode.bin”
Server 6 Binary data including spam content
Client 7 “-”
Server 7 List of target email addresses

Table 1: Summary of decrypted C&C communications be-
tween the infected client and the server.

The fourth client request in this session is “un-
lucky.txt”. This request results in a list of error mes-
sages that an SMTP server could return. Some examples
are “Please use your provider SMTP” and “your mail
rejected”

In the fifth and sixth exchange, the client sends the re-
quest string “tmpcode.bin” and the server responds with
binary code and spam content that is used by the client
to generate spam messages that are dynamic in nature to
bypass spam filters.

Finally, in the last session, the client send a single
dash (“-”) to which the server responds with a list of
email addresses where spam messages will be sent.

6 Conclusions
Rustock is an advanced piece of malware used to effec-
tively hide criminal activity. The rootkit technology em-
ployed makes it difficult to detect the infection at the
host level. The use of encrypted HTTP for C&C makes
it difficult to detect at the network level. Even after de-
tection of the malware, the multiple levels of obfuscation
makes it difficult for analysts to find information about
the C&C servers to generate signatures.

Based on our observation that the starting ad-
dress of the deobfuscated code changed between ver-
sions of lzx32.sys as well as different obfusca-
tion techniques we conclude that the outer most binary
packer/obfuscator was changed. It is likely that the rea-

son for this is that the authors of the code were attempt-
ing to avoid antivirus detection as well as to increase the
amount of time that it takes to deobfuscate the code. Our
technique for deobfuscation was not affected much by
the different techniques since we step through the code
using an emulator.

Our analysis of the C&C communications indicates
ordinary spam bot functionality. Aside from this func-
tionality the spam module also has the ability to down-
load and execute arbitrary code. This could be used for
other nefarious purposes. In addition, the modular de-
sign of the rootkit and embedded spam module makes
it easy to update the spam module. During our experi-
ments, we observed multiple updates to the spam mod-
ule. These updates were confined to changes of C&C
server domain names and search terms used to build the
spam, but it indicates that it would be simple for those
controlling the botnet to update the module with other
features.

7 Future Work

More work is needed to see if automated unpack-
ing tools such as PolyUnpack [16] could be used
to quickly deobfuscate the various binaries contained
within lzx32.sys . This would greatly reduce the
amount of time needed to analyze future versions of ru-
stock.

Future work is also needed to better understand the
details of the rustock rootkit. Since our focus was on
getting to the spam module, we did not do a detailed
analysis on the rootkit itself. Further details can be found
in [9]. One element of the rootkit that needs more anal-
ysis is the alternative behavior exhibited when the mal-
ware driver detects that it is not stored in an ADS.

Additional work should be done to automate the key
extraction and C&C decryption. One way to do this
would be to continually monitor the network traffic from
an infected client. Anytime a post tologin.php
is seen, a remote procedure call could be initiated to
the infected host to dump the memory space of the
services.exe process. Given the network captures
and memory dumps it would be easy to write a script
to extract the key from the dumps and decrypt the C&C
communications in a way similar to our method.

8 Acknowledgments

We wish to express our appreciation to the people at
Symantec who gave us several pointers about the deob-
fuscation of the rustock rootkit and helped us identify the
encryption algorithm. We would also like to thank Chris
Eagle from the Naval Postgraduate School for his tips
on deobfuscation techniques and in using the idax86emu
plugin for IDA Pro.



References
[1] Paul Bacher, Thorsten Holz, Markus Kotter, and

Georg Wicherski, Know Your Enemy: Track-
ing Botnets, http://www.honeynet.org/
papers/bots/ , (2005).

[2] Paul Barford and Vinod Yegneswaran, An In-
side Look at Botnets,http://www.cs.wisc.
edu/˜pb/botnets_final.pdf

[3] Nicholas Ianelli and Aaron Hackworth, Botnets
as a Vehicle for Online Crime,http://www.
cert.org/archive/pdf/Botnets.pdf ,
(2005).

[4] Phatbot Trojan Analysis, LURHQ Threat In-
telligence Group,http://www.lurhq.com/
phatbot.html , (2004).

[5] Sinit P2P Trojan Analysis, LURHQ Threat In-
telligence Group,http://www.lurhq.com/
sinit.html , (2004).

[6] Robert Lemos, Bot software looks to im-
prove peerage, SecurityFocus,http://www.
securityfocus.com/news/11390 , (2006).

[7] Backdoor.Rustock.B, Symantec, http:
//www.sarc.com/avcenter/venc/
data/backdoor.rustock.b.html , (2006).

[8] Spam-Mailbot.c, McAfee,http://vil.nai.
com/vil/content/v_140181.htm , (2006).

[9] Frank Boldewin, A Journey to the Cen-
ter of the Rustock.B Rootkit, http:

//www.reconstructer.org/papers/
A%20Journey%20to%20the%20Center%
20of%20the%20Rustock.B%20Rootkit.
zip , (2007).

[10] IDA Pro, http://www.datarescue.com/
idabase

[11] The x86 Emulator plugin for IDAPro, Chris Eagle,
http://ida-x86emu.sourceforge.net

[12] Bruce Schneier,Applied Cryptography: Protocols,
Algorithms, and Source Code in C, Second Edition,
John Wiley and Sons, New York, NY, (1996).

[13] RC4 C source code, http://www.
cypherspace.org/adam/rsa/rc4.c

[14] Microsoft User Mode Process Dumper,
http://www.microsoft.com/downloads
/details.aspx?FamilyID=E089CA41-
6A87-40C8-BF69-28AC08570B7E&
displaylang=en

[15] Microsoft windbg,http://www.microsoft.
com/whdc/devtools/debugging/
default.mspx

[16] Paul Royal, Mitch Halpin, David Dagon, Robert
Edmonds, and Wenke Lee, PolyUnpack: Au-
tomating the Hidden-Code Extraction of Unpack-
Executing Malware. InProceedings of the 22nd
Annual Computer Security Applications Confer-
ence (ACSAC 2006)(December 2006).


