
1

Yiying Zhang, Leo Prasath Aruraj,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

University of Wisconsin - Madison

 Indirection
 Reference an object with a different name

 Flexible, simple, and modular

 Indirection in computer systems
 Virtual memory: virtual to physical memory address

 Hard disks: bad sectors to nearby locations

 RAID arrays: logical to array physical address

 SSDs: logical to SSD physical address

2
* Usually attributed to Butler Lampson

 Excess indirection
 Redundant levels of indirection in a system

 e.g. OS on top of hypervisor(s)

 e.g. File system on top of RAID

 Are all indirections really necessary?
 Some indirection can be removed

 Space and performance cost

 What about flash-based SSDs?
 File system: file offset to logical address (F -> L)

 Device: logical address to physical address (L -> P)

 3

B

A

C

C L

F

P

 Indirection in SSDs (L->P)
 Mapping from logical to physical address

 Hides erase-before-write and wear leveling

 Implemented in Flash Translation Layer (FTL)

 Cost of indirection
 RAM space to maintain indirection table

 Hybrid: small page-mapped area + big block-mapped area

 Performance cost of garbage collection

 Performance impact on random writes [Kim ’12]

4 4

FTL L -> P

P

FS

SSD

LBA+Data

L

 Solution: De-indirection
 Remove indirection in SSDs (L->P)
 Store physical addresses directly in file system (F->P)

 New interface: Nameless Write

 Write without a name (logical address)
 Device allocates and returns physical address
 File system stores physical address

 Advantages

 Reduces space and performance cost of indirection
 Device maintains critical controls

5

L

F

P

 Designed nameless writing interfaces

 Implemented a nameless-writing system
 Built a nameless-writing SSD emulator

 Ported ext3 to nameless writes

 Evaluation results
 Evaluated against two other FTLs

 Small indirection table, ~20x reduction over traditional SSDs

 Better random write throughput, ~20x over traditional SSDs

6

 Introduction

 Problems of basic interfaces and solutions

 Nameless-writing device and ext3

 Results

 Conclusion

7

8

 Nameless Write
 Writes only data and no name

 Physical Read
 Reads using physical address

 Free/Trim
 Invalidates block at physical address

FTL

P

P

FS

SSD

P Data

P: Addr the structure
 points to

P: Addr of the block

 P1: Cost of straw-man nameless-write approach
 How to reduce the overheads of complete de-indirection?

 P2: Migration during wear leveling
 How to reflect physical address change in the file system?

 P3: Locating metadata structures

 How to find metadata structures efficiently?

9

 Overwrite a data block in a file in ext3

10

P0

P0
FS

SSD

P0

P1 P2

P1 P2

Data Inode Directory

Metadata

Data

Red: Addr the structure
 points to

Blue: Addr of the block

 Problems
 Overhead of updating along FS tree

 FS more complex and less flexible

P1+
offset

 Problem of recursive updates
 Writes propagate to reflect physical addresses

 Solution: Two segments of address space

 Stop recursive updates

 Physical address space
 Nameless write, physical read
 Contains data blocks

 Virtual address space
 Traditional (virtual) read/write
 Small indirection table in device
 Contains metadata blocks (typically small metadata [Agrawal’07])

11

12

Data Blocks Super

Inode
Bitmap

Journal

Data
Bitmap

Inode

L -> P

Dir

FTL allocates physical addresses

Data + logical address Data

Virtual address space Physical address space

SSD physical flash memory

Physical Address

13

P0

P0
FS

SSD

P0

P1

I#

Data Inode Directory

L1 -> P1

Inode + L1

 Overwrite a data block with segmented address space

 Advantages
 One level of update propagation

 Simple implementation

Metadata

Data

Red: Addr the structure
 points to

Blue: Addr of the block

 Block wear in SSDs
 Uneven wear among blocks with data of different access frequency

 Wear leveling
 SSD moves data to distribute block erases evenly

 Physical address change
 File system needs to be informed

 Only address change in the physical space

14

P1

P1

P1

FS

SSD

P2

Read P1

P1

 New interface: Migration Callbacks
 Device informs FS about physical address change

 Temporary remapping table

 Reads and overwrites to old address
 Remapped to new address

 FS processes callbacks in background
 Acknowledges device when metadata updated

15

FTL

P1

P1

FS

SSD

P1 ->P2

P2

P2

P1 -> P2

Ack

 Problem: Locating metadata structures
 e.g. During callbacks

 e.g. During recovery

 Naive approach: traversing all metadata

 Solution: Associated Metadata
 Small amount of metadata used to locate metadata

 e.g. Inode number, inode generation number, block offset

 Sent with nameless writes and migration callbacks

 Stored adjacent to data pages on device, e.g. OOB area

16

17

P1

FS

SSD

P1->P2, Assoc Meta1
P3->P4, Assoc Meta2
P5->P6, Assoc Meta 3

P2

Ack
P1->P2
P3->P4
P5->P6

Hash Table
Key: Assoc Metadata

Value: Callback Entries

P1->P2
P3->P4
P5->P6

P3 P4

P5 P6

Inode1 Inode2

Xact Commit

Callback Entry:
Old physical addr
New physical addr
Associated metadata
Timestamp

P1
P3
P5

P2
P4
P6

 Introduction

 Nameless write interfaces

 Results

 Conclusion
18

 Supports nameless write interfaces

 Flexible device allocation

 Maintains small mapping table
 Indirection of the virtual address space

 Temporary remapping table for callbacks

 Control of garbage collection and wear leveling
 Minimize physical address migration (In-place GC)

19

 Ext3: Journaling file system extending ext2

 Ordered journal mode
 Metadata always written after data

 Fits well with nameless writes

 Interface support
 Segmented address space

 Nameless write

 Physical read

 Free/trim

 Callback

 20

 Total: 4360

 Ext3: 1530

 JBD: 480

 Generic I/O: 2020

 Headers: 340

21

 Introduction

 Nameless write interfaces

 Nameless-writing device and ext3

 Conclusion
22

 SSD emulator
 Linux pseudo block device

 Data stored in memory

 FTLs studied

 Page mapping: log-structured allocation

 ideal in performance, unrealistic in indirection space

 Hybrid mapping: small page-mapped area + block-mapped area

 models real SSDs, realistic in indirection space

 Nameless-writing

23

24

 Mapping table sizes for typical file system images [Agrawal’09]

Nameless
writes use
2% - 7%
mapping table
space of
traditional
hybrid SSDs

100

1024

11
118

0.2 2.2

 Sequential and sustained 4KB random write

25 25

Nameless writes
deliver 20x random
write throughput
over traditional
hybrid SSDs

Performance of
nameless writes is
close to page FTL
(upper-bound)

 Varmail, FileServer, and WebServer from Filebench

26

Similar performance
when workload is
read or sequential-
write intensive

Performance of
hybrid FTL is worse
than the other two
FTLs when workload
has random writes

 Introduction

 Nameless write interfaces

 Nameless-writing device and ext3

 Results

27

 Problem: Excess indirection in flash-based SSDs

 Solution: De-indirection with Nameless Writes

 Implementation of a nameless-writing system
 Built an emulated nameless-writing SSD

 Ported ext3 to nameless writes

 Advantages of nameless writes

 Reduce the space cost of indirection over traditional SSDs

 Improve random write performance over traditional SSDs
 Reduce energy cost, simplify SSD firmware

28

 “All problems in computer science can be
solved by another level of indirection”
 Usually attributed to Butler Lampson
 Lampson attributes it to David Wheeler

 And Wheeler usually added:
“but that usually will create another problem”

29

 Too much: Excess indirection
 e.g. file offset => logical address => physical address

 Partial indirection
 e.g. nameless writes with segmented address space

 Too little: Cost of (complete) de-indirection
 e.g. overheads of recursive update

30

31

Thank you !

Questions ?

The ADvanced Systems Laboratory (ADSL)
http://www.cs.wisc.edu/adsl/

