A Case Study of the Rustock Rootkit and Spam Bot

Ken Chiang, Levi Lloyd
Sandia National Laboratoriés
Livermore, CA 94550
{kchiang, llloyd}@sandia.gov

Abstract First, we provide some information gleaned from ob-
serving the network traffic produced by the bot. Then,

In this paper we present a case study of the steps leadinge walk through the three phases of deobfuscation lead-
up to the extraction of the spam bot payload found withining to the extraction of the spam bot component. Next,
a backdoor rootkit known as Backdoor.Rustock.B orwe describe the reverse engineering of the spam bot
Spam-Mailbot.c. Following the extraction of the spam |eading up to the extraction of the session encryption
module we focus our analysis on the steps necessary gy from memory that makes it possible to decrypt the
decrypt the communications between the command ang&C communications between client and server. Fi-
control server and infected hosts. Part of the discussioRally we summarize a sample decrypted C&C commu-
involves a method to extract the encryption key from nication session between client and server.
within the malware binary and use that to decrypt the
communications. The result is a better understanding o Network Traffic Analysis

an advanced botnet communications scheme. . . _
Before we begin the static analysis of the rustock mal-

1 Introduction ware we are able to learn a lot about the functionality of

the spam bot through direct observation of the network

The threat produced by botnets has _escalated in r(,eceﬂlad“fic between the client and server. By looking through
years. Not only has the number of infected machines, naork traffic dump we determine that all C&C com-
grown to catastrophlg levels, but the sophistication Ievelmunications are encrypted. The communications can be
of the tools US_Ed to infect angl_control vulnerable SYSgivided into two phases: key exchange and instructions.
tems has also increased. Traditionally, botnets have us bth phases are initiated by the client in the form of
the Internet Relay Chat (IRC) protocol for command HTTP POSTs. Figure 1 gives a general overview of the
and control [1, 2, 3]. This method is losing popularity encrypted communications
among bot creators and herders since it is generally easy '
to detect, monitor, and block IRC traffic. New meth-

- . C&C Server
ods for hiding the command and control communica-

tions include HTTP based communications, encryption, Infected Host
and peer-to-peer network models [3, 4, 5, 6]. - —

In this analysis we examine a backdoor rootkit known >
as Backdoor.Rustock.B [7] or Spam-Mailbot.c [8] but I -
hereafter referred to simply as rustock. While work has Key 96 bytes ogin.oh
been done to deobfuscate the malware and study the Exchange 16 bytes smene
rootkit [7, 9], little information is available about the
functionality of the spam bot that is contained within rypted data.php

rustock. We are particularly interested in the communi- |nstructions
cations between the command and control (C&C) server
and infected hosts since they provide a glimpse into an
advanced botnet communications scheme. The remain
der of this paper presents a case study of the steps nec
essary to extract and reverse engineer the spam bot com--
ponent.

Figure 1: Spam bot command and control

*Sandia is a multiprogram laboratory operated by Sandia Cafpo
tion, a Lockheed Martin Company, for the United States Depant . - .
of Energy’s National Nuclear Security Administration un@smtract _The key exchange phase is similar in all C&C ses-
DE-AC04-94AL85000. sions we observed. The HTTP POST from the client

contains a 96-byte encrypted payload and is sent to the
login.php page on the server. This is followed by a
response from the server containing a 16-byte payload.

The instruction phase of the C&C communications
consists of a variable number of HTTP POSTs from
the client and corresponding responses from the server
The size of the payloads contained within these packets
is also variable and therefore assumed to be depender
upon the variable nature of the underlying C&C instruc-
tions.

In addition to the information we gained through ob-
servation of the network traffic the people at Symantec
helped us recognize that the encryption algorithm used
to encrypt the data was RCA4.

3 Static Analysis of the Malware

By combining the information we gather from static
and dynamic analyses, we are able to ultimately de-
cipher the communications between the client and
server. This section describes the static analysis
portion of the investigation into rustock. We per-

form the static analysis on this malware by study-
ing the obfuscated disassembly code of the binary file
[zx32.sys . The MD5 sum of this particular variant
is: FDAFB3A14338B2B612C4E5C4F94B3677.

1zx32.sys
PE Header

0x11000

DOBF Routine 1 @
Ox114AF

Rootkit Loader e

DOBF Routine 2
0x11926

Rootkit
DOBF Routine 3

©

bot uncompressed size
xor key

Spam Module @

bot compressed size

Figure 2: Overview of the 1zx32.sys malware. In our analysis

As shown in Figure 2, the malware contains four we break it down into four parts: A. The first deobfuscation
main components: the initial deobfuscation routine, theroutine, B. The rootkit loader which contains the second deob-

rootkit loader, the rootkit, and the spam module.

IDA Pro 5.0 Standard Edition [10], an interactive dis-
assembly tool is used to study the code. A useful plug-
in to the disassembly tool called idax86emu [11] is also
employed to deobfuscate the malware. The plug-in too

fuscation routine, C. The rootkit containing the third deobfus-
cation routine, and D. The spam module.

|3.2 The Rootkit Loader

emulates the x86 CPU instruction set and can modify théAfter a careful study of the code contained within the

disassembly as it walks through the obfuscated code.

3.1 Initial Deobfuscation Routine

The Portable Executable (PE) header found within the
Izx32.sys executable points to an entry point lo-
cated at addres8x00011000 . This is the starting
point of the first deobfuscation routine. The code at
the entry point consists of a series of nested loops that
contain instructions to self-modify the code starting at
0x000114AF (note: this address and all future refer-
ences to addresses in this section are virtual addresses as
seen by the disassembler and may be different with other
versions of the malware).

Using the emulator, we follow the deobfuscation rou-
tine to addres®x000114AF . At this address, the de-
obfuscated code looks different and makes more sense
than the code prior to running through deobfuscation,
see Figure 3. This is the beginning of the rootkit loader.

2.

rootkit loader, we learn it takes the following steps:
1.

Searches for the ntoskernl.exe image in memory
and imports the functionsExAllocatePool
ZwQuerySystemInformation ,

ExFreePool , andstricmp

Using these imported functions, the malware allo-
cates a chunk of memory of about 34kx8800
bytes) and deobfuscates the memory chunk starting
at addres®©x00011926 into the allocated mem-
ory. The deobfuscation routine used at this stage
(DOBF Routine 2 in Figure 2) can be recognized
by the parameters passed to the function; they are
the address of the encryptég8800 bytes embed-
ded in the binary and the address of he3800
bytes of newly allocated memory. The deobfus-
cation routine is called a®x00011593 . The
deobfuscated memory turns out to be another PE
executable, which is then mapped back to loca-
tion 0x00011926 . This executable is the embed-

cussion of the steps it takes that lead up to the extraction

(|-Eext:DODLLSAR fest ==x, 1fi85F30CK and execution of the spam component is discussed here.
.text:000114E0 or al, OF3h
® _text:000114B1 rep mov [edi], edx i i
* .text:000114B& shi byte ptr [eax+5CFBS080h], <=l The rOOtklt Component entry fUI’]CtIOﬂ at
*.text:DD0114EC call far ptr NGNS 0x00011D92 takes two arguments:
* L text:000114C3 shl dword ptr [ebp+0Fh], 1
o LmamaaoTiate b e e A pointer to an object representing the original mal-
e ooiites feen ware driver file, i.e.lzx32.sys . It appears that
‘. text:DODLl4cA jump near prr (ENESEOESE this object is created by the Windows operating sys-
tem when driver files are loaded into memory as a
De-obfuscate service.
e The registry path pointing to the registry key that
o], fosts 00011408 pusha loaded the malware driver file into the operating
* Ltext:000114B0 call G+5 i i i
N i o o system. This path is Unicode encoded.
* L text:000114B6 sub ehp, & R . . .
* . text:000114B9 mov cex, Llerge £2:30k Knowing that the first argument is a pointer to the
Loty mov oo feemd file object representing the original malware driver file
-text:000114C4 is key in understanding how a modular component can

be loaded and executed by the rootkit component.

After storing the two arguments in global variables, a
system thread is created. This thread has the following
functionality:

Figure 3: View of the disassembled code at the rootkit
loader’s entrypoint before and after deobfuscation.

1. Creates a handle to the rootkit kernel driver named:
ded rootkit component that we will discuss in sec- \BaseNamedObjects \{DC5E72A0-6D41-4

tion 3.3. 7E4-C56D-024587F4523B } (Since this handle
3. Using the PE header of the embedded rootkit ~ name is hard-coded into the binary, it may serve as
component starting a@x00011926 , the rootkit a way to detect the presence of the rootkit module).

loader sets up the import tables by using the 2. Checks whether the loaded malware driver file is

strings table located within the deobfuscated rootkit ~ Stored in an Alternate Data Stream (ADS).

component. Some example function names 3. Deletes all sub-keys in the hive: HKLM\

are ZwEnumerateKey , ZwCreateKey , and system\CurrentControlSet\Enum\

ZwQueryKey . These functions will be used by the Root\Legacy_lzx32.sys

rootkit component later to hide itself. The rootkit 4. Replaces the registry functions to hide the registry

loader then does any necessary relocation using the ~ key created to load the malware at boot.

relocation section of the embedded binary. 5. Creates a notify routine using
4. Since the rookit component is now decoded and PsSetCreateProcessNotifyRoutine

mapped into the malware, its PE headeris nolonger ~ Which gets called for all process activity. This

needed. Therefore, in an attempt to defeat RAM notify routine creates at most two threads to inject

forensics, the rootkit loader deletes the MZ and the spam component into the services.exe process.

PE signatures bytes from the decoded rootkit exe- By doing this, the malware ensures its survivability.

cutable from memory before passing control to the 6. The rootkit then replaces the
embedded rootkit binary. ZwQuerySystemInformation , and
5. The rootkit loader now jumps t6x00011D92 , ZwTerminateProcess functions.
the entry point of the rootkit component, which will 7. The same routine that injects the spam component
be discussed next. discussed in step 5 is called at this point to start the
spam component. This routine will be discussed in
3.3 The Rootkit Component detail next.

The rootkit component's primary purpose is to The spam component is encrypted and appended to
hide traces of itself from the user. For exam- the original driver fildzx32.sys . The rootkit uses the
ple, in our dynamic test environment, the reg- first argument to extract this encrypted executable. One
istry key HKLM\system\CurrentControlSet\ way to detect the presence of the appended component is
services\pe386 used to start the malware disap- to parse the PE header of the original malware driver file.
pears from the registry as soon as the malware is loadedBy so doing, one will notice that there is additional data
A detailed discussion of the rootkit’s functionality is eut past the end of the PE executable. To extract and decrypt
side of the scope of this paper, however, a general disthe appended data, the rootkit takes the following steps:

1. Reads the last four bytes of the original file, this data.php server files. By analyzing these functions
is the size of the encrypted and compressed exewith the knowledge that the symmetric encryption algo-
cutable, we will call itbot _compressed _size . rithm is RC4, we are able to locate the code that ran-

2. Moves the file pointer back by domly generates the session key and a location where
bot .compressed size + 4 , and reads in the prepared form of the RC4 session key is stored in
four bytes that represent the xor key. memory.

3. Reads in the next four bytes after the xor key, this The RC4 encryption algorithm consists of two main
is the uncompressed size of the appended file, warts, the key-scheduling algorithm, and the pseudo-
will call it bot _uncompressed _size . random generation algorithm [12]. To generate the

4. The xor key is then used to xor-decrypt the datakeystream the two algorithms make use of an internal
four bytes at a time, starting from the byte after state consisting of two parts, a permutation of all 256
bot _uncompressed _size . possible bytes, and two 8-bit index pointers. By com-

5. Allocates and uses a memory chunk of sizeparing the two functions found within the assembly code
bot _uncompressed _size , the xor-decrypted with a C code implementation of RC4 [13], we are able
data is then deobfuscated using deobfuscation routo determine that the assembly functions are direct im-
tine 3 (DOBF Routine 3 is the same as DOBF Rou-plementations of the two algorithms that make up RCA4.
tine 2). Additionally, the struct stored in global memory is the

The resulting file is another PE executable that is theseCfetO:ntern_aldstate consisting rc1>f a 256 _Ib_%tefchar_ ar-
modular spam bot component. To properly extract thig' @Y an _twohm kex pmﬂtedrsl_mto tl € "?“r:ay-. e” udnctlon
module, it is important to use the size variables detaileFONtaINING the key-scheduling algorithm is called once

above. Using the wrong sizes results in an incompletélufinglogin.php . This function initializes the inter-
spam module nal state variable and stores it in the global struct. The
' session key itself is not stored in global memory and is

. .It was _preV|0ust mentloned that the sham m_odule IStherefore difficult to extract. Fortunately, having the in-
injected into theservices.exe process, this is an-

other step taken by the malware to thwart detection. Th ternal state varlables_ls as good as having the original
. L ey generated by the infected host.
rootkit component follows these steps to inject the mod- . . : .
. . . The code snippet in Figure 4 is from the IDA
ule into theservices.exe process:
pro disassembly and shows the instructions leading
1. Finds the process ID skrvices.exe by using up to the storage of the global struct containing the

the ZwQuerySysteminformation API func- state variables. We have named the global struct
tion to return all system thread and process infor-g_prepped _session _key .

mation and searching the returned results. Once The instructiorjz short loc _405CE4 is the in-
found the process ID is stored in a global variable. struction that precedes the code that prepares the session
2. Creates another copy of teervices.exe pro- key and stores it in global memory. Converting this in-

cess. struction and subsequent instructions to hexadecimal re-
3. Sets up networking capabilities by hooking the sults in a unique signatu@74 0x11 OxAl 0x64

tcpip.sys , wanarp.sys , and ndis.sys that we will use later to search and extract from memory

driver functions. the internal state variables used to decrypt the encrypted

4. Extracts, decrypts, and deobfuscates the spam mogretwork communications.
ule as described above.
5. Maps the spam module into non-paged allocatedt Key Extraction

memory. Now that we know what we are looking for we need to

6. CaIItsKtetA tiﬁchPr(_)cess to switch the memory search through memory to find the RC4 internal state
context 1o theservices.exe Process. variable. Based on information gathered through the

7. The rootkit then sets up an asynchronous prOcecjuémalysis of the rustock rootkit we know that the spam

ral call that provides a method to run the spam mool'module is injected into theervices.exe process. A
ule code. thorough overview of live memory forensics is beyond
the scope of this paper but we will discuss one method
3.4 The Spam Module we used to extract the RC4 state variable from the mem-
Now that we have extracted and decrypted the spanory of a running machine infected with the spam bot.
module, we use our observations of the network traf- We used Microsoft's User Mode Process Dumper [14]
fic generated by the bot and our dynamic analysis tdo dump the memory space of thervices.exe pro-
determine where to focus our static analysis. We tarcess to a file. Timing of the memory dump is critical

get the function calls that post to thegin.php and since it must occur after the key exchange and instruc-

CODE:00405CC2 008 lea eax, [ebp+L_MD5_CTX Struct]

CODE:00405CC8 008 call Check message_digest ; returns 1 if match
CODE:00405CCD 008 mov ebx, eax

CODE:00405CCF 008 test bl, bl

CODE:00405CD1 008 jz short populate eax

CODE:00405CD3 008 mov eax, ds:g prepped_session key
CODE:00405CD8 008 push eax

CODE:00405CD9 00C push 47

CODE:00405CDB 010 lea eax, [ebp-37h]

CODE:00405CDE 010 push eax

CODE:00405CDF 014 call Prep_session_key_and store_in_global_memory
CODE:00405CE4

CODE:00405CE4 populate_eax: ; CODE XREF: Login_php+E0j
CODE:00405CE4 ; Login php+109j
CODE:00405CE4 008 mov eax, esi

CODE:00405CE6 008 call @@FreeMem ; _ linkproc__ FreeMem
CODE:00405CEB

CODE:00405CEB Clear_eax: ; CODE XREF: Login_php+A7j
CODE:00405CEB ; Login_php+DAj
CODE:00405CEB 008 Xor eax, eax

CODE:00405CED 008 pop edx

CODE:00405CEE 004 pop ecx

CODE:00405CEF 000 pop ecx

CODE:00405CF0 -04 mov fs:[eax], edx

CODE:00405CF3 -04 push offset cleanup

Figure 4: Disassbled code for the routine that stores the prepared session keyloba gtruct. The hex equivalent of the first
4-bytes of the highlighted code is used to generate a signature that wildobater to extract the prepared key.

tion phases of the C&C session but before the next keyp Decryption

exchange. Because the client typically initiates another

C&C session with the server every few minutes it is im- NOW that we have the RC4 state variables we decrypt the
portant to keep track of the various sessions and the cof&C communications. For each call to tdata.php
responding memory dumps. In order to prevent the postoutine, there are two parts. First, the client copies the
sibility of the state variable being overwritten one could global struct containing the RC4 state variables to a lo-
use a remote kernel debugger to break execution aftegal instance located on the stack and calls the RC4 en-
the C&C session has completed rather than dumping th&ryption/decryption function on the string it wishes to
memory. The disadvantage of this method is that it af-encrypt. The C&C server receives the encrypted pay-

fects the timing of subsequent C&C sessions and couldead and decrypts it. Both the encryption on the client
be noticed by the server. end and the decryption on the server end modify the

state variables in precisely the same fashion, so the state
is synchronized on both ends before and after encryp-
tion/decryption. From this point the server encrypts the
response using the modified state variables and sends it

Once we have a memory dump and a Corresponding) the client where it is decryDIEd. Again, the state vari-
network capture of the C&C session, we load the mem-ables are modified in the same way on both the server
Ory dump into Microsoft's W|ndbg [15] The |Og f||e and client ends. Each call to th[h‘ataphp function
Shown in Figure 5 enumerates the Steps we took to eXStal‘tS with a fresh COpy of the glObal state variable struct.
tract the key. First, we locate the signature isolated inthe To decrypt the captured C&C session we use the
previous sectionQx74 0x11 OxAl O0x64). Next, global struct we have extracted from the memory dump
we disassemble several instructions starting at the mentontaining the state variables. We modify the C code
ory address we just found. Theov instruction at ad- implementation of RC4 [13] to read the key-scheduling
dress0x00d35cd3 loads a pointer to the struct con- state variables from disk rather then generating a new in-
taining the RC4 state variables, so to find the key westance. For us to decrypt the communication we need to
simply dereference the pointer. Finally we dump theapply the RC4 encryption/decryption function (pseudo
state variables to a file. random generation algorithm) to the POST message

Search for
signature

0:000> s 00000000 L230000000 74 11 al 64 <&
00d35cdl 74 11 al 64 47 d4 00 50-6a 2f 8d 45 c9 50 e8 2¢ t..dG..Pj/.E.P.,
0:000> u 00d35cdl

00d35cdl 7411 je 00d35ced Add :
00d35cd3 al6447d400 mov eax,dword ptr ds:([00D44764h]}—— — ress o
00d35cd8 50 push eax struct pointer

00d35cd9 6a2f push 2Fh

00d35cdb 8d45c9 lea eax, [ebp-37h]
00d35cde 50 push eax

00d35cdf e82cf8ffff call 00d35510
00d35ce4 8bcé6 mov eax,esi Find
0:000> db 00D44764 00D44767 <&
00444764 a0 5d 0d 00 1.

0:000> db 000d5da0 000d5eal

000d5da0 e0 6d 55 4f 88 f2 6b 0a-45 bf 65 f8 a5 37 58 a0 .mUO..k.E.e..7X.
000d5db0 33 13 93 79 5a 4e 18 66-2f d4 fd al 49 dl 22 3f 3..yzN.f/...I."?
000d5dc0 c¢7 31 32 21 fe 3c 73 l1la-91 4b a8 bb 67 a3 c2 53 .12!.<s..K..g..S
000d5dd0 2a ad 6e 8d 4a 43 b0 7a-ec 46 b6 92 25 8f 35 db *.n.JC.z.F..%.5.
000d5de0 5b 6¢c c4 a6 e3 83 f6 eb-8c 61 71 f1 84 56 e8 c9 [l....... ag..V..
000d5df0 8b 7d fa 05 c3 39 30 36-8a 7f f9 b2 a9 00 27 3e .}...906...... ">
000d5e00 ae b3 e5 b8 a2 ce 44 ff-2b 40 ed 2e 08 8e d9 9d D.+@......
000d5e10 9f 69 cl a4 Ob 4d bd 02-9a Oc 89 df 16 dd 41 95 .i...M........ A.
000d5e20 1c 14 86 9b c0 c6 0Oe 06-26 b4 85 1d 80 20 ca 59 &oeewo Y
000d5e30 c¢5 a7 dc cb ea 09 50 19-7e d5 62 47 ab 9¢c 94 5f P.~.bG...
000d5e40 75 d2 de e7 fc 78 0f 81-b7 9e f4 af 64 87 98 cCc U....X...... d...
000d5e50 90 bl c8 ee 7b 1b d7 be-d6 97 e6 6f 99 23 cd 48{...... o.#.H
000d5e60 6a 15 e9 52 12 3b ef 29-01 03 60 £f3 f5 el 4c aa Jj..R.;.).. ...L.
000d5e70 bc 68 24 10 dO0 38 7c 74-1f e2 d8 e4 da 54 £f7 5e .h$..8|t T.”
000d5e80 82 fb 3d le 5d b9 5c 76-96 11 d3 cf 70 2d 2c 77 ..=.].\v....p-,w
000d5e90 57 3a ba 42 b5 17 f0 51-07 ac 63 72 28 34 0d 04 W:.B...Q..cr(4..
000d5ea0 00 00 ..
0:000> .writemem d:\key.bin 000d5da0 000d5eal ¢
Writing 102 bytes.

Pointer

Dump
Key

Figure 5: windbg log file with comments. This shows how to extract the RC4 state varfaiiie memory.

from the client followed by the response from the server.andsecure32.html . Web searches for the processes

This keeps the state variables synchronized and allowand file nhames indicate that these are other malicious
us to decrypt both sides of the communication. Eachprograms that the client may be infected with. This pro-

exchange consisting of a POSTdata.php and re- vides a way to eliminate other infections that may con-

ply from the server can be decrypted separately sincdlict with this bot.

the state variable is copied from the global struct to the Next, the client sends information about itself to the

stack each time. server including bandwidth, OS version, SMTP avail-
One thing to note is that the first fourteen bytes ofability (if outbound TCP/25 is allowed), if it is a vir-
the client message are ignored when encrypting the medual machine, and if it is blacklisted on a DNS blacklist.
sage. This was noticed during the static analysis of th& he server responds with additional information includ-
spam module. In order to keep the state variables syning the client’s external IP address, machine name, task
chronized, we also must ignore the first fourteen bytesd that the server assigns to the client for a given spam-
of the message. ming job, whether an update of the client is available,
Table 1 is a summary of a sample C&C session@nd names of additional command_ strjngs that the client
we decrypted and consists of seven data exchange§an Use for subsequent communications. An example
The client initiates the conversation by sending theOf the Command strings are “filesnames=neutral.txt” and
“ill.txt" string for which the server responds with unluckystrings=unlucky.txt".
a list of processes to terminate and files to delete The next packet sent by the client is “neutral.txt”, this
from the client. Some examples of processes areequestresults in a list of domain names from the server.
CAPP.exe, syswire.exe , Ravmond.exe . Some The client puts these domain names in a double-linked
examples of files arenhook.sys , comdlj32.dll , list and queries them for the presence of mail servers.

Message| Message Contents or Summary son for this is that the authors of the code were attempt-
Client1 | “kill.txt” ing to avoid antivirus detection as well as to increase the
Server 1 | Server response specifies processes to ter-amount of time that it takes to deobfuscate the code. Our
minate and files to delete from the client technique for deobfuscation was not affected much by
Client 2 | Information about the client the different techniques since we step through the code
Server 2 | Information for the client about the client using an emulator.

and file names to create or request Our analysis of the C&C communications indicates
for subsequent communications with the ordinary spam bot functionality. Aside from this func-

server tionality the spam module also has the ability to down-
Client 3 | “neutral.txt” load and execute arbitrary code. This could be used for
Server 3 | List of domain names to query for mail other nefarious purposes. In addition, the modular de-

servers to use sign of the rootkit and embedded spam module makes
Client4 | “unlucky.txt” it easy to update the spam module. During our experi-
Server 4 | List of SMTP server responses that indi- ments, we observed multiple updates to the spam mod-

cate failure ule. These updates were confined to changes of C&C
Client5 | “tmpcode.bin” server domain names and search terms used to build the

Server 5 | Binary data that specifies the formatting spam, but it indicates that it would be simple for those
of spam message to be sent by the client controlling the botnet to update the module with other

Client6 | “tmpcode.bin” features.

Server 6 | Binary data including spam content

Client7 | “” 7 Future Work

Server 7 | List of target email addresses More work is needed to see if automated unpack-

ing tools such as PolyUnpack [16] could be used

Table 1: Summary of decrypted C&C communications be- X ; A ;
to quickly deobfuscate the various binaries contained

tween the infected client and the server.

within 1zx32.sys . This would greatly reduce the
. : . .., amount of time needed to analyze future versions of ru-
The fourth client request in this session is “un- stock

lucky.txt”. This request results in a list of error mes-
sages that an SMTP server could return. Some example

are “Please use your provider SMTP” and “your mail
y f y getting to the spam module, we did not do a detailed

rejected” : . :
) analysis on the rootkit itself. Further details can be found

In the fifth and sixth exchange, the client sends the re: 9. 0 | fth it th d I
quest string “tmpcode.bin” and the server responds witd" .[].' nee emer!t of the rqot It _at_ needs more ana-
sis is the alternative behavior exhibited when the mal-

binary code and spam content that is used by the clien¥

to generate spam messages that are dynamic in nature {'€ d.r!ver detects that itis not stored in an ADS.
bypass spam filters. Additional work should be done to automate the key

Finally, in the last session, the client send a single®Xtraction and C&C decryption. One way to do this
dash (*-") to which the server responds with a list of would be to continually monitor the network traffic from

email addresses where spam messages will be sent. an infected client. - Anytime a post tiogin.php
is seen, a remote procedure call could be initiated to
6 Conclusions the infected host to dump the memory space of the

. . services.exe rocess. Given the network captures
Rustock is an advanced piece of malware used to effec- P P

tively hide crimi_nal _aptivity. The rootkit te_:chno_logy em- f:)ngxt{?:é??r?é E(Lej)r/nfrr)gr: tvgglgsn?pese;g ;gcngtﬁeség%
ployed makes it difficult to detect the infection at the communications in a way similar to our method
host level. The use of encrypted HTTP for C&C makes '
it difficult to detect at the network level. Even after de-
tection of the malware, the multiple levels of obfuscation
makes it difficult for analysts to find information about We wish to express our appreciation to the people at
the C&C servers to generate signatures. Symantec who gave us several pointers about the deob-
Based on our observation that the starting ad-fuscation of the rustock rootkit and helped us identify the
dress of the deobfuscated code changed between vesncryption algorithm. We would also like to thank Chris
sions of 1zx32.sys as well as different obfusca- Eagle from the Naval Postgraduate School for his tips
tion techniques we conclude that the outer most binaryn deobfuscation techniques and in using the idax86emu
packer/obfuscator was changed. It is likely that the reaplugin for IDA Pro.

Future work is also needed to better understand the
etails of the rustock rootkit. Since our focus was on

8 Acknowledgments

References [lIwww.reconstructer.org/papers/

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]
[9]

A%20Journey%20to%20the%20Center%

Paul Bacher, Thorsten Holz, Markus Kotter, and !
200f%20the%20Rustock.B%20Rootkit.

Georg Wicherski, Know Your Enemy: Track-

ing Botnets, http://www.honeynet.org/ zip , (2007).

papers/bots/ , (2005). [10] IDA Pro, http://www.datarescue.com/

Paul Barford and Vinod Yegneswaran, An In- idabase

side Look at Botnetshttp://www.cs.wisc. [11] The x86 Emulator plugin for IDAPro, Chris Eagle,
edu/"pb/botnets_final.pdf http://ida-x86emu.sourceforge.net

Nicholas .IaneIIi and _Aaron' Hackworth, Botnets [12] Bruce Schneierpplied Cryptography: Protocols,
as a Vehicle for Online Crimehttp://www. Algorithms, and Source Code in Second Edition,
cert.org/archive/pdf/Botnets.pdf , John Wiley and Sons, New York, NY, (1996).
(2005). [13] RC4 C source code, http://www.
Phatbot Trojan Analysis, LURHQ Threat In- cypherspace.org/adam/rsa/rc4.c

telligence Grouphttp://www.lurhg.com/

phatbot.htm| . (2004). [14] Microsoft User Mode Process Dumper,

http://www.microsoft.com/downloads

Sinit P2P Trojan Analysis, LURHQ Threat In- /details.aspx?FamilylD=E089CA41-
tgll?gence Group http://www.lurhg.com/ 6A87-40C8-BF69-28AC08570B7E&
sinit.html , (2004). displaylang=en

Robert Lemos, Bot software looks to im- [15]

, Microsoft windbg,http://www.microsoft.
prove peerage, SecurityFocusttp://www.

com/whdc/devtools/debugging/

securityfocus.com/news/11390 , (2006). default.mspx

Backdoor.Rustock.B, Symantec, http: [16] Paul Royal, Mitch Halpin, David Dagon, Robert
[lIwww.sarc.com/avcenter/venc/ Edmonds, and Wenke Lee, PolyUnpack: Au-
data/backdoor.rustock.b.html » (2006). tomating the Hidden-Code Extraction of Unpack-
Spam-Mailbot.c, McAfee http://vil.nai. Executing Malware. InProceedings of the 22nd

com/vil/content/v_140181.htm , (2006). Annual Computer Security Applications Confer-
Frank Boldewin, A Journey to the Cen- ence (ACSAC 200¢pecember 2006).

ter of the Rustock.B Rootkit, http:

