
Toward Botnet Mesocosms
Paul Barford and Mike Blodgett
University of Wisconsin-Madison

pb@cs.wisc.edu, mblodget@cs.wisc.edu

Abstract— An in-depth understanding of botnet behavior is
a precursor to building effective defenses against this serious
and growing threat. In this paper we describe our initial steps
toward building a flexible and scalable laboratory testbed for
experiments with bots and botnets. Our Botnet Evaluation
Environment (BEE) is designed to enable individual bots or
networks of up to thousands of bots to be tested in a secure,
self-contained framework. BEE is being developed as a toolkit
for Emulab-enabled network testbeds; a design choice made
to obviate the need for building user/experiment management
functions and to enable access to collections of computing hosts.
The focus of our implementation efforts has been on building
a library of OS/Bot images that can be run on individual
systems or on virtual machines. The library currently includes
images generated from source code of four well known bots
(Agobot, GTbot, Spybot, SDbot) and from binary code for several
unknown bots, and a number of Windows OS variants. BEE also
includes a set of services that are required for botnets including
DHCP, DynDNS, and IRC, as well as other tools that are useful
for botnet measurement and evaluation such as VM monitors
and honeypots. To demonstrate the utility of BEE, we describe a
simple set of tests that characterizes command and control traffic
from three different botnet configurations.

I. I NTRODUCTION

mes·o·cosm: n. a medium size, representative system
that matches as directly as possible a larger system
in constitution, configuration or development.

Over the past several years,botnetshave become one of
the most serious threats ever faced by the Internet. Many
recent reports describing botnet structure and behavior have
appeared in the technical and popular press (e.g.,[1], [2], [3]).
While it is difficult to estimate the total number of systems
that participate in botnets at any point in time, most estimates
are on the order of millions [4], [5], [6], and Turing Award
winner Vint Cerf recently predicted that as much as 25% of
all Internet hosts could become botnet drones over the next
several years [7]. Furthermore, the magnitude of the botnet
threat is now widely recognized to be compounded by the
emergence of an active botnet economy that is likely to be
fueled by organized crime [8], [9], [10]. Developing effective
counter-measures against this threat will require significant
focus and innovation from the network security community.

We argue that a comprehensive testbed environment for
botnet study is a critical building block in the quest to address
the botnet threat. The requirements for such an environment
include:

1) the ability to experiment with a variety of bot types (both
known and unknown) running on a variety of standard

operating systems,
2) the ability to conduct experiments in a secure fashion

(i.e., one that poses no threat to the greater Internet),
3) the ability to create flexible and realistic botnet topolo-

gies and configurations,
4) the ability to conduct experiments at scale and under

realistic conditions.
We posit that a testbed that satisfies these requirements

would enable a range of experimental study on new methods
and tools for characterizing, comparing, identifying, tracking,
dismantling, and preventing botnets. The key benefits of such
an environment are the ability to establishground truth be-
havior through comprehensive instrumentation, experimental
repeatability and the ability to conduct experiments over a
wide range of configurations.

In this paper we describe the design and implementation
of the Botnet Evaluation Environment (BEE), with the long
term goal of satisfying the requirements listed above. In
brief, BEE is a set of operating system/bot images and
support tool configurations that can be instantiated in secure,
Emulab-enabled environments including DETER [11] and the
Wisconsin Advanced Internet Lab (WAIL) [12]. Emulab is
a widely used network emulation testbed technology that
enables customized operating system and application images
to be deployed on dedicated PCs, and for those systems to
be organized into virtually any kind of topological configura-
tion [13]. These capabilities satisfy aspects of the third and
fourth BEE requirements listed above, making an Emulab-
enabled testbed a natural starting point for our work.

The relatively recent emergence of malicious botnets, their
dynamic nature and mechanisms for obfuscating their behav-
ior are central challenges in creating an effective, realistic
laboratory environment for botnet evaluation. While the lit-
erature is growing, there are remain many open questions on
botnet structure and behaviore.g., typical botnet topologies,
botmaster behavior and even size and lifetimes of botnets.
Other complicating factors include handling anti-virtualization
capabilities, providing sufficient support services for a wide
range of bot variants (e.g., those that use non-IRC command
and control systems), and the tussle between containment and
experiments with bots that “phone home” for binary uploads.
As the community develops a deeper understanding of these
issues through empirical study, we argue that the utility of
BEE for botnet study (e.g., the network effects and impact
of multiple bots communicating and reacting to botmaster
commands) will grow. In the meantime, we argue that BEE is

1

a valuable platform for the study of individualbots.

BEE’s design includes three primary components: OS/bot
images, support services, and security mechanisms. The first
component, as its name suggests, is a library of different
versions of bot code installed on different versions of MS
Windows operating systems. Our goals for this component are
1) to automate the process of generating OS/bot images, and
2) to build out a library of images that will enable experiments
with wide range of individual bots [14], [15]). Building these
images has been the primary focus of our initial efforts. We
want to be able to experiment with bots built from bot code in
either source or binary form. The former is very useful with
respect to building all of the necessary support infrastructure
and for establishing ground truth behavior for a particular
bot variant. However, it can be difficult to find bot code in
source form. In contrast, a large number of bot code binaries
(or binaries suspected to be bot code) can easily be captured
through the use of honeynets [16]. The challenges in building
and experimenting with images built from bot binaries are
security containment and the fact that a growing number of
bots include anti-virtualization and anti-debugging capability.

We have developed an initial set of OS/bot images from both
source code and binaries, and continue the library development
effort. To improve usability and enable experiments with large
numbers of bots, we have developed images that can be run
on virtual machines. In our experience, this enables approxi-
mately 5-to-1 bot-to-host multiplexing on modestly configured
PCs. With this capability, we have experimented with 500 bot
networks – what we refer to asbotnet mesocosms. Finally,
each OS/bot image in our library includes documentation on
when it was created, its name and family, and its important
features such as a list of its control commands, propagation
modes, and attack and information gathering capabilities.

The second component of BEE is the set of support services
that are required for botnets to function. The current set of
services include DHCP, DynDNS and IRC. We had to develop
specific configurations for each of these services in BEE so
that they will respond appropriately to a wide variety of
queries. For example, BEE ignores the destination address for
queries directed to the DNS service and directs them to its
own DynDNS server. This server, in turn, replies to all queries
with the address of the BEE IRC server. While the current
set of services are, in some sense, IRC-centric, we plan to
enhance this component with additional capabilities as needed
to supporte.g.,other command and control mechanisms.

The final component of BEE is it’s set of security mech-
anisms. These are critically important since real bot code is
used to build OS/bot images used in experiments. Two threat
models were considered in designing the security mechanisms.
The first is bot code that is not BEE-aware, but that may
attempt to self-propagate or conduct other malicious activity
beyond BEE. The second is users who may inadvertently
disable one of the security mechanisms in the course of
an experiment. To address these threats, we implemented

three different security mechanisms all aimed at keeping BEE
traffic contained within an experimental configuration. The
mechanisms include:(i) a firewall at the BEE border that
blocks all outgoing connections and UDP packets,(ii) keeping
the BEE management network logically separate from the
experimental network, and(iii) using only unroutable (10-
net) addresses within BEE. To date, these mechanisms have
only been tested in the WAIL environment, but it seems clear
that DETER (a testbed designed for secure, self-contained
experiments) would easily accommodate BEE, and that it
could be ported to a standard Emulab environment. We discuss
some of implications of these mechanisms in Section III-D.

An important aspect of BEE is how it is packaged and
used. Our goal is to make experimental development by users
as simple as possible. At the highest level, BEE will be
available to the research community subject to approval by
testbed operators, who will be conservative due to the possible
dangers of experiments in BEE. Upon approval, users will be
given access to the BEE OS/image library and configuration
scripts that instantiate the required services. Users can then
experiment with individual bots or build botnets with OS/bot
images in the same way that other network topologies are built
in Emulab-enabled environments. In this case, however, the
images will only be able to be deployed on systems that reside
behind the testbed firewall. After a topology has been built, and
other mechanisms such as background traffic generators and
specific instrumentation have been deployed and the service
scripts have been run, the botnet can be exercised like a botnet
in the live Internete.g.,by sending commands through the BEE
IRC server.

To demonstrate the efficacy of BEE, we created three simple
botnet mesocosms in WAIL. We used these experimental
configurations to generate, measure, characterize and compare
botnet command and control traffic. While the results show a
predictable traffic pattern through the IRC server, they also
highlight randomness and differences in the traffic process
which we would expect to see in the Internet. While we
make no arguments for the intrinsic value of these results,
we believe that the demonstration provides useful insights on
the capabilities of the toolkit.

The remainder of this paper is organized as follows. We
review studies related to botnet measurement and analysis in
Section II. The details of BEE’s implementation, the chal-
lenges that had to be overcome in its development and the
challenges in its use are given in Section III. In Section IV,
we report results of our case study that demonstrates how
BEE can be used. We summarize our work and describe future
directions for BEE in Section V.

II. RELATED WORK

Network security research can be conducted in a variety
of ways. One of the most important modalities is empirical
study based on gathering data from live and/or dedicated
measurement systems deployed in the Internet. There are
several mechanisms that have been used effectively to gather

2

data specifically on botnet behavior. The first is by monitoring
DNS for lookups commonly used by bots to resolve the
address of the server (typically an IRC server) used for
command and control. Active methods via DNS hijacking [17]
and passive methods via DNS-based blackhole lists [18] have
been described in prior work. Another method for tracking
botnet activity is through the use of monitors deployed on
unused address space (honeynets) [16], [19], [20], [21], [22].
Honeynets with active response capability enable details of at-
tacks to be tracked and malicious binaries to be gathered [14],
[23]. Two recent studies by Rajabet al. [24] and Freilinget
al. [25] describe multifaceted approaches to evaluating botnets
based on using honeynets to gather malicious binaries, and
then to monitor systems on which these binaries execute for
command and control traffic associated with botnets. Similar to
that work, we anticipate that honeynets will continue to be an
important source of malware that can be evaluated in BEE, but
unlike that work, BEE is focused on understanding how small
to medium sized botnets behave, not just individual instances.
Finally, the potential of correlating data from multiple sources
as a means for detection and real time tracking of botnets has
been discussed in several papers including [26], [27], [28]. We
believe that BEE will eventually be useful for testing this kind
of distributed monitoring system with real botnets.

A second modality for network security research is through
detailed examination of instances of both source code (in-
stances of malware source code can be found by searching the
Web and Usenet news groups) and executable code (executa-
bles can be gathered,e.g.,via honeynets). Standard tools are
used to reverse engineer executables including disassemblers,
debuggers and system monitors such as [29], [30], [31]. This
microcosmapproach is commonly used by network and host
security vendors for signature development. However, malware
authors are well aware of this approach, and are known to
be developing specific deception techniques to complicate the
analysis process [32]. Similarly, there are many tools available
for static analysis of source code such as [33], [34]. These tools
are most often focused on the problems of identifying run time
errors and security vulnerabilities. However, the information
they can provide including symbol tables, call graphs and
parse trees could be valuable in future bot code analysis. We
anticipate that a diverse repository of botnet configurations in
BEE will be useful to researchers interested in developing and
testing,e.g.,host-based mechanisms for botnet detection.

A third modality for network security research, and the
one that we advocate in this paper for the study of bot-
nets is through the use of emulation testbeds such as Emu-
lab/DETER/WAIL [13], [11], [12]. These testbeds offer the
possibility for study in controlled environments that strive to
be realistic. While hundreds of papers have been published
based on results from emulation infrastructures, botnet anal-
ysis presents both challenges and opportunities as described
throughout this paper. One particular challenge is conducting
large scale experiments,e.g., approximating the size of the

entire Internet. Weaveret al. offer an interesting approach for
addressing this by describing scale-down techniques in [35].
Our objective in BEE is to enable realistic experiments with
small to medium sized botnets as defined in [24]. Experiments
with larger bots loom as an interesting possibility but are
beyond the scope of this study. We are aware of no prior
work that attempts to build a scalable, extensible and realistic
testbed for botnet evaluation and analysis.

Finally, there are several efforts underway to identify and
characterize malware in general and bot code in particular
that are hybrids of the aforementioned analysis methods. A
commercial example of this is the Norman Sandbox, which
evaluates malicious binaries in a secure, emulation environ-
ment and produces reports on their behavioral characteristics
including classification into malware types such as bots [36].
A similar commercial product is the Sunbelt CWSandbox [37]

III. T HE BOTNET EVALUATION ENVIRONMENT

In this section, we describe the implementation details
of BEE including the challenges that we faced during the
development process. We also provide a description of how
BEE is used in an Emulab-enabled environment, and discuss
its current and future limitations.

A. BEE Implementation

The objective of our work is to build a bot testbed that satis-
fied the requirements listed in Section I. The key components
of the requirements are realism, flexibility, security, usability
and scalability

The first step toward satisfying these requirements was to
design and develop BEE as a toolkit for Emulab-enabled
laboratories. Building on top of Emulab allowed us to take
advantage of established functionality that includes user, ex-
periment and disk image management, and straight-forward
network topology generation and configuration. This choice
also allowed us take advantage of installations of large num-
bers of dedicated general purpose computer hosts, which are
required to enable BEE to be used by the research community
at large and to conduct experiments with botnet mesocosms.
Our local Emulab-enabled facility, WAIL [12], has over 100
PCs, and is the infrastructure on which BEE development has
taken place.

With Emulab/WAIL as a starting point, BEE’s design in-
cludes OS/bot disk images, a set of services required for bot
operation and a set of security mechanisms that aim to ensure
that no malicious packets from bots can escape into the live In-
ternet. Each of these components is described in detail below.
We also added VMware-based virtualization capability, which
is the most direct method for instantiating MS Windows-based
OS/bot images in Emulab-enabled testbeds. Virtualization also
enables botnet size to be increased by running multiple images
per PC host.

3

B. OS/bot Image Library

At the core of BEE is a library of OS/bot disk images that
are available to authorized users through a web interface. The
images are built from real bot code on top of MS Windows
operating system variants, and can be deployed in an Emulab
test network, enabling experiments with real bots or botnets in
a matter of minutes. Our goal in developing this library is to
provide users with a large number of bot variants developed
from either bot source code or binary code. Learning how to
build OS/bot images and then building tools to automate the
process has been the primary focus of our initial efforts.

Source code for some common bots is available from the
web, news groups and underground sources (although we
anticipate that it will be increasingly difficult to find source
instances over time). We gathered several of the most well
know bot variants for the initial BEE OS/bot image develop-
ment. Working with source code enabled us to bootstrap our
testbed development process by providing important insights
on the required network services, precluding the need for
IRC passwords or channel keys, and exposing the entire
command set for each bot. Perhaps most importantly, source
code exposes all of the anti-debugging and anti-virtualization
capabilities of the bot. Disabling these capabilities is essential
to operation in a virtualized network configuration. In our
current inventory of bots, only the Agobot code included
anti-debugging and virtualization checks. During initialization
our version of Agobot checks for the VMware “BackDoor
I/O”, and exits if it is found. Other bot code variants have
been known to check values in various hardware registers
or memory locations, and for the existence of processes or
configuration elements known to exist within a guest operating
system running on a VM.

The process for creating guest OS images begins by identi-
fying a target operating system. Our initial development efforts
focused on MS Windows variants (specifically Windows 2000)
although our methodology can easily be extended for Unix
variants. After the initial install of the guest OS, a number
of changes must be made the the VMware virtual machine
configuration file to allow multiple identical image instances.
These changes are not OS specific, and are related to certain
locking and logging features of VMware. Inside the guest OS
we must set up the environment so that when the image is
booted on an experimental node, it will configure node specific
parameters,e.g., provide a unique NetBIOS name for each
image. Additionally, if the node is required to auto-infect itself
with a bot binary (i.e., execute a bot binary that is resident
in the root directory), we must pass that information into
the guest. Currently we do this through the variable passing
features of VMware, but these tools also provide a detectable
feature for any anti-debugging code. We are currently devel-
oping a new method for adding binaries that bypasses the
standard VMware tools thereby making the overall process
of running binaries in VMware environments more efficient.
Finally, the build time for a new OS image from scratch

can take up to one day due to the myriad of configuration
tasks related to creating a specific MS Windows configuration
(including service packs, patches, etc.) on VMware. We are
also developing tools for streamlining this process.

Adding bots to OS images when the bot source code avail-
able is usually a straight forward task. Finding, configuring and
compiling the bot are the most time consuming aspects of the
process. Typically, anti-debugging or anti-virtualization checks
are commented in the code and are easy to disabled. Our
current implementation requires an administrator to configure
the bot and place the compiled binary into the VMware virtual
disk – this constitutes what we refer to as an “OS/bot image”.
It will eventually be possible for users to create their own
OS/bot images from either source code or binaries.

Adding a binary to an OS image when the binary is either
known to be or suspected to be a bot can be more complicated.
The process begins by placing the binary into the VMware
virtual disk. Next, the resulting OS/bot image must be tested to
see if it includes anti-virtualization checks that preclude its use
on VMware installations. Depending on the sophistication of
the anti-virtualization mechanisms, the image may only be able
to be used on a stand-alone PC which would limit the scale of
experiments. While stand-alone MS Windows images are not
currently supported in BEE, we are investigating how to utilize
Emulab’s support for this capability. Otherwise, changes to the
VMware installation may very well provide a solution. We are
currently working on adding some of the known counter VM
detection mechanisms into our guest images [38].

We are currently developing an automated method for users
to include their own bots in BEE. We believe that this is very
important since it will enable expansion of the bot library
(e.g.,by gathering binaries from honeypots) and to increase the
utility of BEE (e.g.,by developing automated bot identification
capability similar to [36], [37]). Users interested in testing
their own bot code currently have to submit it to the testbed
administrators who can build it into a standard image.

[Network services]
* Connects to "irc.abraracourcix.com" on port 3705 (TCP).
* Sends data stream (11 bytes) to "irc.abraracourcix.com",

port 3705.
* Connects to IRC Server.
* IRC: Uses nickname USA|803400.
* IRC: Uses username ixllgi.
* IRC: Joins channel ##H4ck.Rb0t## with password asd.
* IRC: Sets the usermode for user USA|803400 to +i-x.

Fig. 1. Example output from Norman Sandbox [36] analysis of bot binary
taken from Offensive Computing [39].

The final step in the process of building OS/bot images
from either bot source or binaries is to generate documentation
for each image. A standard template is filled out, to the
extent possible, by the person creating the image. The template
includes information on image creation, the OS name/version,

4

bot name/version,1 whether or not the image can be used in
a virtualized environment, whether or not the bot includes
anti-debugging and notes on configuration and use (e.g., IRC
channel name and bot user name). The documentation also
includes notes of the bot itself such as commands that are
recognized by the bot, exploits/capabilities of the bot (e.g.,
DoS, Spam relay, etc.), and propagation methods. Our focus
is not on deep details, but to provide information sufficient
to conduct a wide range of experiments with the botnets. For
binaries, services such as the Norman Sandbox can be used to
expose details of bots that are necessary for their use in BEE
as shown in Figure 1. In this example, the IRC server name,
port number and the channel name are provided, all of which
are required for exercising this unknown bot.

The OS/Bot images (plus documentation) currently avail-
able in the BEE library include:

• Windows 2000 + Agobot/Phatbot (from source)
• Windows 2000 + SDBot (from source)
• Windows 2000 + GTBot (from source)
• Windows 2000 + SpyBot (from source)
• Windows XP + Agobot/Phatbot (from source)
• Windows 2000 + SpyBot (unknown binary version)

This set was developed and tested to demonstrate the ability
to mix and match different OS and bot variants from both
source code and binaries. It is our hope that as BEE is used
by the community, that others will contribute to the image
building and documentation effort.

C. Network Services

Bots in the live Internet expect a standard set of services and
will not operate without them. Thus, the same set of services
must be available in any test environment built from BEE
OS/bot images. The set of services listed below have been
configured, tested and packaged for easy instantiation and use
in BEE. We anticipate expanding this set over time as new
bots that require additional services are added to the library.

1) IRC Server:At present, Internet Relay Chat [41] is the
primary means for bot command and control. We use IRCd-
hybrid7 to provide IRC services in BEE [42]. Our default
configuration disables many of the anti-flooding controls.
Users can, of course, modify the configuration of the IRC
daemon or completely replace it if required.

2) DNS Server:BIND can be run on any of the experi-
mental nodes. The default configuration for BEE sets up a root
zone that can be updated via DynDNS which is frequently used
by bots [17]. Users specify DNS entries in the Emulab/NS
configuration file, which are added to each server on startup,
or entries can be manually added via the NS-update tool. A
default wild card can also be used, returning a single address
for all names. For security purposes, BIND is configured to
only listen on experimental interfaces and does not provide

1The details of malware naming conventions vary widely and we are
attempting to be consistent with projects such as MITRE’s Common Malware
Enumeration [40].

recursive services. This design choice could limit the range of
experiments with some bots, so we are looking into alternative
configurations.

3) VMware Server:VMware-server 1.0.1 is used to provide
virtualization on the testbed. We chose VMware based on its
well known support for Windows images. We created a custom
configuration for the VMware server that enables a user to run
multiple instances of the same guest OS image on a target host.
This configuration is fetched and installed on target hosts when
an experiment is instantiated. The process of loading OS/bot
images onto the virtualized systems is likewise automated via
configuration scripts.

The current testbed nodes do not have hardware virtualiza-
tion support (e.g., Intel’s IVT or AMD’s AMD-V). We are
considering possibility of adding these nodes to the WAIL
testbed, which may affect the future choice of virtual machine
software.

4) DHCP Server:While not used by the bots themselves,
to provide addresses to the virtual machines inside an experi-
mental network we included the ISC DHCP server and DHCP
forwarders. Since the topology of the network can be varied
by the user, the configuration of the DHCP daemon and DCHP
forwarders must be determined at run time. At boot time, the
DHCP server node(s) will extract their configuration from the
Emulab/NS configuration file. For anything more than a simple
LAN topology, DHCP forwarders are likely to be necessary,
which at present need to be chosen manually and enabled via
the Emulab/NS file. The DHCP servers are configured to only
respond to MAC address prefixes corresponding to VMware
virtual adapters, which otherwise cause problems with the
testbed bootstrapping mechanisms.

5) Other Services:Several additional capabilities are in-
cluded in BEE to enhance usability. First, packet measurement
(WAIL includes systems with high performance hardware-
based packet capture capability which can be used BEE
experiments), link tracing and propagation delay emulation
can be specified in the Emulab/NS configuration file, and
examples are included in BEE/NS templates. We also included
a Nepenthes honeypot image that is simple to instantiate from
the Emulab/NS. A Harpoon image is also included, which
enables background traffic generators to be easily included in
experiments [43].

A final capability that is important in the analysis of bots
in isolation is instrumentation and monitoring of the OS/bot
images themselves. Dynamic profiling tools such as IDA
Pro [29] can be used to provide disassembly information on
the bot itself, while tools available from Sysinternals provide
an array of information on MS Windows OS behavior (e.g.,
utilities for file system, network, process and other resource
usage) [31]. While not currently available in BEE, we plan to
include these and other instrumentation tools in future versions
of BEE.

5

D. BEE Security

Since real instances of malicious code are available in BEE,
great care must be taken to prevent an outbreak beyond a
specified testbed boundary. The security mechanisms in BEE
are designed to prevent non-BEE aware bots from sending
packets beyond the testbed perimeter and to prevent users from
inadvertently allowing malicious traffic to escape. We believe
that the mechanisms described below plus limiting BEE access
to authorized users are sufficient, although we will periodically
reevaluate both our policies and mechanisms.

Security in BEE is implemented in three ways beyond user
authorization. First, management/control traffic from users
setting up and running experiments and test traffic generated
by bots and services during experiments flow over logically
separate networks. We enforce this policy via filtering rules
on the hosts that run OS/bot images; the primary rule being
do not forward any traffic out the control interface. Simi-
larly, we configure all network services in the experiment
to generate traffic that is limited to the testbed,e.g., by
disabling recursive DNS. To guard against testbed hosts being
compromised during experiments, the topology of the testbed
control network is restricted such that the only the minimum
required communication between the testbed control systems
and the nodes is allowed. Emulab has built in support for
creating "Secure Environments" via filtering nodes in the
control network, and also isolation of the testbed infrastructure
can be achieved by using the "Emulab in Emulab" features.
The second security mechanism is a firewall deployed on the
WAIL border and configured to block all outgoing connections
and UDP traffic. This policy prevents some types of bots from
being used in BEE as described below. The firewall mechanism
is complemented by a separate monitoring system which
enables us to know if our mechanisms have failed. Finally,
an experiment-wide network address translation system can be
used to limit all bot packets to RFC1918 addresses [44] that are
not routable in the live Internet. Our approach is to connect all
bot hosts to NAT systems that will intercept all packets from
bots and translate their addresses before forwarding them to
other hosts in the testbed. We are in the process of extending
the NetPath delay emulator for this purpose [45]. While NAT is
the default configuration, it can be changed by users to enable,
e.g.,experiments focused on examining scanning capabilities
of bots.

E. Using BEE

BEE is realized as a library of OS/bot images, a set of
configuration scripts and a set of Emulab/NS templates that
are available to authorized users. Upon testbed approval, users
begin by creating an Emulab network topology from scratch
or using a BEE template. A network can be as simple as a
single node running one OS/bot image or a large, multi-node
topology with complex interconnections, diverse propagation
delays and realistic background traffic. Once the network has
been built, users then edit the NS configuration file to specify

the options they want to enable in their network including the
specific OS/bot image, the specific services, etc. This network
is then instantiated on the testbed (assuming the requested
nodes are available), users issue a “go” command via the
testbed server that starts all of the virtual machines, and then
users can, for example, issue commands to the botnet via the
IRC server.

F. Challenges and Limitations in Using BEE

As noted in Section I, there are several challenges that must
be addressed before the vision of conducting realistic tests
with botnet mesocosms can be fully realized. The nascency
of malicious botnet research limits, for example, our ability to
build representative botnet topologies. It also precludes study
of bots that require services or configurations that we are
unaware of and thus have not included in BEE.

Our security policy preventing all outgoing connections
limits the diversity of bots in the BEE library. Some bot
variants install a simple module on a compromised host that
then “phones home” to download additional code as needed
or as directed by the botmaster. In general, it is difficult (or
impossible in the case of encrypted packets) to determine
the intent of an outgoing connection from real malware. For
obvious reasons, any packet that would do damage beyond
the testbed must be blocked. Therefore, we blockall outgoing
connections. A similar challenge is faced by honeypot oper-
ators. If all of the code segments of a particular bot variant
were captured by other means (e.g.,a honeypot), then a “phone
home” server could be added to BEE.

As mentioned above, anti-debugging and anti-virtualization
capability in bot code binaries presents challenges in building
out the OS/bot image library. While most of the bots that we
have experimented with to date do not have these capabilities,
it is prudent to expect that most future bots will. In the case of
anti-virtualization, we plan to continually augment out OS/bot
image building methods to include the latest counter detection
mechanisms (e.g.,[38]), although we expect there will always
be some images that can only be run on a stand alone host.
In the case of anti-debugging, as dynamic analysis tools that
can account for these capabilities become available, we will
include them in BEE.

G. Future Work on Scalability

While virtualization enables individual systems to run mul-
tiple bot images simultaneously on a single PC, the actual
multiplexing factor is limited by the system resources required
by each bot. The point is that users must be careful not to
skew experimental results by overloading systems with too
many bot images. Our own experience in this regard indicates
that multiplexing factors of less than 10 to 1 are reasonable in
most cases. Trial-and-error is the only way at present to make
this determination. Since all Emulab-enabled testbeds are well
under 1K PCs, a federation between testbeds will be necessary
to conduct experiments with networks over 10K bots (which
are not uncommon [3])

6

Beyond federating Emulab-enabled environments, another
avenue we are pursuing is to enable the considerable resources
available from grid computing infrastructures to be used in
BEE experiments. For example, the Condor Project controls
a large number of systems on our campus which are openly
available for research [46]. The integration of these nodes as
temporary resources could potentially provide us the ability to
scale the number of bot instances into the thousands. However,
the distributed nature of these resources, and the required
security measures needed will make integration a challenge.
We are currently investigating the feasibility of this idea.

IV. BEE DEMONSTRATION

To provide perspective on BEE capabilities, we conducted
a set of simple tests that characterize command and control
traffic for several different botnet mesocosms. Our intention
is to highlight the process of building and exercising botnets
in BEE. The results from the tests are not intended to be
representative of real instances of botnet use (indeed an off-
line analysis from empirical traces would be much more
informative). However, one can envision using a similar envi-
ronment to conduct repeatable tests in which ground truth can
be established one.g.,new tools for detecting bot command
and control traffic, or bot scanning/propagation over a range of
bot types, botnet sizes and configurations, or the scalability of
honeynet systems designed to capture malware such as bots.

A. Experimental Setup and Protocol

The network topology used in all tests was built in WAIL,
and is shown in Figure 2. The design goal was a network with
a range of propagation delays and with sufficient link capacity
so that congestion would only potentially become an issue at
the single bottleneck (node A) when background traffic was
introduced.

Fig. 2. Network topology used for the BEE case study.

The botnet groups 1 through 6 shown in Figure 2 consisted
of 5 PCs per group. Each of these PCs ran VMware Server
1.0.1. We loaded 5 virtual machines per PC for each test. We
arrived at this multiplexing factor by monitoring resource uti-
lization (CPU, memory, network) during tests. Five images per
host kept CPU utilization below 100% thereby ameliorating
the impact of virtualization on results.

Using two OS/bot images from the BEE library and BEE
scripts to deploy the required services (including security mea-
sures described in Section III), we conducted three different
botnet tests, the details of which are given in Table I. The
focus of each test was to measure, characterize and compare
the basic features of bot command and control traffic. We
captured all IRC traffic in each test using tcpdump running
on the node represented at point A in the topology.

Each test consisted of issuing a set ofC = c1 . . .cN com-
mands to a 150 node botnet. A script running on the master
node sent each commandci to the IRC server five consecutive
times i.e., ci,1 . . .ci,5 with a 60 second spacing between com-
mand and followed by a one minute interval before issuing
the next commandci+1. This resulted in tests running for
approximately 45 minutes. Loading the virtual machines takes
about 15 minutes, and the tests run for about 30 minutes
from initial command to end. In the case of test #2, Harpoon
background traffic generators warmed up for 1 minute before
the Master began issuing commands.

The Agobot variant used in the tests has a weak random
nickname generator and with a high probability collisions will
occur. Since it has no mechanism for collision detection, if
names collide on start up, a bot will continually attempt to
connect and eventually timeout to the IRC server. To address
this, several minutes after tests #1 and #2 were started, we
used a manual process to identifyconnectedbots and direct
them to choose a new IRC nickname. This, in turn, enabled
the unconnectedbots to join the channel.

B. Results

A simple statistical summary of the command and control
traffic characteristics is given in Table II. To focus the char-
acterization, we define abusy periodin a test as an interval
that begins with a Master sending a commandci, j and ending
with the first zero packet per second interval afterci, j is sent
(thus, there are 25 busy periods for each test). The Busy Period
Packet per Second (BPPS) results for tests #1 and #2 reflect
the command, ACK, response and confirmation packets sent
by the bots. The differences in the results for tests #1 and
#2 are primarily due to timing and traffic randomness in the
tests and do not reflect significant underlying effects includ-
ing background traffic. This inherent randomness may be a
harbinger of the difficulty of developing statistical methods
for identifying this traffic in the live Internet. The difference
in BPPS for the Agobot tests versus the Spybot test #3 is
primarily caused by the responses to the command sets (e.g.,
“list p” generates a great deal of traffic), and does not indicate
any relative inefficiency of Spybot communications.

An example of the IRC packet per second time series from
test #1 is shown in Figure 3. The figure shows the predictable
pattern of busy and non-busy periods due to our test protocol.
A small amount of activity can also be seen in non-busy
periods. This traffic is attributed to the IRC ping/pong packets
from the server to the bots, which takes place throughout the
tests. The fact that spikes of this ping-pong packets are visible

7

TABLE I

DETAILS FOR THE THREE DIFFERENT TEST CONFIGURATIONS USED IN THEBEE CASE STUDY.

Test # Image (os/bot) Topology Link BW Master Commands. Background Traffic Runtime
1 W2K/Agobot 150 bots (30 per 6 bot groups) 1Gbps ".bot.secure",".bot.unsecure", None 46:53minutes

as shown in Figure 1 ".cvar.set do_avkill false",
“.bot.rndnick”, ".irc.join #botnet2"

2 W2K/Agobot 150 bots (30 per 6 bot groups) 1Gbps ".bot.secure",".bot.unsecure" Harpoon @ 200Mbps 47:08 minutes
as shown in Figure 1 ".cvar.set do_avkill false", at node A

“.bot.rndnick”, ".irc.join #botnet2"
3 W2K/SpyBot 150 bots (30 per 6 bot groups) 1Gbps "info","list p*","makedir test" None 39:31 minutes

as shown in Figure 1 "startkeylogger","stopkeylogger"

TABLE II

SUMMARY STATISTICS FOR COMMAND AND CONTROL TRAFFIC FOR EACH TEST IN THEBEE CASE STUDY. BPPS =PACKETS PER SECOND DURING BUSY

PERIODS. BPL = BUSY PERIOD LENGTH.

Test # Mean BPPS Std Dev. BPPS Max BPPS Mean BPL Std. Dev. BPL Max BPL
1 680 828 3452 12.3 6.1 25.0
2 788 693 2457 9.8 5.9 19.0
3 1384 1441 6816 8.5 4.3 23.0

Fig. 3. Snapshot of IRC packet per second time series from test #1. Each
spike begins when the bot master sends a commend.

in the figure is due to synchronization of this traffic that arises
throughout the course of the tests.

Finally, we include an IRC packet per second time series
graph in Figure 4 from a test where 10 bots per PC were used
on 15 systems (3 per group with no 0 delay group) for a total
of 150 bots. The key observation is that the busy periods have a
significantly different profile versus Figure 3 resulting from the
5 bot per node configuration. The difference is caused by CPU
contention on each VMware node by running 10 bot images
leading to commands taking much longer to complete. This
would not be evident in the live Internet where there is a one-
to-one correspondence between bots and hosts, and highlights
the care that is required in creating BEE configurations.

V. CONCLUSIONS ANDFUTURE WORK

The premise for our work is that realistic and secure
testbed environments are important for understanding bots and

Fig. 4. Snapshot of IRC packet per second time series with 10 OS/bot images
per node (150 bots total).

botnets, and for building effective counter-measures against
this threat. In this paper we describe the Botnet Evaluation En-
vironment, which has been developed to test and evaluate bots
in Emulab-enabled testbeds. The first component of BEE is a
library of OS/bot images and associated meta data that have
been built from bot code source and binaries. Key challenges
in this effort were automating the task of constructing OS/bot
images from binaries and understanding how images can be
used in virtualized environments. The second component of
BEE are the support services that are required for bot and
botnet operation. The current set of services includes DNS,
IRC and DHCP along with standard support tools such as
VM/OS monitors, honeypots and background traffic generators
that are commonly used in tests. A set of configuration scripts
have been developed that enable all of these services to be
automatically deployed in a test network. The third component
of BEE are the security mechanisms that were employed to

8

ensure that no BEE traffic goes beyond a specified perimeter.
These systems include NAT functions that aim to ensure
all destination addresses in packets are RFC1918 compliant
(unroutable in the Internet), a firewalled network perimeter,
and a separate management network.

To demonstrate the process of building and testing botnets
with BEE we created three different botnet mesocosms in the
Wisconsin Advanced Internet Lab. The network topology for
each consisted of 46 PCs connected with varying propagation
delays to an IRC server. We exercised the botnets by issuing
a series of commands via IRC, and measured the resulting
command and control traffic. A simple qualitative and quanti-
tative characterization of the traffic was presented, which we
hope will inspire future creative use of BEE by the research
community toward the goal of reducing the botnet threat.

Our BEE development activities are on-going. We believe
that the initial utility of BEE will be primarily in the study
of individual bots. To that end, one of our most important
tasks is continuing to add images to the OS/bot library. The
challenges in this task are in automating the image generation
process, creating detailed documentation for images generated
from binaries, and developing mechanisms for overcoming
anti-debugging and anti-virtualization capabilities. We hope
that the research community will eventually engage in the
image repository building effort as our tools mature and the
utility of BEE becomes clear.

An important objective in future work is to increase the
utility of experiments with botnet mesocosms. On-going re-
search by the community on botnet characteristics, capabilities
and behaviors will be reflected in enhanced BEE services,
configurations and documentation, enabling more detailed and
realistic experiments with collections of bots. It is important
to note that the DETER [11] testbed has been designed
specifically for experiments with malicious code. We have
recently begun communicating with DETER developers and
look forward to the opportunity to streamline BEE’s security
mechanisms by taking advantage of built-in capabilities in
DETER. Finally, we will continue to investigate methods for
expanding the scale of botnet experiments.

ACKNOWLEDGMENTS

The authors thank our shepherds, Fabian Monrose and Vern
Paxson, for their assistance on this paper. We also thank Joel
Sommers and Vinod Yegneswaran for their input and feedback.
This material is based upon work supported through the U.S.
Army Research Office under the Cyber-TA Research Grant
No. W911NF-06-1-0316, NSF grant No. CCR-0325653 and
Homeland Security Advanced Research Projects Agency grant
No NBCHC060135. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF,
ARO or the Homeland Security Agency.

REFERENCES

[1] J. Markoff, “Attack of the Zombie Computers is a Growing Threat,
Experts Say,” New York Times, January 2007.

[2] I. Cook, “Security Matters: Beware the Enemy Within,” Financial Times,
February 2007.

[3] J. Kirk, “Botnets Shrinking in Size, Harder to Trace,” InfoWorld.com,
January 2006.

[4] A. Gostev, “Malware Evolution: January - March, 2005,”
http://www.viruslist.com, 2005.

[5] D. Kawamoto, “Bots Slim Down to get Tough,” CNET News.com,
November 2005.

[6] J. Evers, “Dutch Police Nab Suspected Bot Herders,” CNET News.com,
October 2005.

[7] T. Weber, “Criminals May Overwhelm the Web,”
http://news.bbc.co.uk/2/hi/business/6298641.stm, January 2007.

[8] “California Man Charged in Botnet Attacks,” Reuters, November 2005.
[9] I. Thomson, “Hackers Fight to Create Worlds Largest Botnet,”

http://www.vnunet.com, August 2005.
[10] D. Verton, “Organized Crime Invades Cyberspace,”

http://www.computerworld.com, August 2004.
[11] ISI, “The Deterlab Network Security Testbed based on Emulab,”

http://www.deterlab.net, 2007.
[12] U. of Wisconsin, “The Wisconsin Advanced Internet Laboratory,”

http://wail.cs.wisc.edu, 2007.
[13] U. of Utah, “The Emulab Network Emulation Testbed,”

http://www.emulab.net, 2002.
[14] P. Bacher and T. Holz and M. Kotter and G. Wicherski, “Know Your

Enemy: Tracking Botnets,” http://www.honeynet.org/papers/bots, March
2005.

[15] P. Barford and V. Yegneswaran,An Inside Look at Botnets, ser. Advances
in Information Security, Malware Detection. Springer, 2007, vol. 27.

[16] “The Honeynet Project,” http://project.honeynet.org, 2003.
[17] D. Dagon, C. Zou, and W. Lee, “Modeling Botnet Propagation Using

Time Zones,” inProceedings of The Network and Distributed Systems
Security Symposium (NDSS ’06), San Diego, CA, February 2006.

[18] A. Ramachandran, N. Feamster, and D. Dagon, “Revealing Botnet
Membership Using DNSBL Counter-Intelligence,” inProceedings of
The USENIX Workshop on Steps to Reducing Unwanted Traffic in the
Internet (SRUTI ’06), San Jose, CA, July 2006.

[19] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson, “The
Internet Motion Sensor: A Distributed Blackhole Monitoring System,”
in Proceedings of The Network and Distributed Security Symposium
(NDSS ’05), San Diego, CA, January 2005.

[20] V. Yegneswaran, P. Barford, and D. Plonka, “On the Design and Use
of Internet Sinks for Network Abuse Monitoring,” inProceedings of
Recent Advances on Intrusion Detection (RAID ’04), Sophia, France,
September 2004.

[21] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson,
“Characteristics of internet background radiation,” inProceedings of
ACM Internet Measurement Conference (IMC ’04), Taormina, Italy,
October 2004.

[22] “The Nepenthes Low Interaction Honeypot,”
http://nepenthes.mwcollect.org, 2007.

[23] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren,
G. Voelker, and S. Savage, “Scalability, fidelity and containment in the
potemkin virtual honeyfarm,” inProceedings of ACM Symposium on
Operating Systems Principles (SOSP ’05), Brighton, England, October
2005.

[24] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted
approach to understanding the botnet phenomenon,” inProceedings
of ACM Internet Measurement Conference, Rio de Janerio, Brazil,
November 2006.

[25] F. Freiling, T. Holz, and G. Wicherski, “Botnet Tracking: Exploring
a Root-Cause Methodology to Prevent Distributed Denial-of-Service
Attacks,” in Proceedings of The 10th European Symposium on Research
in Computer Security (ESORICS ’05), September 2005.

[26] E. Cooke, F. Jahanian, and D. McPherson, “The zombie roundup:
Understanding, detecting and disrupting botnets,” inProceedings of
Usenix Workshop on Stepts to Reducing Unwanted Traffic on the Internet
(SRUTI ’05), Cambridge, MA, July 2005.

[27] B. Krishnamurthy, “MoHonk: Mobile Honeypots to Trace Unwanted
Traffic Early,” in Proceedings of The ACM SIGCOMM Network Trou-
bleshooting Workshop, Portland, OR, September 2004.

[28] M. Allman, E. Blanton, V. Paxson, and S. Shenker, “Fighting Coor-
dinated Attackers with Cross-Organizational Information Sharing,” in

9

Proceedings of The Fifth Workshop on Hot Topics in Networks (HotNets
’06), Irvine, CA, November 2004.

[29] “The IDA Pro Disassembler and Debugger,” http://www.datarescue.com,
2007.

[30] “The SoftICE Driver Suite,” http://www.compuware.com, 2005.
[31] M. Russinovich and B. Cogswell, “Sysinternals,”

http://www.sysinternals.com, 2007.
[32] “Honeynet Scan of the Month 32,”

http://www.honeynet.org/scans/scan32/, 2005.
[33] Coverity, “Coverity Prevent,” http://www.coverity.com, 2005.
[34] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux,

and X. Rival, “The Astree Static Analyzer,” http://www.astree.ens.fr,
2005.

[35] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson, “Preliminary results
using scale-down to explore worm dynamics,” inProceedings of ACM
Workshop on Rapid Malcode (WORM ’04), Washington D.C., October
2004.

[36] “The Norman Sandbox,” http://sandbox.norman.no, 2007.
[37] “The Sunbelt CWSandbox,” http://www.sunbelt-software.com/Sunbelt-

CWSandbox.cfm, 2007.
[38] P. Ferrie, “Attacks on Virtual Machines,” inProceedings of AVAR

Conference ’06, Auckland, NZ, December 2006.
[39] “Offensive Computing,” http://www.offensivecomputing.net, 2007.
[40] MITRE, “Common Malware Enumeration,” http://cme.mitre.org, 2007.
[41] C. Kalt, “Internet Relay Chat: Client Protocol,” RFC 2812 (Informa-

tional), April 2007.
[42] “IRCD-Hybrid,” http://ircd-hybrid.com, 2007.
[43] J. Sommers and P. Barford, “Self-Configuring Network Traffic Genera-

tion,” in Proceedings of ACM Internet Measurement Conference (IMC
’04), Taormina, Italy, October 2004.

[44] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. de Groot, and E. Lear,
“Address Allocation for Private Internets,” Internet RFC 1918, February
1996.

[45] S. Agarwal, J. Sommers, and P. Barford, “Scalable Network Path
Emulation,” in Proceedings of The IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS ’05), San Diego, CA, September 2005.

[46] M. Livny, “Condor: High Throughput Computing,”
http://www.cs.wisc.edu/condor, 2007.

10

