# Quickshear Defacing for Neuroimages

Nakeisha Schimke and John Hale August 9, 2011





#### Neuroimages

- Contain two elements
  - Metadata: names, identifiers, dates, etc.
  - Pixel data







## Volume Rendering from Neuroimages







Rendering using Slicer (left), AFNI (middle), MRIcron (right).

### Existing Image De-identification Methods

Skull stripping







MRI Defacer (Bischoff-Grethe et al. 2007)



Image from Bischoff-Grethe et. al, "A technique for the deidentication of structural brain MR images," 2007.

#### Quickshear Defacing

- Identify brain mask
- Create flattened edge-of-brain mask
- Find convex hull
- Identify plane that divides volume
- Set voxels on face side to zero
- Input: Original image, Brain mask
- Output: Defaced image



#### Creating Brain Mask

- Skull stripping techniques identify brain and non-brain tissue
- Works with any skull stripped volume
- Create edge of brain mask



#### Convex Hull

- Identifies area to protect from shearing
- Cutting along consecutive points on convex hull ensures all brain voxels lie on one side



#### Quickshear Defacing

- Shearing occurs along the line formed by the two points on the hull with the smallest x-coordinate
- A buffer is added to preserve brain tissue
- All voxels that fall on the face side of the plane are set to zero

#### Testing Quickshear

- Data from MRI Reproducibility Study (Landman et. al, 2010)
  - 42 images from 21 subjects
  - T1-weighted MP-RAGE
- MRI Defacer run using provided atlas
- Quickshear Defacing using brain masks generated from three skull stripping techniques: AFNI 3dSkullStrip, FSL BET, and FreeSurfer HWA
- Verification against brain masks using AFNI 3dSkullStrip, FSL BET, and FreeSurfer HWA
- Validation using OpenCV Face Detector

#### Quickshear vs MRI Defacer



Defaced images using Quickshear (top) and MRI Defacer (bottom)

#### Results – Brain Volume Preservation

| В | Bra | in | M | las | k |
|---|-----|----|---|-----|---|
|   |     |    |   |     |   |

| Defac       | ing Method   | 3dSkullStrip |      | BET      |      | HWA    |     |
|-------------|--------------|--------------|------|----------|------|--------|-----|
| MRI Defacer |              | 408.74       | (12) | 75271.93 | (42) | 422.00 | (7) |
| Quickshear  | 3dSkullStrip | 0.00         | (0)  | 5560.76  | (13) | 0.00   | (0) |
|             | BET          | 0.21         | (1)  | 0.00     | (0)  | 1.00   | (2) |
|             | HWA          | 0.00         | (0)  | 7587.24  | (12) | 0.00   | (0) |

Average number of voxels discarded (Number of images with voxels discarded)

#### Results – Facial Feature Recognition

| Defacin     | <b>Faces detected</b> |    |  |
|-------------|-----------------------|----|--|
|             |                       |    |  |
| MRI Defacer | 9                     |    |  |
|             |                       |    |  |
| Quickshear  | 3dSkullStrip          | 10 |  |
|             |                       |    |  |
|             | BET                   | 10 |  |
|             |                       |    |  |
|             | HWA                   | 12 |  |

Number of images with faces detected by OpenCV





Quickshear defaced image with face detected.

#### Quickshear—Conclusions

- Preserves more brain tissue
- Effectively defaces neuroimages
- Does not require previously constructed face atlas
- Significant performance gains
- Integrates seamlessly into the neuroimaging workflow

#### Acknowledgments

William K. Warren Foundation