
conference

proceedings

FAST ’12:
10th USENIX
Conference on
File and Storage
Technologies

San Jose, CA, USA
February 15–17, 2012

Proceedings of FA
ST ’12: 10th U

SEN
IX Conference on File and Storage Technologies

San Jose, CA
, USA

February 15–17, 2012
Sponsored by

USENIX
in cooperation with
ACM SIGOPS

© 2012 by The USENIX Association
All Rights Reserved

his volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. Permission is granted to print, primarily for one person’s
exclusive use, a single copy of these Proceedings.USENIX acknowledges all
trademarks herein.

ISBN 978-1-931971-91-1

USENIX Association

Proceedings of FAST ’12:

10th USENIX Conference on

File and Storage Technologies

February 15–17, 2012
San Jose, CA, USA

Conference Organizers
Program Co-Chairs
William J. Bolosky, Microsoft Research
Jason Flinn, University of Michigan

Program Committee
Atul Adya, Google, Inc.
Andrea Arpaci-Dusseau, University of Wisconsin—

Madison
Lakshmi N. Bairavasundaram, NetApp
John Bent, EMC
Randall Burns, Johns Hopkins University
Peter Desnoyers, Northeastern University
Cezary Dubnicki, 9LivesData, LLC
Arkady Kanevsky, Dell
Kimberly Keeton, HP Labs
Mark Lillibridge, HP Labs
Darrell Long, University of California, Santa Cruz
James Mickens, Microsoft Research
Dushyanth Narayanan, Microsoft Research
David Patterson, University of California, Berkeley
Daniel Peek, Facebook
James S. Plank, University of Tennessee
Florentina Popovici, Google, Inc.
Raju Rangaswami, Florida International University
Benjamin Reed, Yahoo! Research
Jiri Schindler, NetApp
Margo Seltzer, Harvard School of Engineering and

Applied Sciences and Oracle
Keith A. Smith, NetApp
Theodore Wong, IBM Research
Junfeng Yang, Columbia University

Posters and Work-in-Progress Reports
(WiPs) Committee
James Mickens, Microsoft Research
Florentina Popovici, Google, Inc.
Jiri Schindler, NetApp

Tutorial Chair
John Strunk, NetApp

Steering Committee
Remzi H. Arpaci-Dusseau, University of Wisconsin—

Madison
Randal Burns, Johns Hopkins University
Greg Ganger, Carnegie Mellon University
Garth Gibson, Carnegie Mellon University and Panasas
Kimberly Keeton, HP Labs
Darrell Long, University of California, Santa Cruz
Jai Menon, IBM Research
Erik Riedel, EMC
Margo Seltzer, Harvard School of Engineering and

Applied Sciences
Chandu Thekkath, Microsoft Research
Ric Wheeler, Red Hat
John Wilkes, Google

The USENIX Association Staff

External Reviewers
Ian Adams
Ryan Adams
Deepavali Bhagwat
Ignacio Corderi
Sorin Faibish
Gary Grider
Stephanie Jones
Yangwook Kang

Krzysztof Lichota
David Lomet
Peter Macko
Brian Madden
Dutch Meyer
Yasuhiro Ohara
Aleatha Parker-Wood
Zachary N.J. Peterson

Thomas Schwarz
Piotr Skowron
Michał Strojnowski
Christina Strong
Jerzy Szczepkowski
Michal Welnicki
Jingpei Yang

FAST ’12: 10th USENIX Conference on File and Storage Technologies
February 15–17, 2012

San Jose, CA, USA

Message from the Program Co-Chairs . v

Wednesday, February 15
Implications of New Storage Technology
De-indirection for Flash-based SSDs with Nameless Writes .1
Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of
Wisconsin—Madison
The Bleak Future of NAND Flash Memory . 17
Laura M. Grupp, University of California, San Diego; John D. Davis, Microsoft Research, Mountain View;
Steven Swanson, University of California, San Diego
When Poll Is Better than Interrupt .25
Jisoo Yang, Dave B. Minturn, and Frank Hady, Intel Corporation

Back It Up
Characteristics of Backup Workloads in Production Systems .33
Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen Smaldone, Mark Chamness, and Windsor
Hsu, EMC Corporation
WAN Optimized Replication of Backup Datasets Using Stream-Informed Delta Compression 49
Philip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu, EMC Corporation
Power Consumption in Enterprise-Scale Backup Storage Systems .65
Zhichao Li, Stony Brook University; Kevin M. Greenan and Andrew W. Leung, EMC Corporation; Erez Zadok,
Stony Brook University

File System Design and Correctness
Recon: Verifying File System Consistency at Runtime .73
Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Benjamin, Ashvin Goel, and Angela Demke
Brown, University of Toronto
Understanding Performance Implications of Nested File Systems in a Virtualized Environment 87
Duy Le, The College of William and Mary; Hai Huang, IBM T.J. Watson Research Center; Haining Wang, The
College of William and Mary
Consistency Without Ordering . 101
Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of
Wisconsin, Madison

Flash and SSDs, Part I
Reducing SSD Read Latency via NAND Flash Program and Erase Suspension . 117
Guanying Wu and Xubin He, Virginia Commonwealth University
Optimizing NAND Flash-Based SSDs via Retention Relaxation .125
Ren-Shuo Liu and Chia-Lin Yang, National Taiwan University; Wei Wu, Intel Corporation
SFS: Random Write Considered Harmful in Solid State Drives . 139
Changwoo Min, Sungkyunkwan University and Samsung Electronics; Kangnyeon Kim, Sungkyunkwan
University; Hyunjin Cho, Sungkyunkwan University and Samsung Electronics; Sang-Won Lee and Young Ik
Eom, Sungkyunkwan University

Thursday, February 16
OS Techniques
FIOS: A Fair, Efficient Flash I/O Scheduler . 155
Stan Park and Kai Shen, University of Rochester
Shredder: GPU-Accelerated Incremental Storage and Computation . 171
Pramod Bhatotia and Rodrigo Rodrigues, Max Planck Institute for Software Systems (MPI-SWS); Akshat
Verma, IBM Research—India
Adding Advanced Storage Controller Functionality via Low-Overhead Virtualization . 187
Muli Ben-Yehuda, Michael Factor, Eran Rom, and Avishay Traeger, IBM Research—Haifa; Eran Borovik and
Ben-Ami Yassour

Mobile and Social
ZZFS: A Hybrid Device and Cloud File System for Spontaneous Users .195
Michelle L. Mazurek, Carnegie Mellon University; Eno Thereska, Dinan Gunawardena, Richard Harper, and
James Scott, Microsoft Research, Cambridge, UK
Revisiting Storage for Smartphones .209
Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu, NEC Laboratories America
Serving Large-scale Batch Computed Data with Project Voldemort .223
Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam Shah, LinkedIn Corp.

Cloud
BlueSky: A Cloud-Backed File System for the Enterprise .237
Michael Vrable, Stefan Savage, and Geoffrey M. Voelker, University of California, San Diego
Rethinking Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery and Degraded Reads 251
Osama Khan and Randal Burns, Johns Hopkins University; James Plank and William Pierce, University of
Tennessee; Cheng Huang, Microsoft Research
NCCloud: Applying Network Coding for the Storage Repair in a Cloud-of-Clouds .265
Yuchong Hu, Henry C.H. Chen, and Patrick P.C. Lee, The Chinese University of Hong Kong; Yang Tang,
Columbia University

Friday, February 17
A Little Bit of Everything
Extracting Flexible, Replayable Models from Large Block Traces .273
V. Tarasov and S. Kumar, Stony Brook University; J. Ma, Harvey Mudd College; D. Hildebrand and A. Povzner,
IBM Almaden Research; G. Kuenning, Harvey Mudd College; E. Zadok, Stony Brook University
scc: Cluster Storage Provisioning Informed by Application Characteristics and SLAs .283
Harsha V. Madhyastha, University of California, Riverside; John C. McCullough, George Porter, Rishi Kapoor,
Stefan Savage, Alex C. Snoeren, and Amin Vahdat, University of California, San Diego
iDedup: Latency-aware, Inline Data Deduplication for Primary Storage .299
Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti, NetApp, Inc.

Flash and SSDs, Part II
Caching Less for Better Performance: Balancing Cache Size and Update Cost of Flash Memory Cache in
Hybrid Storage Systems . 313
Yongseok Oh, University of Seoul; Jongmoo Choi, Dankook University; Donghee Lee, University of Seoul; Sam
H. Noh, Hongik University
Lifetime Management of Flash-Based SSDs Using Recovery-Aware Dynamic Throttling 327
Sungjin Lee and Taejin Kim, Seoul National University; Kyungho Kim, Samsung Electronics, Korea; Jihong
Kim, Seoul National University

Message from the Program Co-Chairs

Dear Colleagues,

We welcome you to the 10th USENIX Conference on File and Storage Technologies (FAST ’12). This year we are
proud to carry on the FAST tradition of presenting high-quality, innovative file and storage systems research. The
program has a diverse set of papers on such topics as mobile and cloud storage systems, file system correctness,
flash, deduplication, and the integration of new technologies such as GPUs. FAST continues to be a premier venue
to bring together researchers and practitioners from the academic and industrial communities. This, too, is reflect-
ed in the program, which includes a balance of papers from universities and industry. Our community is increas-
ingly an international one. This trend is reflected in the authors of this year’s papers, whose affiliations come from
nine countries and three continents.

FAST ’12 received a record 137 submissions, of which 26 papers were selected, for an acceptance rate of 19%. Pa-
pers were reviewed using a two-round process. All papers received at least three reviews in the first round. Based
on these reviews, 79 papers received two additional reviews. After vigorous electronic discussion, 56 of these pa-
pers were discussed at an all-day program committee meeting in Redmond, Washington. We used Eddie Kohler’s
excellent HotCRP software to handle paper submissions, reviews, PC discussion, and notifications.

This year, we introduced a new category of short papers to the program. Our intent was that such papers be held
to the same high quality bar as regular submissions. Consequently, we did not separate such papers during the PC
discussion, and we do not mark them separately in the program. We received 38 such submissions, of which 7 were
accepted. The 18% acceptance rate was almost identical to the rate for full-length papers. We are hopeful that this
format will prove to be a useful mechanism to report on results that may be inappropriate for a full-length submis-
sion.

We would like to thank everyone who contributed to this program. First and foremost, we are indebted to all the
authors who submitted papers to FAST ’12. We had a large body of high-quality work from which to select our
program. We would also like to thank the attendees of FAST ’12 and future readers of these papers. Together with
the authors, you form the FAST community and make storage research vibrant and fun.

We would also like to recognize USENIX and the USENIX staff, who make all aspects of assembling a conference
program easy. The USENIX staff provided outstanding support at all phases of this endeavor. They are largely
responsible for the success of FAST this and every year. Thanks!

Finally, we would like to thank the Program Committee members for their countless hours and dedication. Due to
the record number of papers we received, they had to put up with a heavier-than-anticipated review load. They, to-
gether with a few external reviewers, wrote 589 separate reviews comprising over 333,000 words of knowledgeable
and insightful evaluation of the submitted work. In addition to writing reviews, the PC was very thoughtful during
pre-meeting electronic discussions and at the PC meeting itself. We also thank our student scribe, Dutch Meyer,
who took careful notes of the PC discussion so that we could report the content to authors.

We look forward to an interesting and enjoyable conference!

Bill Bolosky, Microsoft Research
Jason Flinn, University of Michigan
Program Co-Chairs

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 1

De-indirection for Flash-based SSDs with Nameless Writes

Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
Computer Sciences Department, University of Wisconsin-Madison

Abstract
We present Nameless Writes, a new device interface that
removes the need for indirection in modern solid-state
storage devices (SSDs). Nameless writes allow the de-
vice to choose the location of a write; only then is the
client informed of the name (i.e., address) where the block
now resides. Doing so allows the device to control block-
allocation decisions, thus enabling it to execute critical
tasks such as garbage collection and wear leveling, while
removing the need for large and costly indirection tables.
We demonstrate the effectiveness of nameless writes by
porting the Linux ext3 file system to use an emulated
nameless-writing device and show that doing so both re-
duces space and time overheads, thus making for simpler,
less costly, and higher-performance SSD-based storage.

1 Introduction
Indirection is a core technique in computer systems [28].
Whether in the mapping of file names to blocks, or a vir-
tual address space to an underlying physical one, system
designers have applied indirection to improve system per-
formance, reliability, and capacity for many years.

For example, modern hard disk drives use a modest
amount of indirection to improve reliability by hiding un-
derlying write failures. When a write to a particular physi-
cal block fails, a hard disk will remap the block to another
location on the drive and record the mapping such that fu-
ture reads will receive the correct data. In this manner, a
drive transparently improves reliability without requiring
any changes to the client above.

Indirection is particularly important in the new class of
flash-based storage commonly referred to as Solid State
Devices (SSDs). In modern SSDs, an indirection map in
the Flash Translation Layer (FTL) enables the device to
map writes in its virtual address space to any underlying
physical location [11, 14, 16, 19, 21, 22].
FTLs use indirection for two reasons: first, to trans-

form the erase/program cycle mandated by flash into the
more typical write-based interface via copy-on-write tech-
niques, and second, to implement wear leveling [18, 20],
which is critical to increasing SSD lifetime. Because a
flash block becomes unusable after a certain number of
erase-program cycles (10,000 or 100,000 cycles accord-
ing to manufacturers [8, 15]), such indirection is needed
to spread the write load across flash blocks evenly and
thus ensure that no particularly popular block causes the
device to fail prematurely.

Unfortunately,the indirection such as found in many
FTLs comes at a high price, which manifests as perfor-
mance costs, space overheads, or both. If the FTL can
flexibly map each virtual page in its address space (as-
suming a typical page size of 2 KB), an incredibly large
indirection table is required. For example, a 1-TB SSD
would need 2 GB of table space simply to keep one 32-bit
pointer per 2-KB page of the device. Clearly, a completely
flexible mapping is too costly; putting vast quantities of
memory (usually SRAM) into an SSD is prohibitive.

Because of this high cost, most SSDs do not offer a
fully flexible per-page mapping. A simple approach pro-
vides only a pointer per block of the SSD (a block typ-
ically contains 64 or 128 2-KB pages), which reduces
overheads by the ratio of block size to page size. The
1-TB drive would now only need 32 MB of table space,
which is more reasonable. However, as clearly articulated
by Gupta et al. [16], block-level mappings have high per-
formance costs due to excessive garbage collection.

As a result, the majority of FTLs today are built us-
ing a hybrid approach, mapping most data at block level
and keeping a small page-mapped area for updates [11,
21, 22]. Hybrid approaches keep space overheads low
while avoiding the high overheads of garbage collection,
at the cost of additional device complexity. Unfortunately,
garbage collection can still be costly, reducing the per-
formance of the SSD, sometimes quite noticeably [16].
Regardless of the approach, FTL indirection incurs a sig-
nificant cost; as SSDs scale, even hybrid schemes mostly
based on block pointers will become infeasible.

In this paper, we introduce nameless writes, an ap-
proach that removes most of the costs of indirection in
flash-based SSDs while still retaining its benefits. Our ap-
proach is a specific instance of de-indirection, in which an
extra layer of indirection is removed. Unlike most writes,
which specify both the data to write as well as a name
(usually in the form of a logical address), a nameless write
simply passes the data to the device. The device is free to
choose any underlying physical block for the data; after
the device names the block (i.e., decides where to write
it), it informs the client of its choice. The client then can
record the name for future reads.
One potential problem with nameless writes is the re-

cursive update problem: if all writes are nameless, then
any update to the file system requires a recursive set of up-
dates up the file-system tree. To circumvent this problem,
we introduce a segmented address space, which consists

1

2 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

of a (large) physical address space for nameless writes,
and a (small) virtual address space for traditional named
writes. A file system running atop a nameless SSD can
keep pointer-based structures in the virtual space; updates
to those structures do not necessitate further updates up
the tree, thus breaking the recursion.

Nameless writes offer great advantage over traditional
writes, as they largely remove the need for indirection.
Instead of pretending that the device can receive writes in
any frequency to any block, a device that supports name-
less writes is free to assign any physical page to a write
when it is written; by returning the true name (i.e., the
physical address) of the page to the client above (e.g., the
file system), indirection is largely avoided, reducing the
monetary cost of the SSD, improving its performance, and
simplifying its internal structure.

Nameless writes (largely) remove the costs of indirec-
tion without giving away the primary responsibility an
SSD manufacturer maintains: wear leveling. If an SSD
simply exports the physical address space to clients, a
simplistic file system or workload could cause the de-
vice to fail rather rapidly, simply by over-writing the same
block repeatedly (whether by design or simply through a
file-system bug). With nameless writes, no such failure
mode exists. Because the device retains control of nam-
ing, it retains control of block placement, and thus can
properly implement wear leveling to ensure a lengthy de-
vice lifetime. We believe that any solution that does not
have this property is not viable, as no manufacturer would
like to be so easily exposed to failure.

We demonstrate the benefits of nameless writes by port-
ing the Linux ext3 file system to use a nameless SSD.
Through extensive analysis on an emulated nameless SSD
and comparison with different FTLs, we show the bene-
fits of the new interface, in both reducing the space costs
of indirection and improving random-write performance.
Overall, we find that a nameless SSD uses a much smaller
fraction of memory for indirection than a hybrid SSD
while improving performance by an order of magnitude
for some workloads.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the costs and benefits of indirection,
and in Section 3 we present the nameless write interface.
In Section 4, we show how to build a nameless-writing
device. In Section 5, we describe how to port the Linux
ext3 file system to use the nameless-writing interface, and
in Section 6, we evaluate nameless writes through experi-
mentation atop an emulated nameless-writing device. We
discuss several related works in Section 7. Finally, in Sec-
tion 8, we conclude and discuss our future work.

2 Indirection
It is said that “all problems in computer science can be
solved by another level of indirection,” a quote that is
often attributed to Butler Lampson. Lampson, however,
gives credit for this wisdom to David Wheeler, who not
only uttered these famous words, but also usually added
“...but that usually will create another problem [28].”

Indirection is a fundamental technique in computer sys-
tems. Before delving into the details of nameless writes,
we first present a discussion of some of the general prob-
lems and solutions in systems that use indirection. First,
we discuss why many systems utilize multiple levels of
indirection, a problem we term excess indirection. We
then describe the general solution to said problem, de-
indirection, which removes an extra layer of indirection
to improve performance or reduce space overheads.

2.1 Excess Indirection
Excess indirection exists in many systems that are widely
used today, as well as in research prototypes. We now dis-
cuss four prominent examples: OS virtual memory run-
ning atop a hypervisor, a file system running atop a single
disk, a file system atop a RAID array, and the focus of our
work, file systems atop flash-based SSDs.

An excellent example of excess indirection arises in
memory management of operating systems running atop
hypervisors [9]. The OS manages virtual-to-physical
mappings for each process that is running; the hypervi-
sor, in turn, manages physical-to-machine mappings for
each OS. In this manner, the hypervisor has full control
over the memory of the system, whereas the OS above
remains unchanged, blissfully unaware that it is not man-
aging a real physical memory. Excess indirection leads
to both space and time overheads in virtualized systems.
The space overhead comes from maintaining OS physical
addresses to machine addresses mapping for each page
and from possible additional space overhead [1]. Time
overheads exist as well in cases like the MIPS TLB-miss
lookup in Disco [9].

Indirection also exists in modern disks. For example,
modern disks maintain a small amount of extra indirec-
tion that maps bad sectors to nearby locations, in order to
improve reliability in the face of write failures. Other ex-
amples include ideas for “smart” disks that remap writes
in order to improve performance (for example, by writing
to the nearest free location), which have been explored
in previous research such as Loge [13] and “intelligent”
disks [30]. These smart disks require large indirection
tables inside the drive to map the logical address of the
write to its current physical location. This requirement in-
troduces new reliability challenges, including how to keep
the indirection table persistent. Finally, fragmentation of
randomly-updated files is also an issue.

File systems running atop modern RAID storage ar-

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 3

rays provide another excellent example of excess indi-
rection. Modern RAIDs often require indirection tables
for fully-flexible control over the on-disk locations of
blocks. In AutoRAID, a level of indirection allows the
system to keep active blocks in mirrored storage for per-
formance reasons, and move inactive blocks to RAID to
increase effective capacity [32] and overcome the RAID
small-update problem [26]. When a file system runs atop
a RAID, excess indirection exists because the file sys-
tem maps logical offsets to logical block addresses. The
RAID, in turn, maps logical block addresses to physical
(disk, offset) pairs. Such systems add memory space over-
head to maintain these tables and meet the challenges of
persisting the tables across power loss.
The focus of our work is flash-based SSDs, and thus it

is no surprise that these too exhibit excess indirection. The
extra level of indirection is provided via the Flash Trans-
lation Layer (FTL). The FTL is needed for two primary
reasons. First, it is used to transform reads and writes
issued by the client into reads and erase/program cycles
supported by actual flash chips. In particular, because of
the high cost of block erases (required before program-
ming a page within the block), FTLs map current write
activity to a small set of active blocks in a log-structured
fashion, thus amortizing the cost of erases. Second, the
FTL enables the SSD to implement wear leveling. Re-
peatedly erasing and programming a particular block will
render it unreadable; thus, SSDs use the indirection pro-
vided by the FTL to spread write load across blocks and
thus ensure that the device has a longer lifetime.

2.2 De-indirection
Because of these costs, system designers have long sought
methods and techniques to reduce the costs of excess indi-
rection in various systems. We label the removal of excess
indirection de-indirection.

The basic idea is simple. Let us imagine a system with
two levels of mapping, and thus excess indirection. The
first indirection F maps items in the A space to items
in the B space: F (Ai) → Bj . The second indirection
G maps items in the B space to those in the C space:
G(Bj) → Ck. To look up item i, one performs the fol-
lowing “excessive” indirection: G(F (i)).

De-indirection removes the second level of indirec-
tion by evaluating the second mapping G() for all values
mapped by F (): ∀ i : F (i) ← G(F (i)). Thus, the top-
level mapping simply extracts the needed values from the
lower level indirection and installs them directly.

De-indirection has been successfully applied in a
few domains, most notably within hypervisors. The
Turtles project [7] provides an excellent example: in
a recursively-virtualized environment (with hypervisors
running on hypervisors), the Turtles system installs what
the authors refer to as multi-dimensional page tables.

Their approach essentially collapses multiple page tables
into a single extra level of indirection, and thus reduces
space and time overheads, making the costs of recursive
virtualization more palatable.

2.3 Summary
Excess indirection is common across virtual memory and
storage systems. In some cases, such as with hypervisor-
based memory virtualization, it is required for function-
ality; each OS believes it owns the same physical mem-
ory, and thus cannot share it without the indirection pro-
vided by the hypervisor. In other cases, it improves perfor-
mance, as we observed with disk systems and SSDs. An-
other reason for indirection is modularity and code sim-
plicity. Finally, reliability is often the reason for excess
indirection, notably within a single disk to handle write
failures and within an SSD to perform wear leveling.

In all cases, at least part of the reason for excess indi-
rection is the need to keep a fixed interface between higher
and lower layers of the system. Without such a constraint,
one could often remove the excess indirection and thus
improve the system. For example, if an OS running on a
para-virtualized system [31] is modified to request a ma-
chine page from the hypervisor and then install the correct
virtual-to-machine page translation in its page tables, the
hypervisor is relieved of having to manage this extra level
of indirection, thus improving performance and reducing
space overheads.

3 Nameless Writes
In this section, we discuss a new device interface that en-
ables flash-based SSDs to remove a great deal of their in-
frastructure for indirection. We call a device that supports
this interface a Nameless-writing Device. Table 1 summa-
rizes the nameless-writing device interface.

The key feature of a nameless-writing device is its
ability to perform nameless writes; however, to facilitate
clients (such as file systems) to use a nameless-writing de-
vice, a number of other features are useful as well. In par-
ticular, the nameless-writing device should provide sup-
port for a segmented address space, migration callbacks,
and associated metadata. We discuss these features in this
section and how a prototypical file system could use them.

3.1 Nameless Write Interfaces
We first present the basic device interfaces of Nameless
Writes: nameless (new) write, nameless overwrite, physi-
cal read, and free.

The nameless write interface completely replaces the
existing write operation. A nameless write differs from a
traditional write in two important ways. First, a nameless
write does not specify a target address (i.e., a name); this
allows the device to select the physical location without
control from the client above. Second, after the device
writes the data, it returns a physical address (i.e., a name)

3

4 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Virtual Read
down: virtual address, length
up: status, data

Virtual Write
down: virtual address, data, length
up: status

Nameless Write
down: data, length, metadata
up: status, resulting physical address(es)

Nameless Overwrite
down: old physical address(es), data, length, metadata
up: status, resulting physical address(es)

Physical Read
down: physical address, length, metadata
up: status, data

Free
down: virtual/physical addr, length, metadata, flag
up: status

Migration [Callback]
up: old physical addr, new physical addr, metadata
down: old physical addr, new physical addr, metadata

Table 1: The Nameless-Writing Device Interfaces The
table presents the nameless-writing device interfaces.

and status to the client, which then keeps the name in its
own structure for future reads.

The nameless overwrites interface is similar to the
nameless (new) write interface, except that it also passes
the old physical address(es) to the device. The device
frees the data at the old physical address(es) and then per-
forms a nameless write.

Read operations are mostly unchanged; as usual, they
take as input the physical address to be read and return
the data at that address and a status indicator. A slight
change of the read interface is the addition of metadata in
the input, for reasons that will be described in Section 3.4.

Because a nameless write is an allocating operation, a
nameless-writing device needs to also be informed of de-
allocation as well. Most SSDs refer to this interface as
the free or trim command. Once a block has been freed
(trimmed), the device is free to re-use it.

Finally, we consider how the nameless write interface
could be utilized by a typical file-system client such as
Linux ext3. For illustration, we examine the operations to
append a new block to an existing file. First, the file sys-
tem issues a nameless write of the newly-appended data
block to a nameless-writing device. When the nameless
write completes, the file system is informed of its address
and can update the corresponding in-memory inode for
this file so that it refers to the physical address of this
block. Since the inode has been changed, the file sys-
tem will eventually flush it to the disk as well; the inode
must be written to the device with another nameless write.

Again, the file system waits for the inode to be written and
then updates any structures containing a reference to the
inode. If nameless writes are the only interface available
for writing to the storage device, then this recursion will
continue until a root structure is reached. For file sys-
tems that do not perform this chain of updates or enforce
such ordering, such as Linux ext2, additional ordering and
writes are needed. This problem of recursive update has
been solved in other systems by adding a level of indirec-
tion (e.g., the inode map in LFS [27]).

3.2 Segmented Address Space
To solve the recursive update problem without requiring
substantial changes to the existing file system, we intro-
duce a segmented address space with two segments (see
Figure 1): the virtual address space, which uses virtual
read, write and free interfaces, and the physical address
space, which uses nameless read, write, overwrite, and
free interfaces.

The virtual segment presents an address space from
blocks 0 through V − 1, and is a virtual block space of
size V blocks. The device virtualizes this address space,
and thus keeps a (small) indirection table to map accesses
to the virtual space to the correct underlying physical lo-
cations. Reads and writes to the virtual space are identical
to reads and writes on typical devices. The client sends
an address and a length (and, if a write, data) down to the
device; the device replies with a status message (success
or failure), and if a successful read, the requested data.

The nameless segment presents an address space from
blocks 0 through P − 1, and is a physical block space of
size P blocks. The bulk of the blocks in the device are
found in this physical space, which allows typical named
reads; however, all writes to physical space are nameless,
thus preventing the client from directly writing to physical
locations of its choice.
We use a virtual/physical flag to indicate the segment a

block is in and the proper interface it should go through.
The size of the two segments are not fixed. Allocation in
either segment can be performed while there is still space
on the device. A device space usage counter can be main-
tained for this purpose.

The reason for the segmented address space is to en-
able file systems to largely reduce the levels of recursive
updates that would occur with only nameless writes. File
systems such as ext2 and ext3 can be designed such that
inodes and other metadata are placed in the virtual ad-
dress space. Such file systems can simply issue a write
to an inode and complete the update without needing to
modify directory structures that reference the inode. Thus,
the segmented address space allows updates to complete
without propagating throughout the directory hierarchy.

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 5

→ P2
→ P3

Figure 1: The Segmented Address Space. A nameless-
writing device provides a segmented address space to clients.
The smaller virtual space allows normal reads and writes, which
the device in turn maps to underlying physical locations. The
larger physical space allows reads to physical addresses, but
only nameless writes. In the example, only two blocks of the vir-
tual space are currently mapped, V0 and V2, to physical blocks
P2 and P3, respectively.

3.3 Migration Callback
Several kinds of devices such as flash-based SSDs need to
migrate data for reasons like wear leveling. We propose
the migration callback interface to support such needs.
A typical flash-based SSD performs wear leveling via

indirection: it simply moves the physical blocks and up-
dates the map. With nameless writes, blocks in the phys-
ical segment cannot be moved without informing the file
system. To allow the nameless-writing device to move
data for wear leveling, a nameless-writing device uses mi-
gration callbacks to inform the file system of the physical
address change of a block. The file system then updates
any metadata pointing to this migrated block.

3.4 Associated Metadata
The final interface of a nameless-writing device is used to
enable the client to quickly locate metadata structures that
point to data blocks. The complete specification for as-
sociated metadata supports communicating metadata be-
tween the client and device. Specifically, the nameless
write command is extended to include a third parameter: a
small amount of metadata, which is persistently recorded
adjacent to the data in a per-block header. Reads and mi-
gration callbacks are also extended to include this meta-
data. The associated metadata is kept with each block
buffer in the page cache as well.
This metadata enables the client file system to read-

ily identify the metadata structure(s) that points to a data
block. For example, in ext3 we can locate the metadata
structure that points to a data block by the inode number,
the inode generation number, and the offset of the block in
the inode. For file systems that already explicitly record
back references, such as btrfs and NoFS [10], the back
references can simply be reused for our purposes.

Such metadata structure identification can be used in
several tasks. First, when searching for a data block in the
page cache, we obtain the metadata information and com-
pare it against the associated metadata of the data blocks
in the page cache. Second, the migration callback process
uses associated metadata to find the metadata that needs to
be updated when a data block is migrated. Finally, associ-
ated metadata enables recovery in various crash scenarios,
which we will discuss in detail in Section 5.7.
One last issue worth noticing is the difference between

the associated metadata and address mapping tables. Un-
like address mapping tables, the associated metadata is
not used to locate physical data and is only used by the
device during migration callbacks and crash recovery.
Therefore, it can be stored adjacent to the data on the de-
vice. Only a small amount of the associated metadata is
fetched into device cache for a short period of time dur-
ing migration callbacks or recovery. Therefore, the space
cost of associated metadata is much smaller than address
mapping tables.

3.5 Implementation Issues
We now discuss various implementation issues that arise
in the construction of a nameless-writing device. We fo-
cus on those issues different from a standard SSD, which
are covered in detail elsewhere [16].

A number of issues revolve around the virtual segment.
Most importantly, how big should such a segment be? Un-
fortunately, its size depends heavily on how the client uses
it, as we will see when we port Linux ext3 to use nameless
writes in Section 5. Our results in Section 6 show that a
small virtual segment is usually sufficient.
The virtual space, by definition, requires an in-memory

indirection table. Fortunately, this table is quite small,
likely including simple page-level mappings for each page
in the virtual segment. However, the virtual address space
could be made larger than the size of the table; in this
case, the device would have to swap pieces of the page
table to and from the device, slowing down access to the
virtual segment. Thus, while putting many data structures
into the virtual space is possible, ideally the client should
be miserly with the virtual segment, in order to avoid ex-
ceeding the supporting physical resources.

Another concern is the extra level of information natu-
rally exported by exposing physical names to clients. Al-
though the value of physical names has been extolled by
others [12], a device manufacturer may feel that such in-
formation reveals too much of their “secret sauce” and
thus be wary of adopting such an interface. We believe
that if such a concern exists, the device could hand out
modified forms of the true physical addresses, thus trying
to hide the exact addresses from clients. Doing so may ex-
act additional performance and space overheads, perhaps
the cost of hiding information from clients.

5

6 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

4 Nameless-Writing Device
In this section, we describe our implementation of an
emulated nameless-writing SSD. With nameless writes,
a nameless-writing SSD can have a simpler FTL, which
has the freedom to do its own allocation and wear level-
ing. We first discuss how we implement the nameless-
writing interfaces and then propose a new garbage collec-
tion method that avoids file-system interaction. We defer
the discussion of wear leveling to Section 5.6.

4.1 Nameless-Writing Interface Support
We implemented an emulated nameless-writing SSD that
performs data allocation in a log-structured fashion by
maintaining active blocks that are written in sequential or-
der. When a nameless write is received, the device allo-
cates the next free physical address, writes the data, and
returns the physical address to the file system.

To support the virtual block space, the nameless-
writing device maintains a mapping table between logi-
cal and physical addresses in its device cache. When the
cache is full, the mapping table is swapped out to the flash
storage of the SSD. As our results show in Section 6.1, the
mapping table size of typical file system images is small;
thus, such swapping rarely happens in practice.

The nameless-writing device handles trims in a man-
ner similar to traditional SSDs; it invalidates the physical
address sent by a trim command. During garbage collec-
tion, invalidated pages can be recycled. The device also
invalidates the old physical addresses of overwrites.

A nameless-writing device needs to keep certain asso-
ciated metadata for nameless writes. We choose to store
the associated metadata of a data page in its Out-Of-Band
(OOB) area. The associated metadata is moved together
with data pages when the device performs a migration.

4.2 In-place Garbage Collection
In this section, we describe a new garbage collection
method for nameless-writing devices. Traditional FTLs
perform garbage collection on a flash block by reclaim-
ing its invalid data pages and migrating its live data pages
to new locations. Such garbage collection requires a
nameless-writing device to inform the file system of the
new physical addresses of the migrated live data; the file
system then needs to update and write out its metadata. To
avoid the costs of such callbacks and additional metadata
writes, we propose in-place garbage collection, which
writes the live data back to the same location instead of
migrating it. A similar hole-plugging approach was pro-
posed in earlier work [24], where live data is used to plug
the holes of most utilized segments.

To perform in-place garbage collection, the FTL selects
a candidate block using a certain policy. The FTL reads
all live pages from the chosen block together with their
associated metadata, stores them temporarily in a super-

capacitor- or battery-backed cache, and then erases the
block. The FTL next writes the live pages to their orig-
inal addresses and tries to fill the rest of the block with
writes in the waiting queue of the device. Since a flash
block can only be written in one direction, when there are
no waiting writes to fill the block, the FTL marks the free
space in the block as unusable. We call such space wasted
space. During in-place garbage collection, the physical
addresses of live data are not changed. Thus, no file sys-
tem involvement is needed.

Policy to choose candidate block: A natural question
is how to choose blocks for garbage collection. A simple
method is to pick blocks with the fewest live pages so that
the cost of reading and writing them back is minimized.
However, choosing such blocks may result in an excess of
wasted space. In order to pick a good candidate block for
in-place garbage collection, we aim to minimize the cost
of rewriting live data and to reduce wasted space during
garbage collection. We propose an algorithm that tries to
maximize the benefit and minimize the cost of in-place
garbage collection. We define the cost of garbage col-
lecting a block to be the total cost of erasing the block
(Terase), reading (Tpage read) and writing (Tpage write)
live data (Nvalid) in the block.

cost = Terase + (Tpage read + Tpage write) ∗ Nvalid

We define benefit as the number of new pages that can
potentially be written in the block. Benefit includes the
following items: the current number of waiting writes in
the device queue (Nwait write), which can be filled into
empty pages immediately, the number of empty pages
at the end of a block (Nlast), which can be filled at a
later time, and an estimated number of future writes based
on the speed of incoming writes (Swrite). While writ-
ing valid pages (Nvalid) and waiting writes (Nwait write),
new writes will be accumulated in the device queue. We
account for these new incoming writes by Tpage write ∗

(Nvalid +Nwait write)∗Swrite. Since we can never write
more than the amount of the recycled space (i.e., number
of invalid pages, Ninvalid) of a block, the benefit function
uses the minimum of the number of invalid pages and the
number of all potential new writes.

benefit = min(Ninvalid, Nwait write + Nlast

+ Tpage write ∗ (Nvalid + Nwait write) ∗ Swrite)

The FTL calculates the benefit

cost
ratio of all blocks that

contain invalid pages and selects the block with the maxi-
mal ratio to be the garbage collection candidate. Compu-
tationally less expensive algorithms could be used to find
reasonable approximations; such an improvement is left
to future work.

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 7

5 Nameless Writes on ext3
In this section we discuss our implementation of name-
less writes on the Linux ext3 file system. The Linux
ext3 file system is a classic journaling file system that is
commonly used in many Linux distributions. It extends
the Linux ext2 file system and uses the same allocation
method as ext2. It provides three journaling modes: data
mode, ordered mode, and journal mode. The ordered jour-
naling mode of ext3 is a commonly used mode, which
writes metadata to the journal and writes data to disk be-
fore committing metadata of the transaction. It provides
ordering that can be naturally used by nameless writes,
since the nameless-writing interface requires metadata to
reflect physical address returned by data writes. When
committing metadata in ordered mode, the physical ad-
dresses of data blocks are known to the file system be-
cause data blocks are written out first. Thus, we imple-
mented nameless writes with ext3 ordered mode; other
modes are left for future work.

5.1 Segmented Address Space
We first discuss physical and virtual address space separa-
tion and modified file-system allocation on ext3. We use
the physical address space to store all data blocks and the
virtual address space to store all metadata structures, in-
cluding superblocks, inodes, data and inode bitmaps, indi-
rect blocks, directory blocks, and journal blocks. We use
the type of a block to determine whether it is in the virtual
or the physical address space and the type of interface it
goes through.
The nameless-writing file system does not perform al-

location of the physical address space and only allocates
metadata in the virtual address space. Therefore, we do
not fetch or update group bitmaps for nameless block al-
location. For these data blocks, the only bookkeeping task
that the file system needs to perform is tracking overall de-
vice space usage. Specifically, the file system checks for
total free space of the device and updates the free space
counter when a data block is allocated or de-allocated.
Metadata blocks in the virtual physical address space are
allocated in the same way as the original ext3 file system,
thus making use of existing bitmaps.

5.2 Associated Metadata
We include the following items as associated metadata of
a data block: 1) the inode number or the logical address
of the indirect block that points to the data block, 2) the
offset within the inode or the indirect block, 3) the inode
generation number, and 4) a timestamp of when the data
block was last updated. Items 1 to 3 are used to identify
the metadata structure that points to a data block. Item
4 is used during the migration callback process to update
the metadata structure with the most up-to-date physical
address of a data block.

All the associated metadata is stored in the OOB area
of a data block. The total amount of additional status
we store in the OOB area is less than 48 bytes, smaller
than the typical 128-byte OOB size of 4-KB flash pages.
For reliability reasons, we assume that a data page and its
OOB area are always written atomically.

5.3 Write
To perform a nameless write, the file system sends the data
and the associated metadata of the block to the device.
When the device finishes a nameless write and sends back
its physical address, the file system updates the inode or
the indirect block pointing to it with the new physical ad-
dress. It also updates the block buffer with the new physi-
cal address. In ordered journaling mode, metadata blocks
are always written after data blocks have been commit-
ted; thus on-disk metadata is always consistent with its
data. The file system performs overwrites similarly. The
only difference is that overwrites have an existing phys-
ical address, which is sent to the device; the device uses
this information to invalidate the old data.

5.4 Read
We change two parts of the read operation of data blocks
in the physical address space: reading from the page cache
and reading from the physical device. To search for a data
block in the page cache, we compare the metadata index
(e.g., inode number, inode generation number, and block
offset) of the block to be read against the metadata associ-
ated with the blocks in the page cache. If the buffer is not
in the page cache, the file system fetches it from the de-
vice using its physical address. The associated metadata
of the data block is also sent with the read operation to
enable the device to search for remapping entries during
device wear leveling (see Section 5.6).

5.5 Free
The current Linux ext3 file system does not support the
SSD trim operation. We implemented the ext3 trim oper-
ation in a manner similar to ext4. Trim entries are created
when the file system deletes a block (named or nameless).
A trim entry contains the logical address of a named block
or the physical address of a nameless block, the length of
the block, its associated metadata, and the address space
flag. The file system then adds the trim entry to the cur-
rent journal transaction. At the end of transaction commit,
all trim entries belonging to the transaction are sent to the
device. The device locates the block to be deleted using
the information contained in the trim operation and inval-
idates the block.

When a metadata block is deleted, the original ext3 de-
allocation process is performed. When a data block is
deleted, no de-allocation is performed (i.e., bitmaps are
not updated); only the free space counter is updated.

7

8 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

5.6 Wear Leveling with Callbacks
When a nameless-writing device performs wear leveling,
it migrates live data to achieve even wear of the device.
When such migration happens with data blocks in the
physical address space, the file system needs to be in-
formed about the change of their physical addresses. In
this section, we describe how the nameless-writing device
handles data block migration and how it interacts with the
file system to perform migration callbacks.

When live nameless data blocks (together with their
associated metadata in the OOB area) are migrated dur-
ing wear leveling, the nameless-writing device creates a
mapping from the data block’s old physical address to its
new physical address and stores it together with its asso-
ciated metadata in a migration mapping table in the de-
vice cache. The migration mapping table is used to locate
the migrated physical address of a data block for reads
and overwrites, which may be sent to the device with the
block’s old physical address. After the mapping has been
added, the old physical address is reclaimed and can be
used by future writes.

At the end of a wear-leveling operation, the device
sends a migration callback to the file system, which con-
tains all migrated physical addresses and their associated
metadata. The file system then uses the associated meta-
data to locate the metadata pointing to the data block and
updates it with the new physical address in a background
process. Next, the file system writes changed metadata to
the device. When a metadata write finishes, the file sys-
tem deletes all the callback entries belonging to this meta-
data block and sends a response to the device, informing
it that the migration callback has been processed. Finally,
the device deletes the remapping entry when receiving the
response of a migration callback.
For migrated metadata blocks, the file system does not

need to be informed of the physical address change since
it is kept in the virtual address space. Thus, the device
does not keep remapping entries or send migration call-
backs for metadata blocks.

During the migration callback process, we allow reads
and overwrites to the migrated data blocks. When receiv-
ing a read or an overwrite during the callback period, the
device first looks in the migration mapping table to locate
the current physical address of the data block and then
performs the request.

Since all remapping entries are stored in the on-device
RAM before the file system finishes processing the mi-
gration callbacks, we may run out of RAM space if the
file system does not respond to callbacks or responds
too slowly. In such a case, we simply prohibit future
wear-leveling migrations and prevent block wear-out only
through garbage collection.

5.7 Reliability Discussion
The changes of the ext3 file system discussed above may
cause new reliability issues. In this section, we discuss
several reliability issues and our solutions to them.

There are three main reliability issues related to name-
less writes. First, we maintain a mapping table in the
on-device RAM for the virtual address space. This table
needs to be reconstructed each time the device powers on
(either after a normal power-off or a crash). Second, the
in-memory metadata can be inconsistent with the physical
addresses of nameless blocks because of a crash after writ-
ing a data block and before updating its metadata block,
or because of a crash during wear-leveling callbacks. Fi-
nally, crashes can happen during in-place garbage collec-
tion, specifically, after reading the live data and before
writing them back, which may cause data loss.
We solve the first two problems by using the meta-

data information maintained in the device OOB area. We
store logical addresses with data pages in the virtual ad-
dress space for reconstructing the logical-to-physical ad-
dress mapping table. We store associated metadata, as
discussed in Section 3.4, with all nameless data. We also
store the validity of all flash pages in their OOB area. We
maintain an invariant that metadata in the OOB area is al-
ways consistent with the data in the flash page by writing
the OOB area and the flash page atomically.

We solve the in-place garbage collection reliability
problem by requiring the use of a small memory backed
by battery or super-capacitor. Notice that the amount of
live data we need to hold during a garbage collection op-
eration is no more than the size of an SSD block, typically
256 KB, thus only adding a small monetary cost to the
whole device.

The recovery process works as follows. When the de-
vice is started, we perform a whole-device scan and read
the OOB area of all valid flash pages to reconstruct the
mapping table of the virtual address space. If a crash is de-
tected, we perform the following steps. The device sends
the associated metadata in the OOB area and the physical
addresses of flash pages in the physical address space to
the file system. The file system then locates the proper
metadata structures. If the physical address in a metadata
structure is inconsistent, the file system updates it with
the new physical address and adds the metadata write to a
dedicated transaction. After all metadata is processed, the
file system commits the transaction, at which point the re-
covery process is finished.

6 Evaluation
In this section, we present our evaluation of nameless
writes on an emulated nameless-writing device. Specif-
ically, we focus on studying the following questions:

• What are the space costs of nameless-writing devices
compared to other FTLs?

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 9

Configuration Value
SSD Size 4 GB
Page Size 4 KB
Block Size 256 KB
Number of Planes 10
Hybrid Log Block Area 5%
Page Read Latency 25 µs

Page Write Latency 200 µs

Block Erase Latency 1500 µs

Table 2: SSD Emulator Configuration.

• What is the overall performance benefit of nameless-
writing devices?

• What is the write performance of nameless-writing
devices? How and why is it different from page-level
mapping and hybrid mapping FTLs?

• What is the cost of in-place garbage collection and
the overhead of wear-leveling callbacks?

• Is crash recovery correct and what are its overheads?

SSD Emulator: We built an SSD emulator which mod-
els a multi-plane SSD with garbage collection and wear
leveling as a pseudo block device based on David [4]. We
implemented three types of FTLs: page-level mapping,
hybrid mapping and nameless-writing on top of the PSU
objected-oriented SSD simulator codebase [6]. Data is
stored in memory to enable quick and accurate emulation.
Table 2 describes the configuration we used.

The page-level mapping FTL writes data in a log-
structured fashion and schedules in round-robin order
across parallel planes. It keeps a mapping for each data
page between its logical and physical address. We assume
(unrealistically) that this SSD has enough memory to store
all page-level mappings. The page-level SSD serves as an
upper-bound on performance.

We implemented a hybrid mapping FTL similar to
FAST [22], which uses a log block area for random data
and one sequential log block dedicated for sequential
streams. The rest of the device is a data block area used to
store whole data blocks. The hybrid mapping FTL main-
tains the page-level mapping of the log block area and the
block-level mapping of the data block area.

We implemented a simple garbage collection algorithm
that recycles blocks with the least live data in page-level
mapping and hybrid mapping FTLs, and a wear-leveling
algorithm on all three FTLs that considers a block’s re-
maining erase cycles and its data temperature during wear
leveling similar to a previous wear-leveling algorithm [2].

System Setup: We implemented the emulated
nameless-write device and the nameless-writing ext3 file
system on a 64-bit Linux 2.6.33 kernel. The page-level

Image Size Page Hybrid Nameless
328 MB 328 KB 38 KB 2.7 KB

2 GB 2 MB 235 KB 12 KB
10 GB 10 MB 1.1 MB 31 KB

100 GB 100 MB 11 MB 251 KB
400 GB 400 MB 46 MB 1 MB

1 TB 1 GB 118 MB 2.2 MB

Table 3: FTL Mapping Table Size. Mapping table size of
page-level, hybrid, and nameless-writing devices with different
file system images. The configuration in Table 2 is used.

mapping and the hybrid mapping SSD emulators are
built on an unmodified 64-bit Linux 2.6.33 kernel. All
experiments are performed on a 2.5 GHz Intel Quad Core
CPU with 8 GB memory.

6.1 SSD Memory Consumption
We first study the space cost of mapping tables used by
different SSD FTLs: nameless-writing, page-level map-
ping, and hybrid mapping. The mapping table size of
page-level and hybrid FTLs is calculated based on the to-
tal size of the device, its block size, and its log block area
size (for hybrid mapping). A nameless-writing device
keeps a mapping table for the entire file system’s virtual
address space. Since we map all metadata to the virtual
block space in our nameless-writing implementation, the
mapping table size of the nameless-writing device is de-
pendent on the metadata size of the file system image. We
use Impressions [3] to create typical file system images of
sizes up to 1 TB and calculate their metadata sizes.

Figure 3 shows the mapping table sizes of the three
FTLs with different file system images produced by Im-
pressions. Unsurprisingly, the page-level mapping has the
highest mapping table space cost. The hybrid mapping
has a moderate space cost; however, its mapping table size
is still quite large: over 100 MB for a 1-TB device. The
nameless mapping table has the lowest space cost; even
for a 1-TB device, its mapping table uses less than 3 MB
of space for typical file systems, reducing both cost and
power usage.

6.2 Application Performance
We now present the overall application performance of
nameless-writing, page-level mapping and hybrid map-
ping FTLs with macro-benchmarks. We use varmail, file-
server, and webserver from the filebench suite [29].

Figure 2 shows the throughput of these benchmarks.
We see that both page-level mapping and nameless-
writing FTLs perform better than the hybrid mapping FTL
with varmail and fileserver. These benchmarks contain
90.8% and 70.6% random writes, respectively. As we
will see later in this section, the hybrid mapping FTL per-
forms well with sequential writes and poorly with random
writes. Thus, its throughput for these two benchmarks

9

10 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Varmail FileServer WebServer

Th
ro

ug
hp

ut
 (M

B/
s)

0

100

200

300

400

500

600

Page Nameless Hybrid

Figure 2: Throughput of Filebench. Throughput of var-
mail, fileserver, and webmail macro-benchmarks with page-
level, nameless-writing, and hybrid FTLs.

Sequential Random

Th
ro

ug
hp

ut
 (K

IO
PS

)

0

10

20

30

40

50

Page Nameless Hybrid5% Hybrid10% Hybrid20%

Figure 3: Sequential and Random Write Throughput.
Throughput of sequential writes and sustained 4-KB random
writes. Random writes are performed over a 2-GB range.

is worse than the other two FTLs. For webserver, all
three FTLs deliver similar performance, since it contains
only 3.8% random writes. We see a small overhead of
the nameless-writing FTL as compared to the page-level
mapping FTL with all benchmarks, which we will discuss
in detail in Sections 6.5 and 6.6.

In summary, we demonstrate that the nameless-writing
device achieves excellent performance, roughly on par
with the costly page-level approach, which serves as an
upper-bound on performance.

6.3 Basic Write Performance
Write performance of flash-based SSDs is known to be
much worse than read performance, with random writes
being the performance bottleneck. Nameless writes aim to
improve write performance of such devices by giving the
device more data-placement freedom. We evaluate the ba-
sic write performance of our emulated nameless-writing
device in this section. Figure 3 shows the throughput
of sequential writes and sustained 4-KB random writes
with page-level mapping, hybrid mapping, and nameless-
writing FTLs.
First, we find that the emulated hybrid-mapping de-

vice has a sequential throughput of 169 MB/s and a sus-
tained 4-KB random write throughput of 2,830 IOPS. A
widely used real middle-end SSD has sequential through-
put of up to 70 MB/s and random throughput of up to
3,300 IOPS [17]. Although the write performance of our
emulator does not match this real SSD exactly, it is still in
the ballpark of actual SSD performance, and thus useful
in our study. The goal of our hybrid-mapping emulator is
not to model one particular SSD perfectly but to provide
insight into the fundamental problems of hybrid-mapped
SSDs as compared to page-mapped and nameless SSDs.

Second, the random write throughput of page-level
mapping and nameless-writing FTLs is close to their se-
quential write throughput, because both FTLs allocate
data in a log-structured fashion, making random writes
behave like sequential writes. The overhead of random

writes with these two FTLs comes from their garbage col-
lection process. Since whole blocks can be erased when
they are overwritten in sequential order, garbage collec-
tion has the lowest cost with sequential writes. By con-
trast, garbage collection of random data may incur the cost
of live data migration.

Third, we notice that the random write throughput of
the hybrid mapping FTL is significantly lower than that of
the other FTLs and its own sequential write throughput.
The poor random write performance of the hybrid map-
ping FTL results from the costly full-merge operation and
its corresponding garbage collection process [16]. Full
merges are required each time a log block is filled with
random writes, thus a dominating cost for random writes.
One way to improve the random write performance of

hybrid-mapped SSDs is to over-provision more log block
space. To explore that, we vary the size of the log block
area with the hybrid mapping FTL from 5% to 20% of
the whole device and found that random write through-
put gets higher as the size of the log block area increases.
However, only the data block area reflects the effective
size of the device, while the log block area is part of de-
vice over-provisioning. Therefore, hybrid-mapped SSDs
often sacrifice device space cost for better random write
performance. Moreover, the hybrid mapping table size in-
creases with higher log block space, requiring larger on-
device RAM. Nameless writes achieve significantly bet-
ter random write performance with no additional over-
provisioning or RAM space.

Finally, Figure 3 shows that the nameless-writing FTL
has low overhead as compared to the page-level mapping
FTL with sequential and random writes. We explain this
result in more detail in Section 6.5 and 6.6.

6.4 A Closer Look at Random Writes
A previous study [16] and our study in the last section
show that random writes are the major performance bot-
tleneck of flash-based devices. We now study two subtle
yet fundamental questions: do nameless-writing devices

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 11

Random Write Working Set (GB)
1 2 3 4

Th
ro

ug
hp

ut
 (K

IO
PS

)

0

10

20

30

40

50

Page−level
Nameless
Hybrid

Figure 4: Random Write
Throughput. Throughput of
sustained 4-KB random writes over dif-
ferent working set sizes with page-level,
nameless, and hybrid FTLs.

Random Write Working Set (GB)
1 2 3 4

M
ov

ed
 D

at
a

(G
B)

0

20

40

60

80

100

Figure 5: Migrated Live Data.
Amount of migrated live data during
garbage collection of random writes
with different working set sizes with
page-level, nameless, and hybrid FTLs.

Sync Frequency
0 20 40 60 80 100Av

g
R

es
po

ns
e

Ti
m

e
(lo

g(
us

ec
))

0

1

2

3

4

Figure 6: Average Response Time
of Synchronous Random Writes.
4-KB random writes in a 2-GB file.
Sync frequency represents the number of
writes we issue before calling an fsync.

C
os

t o
f O

pe
ra

tio
n

(%
)

0

20

40

60

80

100

Random Write Working Set (GB)
1 2 3 4

Idle
Merge Read
Merge Write
Erase
Normal Write

Figure 7: Page-Level FTL Utiliza-
tion. Break down of device utilization
with the page-level FTL under random
writes of different ranges.

C
os

t o
f O

pe
ra

tio
n

(%
)

0

20

40

60

80

100

Random Write Working Set (GB)
1 2 3 4

Figure 8: Nameless FTL Utiliza-
tion. Break down of device utilization
with the nameless FTL under random
writes of different ranges.

C
os

t o
f O

pe
ra

tio
n

(%
)

0

20

40

60

80

100

Random Write Working Set (GB)
1 2 3 4

Figure 9: Hybrid FTL Utilization.
Break down of device utilization with the
hybrid FTL under random writes of dif-
ferent ranges.

perform well with different kinds of random-write work-
loads, and why do they outperform hybrid devices.
To answer the first question, we study the effect of

working set size on random writes. We create files of dif-
ferent sizes and perform sustained 4-KB random writes in
each file to model different working set sizes. Figure 4
shows the throughput of random writes over different file
sizes with all three FTLs. We find that the working set
size has a large effect on random write performance of
nameless-writing and page-level mapping FTLs. The ran-
dom write throughput of these FTLs drops as the working
set size increases. When random writes are performed
over a small working set, they will be overwritten in full
when the device fills and garbage collection is triggered.
In such cases, there is a higher chance of finding blocks
that are filled with invalid data and can be erased with no
need to rewrite live data, thus lowering the cost of garbage
collection. In contrast, when random writes are performed
over a large working set, garbage collection has a higher
cost since blocks contain more live data, which must be
rewritten before erasing a block.

To further understand the increasing cost of random
writes as the working set increases, we plot the total

amount of live data migrated during garbage collection
(Figure 5) of random writes over different working set
sizes with all three FTLs. This graph shows that as the
working set size of random writes increases, more live
data is migrated during garbage collection for these FTLs,
resulting in a higher garbage collection cost and worse
random write performance.

Comparing the page-level mapping FTL and the
nameless-writing FTL, we find that nameless-writing has
slightly higher overhead when the working set size is high.
This overhead is due to the cost of in-place garbage col-
lection when there is wasted space in the recycled block.
We will study this overhead in details in the next section.

We now study the second question to further understand
the cost of random writes with different FTLs. We break
down the device utilization into regular writes, block
erases, writes during merging, reads during merging, and
device idle time. Figures 7, 8, and 9 show the stack plot of
these costs over all three FTLs. For page-level mapping
and nameless-writing FTLs, we see that the major cost
comes from regular writes when random writes are per-
formed over a small working set. When the working set
increases, the cost of merge writes and erases increases

11

12 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Workload1 Workload2

Th
ro

ug
hp

ut
 (K

IO
PS

)

0

10

20

30

40

Page Nameless

Figure 10: Write Throughput with
Wear leveling. Throughput of biased
sequential writes with wear leveling un-
der page-level and nameless FTLs.

Workload1 Workload2Am
ou

nt
 o

f D
at

a
M

ov
ed

 (G
B)

0

0.5

1

1.5

2

Page Nameless

Figure 11: Migrated Live Data
during Wear Leveling. Amount of
migrated live data during wear leveling
under page-level and nameless FTLs.

Metadata RemapTbl
Workload1 2.02 MB 321 KB
Workload2 5.09 MB 322 KB

Figure 12: Wear leveling Call-
back Overhead. Amount of addi-
tional metadata writes because of mi-
gration callbacks and maximal remap-
ping table size during wear leveling with
the nameless-writing FTL.

and becomes the major cost. For the hybrid mapping
FTL, the major cost of random writes comes from migrat-
ing live data and idle time during merging for all work-
ing set sizes. When the hybrid mapping FTL performs a
full merge, it reads and writes pages from different planes,
thus creating idle time on each plane.

In summary, we demonstrate that random write
throughput of the nameless-writing FTL is close to that
of the page-level mapping FTL and is significantly bet-
ter than the hybrid mapping FTL, mainly because of the
costly merges the hybrid mapping FTL performs for ran-
dom writes. We also found that both nameless-writing
and page-level mapping FTLs achieve better random write
throughput when the working set is relatively small be-
cause of a lower garbage collection cost.

6.5 In-place Garbage Collection Overhead
The performance overhead of a nameless-writing de-
vice may come from two different device responsibili-
ties: garbage collection and wear leveling. We study the
overhead of in-place garbage collection in this section and
wear-leveling overhead in the next section.
Our implementation of the nameless-writing device

uses an in-place merge to perform garbage collection. As
explained in Section 4.2, when there are no waiting writes
on the device, we may waste the space that has been re-
cently garbage collected. We use synchronous random
writes to study this overhead. We vary the frequency
of calling fsync to control the amount of waiting writes
on the device; when the sync frequency is high, there
are fewer waiting writes on the device queue. Figure 6
shows the average response time of 4-KB random writes
with different sync frequencies under page-level mapping,
nameless-writing, and hybridmapping FTLs. We find that
when sync frequency is high, the nameless-writing device
has a larger overhead compared to page-level mapping.
This overhead is due to the lack of waiting writes on the
device to fill garbage-collected space. However, we see

that the average response time of the nameless-writing
FTL is still lower than that of the hybrid mapping FTL,
since response time is worse when the hybrid FTL per-
forms full-merge with synchronous random writes.

6.6 Wear-leveling Callback Overhead
Finally, we study the overhead of wear leveling in a
nameless-writing device. To perform wear-leveling exper-
iments, we reduce the lifetime of SSD blocks to 50 erase
cycles. We set the threshold of triggering wear leveling to
be 75% of the maximal block lifetime, and set blocks that
are under 90% of the average block remaining time to be
candidates for wear leveling.

We create two workloads to model different data tem-
perature and SSD wear: a workload that first writes 3.5-
GB data in sequential order and then overwrites the first
500-MB area 40 times (Workload 1), and a workload that
overwrites the first 1-GB area 40 times (Workload 2).
Workload 2 has more hot data and triggers more wear
leveling. We compare the throughput of these workloads
with page-level mapping and nameless-writing FTLs in
Figure 10. The throughput of Workload 2 is worse than
that of Workload 1 because of its more frequent wear-
leveling operation. Nonetheless, the performance of the
nameless-writing FTL with both workloads has less than
9% overhead.

We then plot the amount of migrated live data during
wear leveling with both FTLs in Figure 11. As expected,
Workload 2 produces more wear-leveling migration traf-
fic. Comparing page-level mapping to nameless-writing
FTLs, we find that the nameless-writing FTL migrates
more live data. When the nameless-writing FTL performs
in-place garbage collection, it generates more migrated
live data, as shown in Figure 5. Therefore, more erases are
caused by garbage collection with the nameless-writing
FTL, resulting in more wear-leveling invocation and more
wear-leveling migration traffic.

Migrating live nameless data in a nameless-writing

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 13

device creates callback traffic and additional metadata
writes. Wear leveling in a nameless-writing device also
adds a space overhead when it stores the remapping ta-
ble for migrated data. We show the amount of additional
metadata writes and the maximal size of the remapping
table of a nameless-writing device in Figure 12. We find
both overheads to be low with the nameless-writing de-
vice: an addition of less than 6 MB metadata writes and a
space cost of less than 350 KB.
In summary, we find that both the garbage-collection

and wear-leveling overheads caused by nameless writes
are low. Since wear leveling is not a frequent operation
and is often scheduled in system idle periods, we expect
both performance and space overheads of a nameless-
writing device to be even lower in real systems.

6.7 Reliability
To determine the correctness of our reliability solution,
we inject crashes in the following points: 1) after writ-
ing a data block and its metadata block, 2) after writing
a data block and before updating its metadata block, 3)
after writing a data block and updating its metadata block
but before committing the metadata block, and 4) after the
device migrates a data block because of wear leveling and
before the file system processes the migration callback. In
all cases, we successfully recover the system to a consis-
tent state that correctly reflects all written data blocks and
their metadata.
Our results also show that the overhead of our crash re-

covery process is relatively small: from 0.4 to 6 seconds,
depending on the amount of inconsistent metadata after
crash. With more inconsistent metadata, the overhead of
recovery is higher.

7 Related Work
A large body of work on flash-based SSD FTLs and file
systems that manage them has been proposed in recent
years [11, 14, 16, 19, 21, 22, 25, 33]. In this section, we
discuss the two research projects that are most related to
nameless writes.

Range writes [5] use an approach similar to nameless
writes. Range writes were proposed to improve hard disk
performance by letting the file system specify a range of
addresses and letting the device pick the final physical ad-
dress of a write. Instead of a range of addresses, nameless
writes are not specified with any addresses, thus obviating
file system allocation and moving allocation responsibil-
ity to the device. Problems such as updating metadata af-
ter writes in range writes also arise in nameless writes. We
propose a segmented address space to lessen the overhead
and the complexity of such an update process. Another
difference is that nameless writes target devices that need
to maintain control of data placement, such as wear level-
ing in flash-based devices. Range writes target traditional

hard disks that do not have such responsibilities. Data
placement with flash-based devices is also less restricted
than traditional hard disks, since flash-based memory has
uniform access latency regardless of its location.

The poor random write performance of hybrid FTLs
has drawn attention from researchers in recent years. The
demand-based Flash Translation Layer (DFTL) was pro-
posed to address this problem by maintaining a page-level
mapping table and writing data in a log-structured fashion
[16]. DFTL stores its page-level mapping table on the de-
vice and keeps a small portion of the mapping table in the
device cache based on workload temporal locality. How-
ever, for workloads that have a bigger working set than the
device cache, swapping the cached mapping table with the
on-device mapping table structure can be costly. There is
also a space overhead to store the entire page-level map-
ping table on device. We use a log-structured write order
similar to DFTL to maximize the device’s sequential writ-
ing capability. However, the need for a device-level map-
ping table is obviated with nameless writes. Indirection
is maintained only for the virtual address space, which as
we show, requires a small space cost and can fit in the de-
vice cache with typical file system images. Thus, we do
not pay the space cost of storing the large page-level map-
ping table in the device or the performance overhead of
swapping mapping table entries.

8 Conclusions and Future Work
In this paper, we introduced nameless writes, a new write
interface built to reduce the inherent costs of indirection.
Through the implementation of nameless writes on the
Linux ext3 file system and an emulated nameless-writing
device, we demonstrate how to port a file system to use
nameless writes. Through extensive evaluations, we show
the great advantage of nameless writes: greatly reduced
space costs and improved random-write performance.
Porting other types of file systems to use nameless

writes would be interesting and is a part of our future
work. Here, we give a brief discussion about these file
systems and the challenges we foresee in changing them
to use nameless writes.

Linux ext2: The Linux ext2 file system is similar to the
ext3 file system except that it has no journaling. While we
rely on the ordered journal mode to provide a natural or-
dering for the metadata update process of nameless writes
in ext3, we need to introduce an ordering on the ext2 file
system. Our initial implementation of nameless-writing
ext2 shows that one possible method to enforce such an
ordering is to defer metadata writes until all the ongoing
data writes belonging to them have finished.

Copy-On-Write File Systems and Snapshots: As an
alternative to journaling, copy-on-write (COW) file sys-
tems always write out updates to new free space; when all

13

14 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

of those updates have reached the disk, a root structure is
updated to point at the new structures, and thus include
them in the state of the file system. COW file systems
thus map naturally to nameless writes. All writes to free
space are mapped into the physical segment and issued
namelessly; the root structure is mapped into the virtual
segment. The write ordering is not affected, as COW file
systems all must wait for the COW writes to complete be-
fore issuing a write to the root structure anyway.
One problem with COW file systems or other file sys-

tems that support snapshots or versions is that multiple
metadata structures can point to the same data block,
which may result in a large amount of associated meta-
data. We can use file system intrinsic back references,
such as those in btrfs, or structures like Backlog [23] to
represent associated metadata. Another problem is that
multiple metadata blocks need to be updated after a name-
less write. One possible way to control the number of
metadata updates is to reduce the amount of metadata in-
cluded in the virtual address space.

Extent-Based File Systems: One final type of file sys-
tems worth considering are extent-based file systems,
such as Linux btrfs and ext4, where contiguous regions
of a file are pointed to via (pointer, length) pairs instead
of a single pointer per fixed-sized block. Modifying an
extent-based file system to use nameless writes would re-
quire a bit of work; as nameless writes of data are issued,
the file system would not (yet) know if the data blocks will
form one extent or many. Thus, only when the writes com-
plete will the file system be able to determine the outcome.
Later writes would not likely be located nearby, and thus
to minimize the number of extents, updates should be is-
sued at a single time. Extents also hint at the possibility of
a new interface for nameless writes. Specifically it might
be useful to provide an interface to reserve a larger con-
tiguous region on the device; doing so would enable the
file system to ensure that a large file was placed contigu-
ously in physical space, and thus affords a highly compact
extent-based representation. We plan to look into such en-
hancements in the future.

Acknowledgment
We thank the anonymous reviewers and Jason Flinn (our shep-
herd) for their tremendous feedback and comments, which have
substantially improved the content and presentation of this pa-
per. We also thank the members of the ADSL research group for
their insightful comments.

This material is based upon work supported by the Na-
tional Science Foundation under the following grant: NSF CCF-
0937959, as well as by generous donations from Google, Ne-
tApp, and Samsung.
Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or other institutions.

References
[1] K. Adams and O. Agesen. A Comparison of Soft-

ware and Hardware Techniques for x86 Virtualiza-
tion. In Proceedings of the 13th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XIII),
Seattle, Washington, March 2008.

[2] N. Agarwal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design Trade-
offs for SSD Performance. In Proceedings of the
USENIX Annual Technical Conference (USENIX
’08), Boston, Massachusetts, June 2008.

[3] N. Agrawal, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Generating Realistic Impressions
for File-System Benchmarking. In Proceedings of
the 7th USENIX Symposium on File and Storage
Technologies (FAST ’09), San Francisco, California,
February 2009.

[4] N. Agrawal, L. Arulraj, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Emulating Goliath Stor-
age Systems with David. In Proceedings of the
9th USENIX Symposium on File and Storage Tech-
nologies (FAST ’11), San Jose, California, February
2011.

[5] A. Anand, S. Sen, A. Krioukov, F. Popovici,
A. Akella, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and S. Banerjee. Avoiding File System Mi-
cromanagement with Range Writes. In Proceedings
of the 8th Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, Cali-
fornia, December 2008.

[6] B. Tauras, Y. Kim, and A. Gupta. PSU
Objected-Oriented Flash based SSD simulator.
http://csl.cse.psu.edu/?q=node/321.

[7] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman,
and B.-A. Yassour. The Turtles Project: Design and
Implementation of Nested Virtualization. In Pro-
ceedings of the 9th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’10), Van-
couver, Canada, December 2010.

[8] S. Boboila and P. Desnoyers. Write Endurance in
Flash Drives: Measurements and Analysis. In Pro-
ceedings of the 8th USENIX Symposium on File and
Storage Technologies (FAST ’10), San Jose, Califor-
nia, February 2010.

14

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 15

[9] E. Bugnion, S. Devine, and M. Rosenblum. Disco:
Running Commodity Operating Systems on Scal-
able Multiprocessors. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles
(SOSP ’97), pages 143–156, Saint-Malo, France,
October 1997.

[10] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. ConsistencyWithout Or-
dering. In Proceedings of the 10th USENIX Sympo-
sium on File and Storage Technologies (FAST ’12),
San Jose, California, February 2012.

[11] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W.
Lee, and H.-J. Song. System Software for Flash
Memory: A Survey. In Proceedings of thei 5th In-
ternational Conference on Embedded and Ubiqui-
tous Computing (EUC ’06), pages 394–404, August
2006.

[12] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole.
Exokernel: An Operating System Architecture for
Application-Level Resource Management. In Pro-
ceedings of the 15th ACM Symposium on Oper-
ating Systems Principles (SOSP ’95), pages 251–
266, Copper Mountain Resort, Colorado, December
1995.

[13] R. M. English and A. A. Stepanov. Loge: A
Self-Organizing Disk Controller. In Proceedings of
the USENIX Winter Technical Conference (USENIX
Winter ’92), pages 237–252, San Francisco, Califor-
nia, January 1992.

[14] E. Gal and S. Toledo. Algorithms and Data Struc-
tures for Flash Memories. ACM Computing Surveys,
37:138–163, June 2005.

[15] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P. H. Siegel, and J. K. Wolf. Char-
acterizing Flash Memory: Anomalies, Observations,
and Applications. In Proceedings of MICRO-42,
New York, New York, December 2009.

[16] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a Flash
Translation Layer Employing Demand-Based Selec-
tive Caching of Page-Level Address Mappings. In
Proceedings of the 43th International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS XIV), pages 229–
240, Washington, DC, March 2009.

[17] Intel Corporation. Intel X25-M Mainstream SATA
Solid-State Drives. ftp://download.intel.

com/design/flash/NAND/mainstream/
mainstream-sata-s%sd-datasheet.pdf.

[18] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee.
A Group-based Wear-Leveling Algorithm for Large-
Capacity Flash Memory Storage Systems. In Pro-
ceedings of the 2007 international conference on
Compilers, architecture, and synthesis for embedded
systems (CASES ’07), October 2007.

[19] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee.
A Superblock-Based Flash Translation Layer for
NAND Flash Memory. In Proceedings of the 6th
ACM & IEEE International conference on Embed-
ded software (EMSOFT ’08), Seoul, Korea, August
2006.

[20] A. Kawaguchi, S. Nishioka, and H. Motoda. A
Flash-Memory Based File System. In Proceedings
of the USENIX 1995 Winter Technical Conference,
New Orleans, Louisiana, January 1995.

[21] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST:
Locality-Aware Sector Translation for NAND Flash
Memory-Based Storage Systems. In Proceedings of
the International Workshop on Storage and I/O Vir-
tualization, Performance, Energy, Evaluation and
Dependability (SPEED2008), February 2008.

[22] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A Log Buffer-Based Flash
Translation Layer Using Fully-Associative Sector
Translation. IEEE Transactions on Embedded Com-
puting Systems, 6, 2007.

[23] P. Macko, M. Seltzer, and K. A. Smith. Tracking
Back References in a Write-Anywhere File System.
In Proceedings of the 8th USENIX Symposium on
File and Storage Technologies (FAST ’10), San Jose,
California, February 2010.

[24] J. N. Matthews, D. Roselli, A. M. Costello, R. Y.
Wang, and T. E. Anderson. Improving the Perfor-
mance of Log-Structured File Systems with Adap-
tive Methods. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP
’97), pages 238–251, Saint-Malo, France, October
1997.

[25] A. One. YAFFS: Yet Another Flash File System,
2002. http://www.yaffs.net/.

[26] D. Patterson, G. Gibson, and R. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In
Proceedings of the 1988 ACM SIGMOD Conference

15

16 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

on the Management of Data (SIGMOD ’88), pages
109–116, Chicago, Illinois, June 1988.

[27] M. Rosenblum and J. Ousterhout. The Design and
Implementation of a Log-Structured File System.
ACM Transactions on Computer Systems, 10(1):26–
52, February 1992.

[28] D. Spinellis. Another Level of Indirection. In
A. Oram and G. Wilson, editors, Beautiful Code:
Leading Programmers Explain How They Think,
chapter 17, pages 279–291. O’Reilly and Asso-
ciates, 2007.

[29] Sun Microsystems. Solaris Internals: FileBench.
http://www.solarisinternals.com/
wiki/index.php/FileBench.

[30] R. Wang, T. E. Anderson, and D. A. Patterson. Vir-
tual Log-Based File Systems for a Programmable
Disk. In Proceedings of the 3rd Symposium on Op-
erating Systems Design and Implementation (OSDI
’99), New Orleans, Louisiana, February 1999.

[31] A. Whitaker, M. Shaw, and S. D. Gribble. Scale
and Performance in the Denali Isolation Kernel. In
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI ’02),
Boston, Massachusetts, December 2002.

[32] J. Wilkes, R. Golding, C. Staelin, and T. Sulli-
van. The HP AutoRAID Hierarchical Storage Sys-
tem. ACM Transactions on Computer Systems,
14(1):108–136, February 1996.

[33] D. Woodhouse. JFFS2: The Journalling Flash File
System, Version 2, 2001. http://sources.
redhat.com/jffs2/jffs2.

16

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 17

The Bleak Future of NAND Flash Memory

Laura M. Grupp∗, John D. Davis†, Steven Swanson∗
∗Department of Computer Science and Engineering, University of California, San Diego

†Microsoft Research, Mountain View

Abstract

In recent years, flash-based SSDs have grown enor-
mously both in capacity and popularity. In high-
performance enterprise storage applications, accelerating
adoption of SSDs is predicated on the ability of manu-
facturers to deliver performance that far exceeds disks
while closing the gap in cost per gigabyte. However,
while flash density continues to improve, other metrics
such as a reliability, endurance, and performance are all
declining. As a result, building larger-capacity flash-
based SSDs that are reliable enough to be useful in en-
terprise settings and high-performance enough to justify
their cost will become challenging.

In this work, we present our empirical data collected
from 45 flash chips from 6 manufacturers and examine
the performance trends for these raw flash devices as
flash scales down in feature size. We use this analysis to
predict the performance and cost characteristics of future
SSDs. We show that future gains in density will come
at significant drops in performance and reliability. As
a result, SSD manufacturers and users will face a tough
choice in trading off between cost, performance, capacity
and reliability.

1 Introduction

Flash-based Solid State Drives (SSDs) have enabled a
revolution in mobile computing and are making deep in-
roads into data centers and high-performance computing.
SSDs offer substantial performance improvements rela-
tive to disk, but cost is limiting adoption in cost-sensitive
applications and reliability is limiting adoption in higher-
end machines. The hope of SSD manufactures is that im-
provements in flash density through silicon feature size
scaling (shrinking the size of a transistor) and storing
more bits per storage cell will drive down costs and in-
crease their adoption. Unfortunately, trends in flash tech-
nology suggest that this is unlikely.

While flash density in terms of bits/mm2 and feature
size scaling continues to increase rapidly, all other fig-
ures of merit for flash – performance, program/erase en-
durance, energy efficiency, and data retention time – de-
cline steeply as density rises. For example, our data show
each additional bit per cell increases write latency by 4×
and reduces program/erase lifetime by 10× to 20× (as
shown in Figure 1), while providing decreasing returns
in density (2×, 1.5×, and 1.3× between 1-,2-,3- and 4-
bit cells, respectively). As a result, we are reaching the
limit of what current flash management techniques can
deliver in terms of usable capacity – we may be able to
build more spacious SSDs, but they may be too slow and
unreliable to be competitive against disks of similar cost
in enterprise applications.

This paper uses empirical data from 45 flash chips
manufactured by six different companies to identify
trends in flash technology scaling. We then use those
trends to make projections about the performance and
cost of future SSDs. We construct an idealized SSD
model that makes optimistic assumptions about the effi-
ciency of the flash translation layer (FTL) and shows that
as flash continues to scale, it will be extremely difficult
to design SSDs that reduce cost per bit without becoming
either too slow or too unreliable (or both) as to be unus-
able in enterprise settings. We conclude that the cost per
bit for enterprise-class SSDs targeting general-purpose
applications will stagnate.

The rest of this paper is organized as follows. Sec-
tion 2 outlines the current state of flash technology. Sec-
tion 3 describes the architecture of our idealized SSD de-
sign, and how we combine it with our measurements to
project the behavior of future SSDs. Section 4 presents
the results of this idealized model, and Section 5 con-
cludes.

18 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 0 20 40 60 80 100

R
at

ed
 L

ife
tim

e
(P

/E
 C

yc
le

s)

Feature Size (nm)
(a)

SLC
MLC
TLC

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 20 40 60 80 100

Av
g

BE
R

 a
t R

at
ed

 L
ife

tim
e

Feature Size (nm)
(b)

Figure 1: Trends in Flash’s Reliability Increasing flash’s density by adding bits to a cell or by decreasing feature size
reduces both (a) lifetime and (b) reliability.

2 The State of NAND Flash Memory

Flash-based SSDs are evolving rapidly and in complex
ways – while manufacturers drive toward higher densi-
ties to compete with HDDs, increasing density by using
newer, cutting edge flash chips can adversely affect per-
formance, energy efficiency and reliability.

To enable higher densities, manufacturers scale down
the manufacturing feature size of these chips while also
leveraging the technology’s ability to store multiple bits
in each cell. Most recently on the market are 25 nm
cells which can store three bits each (called Triple Level
Cells, or TLC). Before TLC came 2-bit, multi-level cells
(MLC) and 1-bit single-level cells (SLC). Techniques
that enable four or more bits per cell are on the hori-
zon [12].

Figure 2, collects the trend in price of raw flash mem-
ory from a variety of industrial sources, and shows the
drop in price per bit for the higher density chips. Histor-
ically, flash cost per bit has dropped by between 40 and
50% per year [3]. However, over the course of 2011, the
price of flash flattened out. If flash has trouble scaling
beyond 12nm (as some predict), the prospects for further
cost reductions are uncertain.

The limitations of MLC and TLC’s reliability and per-
formance arise from their underlying structures. Each
flash cell comprises a single transistor with an added
layer of metal between the gate and the channel, called
the floating gate. To change the value stored in the cell,
the program operation applies very high voltages to its
terminals which cause electrons to tunnel through the
gate oxide to reach the floating gate. To erase a cell,
the voltages are reversed, pulling the electrons off the
floating gate. Each of these operations strains the gate
oxide, until eventually it no longer isolates the floating
gate, making it impossible to store charge.

The charge on the floating gate modifies the threhold
voltage, VT H of the transistor (i.e. the voltage at which
the transistor turns on and off). In a programmed SLC
cell, VT H will be in one of two ranges (since program-

 0

 0.2

 0.4

 0.6

 0.8

 1

2008 2010 2012 2014 2019 2021 2023
Fl

as
h

C
hi

p
Pr

ic
e

($
/G

bi
t)

Time

SLC
MLC
TLC

Figure 2: Trends in Flash Prices Flash prices reflect the
target markets. Low density, SLC, parts target higher-
priced markets which require more reliability while high
density MLC and TLC are racing to compete with low-
cost HDDs. Cameras, iPods and other mobile devices
drive the low end.

ming is not perfectly precise), depending on the value the
cell stores. The two ranges have a “guard band” between
them. Because the SLC cell only needs two ranges and
a single guard band, both ranges and the guard band can
be relatively wide. Increasing the number of bits stored
from one (SLC) to two (MLC) increases the number of
distributions from two to four, and requires two addi-
tional guard bands. As a result, the distributions must be
tighter and narrower. The necessity of narrow VT H distri-
butions increases programming time, since the chip must
make more, finer adjustments to VT H to program the cell
correctly (as described below). At the same time, the nar-
row guard band reduces reliability. TLC cells make this
problem even worse: They must accomodate eight VT H
levels and seven guard bands.

We present empirical evidence of worsening lifetime
and reliability of flash as it reaches higher densities. We
collected this data from 45 flash chips made by six man-
ufacturers spanning feature sizes from 72 nm to 25 nm.
Our flash characterization system (described in [4]) al-
lows us to issue requests to a raw flash chip without
FTL interference and measure the latency of each of
these operations with 10 ns resolution. We repeat this
program-erase cycle (P/E cycle) until each measured

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 19

block reaches the rated lifetime of its chip.

Figure 1 shows the chips’ rated lifetime as well as the
bit error rate (BER) measured at that lifetime. The chips’
lifetimes decrease slowly with feature size, but fall pre-
cipitously across SLC, MLC and TLC devices. While
the error rates span a broad range, there is a clear upward
trend as feature size shrinks and densities increase. Ap-
plications that require more reliable or longer-term stor-
age prefer SLC chips and those at larger feature sizes
because they experience far fewer errors for many more
cycles than denser technology.

Theory and empirical evidence also indicate lower
performance for denser chips, primarily for the program
or write operation. Very early flash memory would apply
a steady, high voltage to any cell being programed for a
fixed amount of time. However, Suh et al. [10] quickly
determined that the Incremental Step Pulse Programming
(ISPP) would be far more effective in tolerating variation
between cells and in environmental conditions. ISPP per-
forms a series of program pulses each followed by a read-
verify step. Once the cell is programmed correctly, pro-
gramming for that cell stops. This algorithm is necessary
because programming is a one-way operation: There is
no way to “unprogram” a cell short of erasing the en-
tire block, and overshooting the correct voltage results in
storing the wrong value. ISPP remains a key algorithm in
modern chips and is instrumental in improving the per-
formance and reliability of higher-density cells.

Not long after Samsung proposed MLC for NAND
flash [5, 6], Toshiba split the two bits to separate pages so
that the chip could program each page more quickly by
moving the cell only halfway through the voltage range
with each operation [11]. Much later, Samsung pro-
vided further performance improvements to pages stored
in the least significant bit of each cell [8]. By applying
fast, imprecise pulses to program the fast pages, and us-
ing fine-grain, precise pulses to program the slow pages.
These latter pulses generate the tight VT H distributions
that MLC devices require, but they make programming
much slower. All the MLC and TLC devices we tested
split and program the bits in a cell this way.

For SSD designers, this performance variability be-
tween pages leads to an opportunity to easily trade off
capacity and performance [4, 9]. The SSD can, for exam-
ple use only the fast pages in MLC parts, sacrificing half
their capacity but making latency comparable to SLC.
In this work, we label such a configuration “MLC-1” –
an MLC device using just one bit per cell. Samsung and
Micron have formalized this trade-off in multi-level flash
by providing single and multi-level cell modes [7] in the
same chip and we believe FusionIO uses the property in
the controller of their SMLC-based drives [9].

Figure 3: Architecture of SSD-CDC The architecture of
our baseline SSD. This structure remains constant while
we scale the technology used for each flash die.

Architecture Parameter Value
Example Interface PCIe 1.1x4

FTL Overhead Latency 30 μs
Channels 24

Channel Speed 400 MB/s [1]
Dies per Channel (DPC) 4

Baseline Parameter Value
SSD Price $7,800

Capacity 320 GB
Feature Size 34 nm

Cell Type MLC

Table 1: Architecture and Baseline Configuration of
SSD-CDC These parameters define the Enterprise-class,
Constant Die Count SSD (SSD-CDC) architecture and
starting values for the flash technology it contains.

3 A Prototypical SSD

To model the effect of evolving flash characteristics on
complete SSDs we combine empirical measurement of
flash chips in an SSD architecture with a constant die
count called SSD-CDC. SSD-CDC’s architecture is rep-
resentative of high-end SSDs from companies such as
FusionIO, OCZ and Virident. We model the complexi-
ties of FTL design by assuming optimistic constants and
overheads that provide upper bounds on the performance
characteristics of SSDs built with future generation flash
technology.

Section 3.1 describes the architecture of SSD-CDC,
while Section 3.2 describes how we combine this model
with our empirical data to estimate the performance of
an SSD with fixed die area.

3.1 SSD-CDC

Table 1 describes the parameters of SSD-CDC’s archi-
tecture and Figure 3 shows a block representation of
its architecture. SSD-CDC manages an array of flash
chips and presents a block-based interface. Given current
trends in PCIe interface performance, we assume that the
PCIe link is not a bottleneck for our design.

20 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 20

 40

 60

 80

 100

 120

 8 16 32 64 128 256 512

R
ea

d
La

te
nc

y
(u

s)

Feature Size (nm)
(a)

TLC-3
MLC-2
MLC-1
SLC-1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 8 16 32 64 128 256 512

W
rit

e
La

te
nc

y
(m

s)

Feature Size (nm)
(b)

TLC-3
MLC-2
MLC-1
SLC-1

Figure 4: Flash Chip Latency Trends Fitting an exponential to the collection of data for each cell technology, SLC-1,
MLC-1, MLC-2 and TLC-3, allows us to project the behavior of future feature sizes for (a) read latency and (b) write
latency. Doing the same with one standard deviation above and below the average for each chip yields a range of
probable behavior, as shown by the error bars.

Configuration Read Latency (μs) Write Latency (μs)
Equation -1nm Equation -1nm
max = 24.0e−3.5e−3 f 0.36% max = 287.0e−1.1e−2 f 1.07%

SLC-1 avg = 23.4e−3.2e−3 f 0.32% avg = 262.6e−1.2e−2 f 1.19%
min = 22.8e−2.9e−3 f 0.29% min = 239.3e−1.3e−2 f 1.34%
max = 34.8e−6.9e−3 f 0.69% max = 467.3e−1.0e−2 f 1.01%

MLC-1 avg = 33.5e−6.3e−3 f 0.63% avg = 390.0e−8.7e−3 f 0.87%
min = 32.2e−5.6e−3 f 0.57% min = 316.5e−7.0e−3 f 0.70%
max = 52.5e−4.5e−3 f 0.45% max = 1778.2e−8.3e−3 f 0.84%

MLC-2 avg = 43.3e−5.2e−3 f 0.52% avg = 1084.4e−8.6e−3 f 0.86%
min = 34.2e−6.6e−3 f 0.66% min = 393.7e−9.9e−3 f 1.00%
max = 102.5e−1.3e−3 f 0.13% max = 4844.8e−1.1e−2 f 1.12%

†TLC-3 avg = 78.2e−4.4e−4 f 0.04% avg = 2286.2e−7.1e−3 f 0.71%
min = 54.0e9.9e−4 f -0.10% min = 2620.8e−4.6e−2 f 4.67%

Table 2: Latency Projections We generated these equations by fitting an exponential (y = Aeb f) to our empirical data,
and they allow us to project the latency of flash as a function of feature size (f) in nm. The percentages represent the
increase in latency with 1nm shrinkage. †The trends for TLC are less certain than for SLC or MLC, because our data
for TLC devices is more limited.

Number Metric Value

1 Capacitypro j = Capacitybase ×
(

BitsPerCellpro j
BitsPerCellbase

)
×

(
FeatureSizebase
FeatureSizepro j

)2

2 SSD BWpro j = ChannelCount ×ChannelBWpro j

3 ChannelBWpro j = (DiesPerChannel−1)∗PageSize
DieLatencypro j

, when DieLatencypro j ≤ BWT hreshold
4 ChannelBWpro j = ChannelSpeed, when DieLatencypro j > BWT hreshold
5 Trans f erTime = PageSize

ChannelSpeed
6 BWT hreshold = (DiesPerChannel −1)×Trans f erTime
7 SSD IOPspro j = ChannelCount ×ChannelIOPspro j
9 ChannelIOPspro j = 1

Trans f erTime , when DieLatencypro j ≤ IOPsT hreshold

8 ChannelIOPspro j = (DiesPerChannel−1)
DieLatencypro j

, when DieLatencypro j > IOPsT hreshold

10 Trans f erTime = AccessSize
ChannelSpeed

11 IOPsT hreshold = (DiesPerChannel −1)×Trans f erTime

Table 3: Model’s Equations These equations allow us to scale the metrics of our baseline SSD to future process
technologies and other cell densities.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 21

The SSD’s controller implements the FTL. We esti-
mate that this management layer incurs an overhead of
30 μs for ECC and additional FTL operations. The con-
troller coordinates 24 channels, each of which connects
four dies to the controller via a 400 MB/s bus. To fix the
cost of SSD-CDC, we assume a constant die count equal
to 96 dies.

3.2 Projections
We now describe our future projections for seven met-
rics of SSD-CDC: capacity, read latency, write latency,
read bandwidth, write bandwidth, read IOPs and write
IOPs. Table 1 provides baseline values for SSD-CDC
and Table 2 summarizes the projections we make for
the underlying flash technology. This section describes
the formulas we use to compute each metric from the
projections (summarized in Table 3). Some of the cal-
culations involve making simplifying assumptions about
SSD-CDC’s behavior. In those cases, we make the as-
sumption that maximizes the SSD’s performance.

Capacity Equation 1 calculates the capacity of SSD-
CDC, by scaling the capacity of the baseline by the
square of the ratio of the projected feature size to the
baseline feature size (34 nm). We also scale capacity
depending on the number of bits per cell (BPC) the pro-
jected chip stores relative to the baseline BPC (2 – MLC).
In some cases, we configure SSD-CDC to store fewer
bits per cell than a projected chip allows, as in the case
of MLC-1. In these cases, the projected capacity would
reflect the effective bits per cell.

Latency To calculate the projected read and write la-
tencies, we fit an exponential function to the empirical
data for a given cell type. Figure 4 depicts both the
raw latency data and the curves fitted to SLC-1, MLC-
1, MLC-2 and TLC-3. To generate the data for MLC-
1, which ignores the “slow” pages, we calculate the av-
erage latency for reads and writes for the “fast” pages
only. Other configurations supporting reduced capacity
and improved latency, such as TLC-1 and TLC-2, would
use a similar method. We do not present these latter con-
figurations, because there is very little TLC data avail-
able to create reliable predictions. Figure 4 shows each
collection of data with the fitted exponentials for average,
minimum and maximum, and Table 2 reports the equa-
tions for these fitted trends. We calculate the projected
latency by adding the values generated by these trends to
the SSD’s overhead reported in Table 1.

Bandwidth To find the bandwidth of our SSD, we
must first calculate each channel’s bandwidth and then
multiply that by the number of channels in the SSD
(Equation 2). Each channel’s bandwidth requires an un-
derstanding of whether channel bandwidth or per-chip

 1
 4

 16
 64

 256
 1024
 4096

 0 10 20 30 40 50 60 70 80

SD
D

 C
ap

ac
ity

 (G
B)

Feature Size (nm)

TLC-3
MLC-2

SLC-1 & MLC-1

Figure 5: Scaling of SSD Capacity Flash manufacturers
increase SSDs’ capacity through both reducing feature
size and storing more bits in each cell.

bandwidth is the bottleneck. Equation 6 determines the
threshold between these two cases by multiplying the
transfer time (see Equation 5) by one less than the num-
ber of dies on the channel. If the latency of the operation
on the die is larger than this number, the die is the bot-
tleneck and we use Equation 3. Otherwise, the channel’s
bandwidth is simply the speed of its bus (Equation 4).

IOPs The calculation for IOPs is very similar to band-
width, except instead of using the flash’s page size in all
cases, we also account for the access size since it effects
the transfer time: If the access size is smaller than one
page, the system still incurs the read or write latency of
one entire page access. Equations 7-11 describe the cal-
culations.

4 Results

This section explores the performance and cost of SSD-
CDC in light of the flash feature size scaling trends de-
scribed above. We explore four different cell technolo-
gies (SLC-1, MLC-1, MLC-2, and TLC-3) and feature
sizes scaled down from 72 nm to 6.5 nm (the smallest
feature size targeted by industry consensus as published
in the International Technology Roadmap for Semicon-
ductors (ITRS) [2]), using a fixed silicon budget for flash
storage.

4.1 Capacity and cost

Figure 5 shows how SSD-CDC’s density will increase
as the number of bits per cell rises and feature size con-
tinues to scale. Even with the optimistic goal of scaling
flash cells to 6.5 nm, SSD-CDC can only achieve capac-
ities greater than 512 GB with two or more bits per cell.
TLC allows for capacities up to 1.4 TB – pushing capac-
ity beyond this level will require more dies.

Since capacity is one of the key drivers in SSD design
and because it is the only aspect of SSDs that improves
consistently over time, we plot the remainder of the char-
acteristics against SSD-CDC’s capacity.

22 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0.00

0.05

0.10

0.15

0.20

 1 4 16 64 256 1024 4096

R
ea

d
La

te
nc

y
(m

s)

SSD Capacity (GB)
(a)

TLC-3
MLC-2
MLC-1
SLC-1

0.00

0.50

1.00

1.50

2.00

2.50

3.00

 1 4 16 64 256 1024 4096

W
rit

e
La

te
nc

y
(m

s)

SSD Capacity (GB)
(b)

Figure 6: SSD Latency In order to achieve higher densities, flash manufacturers must sacrifice (a) read and (b) write
latency.

 0

 2000

 4000

 6000

 8000

 10000

 1 4 16 64 256 1024 4096

SS
D

 R
ea

d
Ba

nd
w

id
th

 (M
B/

s)

SSD Capacity (GB)
(a)

SLC-1
MLC-1
MLC-2
TLC-3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 4 16 64 256 1024 4096

SS
D

 W
rit

e
Ba

nd
w

id
th

 (M
B/

s)

SSD Capacity (GB)
(b)

Figure 7: SSD Bandwidth SLC will continue to be the high performance option. To obtain higher capacities without
additional dies and cost will require a significant performance hit in terms of (a) read and (b) write bandwidth moving
from SLC-1 to MLC-2 or TLC-3.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 4 16 64 256 1024 4096
 0

 500

 1000

 1500

SS
D

 R
ea

d
kI

O
Ps

, 5
12

B
Ac

ce
ss

 S
iz

e

Ba
nd

w
id

th
 (M

B/
s)

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 4 16 64 256 1024 4096
 0

 5000

 10000

 15000

SS
D

 R
ea

d
kI

O
Ps

, 4
kB

 A
cc

es
s

Si
ze

Ba
nd

w
id

th
 (M

B/
s)

(b)

 0

 200

 400

 600

 800

 1000

 1 4 16 64 256 1024 4096
 0

 100

 200

 300

 400

SS
D

 W
rit

e
kI

O
Ps

, 5
12

B
Ac

ce
ss

 S
iz

e

Ba
nd

w
id

th
 (M

B/
s)

SSD Capacity (GB)
(c)

SLC-1
MLC-1
MLC-2
TLC-3

 0

 200

 400

 600

 800

 1000

 1 4 16 64 256 1024 4096
 0

 1000

 2000

 3000

SS
D

 W
rit

e
kI

O
Ps

, 4
kB

 A
cc

es
s

Si
ze

Ba
nd

w
id

th
 (M

B/
s)

SSD Capacity (GB)
(d)

Figure 8: SSD IOPS With a fixed die area, higher capacities can only be achieved with low-performing MLC-2 and
TLC-3 technologies, for 512B (a) reads and (c) writes and for 4kB (b) reads and (d) writes.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 23

4.2 Latency

Reduced latency is among the frequently touted advan-
tages of flash-based SSDs over disks, but changes in
flash technology will erode the gap between disks and
SSDs. Figure 6 shows how both read and write latencies
increase with SSD-CDC’s capacity. Reaching beyond
512 GB pushes write latency to 1 ms for MLC-2 and
over 2.1 ms for TLC. Read latency, rises to least 70 μs
for MLC-2 and 100 μs for TLC.

The data also makes clear the choices that SSD de-
signers will face. Either SSD-CDC’s capacity stops scal-
ing at ∼582 GB or its read and write latency increases
sharply because increasing drive capacity with fixed die
area would necessitate switching cell technology from
SLC-1 or MLC-1 to MLC-2 or TLC-3. With current
trends, our SSDs could be up to 5.5× larger, but the la-
tency will be 2.1× worse for reads and 5.4× worse for
writes. This will reduce the write latency advantage that
SSDs offer relative to disk from 8.3×(vs. a 7 ms disk
access) to just 3.2×. Depending on the application, this
reduced improvement may not justify the higher cost of
SSDs.

4.3 Bandwidth and IOPs

SSDs offer moderate gains in bandwidth relative to disks,
but very large improvements in random IOP perfor-
mance. However, increases in operation latency will
drive down IOPs and bandwidth.

Figure 7 illustrates the effect on bandwidth. Above
128 GB or for multi-level technologies, bandwidth drops
by 25% due to the latency of the program operation on
the flash die.

SSDs provide the largest gains relative to disks for
small, random IOPs. We present two access sizes – the
historically standard disk block size of 512 B and the
most common flash page size and modern disk access
size of 4 kB. Figure 8 presents the performance in terms
of IOPs. When using the smaller, unaligned 512B ac-
cesses, SLC and MLC chips must access 4 kB of data
and the SSD must discard 88% of the accessed data. For
TLC, there is even more wasted bandwidth because page
size is 8 kB.

When using 4kB accesses, MLC IOPs drop as density
increases, falling by 18% between the 64 and 1024 GB
configurations. Despite this drop, the data suggest that
SSDs will maintain an enormous (but slowly shrinking)
advantage relative to disk in terms of IOPs. Even the
fastest hard drives can sustain no more than 200 IOPs,
and the slowest SSD configuration we consider achieves
over 32,000 IOPs.

Figure 9 shows all parameters for an SSD made from
MLC-2 flash normalized to SSD-CDC configured with

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2008 2012 2016 2020 2024

N
or

m
al

iz
ed

 p
ar

am
et

er
s

Time

Write Latency
Read Latency

SSD Cost
Read Throughput
Write Throughput

Figure 9: Scaling of all parameters While the cost of an
MLC-based SSD remains roughly A constant, read and
particularly write performance decline.

currently available flash. Our projections show that the
cost of the flash in SSD-CDC will remain roughly con-
stant and that density will continue to increase (as long as
flash scaling continues as projected by the ITRS). How-
ever, they also show that access latencies will increase
by 26% and that bandwidth (in both MB/s and IOPS)
will drop by 21%.

5 Conclusion

The technology trends we have described put SSDs in
an unusual position for a cutting-edge technology: SSDs
will continue to improve by some metrics (notably den-
sity and cost per bit), but everything else about them
is poised to get worse. This makes the future of SSDs
cloudy: While the growing capacity of SSDs and high
IOP rates will make them attractive in many applications,
the reduction in performance that is necessary to increase
capacity while keeping costs in check may make it dif-
ficult for SSDs to scale as a viable technology for some
applications.

References

[1] Open nand flash interface specification 3.0.
http://onfi.org/specifications/.

[2] International technology roadmap for semiconductors: Emerging
research devices, 2010.

[3] DENALI. http://www.denali.com/wordpress/index.p-
hp/dmr/2009/07/16/nand-forward-prices-rate-of-decline-will.

[4] GRUPP, L. M., CAULFIELD, A. M., COBURN, J., SWANSON,
S., YAAKOBI, E., SIEGEL, P. H., AND WOLF, J. K. Character-
izing flash memory: anomalies, observations, and applications.
In MICRO 42: Proceedings of the 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (New York, NY, USA,
2009), ACM, pp. 24–33.

[5] JUNG, T.-S., CHOI, Y.-J., SUH, K.-D., SUH, B.-H., KIM, J.-
K., LIM, Y.-H., KOH, Y.-N., PARK, J.-W., LEE, K.-J., PARK,
J.-H., PARK, K.-T., KIM, J.-R., LEE, J.-H., AND LIM, H.-K.
A 3.3 v 128 mb multi-level nand flash memory for mass storage
applications. In Solid-State Circuits Conference, 1996. Digest

24 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

of Technical Papers. 42nd ISSCC., 1996 IEEE International (feb
1996), pp. 32 –33, 412.

[6] JUNG, T.-S., CHOI, Y.-J., SUH, K.-D., SUH, B.-H., KIM, J.-
K., LIM, Y.-H., KOH, Y.-N., PARK, J.-W., LEE, K.-J., PARK,
J.-H., PARK, K.-T., KIM, J.-R., YI, J.-H., AND LIM, H.-K. A
117-mm2 3.3-v only 128-mb multilevel nand flash memory for
mass storage applications. Solid-State Circuits, IEEE Journal of
31, 11 (nov 1996), 1575 –1583.

[7] MAROTTA, G. E. A. A 3bit/cell 32gb nand flash memory at
34nm with 6mb/s program throughput and with dynamic 2b/cell
blocks configuration mode for a program throughput increase up
to 13mb/s. In Solid-State Circuits Conference Digest of Techni-
cal Papers (ISSCC), 2010 IEEE International (feb. 2010), pp. 444
–445.

[8] PARK, K.-T., KANG, M., KIM, D., HWANG, S.-W., CHOI,
B. Y., LEE, Y.-T., KIM, C., AND KIM, K. A zeroing cell-
to-cell interference page architecture with temporary lsb storing
and parallel msb program scheme for mlc nand flash memories.
Solid-State Circuits, IEEE Journal of 43, 4 (april 2008), 919 –
928.

[9] RAFFO, D. Fusionio builds ssd bridge between slc,mlc, july
2009.

[10] SUH, K.-D., SUH, B.-H., LIM, Y.-H., KIM, J.-K., CHOI, Y.-
J., KOH, Y.-N., LEE, S.-S., KWON, S.-C., CHOI, B.-S., YUM,
J.-S., CHOI, J.-H., KIM, J.-R., AND LIM, H.-K. A 3.3 v 32
mb nand flash memory with incremental step pulse programming
scheme. Solid-State Circuits, IEEE Journal of 30, 11 (nov 1995),
1149 –1156.

[11] TAKEUCHI, K., TANAKA, T., AND TANZAWA, T. A multipage
cell architecture for high-speed programming multilevel nand
flash memories. Solid-State Circuits, IEEE Journal of 33, 8 (aug
1998), 1228 –1238.

[12] TRINH, C. E. A. A 5.6mb/s 64gb 4b/cell nand flash memory
in 43nm cmos. In Solid-State Circuits Conference - Digest of
Technical Papers, 2009. ISSCC 2009. IEEE International (feb.
2009), pp. 246 –247,247a.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 25

1

When Poll is Better than Interrupt

Jisoo Yang Dave B. Minturn Frank Hady
{jisoo.yang | dave.b.minturn | frank.hady} (at) intel.com

Intel Corporation

Abstract
In a traditional block I/O path, the operating system com-
pletes virtually all I/Os asynchronously via interrupts.
However, performing storage I/O with ultra-low latency
devices using next-generation non-volatile memory, it
can be shown that polling for the completion – hence
wasting clock cycles during the I/O – delivers higher
performance than traditional interrupt-driven I/O. This
paper thus argues for the synchronous completion of
block I/O first by presenting strong empirical evidence
showing a stack latency advantage, second by delineating
limits with the current interrupt-driven path, and third by
proving that synchronous completion is indeed safe and
correct. This paper further discusses challenges and op-
portunities introduced by synchronous I/O completion
model for both operating system kernels and user appli-
cations.

1 Introduction
When an operating system kernel processes a block sto-
rage I/O request, the kernel usually submits and com-
pletes the I/O request asynchronously, releasing the CPU
to perform other tasks while the hardware device com-
pletes the storage operation. In addition to the CPU
cycles saved, the asynchrony provides opportunities to
reorder and merge multiple I/O requests to better match
the characteristics of the backing device and achieve
higher performance. Indeed, this asynchronous I/O strat-
egy has worked well for traditional rotating devices and
even for NAND-based solid-state drives (SSDs).

Future SSD devices may well utilize high-performance
next-generation non-volatile memory (NVM), calling for
a re-examination of the traditional asynchronous comple-
tion model. The high performance of such devices both
diminish the CPU cycles saved by asynchrony and re-
duce the I/O scheduling advantage.

This paper thus argues for the synchronous I/O comple-
tion model by which the kernel path handling an I/O re-
quest stays within the process context that initiated the
I/O. Synchronous completion allows I/O requests to by-

pass the kernel’s heavyweight asynchronous block I/O
subsystem, reducing CPU clock cycles needed to process
I/Os. However, a necessary condition is that the CPU has
to spin-wait for the completion from the device, increas-
ing the cycles used.

Using a prototype DRAM-based storage device to mimic
the potential performance of a very fast next-generation
SSD, we verified that the synchronous model completes
an individual I/O faster and consumes less CPU clock
cycles despite having to poll. The device is fast enough
that the spinning time is smaller than the overhead of the
asynchronous I/O completion model.

Interrupt-driven asynchronous completion introduces
additional performance issues when used with very fast
SSDs such as our prototype. Asynchronous completion
may suffer from lower I/O rates even when scaled to
many outstanding I/Os across many threads. We empiri-
cally confirmed this with Linux,* and examine the sys-
tem overheads of interrupt handling, cache pollution,
CPU power-state transitions associated with the asyn-
chronous model.

We also demonstrate that the synchronous completion
model is correct and simple with respect to maintaining
I/O ordering when used with application interfaces such
as non-blocking I/O and multithreading.

We suggest that current applications may further benefit
from the synchronous model by avoiding the non-
blocking storage I/O interface and by reassessing buffer-
ing strategies such as I/O prefetching. We conclude that
with future SSDs built of next-generation NVM ele-
ments, introducing the synchronous completion model
could reap significant performance benefits.

2 Background
The commercial success of SSDs coupled with reported
advancements of NVM technology is significantly reduc-
ing the performance gap between mass-storage and
memory [15]. Experimental storages device that com-
plete an I/O within a few microseconds have been dem-
onstrated [8]. One of the implications of this trend is that

26 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

2

the once negligible cost of I/O stack time becomes more
relevant [8,12]. Another important trend in operating with
SSDs is that big, sequential, batched I/O requests need no
longer be favored over small, random I/O requests [17].

In the traditional block I/O architecture, the operating
system’s block I/O subsystem performs the task of sche-
duling I/O requests and forwarding them to block device
drivers. This subsystem processes kernel I/O requests
specifying the starting disk sector, target memory ad-
dress, and size of I/O transfer, and originating from a file
system, page cache, or user application using direct I/O.
The block I/O subsystem schedules kernel I/O requests
by queueing them in a kernel I/O queue and placing the
I/O-issuing thread in an I/O wait state. The queued re-
quests are later forwarded to a low-level block device
driver, which translates the requests into device I/O com-
mands specific to the backing storage device.

Upon finishing an I/O command, a storage device is ex-
pected to raise a hardware interrupt to inform the device
driver of the completion of a previously submitted com-
mand. The device driver’s interrupt service routine then
notifies the block I/O subsystem, which subsequently
ends the kernel I/O request by releasing the target memo-
ry and un-blocking the thread waiting on the completion
of the request. A storage device may handle multiple
device commands concurrently using its own device
queue [2,5,6], and may combine multiple completion
interrupts, a technique called interrupt coalescing to re-
duce overhead.

As described the traditional block I/O subsystem uses
asynchrony within the I/O path to save CPU cycles for
other tasks while the storage device handles I/O com-
mands. Also, using I/O schedulers, the kernel can reorder
or combine multiple outstanding kernel I/O requests to
better utilize the underlying storage media.

This description of the traditional block storage path cap-
tures what we will refer to as the asynchronous I/O com-
pletion model. In this model, the kernel submits a device
I/O command in a context distinct from the context of the
process that originated the I/O. The hardware interrupt
generated by the device upon command completion is
also handled, at first, by a separate kernel context. The
original process is later awakened to resume its execu-
tion.

A block I/O subsystem typically provides a set of in-
kernel interfaces for a device driver use. In Linux, a block
device driver is expected to implement a ‘request_fn’
callback that the kernel calls while executing in an inter-
rupt context [7,10]. Linux provides another callback point
called ‘make_request’, which is intended to be used by
pseudo block devices, such as a ramdisk. The latter call-
back differs from the former one in that the latter is posi-

tioned at highest point in the Linux’s block I/O subsys-
tem and called within the context of the process thread.

3 Synchronous I/O completion model
When we say a process completes an I/O synchronously,
we mean the kernel’s entire path handling an I/O request
stays within the process context that initiated the I/O. A
necessary condition for this synchronous I/O completion
is that the CPU poll the device for completion. This pol-
ling must be realized by a spin loop, busy-waiting the
CPU while waiting for the completion.

Compared to the traditional asynchronous model, syn-
chronous completion can reduce CPU clock cycles
needed for a kernel to process an I/O request. This reduc-
tion comes primarily from a shortened kernel path and
from the removal of interrupt handling, but synchronous
completion brings with it an extra clock cycles spent in
polling. In this section, we make the case for the syn-
chronous completion by quantifying these overheads. We
then discuss problems with the asynchronous model and
argue the correctness of synchronous model.

3.1 Prototype hardware and device driver
For our measurements, we used a DRAM-based proto-
type block storage device connected to the system with
an early prototype of an NVM Express* [5] interface to
serve as a model of a fast future SSD based on next-
generation NVM. The device was directly attached to
PCIe* Gen2 bus with eight lanes and with a device-based
DMA engine handling data transfers. As described by the
NVM Express specification the device communicates
with the device driver via segments of main memory,
through which the device receives commands and places
completions. The device can instantiate multiple device
queues and can be configured to generate hardware inter-
rupts upon command completion.

Table 1 shows performance statistics for the prototype
device. The ‘C-state’ refers to the latency when the CPU
enters power-saving mode while the I/O is outstanding.
The performance measured is limited by prototype
throughput, not by anything fundamental, future SSDs
may well feature higher throughputs. The improved per-

I/O completion method 512B xfer 4KiB xfer
 Interrupt, Gen2 bus, enters C-state 3.3 μs 4.6 μs
 Interrupt, Gen2 bus 2.6 μs 4.1 μs
 Polling, Gen2 bus 1.5 μs 2.9 μs
 Interrupt, 8Gbps bus projection 2.0 μs 2.6 μs
 Polling, 8Gbps bus projection 0.9 μs 1.5 μs

Table 1. Time to finish an I/O command, excluding software
time, measured for our prototype device. The numbers measure
random-read performance with device queue depth of 1.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 27

3

formance projection assumes a higher throughput SSD
on a saturated PCIe Gen3 bus (8Gbps).

We wrote a Linux device driver for the prototype hard-
ware supporting both asynchronous and synchronous
completion models. For the asynchronous model the
driver implements Linux’s ‘request_fn’ callback, thus
taking the traditional path of using the stock kernel I/O
queue. In this model, the driver uses a hardware interrupt.
The driver executes within the interrupt context for both
the I/O request submission and the completion. For the
synchronous model, the driver implements Linux’s
‘make_request’ callback, bypassing most of the Linux’s
block I/O infrastructure. In this model the driver polls for
completion from device and hence executes within the
context of the thread that issued the I/O.

For this study, we assume that hardware never triggers
internal events that incur substantially longer latency than
average. We expect that such events are rare and can be
easily dealt with by having operating system fall back to
traditional asynchronous model.

3.2 Experimental setup and methodology
We used 64bit Fedora* 13 running 2.6.33 kernel on an
x86 dual-socket server with 12GiB of main memory.
Each processor socket was populated with quad-core
2.93GHz Intel® Xeon® with 8MiB of shared L3 cache
and 256KiB of per-core L2 cache. Intel® Hyper-
Threading Technology was enabled totaling 16 architec-
tural CPUs available to software. CPU frequency-scaling
was disabled.

For measurements we used a combination of the CPU
timestamp counter and reports from user-level programs.
Upon events of interest in kernel, the device driver ex-
ecuted the ‘rdtsc’ instruction to read the CPU timestamp
counter, whose values were later processed offline to
produce kernel path latencies. For application IOPS (I/O
Operations Per Second) and I/O system call completion
latency, we used the numbers reported by ‘fio’ [1] I/O
micro-benchmark running in user mode.

We bypassed the file system and the buffer cache to iso-
late the cost of the block I/O subsystem. Note that our
objective is to measure the difference between the two
completion models when exercising the back-end block
I/O subsystem whose performance is not changed by the
use of the file system or the buffer cache and would thus
be additive to either completion model. The kernel was
compiled with -O3 optimization and kernel preemption
was enabled. The I/O scheduler was disabled for the
asynchronous path by selecting ‘noop’ scheduler in order
to make the asynchronous path as fast as possible.

3.3 Storage stack latency comparison
Our measurement answers following questions:

How fast does each completion path complete appli-
cation I/O requests?

How much CPU time is spent by the kernel in each
completion model?

How much CPU time is available to another user
process scheduled in during an asynchronous I/O?

Figure 1 shows that the synchronous model completes an
I/O faster than asynchronous path in terms of absolute
latency. The figure shows actual measured latency for the
user application performing 4KiB and 512B random
reads. For our fast prototype storage device the CPU
spin-wait cost in the synchronous path is lower than the
code-path reduction achieved by the synchronous path,
completing a 4KiB I/O synchronously in 4.4μs versus
7.6μs for the asynchronous case. The figure breaks the
latency into hardware time and non-hardware overlap-
ping kernel time. The hardware time for the asynchron-
ous path is slightly greater than that of the synchronous
path due to interrupt delivery latency.

Figure 2 details the latency component breakdown of the
asynchronous kernel path. In the figure, Tu indicates the
CPU time actually available to another user process dur-
ing the time slot vacated during asynchronous path I/O
completion. To measure this time as accurately as possi-
ble, we implemented a separate user-level program sche-
duled to run on the same CPU as the I/O benchmark.
This program continuously checked CPU timestamps to
detect its scheduled period at a sub-microsecond granu-
larity. Using this program, we measured Tu to be 2.7μs
with 4KiB transfer that the device takes 4.1μs to finish.

The conclusion of the stack latency measurements is a
strong one: the synchronous path completes I/Os faster
and more efficiently uses the CPU. This is true despite
spin-waiting for the duration of the I/O because the work
the CPU performs in asynchronous path (i.e., Ta + Tb =

Figure 1. Storage stack block I/O subsystem cost comparison.
Each bar measures application-observed I/O completion latency,
which is broken into device hardware latency and non-
overlapping operating system latency. Error bars represent +/-
one standard deviation.

6.21 6.67
4.91 5.01

1.47 1.42

4.57 3.33
4.10

2.63

2.91
1.48

10.78
10.00

9.01

7.64

4.38
2.90

0

2

4

6

8

10

12

14

4KiB
Async

(C-state)

512B
Async

(C-state)

4KiB
Async

512B
Async

4KiB
Sync

512B
Sync

I/
O

 co
m

pl
et

io
n

la
te

nc
y

in
 u

se
c

Hardware device

Operating system

28 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

4

6.3μs) is greater than the spin-waiting time of the syn-
chronous path (4.38μs) with this fast prototype SSD. For
smaller-sized transfers, synchronous completion by pol-
ling wins over asynchronous completion by an even
greater margin.

With the synchronous completion model, improvement
in hardware latency directly translates to improvement in
software stack overhead. However, the same does not
hold for the asynchronous model. For instance, using
projected PCIe Gen3 bus performance, the spin-wait time
is expected to be reduced from current 2.9μs to 1.5μs,
making the synchronous path time be 3.0μs, while the
asynchronous path overhead remains the same at 6.3μs.
Of course the converse is also true, slow SSDs will be
felt by the synchronous model, but not by the asynchron-
ous model – clearly these results are most relevant for
very low latency NVM.

This measurement study also sets a lower bound on the
SSD latency for which the asynchronous completion
model recovers absolutely no useful time for other
processes: 1.4μs (Tb in Figure 2).

3.4 Further issues with interrupt-driven I/O
The increased stack efficiency gained with the synchron-
ous model for low latency storage devices does not just
result in lower latency, but also in higher IOPS. Figure 3
shows the IOPS scaling for increasing number of CPUs
performing 512B randomly addressed reads. For this test,
both the synchronous and asynchronous models use
100% of each included CPU. The synchronous model
does so with just a single thread per CPU, while the
asynchronous model required up to 8 threads per CPU to
achieve maximum IOPS. In the asynchronous model, the
total number of threads needed increases with number of
processors to compensate for the larger per-I/O latency.

The synchronous model shows the best per-CPU I/O
performance, scaling linearly with the increased number
of CPUs up to 2 million IOPS – the hardware limitation

of our prototype device. Even with its larger number of
threads per CPU, the asynchronous model displays a
significantly lower I/O rate, achieving only 60-70% of
the synchronous model. This lower I/O rate is a result of
inefficiencies inherent in the use of the asynchronous
model when accessing such a low latency storage device.
We discuss these inefficiencies in the following sections.
It should be noted that this discussion is correct only for a
very low latency storage device, like the one used here:
traditional higher latency storage devices gain compelling
efficiencies from the use the asynchronous model.

Interrupt overhead

The asynchronous model necessarily includes generation
and service of an interrupt. This interrupt brings with it
extra, otherwise unnecessary work increasing CPU utili-
zation and therefore decreasing I/O rate on a fully loaded
system. Another problem is that the kernel processes
hardware interrupts at high priority. Our prototype device
can deliver hundreds of thousands interrupts per second.
Even if the asynchronous model driver completes mul-
tiple outstanding I/Os during a single hardware interrupt
invocation, the device generates interrupts fast enough to
saturate the system and cause user noticeable delays.
Further while coalescing interrupts reduces CPU utiliza-
tion overhead, it also increases completion latencies for
individual I/Os.

Cache and TLB pollution

The short I/O-wait period in asynchronous model can
cause a degenerative task schedule, polluting hardware
cache and TLBs. This is because the default task schedu-
ler eagerly finds any runnable thread to fill in the slot
vacated by an I/O. With our prototype, the available time
for a schedule in thread is only 2.7μs, which equals 8000
CPU clock cycles. If the thread scheduled is lower priori-
ty than the original thread, the original thread will likely
be re-scheduled upon the completion of the I/O – lots of
state swapping for little work done. Worse, thread data
held in hardware resources such as memory cache and
TLBs are replaced, only to be re-populated again when
the original thread is scheduled back.

Figure 3. Scaling of storage I/Os per second (IOPS) with in-
creased number of CPUs. For asynchronous IOPS, I/O threads
are added until the utilization of each CPU reaches 100%.

181
357

532
704

895
1073

1223
1389

305

557

823

1114

1387

1648
1797

1968

1 2 3 4 5 6 7 8
Number of CPUs

Async IOPS (Thousand)

Sync IOPS (Thousand)

Figure 2. Latency component breakdown of asynchronous ker-
nel path. Ta (= Ta’ + Ta”) indicates the cost of kernel path that
does not overlap with Td, which is the interval during which the
device is active. Scheduling a user process P2 during the I/O
interval incurs kernel scheduling cost, which is Tb. The CPU
time available for P2 to make progress is Tu. For a 4KiB trans-
fer, Ta, Td, Tb, and Tu measure 4.9, 4.1, 1.4 and 2.7μs, respec-
tively.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 29

5

CPU power-state complications

Power management used in conjunction with the asyn-
chronous model for the short I/O-wait of our device may
not only reduce the power saving, but also increase I/O
completion latency. A modern processor may enter a
power-saving ‘C-state’ when not loaded or lightly loaded.
Transition among C-states incurs latency. For the asyn-
chronous model, the CPU enters into a power saving C-
state when the scheduler fails to find a thread to run after
sending an I/O command. The synchronous model does
not automatically allow this transition to a lower C-state
since the processor is busy.

We have measured a latency impact from C-state transi-
tion. When the processor enters into a C-state, the asyn-
chronous path takes an additional 2μs in observed hard-
ware latency with higher variability (Figure 1, labeled
‘async C-state’). This additional latency is incurred only
when the system has no other thread to schedule on the
CPU. The end result is that a thread performing I/Os runs
slower when it is the only thread active on the CPU – we
confirmed this empirically.

It is hard for an asynchronous model driver to fine-tune
C-state transitions. In asynchronous path, the C-state
transition decision is primarily made by operating sys-
tem’s CPU scheduler or by the processor hardware itself.
On the other hand, a device driver using synchronous
completion can directly construct its spin-wait loop using
instructions with power-state hints, such as mwait [3],
better controlling C-state transitions.

3.5 Correctness of synchronous model
A block I/O subsystem is deemed correct when it pre-
serves ordering requirements for I/O requests made by its
frontend clients. Ultimately, we want to address the fol-
lowing problem:

A client performs I/O calls ‘A’ and ‘B’ in order, and
its ordering requirement is that B should get to the
device after A. Does synchronous model respect this
requirement?

For brevity, we assume that the client to be a user appli-
cation using Linux I/O system calls. We also assume a
file system and the page cache are bypassed. In fact, file
system and page cache themselves can be considered as
frontend clients using the block I/O subsystem.

We start with two assumptions:

A1. Application uses blocking I/O system calls.

A2. Application is single threaded.

Let us consider a single thread is submitting A and B in
order. The operating system may preempt and schedule
the thread on a different CPU, but it does not affect the
ordering of I/O requests since there is only a single thread

of execution. Therefore, it is guaranteed that B reaches to
the device after A.

Let us relax A1. The application order requires the thread
to submit A before B using non-blocking interface or AIO
[4]. With the synchronous model, this means that the
device has already completed the I/O for A at the moment
that the application makes another non-blocking system
calls for B. Therefore, the synchronous model guarantees
that B reaches to the device after A with non-blocking I/O
interface.

Relaxing A2, let us imagine two threads T1 and T2, each
performing A and B respectively. In order to respect the
application’s ordering requirement, T2 must synchronize
with T1 to avoid a race in such a way that T2 must wait
for T1 before submitting B. The end result is that the ker-
nel always sees B after kernel safely completes previous-
ly submitted A. Therefore, the synchronous model guar-
antees the ordering with multi-threaded applications.

The above exercise shows that an I/O barrier is unneces-
sary in the synchronous model to guarantee I/O ordering.
This contrasts with asynchronous model where a pro-
gram has to rely on an I/O barrier when it needs to force
ordering. Hence, synchronous model has a potential to
further simplify storage I/O routines with respect to gua-
ranteeing data durability and consistency.

Our synchronous device driver written for Linux has
been tested with multi-threaded applications using non-
blocking system calls. For instance, the driver has with-
stood many hours of TPC-C* benchmark run. The driver
has also been heavily utilized as a system swap space.
We believe that the synchronous completion model is
correct and fully compatible with existing applications.

4 Discussion
The asynchronous model may work better in processing
I/O requests with large transfer sizes or handling hard-
ware stalls that cause long latencies. Hence, a favorable
solution would be a synchronous and asynchronous hybr-
id, where there are two kernel paths for a block device:
the synchronous path is the fast path for small transfers
and often used, whereas the asynchronous path is the
slow fallback path for large transfers or hardware stalls.

We believe that existing applications have primarily as-
sumed the asynchronous completion model and tradition-
al slow storage devices. Although the synchronous com-
pletion model requires little change to existing software
to run correctly, some changes to the operating system
and to applications will allow for faster, more efficient
system operation when storage is used synchronously.
We did not attempt to re-write applications, but do sug-
gest possible software changes.

30 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

6

Perhaps the most significant improvement that could be
achieved for I/O intensive applications is to avoid using
the non-blocking user I/O interface such as AIO calls
when addressing a storage device synchronously. In this
case, using the non-blocking interface adds overhead and
complexity to the application without benefit because
operating system already completes the I/O upon the
return from a non-blocking I/O submission call. Al-
though applications that use the non-blocking interface
are functionally safe and correct with synchronous com-
pletion, the use of non-blocking interface negates the
latency and scalability gains achievable in kernel with the
synchronous completion model.

When the backing storage device is fast enough to com-
plete an I/O synchronously, applications that have tradi-
tionally self-managed I/O buffers must reevaluate their
buffering strategy. We observe that many I/O intensive
applications existing today, such as databases, the operat-
ing system’s page cache, and disk-swap algorithms, em-
ploy elaborate I/O buffering and prefetching schemes.
Such custom I/O schemes may add overhead with little
value for the synchronous completion model. Although
our work in the synchronous model greatly simplifies I/O
processing overhead in the kernel, application complexity
may still become a bottleneck. For instance, I/O prefetch-
ing becomes far less effective and could even hurt per-
formance. We have found the performance of page cache
and disk-swapper to increase when we disabled page
cache read-ahead and swap-in clustering.

Informing applications of the presence of synchronous
completions is therefore necessary. For example, an
ioctl() extension to query underlying completion model
should help applications decide the best I/O strategy.
Operating system processor usage statistics must account
separately for the time spent at the driver’s spin-wait
loop. Currently there is no accepted method of account-
ing for this ‘spinning I/O wait’ cycles. In our prototype
implementation, the time spent in the polling loop is
simply accounted towards system time. This may mislead
people to believe no I/O has been performed or to suspect
kernel inefficiency due to increased system time.

5 Related work
Following the success of NAND-based storage, research
interest has surged on the next-generation non-volatile
memory (NVM) elements [11,14,16,19]. Although base
materials differ, these memory elements commonly
promise faster and simpler media access than NAND.

Because of the DRAM-like random accessibility of many
next-generation NVM technologies, there is abundant
research in storage-class memories (SCM), where NVM
is directly exposed as a physical address space. For in-
stance, file systems have been proposed on SCM-based
architectures [9,21]. In contrast, we approach next-

generation NVM in a more evolutionary way, preserving
the current hardware and software storage interface, in
keeping with the huge body of existing applications.

Moneta [8] is a recent effort to evaluate the design and
impact of next-generation NVM-based SSDs. Moneta
hardware is akin to our prototype device in spirit because
it is a block device connected via PCIe bus. But imple-
mentation differences enabled our hardware to perform
faster than Moneta. Moneta also examined spinning to
cut the kernel cost, but its description is limited to latency
aspect. In contrast, this paper studied issues relevant to
the viability of synchronous completion, such as IOPS
scalability, interrupt thrashing, power state, etc.

Interrupt-driven asynchronous completion has long been
the only I/O model used by kernel to perform real storage
I/Os. Storage interface standards have thus embraced
hardware queueing techniques that further improve per-
formance of asynchronous I/O operations [2,5,6]. How-
ever, these are mostly effective for the devices with
slower storage medium such as hard disk or NAND flash.

It is a well-known strategy to choose a poll-based waiting
primitive over an event-based one when the waiting time
is short. A spinlock, for example, is preferred to a system
mutex lock if the duration of the lock is held is short.
Another example is the optional use of polling [18,20] for
network message passing among nodes when implement-
ing the MPI* library [13] used in high-performance com-
puting clusters. In such systems communication latencies
among nodes are just several microseconds due to the use
of low-latency, high-bandwidth communication fabric
along with a highly optimized network stack such as Re-
mote Direct Memory Access (RDMA*).

6 Conclusion
This paper makes the case for the synchronous comple-
tion of storage I/Os. When performing storage I/O with
ultra-low latency devices employing next-generation
non-volatile memories, polling for completion performs
better than the traditional interrupt-driven asynchronous
I/O path. Our conclusion has a practical importance,
pointing to the need for kernel researchers to consider
optimizations to the traditional kernel block storage inter-
face with next-generation SSDs, built of next-generation
NVM elements in mind. It is our belief that non-dramatic
changes can reap significant benefit.

Acknowledgements
We thank members of Storage Technology Group in Intel
Corporation for supporting this work. We also thank our
shepherd David Patterson and the anonymous reviewers
for their detailed feedback and guidance. The views and
conclusions in this paper are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of Intel Corporation.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 31

7

References
[1] Jen Axboe. Flexible I/O tester (fio). http://git.kernel.

dk/?p=fio.git;a=summary. 2010.
[2] Amber Huffman and Joni Clark. Serial ATA native

command queueing. Technical white paper,
http://www.seagate.com/content/pdf/whitepaper/D2c_t
ech_paper_intc-stx_sata_ncq.pdf, July 2003.

[3] Intel Corporation. Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1-3. Intel, 2008.

[4] M. Tim Jones. Boost application performance using
asynchronous I/O. http://www.ibm.com/developer
works/linux/library/l-async/, 2006.

[5] NVMHCI Work Group. NVM Express. http://www.
nvmexpress.org/, 2011.

[6] SCSI Tagged Command Queueing, SCSI Architecture
Model – 3, 2007.

[7] Daniel P. Bovet and Marco Cesati. Understanding the
Linux Kernel, 3rd Ed., O’Reilly, 2005.

[8] Adrian M. Caufield, Arup De, Joel Coburn, Todor I.
Mollov, Rajesh K. Gupta, and Steven Swanson. Mone-
ta: A high-performance storage array architecture for
next-generation, non-volatile memories, In Proceedings
of the 43rd International Symposium of Microarchitec-
ture (MICRO), Atlanta, GA, December 2010.

[9] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and
Derrick Coetzee. Better I/O through byte-addressable,
persistent memory. In Proceedings of the Symposium
on Operating Systems Principles (SOSP), pages 133–
146, Big Sky, MT, October 2009.

[10] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-
Hartman. Linux Device Drivers, 3rd Ed., O’Reilly,
2005.

[11] B. Dieny, R. Sousa, G. Prenat, and U. Ebels, Spin-
dependent phenomena and their implementation in
spintronic devices. In International Symposium on
VLSI Technology, Systems and Applications (VLSI-
TSA), 2008.

[12] Annie Foong, Bryan Veal, and Frank Hady. Towards
SSD-ready enterprise platforms. In Proceedings of the
1st International Workshop on Accelerating Data Man-

agement Systems Using Modern Processor and Storage
Architectures (ADMS), Singapore, September 2010.

[13] William Gropp, Ewing Lusk, Nathan Doss and Antho-
ny Skjellum. A high-performance, portable implemen-
tation of the MPI message passing interface standard.
Parallel Computing, 22:789-828, September 1996.

[14] S. Parkin. Racetrack memory: A storage class memory
based on current controlled magnetic domain wall mo-
tion. In Device Research Conference (DRC), pages 3-
6, 2009.

[15] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and
Jude A. Rivers. Scalable high performance main mem-
ory system using Ph ase-Change Memory technology.
In Proceedings of the 36th International Symposium of
Computer Architecture (ISCA), Austin, TX, June 2009.

[16] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,
Y.-C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H.
Chen, H.-L. Lung, and C. H. Lam. Ph ase-change ran-
dom access memory: A scalable technology. IBM
Journal of Research and Development, 52:465-480,
2008.

[17] Dongjun Shin. SSD. In Linux Storage and Filesystem
Workshop, San Jose, CA, February 2008.

[18] David Sitsky and Kenichi Hayashi. An MPI library
which uses polling, interrupts and remote copying for
the Fujitsu AP1000+. In Proceedings of the 2nd Interna-
tional Symposium on Parallel Architectures, Algo-
rithms, and Networks (ISPAN), Beijing, China, June
1996.

[19] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing memristor found. Nature,
453(7191):80-83, May 2008.

[20] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhaba-
leswar K. Panda. RDMA read based rendezvous proto-
col for MPI over InfiniBand: design alternatives and
benefits. In Proceedings of the 11th Symposium on
Principles and Practice of Parallel Programming
(PPoPP), pages 32-39, New York, NY, March 2006.

[21] Xiaojian Wu and Narasimha Reddy. SCMFS: A file
system for storage class memory. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC11), Seat-
tle, WA, November 2011.

* Other names and brands may be claimed as the property of others.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 33

Characteristics of Backup Workloads in Production Systems

Grant Wallace Fred Douglis Hangwei Qian∗ Philip Shilane Stephen Smaldone
Mark Chamness Windsor Hsu

Backup Recovery Systems Division
EMC Corporation

Abstract
Data-protection class workloads, including backup

and long-term retention of data, have seen a strong in-
dustry shift from tape-based platforms to disk-based sys-
tems. But the latter are traditionally designed to serve
as primary storage and there has been little published
analysis of the characteristics of backup workloads as
they relate to the design of disk-based systems. In this
paper, we present a comprehensive characterization of
backup workloads by analyzing statistics and content
metadata collected from a large set of EMC Data Domain
backup systems in production use. This analysis is both
broad (encompassing statistics from over 10,000 sys-
tems) and deep (using detailed metadata traces from sev-
eral production systems storing almost 700TB of backup
data). We compare these systems to a detailed study of
Microsoft primary storage systems [22], showing that
backup storage differs significantly from their primary
storage workload in the amount of data churn and ca-
pacity requirements as well as the amount of redundancy
within the data. These properties bring unique challenges
and opportunities when designing a disk-based filesys-
tem for backup workloads, which we explore in more
detail using the metadata traces. In particular, the need
to handle high churn while leveraging high data redun-
dancy is considered by looking at deduplication unit size
and caching efficiency.

1 Introduction
Characterizing and understanding filesystem content and
workloads is imperative for the design and implementa-
tion of effective storage systems. There have been nu-
merous studies over the past 30 years of file system char-
acteristics for general-purpose applications [1, 2, 3, 9, 15,
20, 22, 26, 30, 31], but there has been little in the way of
corresponding studies for backup systems.

Data backups are used to protect primary data. They
might typically consist of a full copy of the primary data

∗Current affiliation: Case Western Reserve University.

once per week (i.e., a weekly full), plus a daily backup
of the files modified since the previous backup (i.e., a
daily incremental). Historically, backup data has been
written to tape in order to leverage tape’s low cost per
gigabyte and allow easy transportation off site for disas-
ter recovery. In the late 1990s, virtual tape (or “VTL”)
was introduced, which used hard disk storage to mimic
a tape library. This allowed for consolidation of storage
and faster restore times. Beginning in the early 2000s,
deduplicating storage systems [10, 34] were developed,
which removed data redundancy and extended the bene-
fits of disk-based backup storage by lowering the cost of
storage and making it more efficient to copy data off-site
over a network for disaster recovery (replication).

The transition from tape to VTL and deduplicating
disk-based storage has seen a strong adoption by the
industry. In 2010 purpose-built backup appliances pro-
tected 468PB and are projected to protect 8EB by 2015,
by which time this will represent a $3.5B market [16].
This trend has made a detailed study of backup filesys-
tem characteristics pertinent for system designers if not
long overdue.

In this paper we first analyze statistics from a broad set
of 10,000+ production EMC Data Domain systems [12].
We also collect and analyze content-level snapshots of
systems that, in aggregate, are to our knowledge at least
an order of magnitude larger than anything previously
reported. Our statistical analysis considers information
such as file age, size, counts, deduplication effective-
ness, compressibility, and other metrics. Comparing this
to Meyer and Bolosky’s analysis of a large collection
of systems in Microsoft Corp. [22], we see that backup
workloads tend to have shorter-lived and larger files than
primary storage. This is indicative of higher data churn
rates, a measure of the percentage of storage capacity that
is written and deleted per time interval (e.g., weekly), as
well as more data sequentiality. These have implications
for the design requirements for purpose-built backup sys-
tems.

34 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

While summary statistics are useful for analyzing
overall trends, we need more detailed information to con-
sider topics such as performance analysis (e.g., cache
hit rates) or assessing the effect of changes to system
configurations (e.g., varying the unit of deduplication).
We address this with our second experimental methodol-
ogy, using simulation from snapshots representing con-
tent stored on a number of individual systems. The con-
tent metadata includes detailed information about indi-
vidual file content, but not the content itself. For exam-
ple, deduplicating systems will break files into a series
of chunks with each chunk represented by a strong hash,
sometimes referred to as a fingerprint. We collect the
lists of chunk fingerprints and chunk sizes that represent
each file as well as the physical layout of these chunks on
disk. These collections represent almost 700TB of data
and span various data types including databases, emails,
workstation data, source code, and corporate application
data. These allow us to analyze the stream or file-wise
behavior of backup workloads. This type of information
is particularly helpful in analyzing the effectiveness of
deduplication parameters and caching algorithms.

This study confirms and highlights the different
requirements between backup and primary storage.
Whereas primary storage capacities have grown rapidly
(the total amount of digital data more than doubles ev-
ery two years [13]), write throughput requirements have
not needed to scale as quickly because only a small per-
centage of the storage capacity is written every week and
most of the bytes are longer lived. Contrast this with
the throughput requirements of backup systems which,
for weekly full backups, must ingest the entire primary
capacity every week. The implication is that backup
filesystems have had to scale their throughput to meet
storage growth. Meeting these demands is a real chal-
lenge, and this analysis sheds light on how deduplication
and efficient caching can help meet that demand.

To summarize our contributions, this paper:

• analyzes more than 10,000 production backup sys-
tems and reports distributions of key metrics such
as deduplication, contents, and rate of change;

• extensively compares backup storage systems to a
similar study of primary storage systems; and

• uses a novel technique for extrapolating deduplica-
tion rates across a range of possible sizes.

The remainder of this paper is organized into the fol-
lowing sections: §2 background and related work, §3
data collection and analysis techniques, §4 analysis of
broad trends across thousands of production systems,
§5 exploring design alternatives using detailed metadata
traces of production systems, and §6 conclusions and im-
plications for backup-specific filesystem design.

2 Background and Related Work
We divide background into three areas: backups (§2.1),
deduplication (§2.2), and data characterization (§2.3).

2.1 Backups

Backup storage workloads are tied to the applications
which generate them, such as EMC NetWorker or
Symantec NetBackup. These backup software solutions
aggregate data from online file systems and copy them to
a backup storage device such as tape or a (deduplicating)
disk-based storage system [7, 34]. As a result, individ-
ual files are typically combined into large units, repre-
senting for example all files backed up on a given night;
these aggregates resemble UNIX “tar” files. Many other
types of backup also exist, such as application-specific
database backups. Backups usually run regularly, with
the most common paradigm being weekly “full” backups
and daily “incremental” backups. When files are modi-
fied, the incremental backups may have large portions
in common with earlier versions, and full backups are
likely to have many of their comprising files completely
unmodified, so the same data gets written to the backup
device again and again.

2.2 Deduplication and other Data Reduction

In backup storage workloads the inherent high de-
gree of data redundancy and need for high through-
put make deduplicating techniques important. Dedu-
plication can be performed at the granularity of en-
tire files (e.g., Windows 2000 [5]), fixed blocks (e.g.,
Venti [29]), or variable-sized “chunks” based on content
(e.g., LBFS [24]). In each case, a strong hash (such as
SHA-1) of the content, i.e., its “fingerprint,” serves as
a unique identifier. Fingerprints are used to index con-
tent already stored on the system and eliminate duplicate
writes of the same data. Because content-defined chunks
prevent small changes in content from resulting in unique
chunks throughout the remainder of a file, and they are
used in the backup appliances we have analyzed, we as-
sume this model for the remainder of this paper. Backup
data can be divided into content-defined chunks on the
backup storage server, on the backup software intermedi-
ary (e.g., a NetBackup server), or on the systems storing
the original data. If chunked prior to transmission over a
network, the fingerprints of the chunks can first be sent
to the destination, where they are used avoid transferring
those chunks already present [11, 24].

Traditional compression, such as gzip, complements
data deduplication. We refer to such compression
as “local” compression to distinguish it from com-
pression obtained from identifying multiple copies of
data, i.e., deduplication. The systems under study
perform local compression after deduplication, com-
bining unique chunks into “compression regions” that

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 35

are compressed together to improve overall data reduc-
tion.

There is a large body of research and commercial ef-
forts on optimizing [14, 21, 34], scaling [8, 10], and
improving the storage efficiency [17] of deduplicating
backup systems. Our efforts here are mostly comple-
mentary to that work, as we are characterizing backup
workloads rather than designing a new storage architec-
ture. The impact of the chunk size has been explored
in several studies [17, 18, 22, 28], as has delta-encoding
of content-defined chunks [18]. However, our study of
varying chunk sizes (§5.1) uses real-world workloads
that are substantially larger than those used in previous
studies. We also develop a novel technique for using a
single chunk size to extrapolate deduplication at larger
chunk sizes. This is different from the methodology of
Kruus, et al. [17], which decides on the fly what chunk
size to use at a particular point in a data stream, using
the actual content of the stream. Here, we use just the
fingerprints and sizes of chunks to form new “merged
chunks” at a coarser granularity. We evaluate the effec-
tiveness of this approach by comparing metrics from the
approximated merged chunks and native chunking at dif-
ferent sizes, then evaluate the effectiveness of chunking
various large-scale datasets over a range of target chunk
sizes.

2.3 Data Characterization

The closest work to ours in topic, if not depth, is Park and
Lilja’s backup deduplication characterization study [27].
It uses a small number of truncated backup traces, 25GB
each, to evaluate metrics such as rate of change and com-
pression ratios. By comparison, our paper considers a
larger set of substantially larger traces from production
environments and aims at identifying filesystem trends
related to backup storage.

There have been many studies of primary storage char-
acteristics [1, 2, 3, 9, 15, 20, 22, 26, 30, 31], which have
looked at file characteristics, access patterns and caching
behavior for primary workloads. Our study measures
similar characteristics but for backup workloads. It is in-
teresting to compare the different characteristics between
backup and primary storage systems (see §4). For com-
parison data points we use the most recent study from
Microsoft [22], which contains a series of large-scale
studies of workstation filesystems. There are some dif-
ferences that arise from the difference in usage (backup
versus day-to-day usage) and some that arise from the
way the files are accessed (aggregates of many files ver-
sus individual files). For example, the ability to dedupli-
cate whole files may be useful for primary storage [5] but
is not applicable to a backup environment in which one
file is the concatenation of terabytes of individual files.

3 Data Collection and Analysis Techniques
In conducting a study of file-system data, the most en-
compassing approach would be to take snapshots of all
the systems’ data and archive them for evaluation and
analysis. This type of exercise would permit numerous
forms of interesting analysis including changes to sys-
tem parameters such as average chunk size and tracking
filesystem variations over time.

Unfortunately, full-content snapshots are infeasible
for several reasons, the primary one being the need to
maintain data confidentiality and privacy. In addition,
large datasets (hundreds of terabytes in size each) be-
come infeasible to work with because of the long time to
copy and process and the large capacity required to store
them. The most practical way of conducting a large-scale
study is to instead collect filesystem-level statistics and
content metadata (i.e., data about the data).

For this study we collect and analyze two classes
of data with the primary aim of characterizing backup
workloads to help design better protection storage sys-
tems. The first class of data is autosupport reports from
production systems. Customers can choose to configure
their systems to automatically generate and send auto-
supports, which contain system monitoring and diagnos-
tic information. For our analysis, we extract aggregate
information from the autosupports such as file statistics,
system capacity, total bytes stored, and others.

The second type of information collected is detailed
information about data contained on specific production
systems. These collections contain chunk-level meta-
data such as chunk hash identifiers (fingerprints), sizes,
and location on disk. Because of the effort and storage
needed for the second type of collection, they are ob-
tained from only a limited set of systems.

The two sets of data complement each other: the auto-
supports (§3.1) are limited in detail but wide in deploy-
ment, while the content metadata snapshots (§3.2) con-
tain great detail but are limited in deployment.

3.1 Collecting Autosupports

The Data Domain systems that are the subject of this
study send system data back to EMC periodically, usu-
ally on a daily basis. These autosupport reports contain
diagnostic and general system information that help the
support team monitor and detect potential problems with
deployed systems [6]. Over 10,000 of these reports are
received per day, which makes them valuable in under-
standing the broad characteristics of protection storage
workloads. They include information about storage us-
age, compression, file counts and ages, caching statistics
and other metrics. Among other things, they can help us
understand the distribution of deduplication rates, capac-
ity usage, churn and file-level statistics.

3

36 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

For our analysis, we chose autosupports from a one-
week period. From the set of autosupports, we exclude
some systems based on certain validation criteria: a sys-
tem must have been in service more than 3 months and
have more than 2.5% of its capacity used. The remain-
ing set consists of more than 10,000 systems with system
ages ranging from 3 months to 7 years and gives a broad
view of the usage characteristics of backup systems.

We consider these statistics in the aggregate; there is
no way to subdivide the 10,000 systems by content type,
backup software, or other similar characteristics. In ad-
dition, we must acknowledge some possible bias in the
results. This is a study of EMC Data Domain customers
who voluntarily provide autosupport data (the vast ma-
jority of them do); these customers tend to use the most
common brands of backup software and typically have
medium to large computing environments to protect.

3.2 Collecting Content Metadata

In this study, we work with deduplicated stores which en-
able us to collect content metadata more efficiently. On
deduplicated systems a chunk may be referenced many
times, but the detailed information about the chunk need
be stored just once. Figure 1 shows a schematic of a
deduplicated store. We collect the file recipes (listing
of chunk fingerprints) for each file and then collect the
deduplicated chunk metadata from the storage contain-
ers, as well as sub-chunk fingerprints (labeled “sub-fps”)
as described below. The file recipe and per-chunk meta-
data can be later combined to create a per-file “trace”
comprised of a list of detailed chunk statistics as de-
picted on the bottom right of the figure. (Note that this
“trace” is not a sequence of I/O operations but rather a
sequence of file chunk references that have been written
to a backup appliance, from oldest to newest.) Details
about the trace, including its efficient generation, are de-
scribed in §3.2.3.

In this way, the collection time and storage needed for
the trace data is proportional to the deduplicated size.
This can lead to almost a 10X saving for a typical backup
storage system with 10X deduplication. In addition,
some of the data analysis can be done on the dedupli-
cated chunk data. This type of efficiency becomes very
important when dealing with underlying datasets of hun-
dreds of terabytes in size. These systems will have tens
of billions of chunks and even the traces will be hundreds
of gigabytes in size.

3.2.1 Content Fields Collected

For the content metadata snapshots, we collect the fol-
lowing information (additional data are not discussed due
to space limitations):

• Per-chunk information such as size, type, SHA-1
hash, subchunk sizes and abbreviated hashes.

Figure 1: Diagram of Data Collection Process

• Per-file information such as file sizes, modification
times, and fingerprints of each chunk in the file.

• Disk layout information such as location and group-
ing of chunks on disk.

One of the main goals for these collections was to look
at throughput and compression characteristics with dif-
ferent system configurations. The systems studied were
already chunked at 8KB on average with the correspond-
ing SHA-1 hash values available. We chose to sub-chunk
each 8KB chunk to, on average, 1KB and collected ab-
breviated SHA-1 hashes for each 1KB sub-chunk. Sub-
chunking allowed us to investigate deduplication rates at
various chunk sizes smaller than the default 8KB, as de-
scribed in §5.1.

3.2.2 Creating Traces from Metadata Snapshots

The collected content metadata can be used to create per-
file traces of chunk references. These traces are the or-
dered list of chunk metadata that comprise a file. For
example, the simplest file trace would contain a file-
ordered list of the chunk fingerprints and sizes that com-
prise the file. More detailed traces might also include
other per-chunk information such as disk location. These
file traces can be run through a simulator or analyzed in
other ways for metrics such as deduplication or caching
efficiency.

The per-file traces can be concatenated together, for
example by file modification time (mtime), to create a
representative trace for the entire dataset. This can be
used to simulate reading or writing all or part of the sys-
tem contents; our analyses in §5 are based on such traces.

For example, to simulate a write workload onto a new
system, we could examine the sequence of fingerprints in
order and pack new (non-duplicate) chunks together into

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 37

storage containers. The storage containers could then be
used as the unit of caching for later fingerprints in the
sequence [34]. This layout represents a pristine storage
system, but in reality, chunk locality is often fragmented
because garbage collection of deleted files causes live
chunks from different containers to be merged into new
containers. Instead of using the pristine layout, we could
use the container layout of chunks as provided by the
metadata snapshot from the production system, which
gives a more realistic caching analysis.

To simulate a read workload, we would examine
the sequence of fingerprints in order and measure
cache efficiency by analyzing how many container or
compression-region loads are required to satisfy the read.
Compression-regions are the minimal unit of read, since
the group of chunks have to be uncompressed together,
but reading whole containers may improve efficiency.
While reading the entire dataset trace would be a com-
plete restore of all backups, perhaps more realistically,
only the most recent full backup should be read to simu-
late a restore.

To approximate the read or write of one full backup
of the trace requires knowledge of what files correspond
to a backup. Since we don’t have the backup file cat-
alog, we are not able to determine a full backup at file
granularity. Instead we divide the trace into a number
of equal sized intervals, with the interval size based on
the deduplication rate. For instance, if the deduplication
rate is 10X then we estimate that there are about 10 full
backups on the system, i.e., the original plus 9 identical
copies. In this example we would break the trace into
10 intervals approximating about one backup per inter-
val. This is an approximation: in practice, the subse-
quent backups after the first will not be identical but will
have some data change. But this is a reasonable approach
for breaking the caching analysis into intervals, which al-
lows for warming the cache and working on an estimated
most-recent backup copy.

3.2.3 Efficient Analysis of Filesystem Metadata

The file trace data collected could be quite large,
sometimes more than a terabyte in size, and analyzing
these large collections efficiently is a challenge. Often
the most efficient way to process the information is by
use of out-of-core sorting. For instance, to calculate
deduplication ratios we sort by fingerprint so that
repeated chunks are adjacent, which then allows a single
scan to calculate the unique chunk count. As another
example, to calculate caching effectiveness we need to
associate fingerprints with their location on disk. We
first sort by fingerprint and assign the disk location of
the first instance to all duplicates, then re-sort by file
mtime and offset to have a time-ordered trace of chunks,
with container locations, to evaluate.

Even the process of merging file recipes with their
associated chunk metadata to create a file trace would
be prohibitively slow without sorting. We initially im-
plemented this merge in a streaming fashion, looking
up chunk locations and pre-fetching neighboring chunks
into a cache, much as an actual deduplication system
would handle a read. But the process was slow because
of the index lookups and random seeks on an engineering
workstation with a single disk. Eventually we switched
this process to also use out-of-core sorting. We use a
four-step process of (1) sorting the file recipes by finger-
print, (2) sorting the chunk metadata collection by finger-
print, (3) merging the two sets of records, and (4) sorting
the final record list by logical position within the file.
This generates a sequence of chunks ordered by position
within the file, including all associated metadata.

4 Trends Across Backup Storage Systems
We have analyzed the autosupport information from
more than 10,000 production deduplicated filesystems,
taken from an arbitrary week, July 24, 2011. We com-
pare these results with published primary storage work-
loads from Microsoft Corp. [22]. The authors of that
study shared their data with us, which allows us to graph
their primary workload results alongside our backup stor-
age results. The Microsoft study looked at workstation
filesystem characteristics for several different time peri-
ods; we compare to their latest, a one month period in
2009 which aggregates across 857 workstations.

Backup storage file characteristics are significantly
different from the Microsoft primary workload. Data-
protection systems have generally larger, fewer and
shorter lived files. This is an indication of more churn
within the system but also implies more data sequential-
ity. The following subsections detail some of these dif-
ferences. In general, figures present both a histogram
(probability distribution) and a cumulative distribution
function (CDF), and when counts are presented they are
grouped into buckets representing ranges, on a log scale,
with labels centered under representative buckets.

4.1 File Size

A distinguishing characteristic between primary and
backup workloads is file size. Figure 2 shows the file size
distribution, weighted by bytes contained in the files, for
both primary and backup filesystems. For backup this
size distribution is about 3 orders of magnitude larger
than for primary files. This is almost certainly the result
of backup software combining individual files together
from the primary storage system into “tar-like” collec-
tions. Larger files reduce the likelihood of whole-file
deduplication but increase the stream locality within the
system. Notice that for backup files a large percentage
of the space is used by files hundreds of gigabytes in

5

38 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0%

10%

20%

30%

40%

50%

0-1K
1-10K

10-100K

100-500K

500K-1M

1-5M
5-10M

10-50M
50-100M

100-500M

500M-1G

1-5G
5-10G

10-50G
50-100G

100-500G

>500G

0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

 o
f U

se
d

Sp
ac

e

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f U
se

d
Sp

ac
e

File Size (bytes)

Backup
X Median = 418G
O Mean = 268G

Primary
X Median = 22M
O Mean = 318K

Backup 2011 (hist)
Primary 2009 (hist)
Backup 2011 (cdf)
Primary 2009 (cdf)

XOO X

Figure 2: File size

size. Small file optimizations that make sense for pri-
mary storage such as embedding data in inodes or use
of disk block fragments may not make sense for backup
filesystems where large allocation units can provide more
efficient metadata use.

4.2 File and Directory Count

File and directory counts are typically much lower in
backup workloads. Similar to the effect of large file
sizes, having a low file count (Figure 3(a)) results from
having larger tar-type concatenations of protected files.
The low directory count (Figure 3(b)) is a result of
backup applications using catalogs to locate files. This is
different from typical user-organized filesystems where
a directory hierarchy is used to help order and find
data. Looking at the ratio of file to directory count (Fig-
ure 3(c)), we can see again that backup workloads tend
to use a relatively flat hierarchy with several orders of
magnitude more files per directory.

4.3 File Age

Figure 4 shows the distribution of file ages weighted
by their size. For backup workloads the median age
is about 3 weeks. This would correspond to about 1/2
the retention period, implying data retention of about 6
weeks. Short retention periods lead to higher data churn,
as seen next.

4.4 Filesystem Churn

Filesystem churn is a measure of the percentage of
storage that is freed and then written per time period,
for instance in a week. Figure 5 shows a histogram of
the weekly churn occurring across the studied backup
systems.

On average about 21% of the total stored data is freed
and written per week. This high churn rate is driven by
backup retention periods. If a backup system has a 10-
week retention policy, about 10% of the data needs to be

0%

5%

10%

15%

20%

25%

30%

0-1 16-32 512-1K 16K-32K 512K-1M 16M-32M 512M-1G
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f F
ile

 S
ys

te
m

s

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f F
ile

 S
ys

te
m

s

File Count

Backup
X Median = 14K
O Mean = 670K

Primary
X Median = 117K
O Mean = 225K

Backup 2011 (hist)
Primary 2009 (hist)

Backup 2011(cdf)
Primary 2009 (cdf)

X OOX

(a) File count

0%

10%

20%

30%

40%

0-1 16-32 512-1K 16K-32K 512K-1M 16M-32M 512M-1G
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

Directory Count

Backup
X Median = 66
O Mean = 98K

Primary
X Median = 22K
O Mean = 36K

Backup 2011 (hist)
Primary 2009 (hist)
Backup 2011 (cdf)
Primary 2009 (cdf)

X OX O

(b) Directory count

0%

10%

20%

30%

40%

50%

60%

0-1 16-32 512-1K 16K-32K 512K-1M
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

Files per Directory

Backup
X Median = 67
O Mean = 2K
Primary
X Median = 1
O Mean = 6

Backup 2011 (hist)
Primary 2009 (hist)
Backup 2011 (cdf)
Primary 2009 (cdf)

X OX O

(c) Files per directory

Figure 3: File and directory counts

written and deleted every week. The median churn rate is
about 17%, corresponding to almost a 6-week retention
period, which correlates well with the median byte age
of about 3 weeks.

This has implications for backup filesystems: such
filesystems must be able not only to write but also re-

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 39

claim large amounts of space on a weekly basis. Stor-
age technologies with limited erase cycles, such as flash
memory, may not be a good fit for this workload without
care to avoid arbitrary overwrites from file system clean-
ing [23].

To some extent, deduplicating storage systems help
alleviate this problem because less physical data needs
to be cleaned and written each week. The ratio of data
written per week to total stored is similar whether those
are calculated from pre-deduplication file size or post-
deduplicated storage size; this is expected as long as the
deduplication ratio is relatively constant over time.

Note also that backup churn rates increase quickly
over time. They follow the same growth rate as the un-
derlying primary data, (i.e., doubling every two years).
To meet the high ingest rates, backup filesystems can
leverage the high data redundancy of backup workloads.
In-line deduplication of file streams can eliminate many
of the disk writes and increase throughput. Doing so ef-
fectively requires efficient caching, which is studied fur-
ther in §5.

4.5 Read vs Write Workload

Data-protection systems are predominately write work-
loads but do require sufficient read bandwidth in order to
stream the full backup to tape, replicate changed data off-
site, and provide for timely restores. Figure 6 shows the
distribution of the ratio of bytes written vs total I/O bytes,
excluding replication and garbage collection. About 50%
of systems have overwhelmingly more writes than reads
(90%+ write). Only about 20% of systems have more
reads than writes.

These I/O numbers underestimate read activity be-
cause they do not include reads for replication. How-
ever, since during replication an equal number of bytes
are read by the source as written by the destination, the
inclusion of these statistics might change the overall per-
centages but not change the conclusion that writes pre-
dominate.

This is the opposite of systems with longer-lived bytes
such as primary workloads, which typically have twice
as many reads as writes [20]. The high write workloads
are again indicative of high-churn systems where large
percentages of the data are written every week.

4.6 Replication

For disaster recovery, backup data is typically replicated
off-site to guard against site-level disasters such as fires
or earthquakes. About 80% of the production systems
replicate at least part of their backup data each week.

Of the systems that replicate, Figure 7 shows the per-
centage of bytes written in the last 7 days that are also
replicated (either to or from the system). On average al-
most 100% of the data is replicated on these systems.

0%

10%

20%

30%

<1d 1d-1w 1-2w 2w-1m 1-2m 2-3m 3-6m 6m-1y >1 y
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f C
on

ta
in

in
g

Fi
le

 B
yt

es

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f C
on

ta
in

in
g

Fi
le

 B
yt

es

File Age

X Median = 20 days
O Mean = 69 days

Backup 2011 (hist)
Backup 2011 (cdf)

X O

Figure 4: File age

0%

0.5%

1%

1.5%

2%

2.5%

3%

3.5%

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

Weekly Churn Percentage (Bytes)

X Median = 17%
O Mean = 21%

Backup 2011 (hist)
Backup 2011 (cdf)

X O

Figure 5: Weekly churn

Notice that some systems replicate more data than was
written in this time period. This can be due to several
causes: some systems replicate to more than one desti-
nation and some systems perform cascaded replication
(they receive replicated data and in turn replicate it to
another system).

The high percentage of replicated data increases the
need for read throughput, resulting in a slightly more bal-
anced read to write ratio than one might expect from just
backup operations (write once, read rarely). This implies
that while backup systems must provide excellent write
performance, they cannot ignore the importance of read
performance.

In concurrent work, cache locality for delta compres-
sion is analyzed in the context of replication, including
information from production autosupport results [32].

4.7 Capacity Utilization

Figure 8 shows the distribution of storage usage for both
primary and backup systems. Backup systems skew to-
ward being more full than primary systems, with the

7

40 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

 o
f S

ys
te

m
s

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

Bytes Written as a Percentage of Total I/O

X Median = 91%
O Mean = 74%

% of Bytes Written (hist)
% of Bytes Written (cdf)

XO

Figure 6: Read/write byte ratio

0%

2%

4%

6%

8%

10%

12%

0% 20% 40% 60% 80% 100% 120% 140%
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

Replication Percentage
>150%

X Median = 96%
O Mean = 80%

Backup 2011 (hist)
Backup 2011 (cdf)

XO

Figure 7: Percent of data replicated

backup system modal (most frequent) utilization about
60–70% full. In contrast primary systems are about 30–
40% full. The gap in mean utilization may reflect differ-
ences in the goals of the administrators of the two types
of systems: while performance and capacity are both im-
portant in each environment, there is a greater empha-
sis in data protection on dollar-efficient storage, while
primary storage administrators may stress performance.
Also, backup administrators have more flexibility in bal-
ancing the data protection workloads across systems, as
they can shorten retention periods or reduce the domain
of protected data. Achieving higher utilization helps to
optimize the cost of overall backup storage [6].

4.8 Deduplication Rates

The amount of data redundancy is one of the key charac-
teristics of filesystem workloads and can be a key driver
of cost efficiency in today’s storage systems. Here we
compare the deduplication rates of backup filesystem
workloads with those of primary storage as reported by
Meyer and Bolosky [22]. Figure 9 indicates that dedupli-

0%

5%

10%

15%

20%

0-10% 20-30% 40-50% 60-70% 80-90%
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

Fullness Percentage

Backup
X Median = 65%
O Mean = 61%
Primary
X Median = 40%
O Mean = 43%

Backup 2011 (hist)
Primary 2009 (hist)
Backup 2011 (cdf)
Primary 2009 (cdf)

XOOX

Figure 8: Fullness

0%

2%

4%

6%

8%

10%

10x 20x 30x 40x 50x
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

Deduplication Ratio

O Mean = 10.9x
X Median = 8.7x

Backup 2011 (hist)
Backup 2011 (cdf)

OX
1x >60x

Figure 9: Deduplication

cation rates for backup storage span a wide range across
system and workloads with a mean of 10.9x. This is dra-
matically higher than for primary workloads with a mean
of about 3x in the Microsoft workload. The main differ-
ence is that backup workloads generally retain multiple
copies of data.

Additionally, backups are usually contained within
large tar-type archives that do not lend themselves to
whole-file deduplication. When these larger files are sub-
divided into chunks for deduplication, the chunk size can
have widely varying effects on deduplication effective-
ness (see §5.1).

4.8.1 Compression

Data Domain systems aggregate new unique chunks into
compression regions, which are compressed as a single
unit (approximately 128KB before compression). Since
there is usually spatial locality between chunks that are
written together, the compressibility of the full region is
much greater than what might be achieved by compress-
ing each 8KB chunk in isolation.

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 41

Snapshot Class Data Type Size
(TB)

Dedup.
Ratio

1-Wk
Dedup.

MedAge
(Weeks)

Retention
Time

Update
Freq.

1 homedirs LT-B Home 201 14.0 3.0 3.49 1–3 years MF
Directories 5 weeks DF

2 database1 B Database 177 5.1 2.7 2.21 1 month MF/DI
3 email B Email 146 9.6 1.1 1.36 15 days DF

4 fileservers B Windows
Fileservers 60 5.9 1.7 5.80 3 months WF/DI

5 mixed1 B Mixed
DB/Email/User 47 6.0 2.4 3.24 1–3

months MF/DI

6 mixed2 B Workstations,
Servers 43 11.0 3.0 9.44 4–6

months WF/DI

7 workstations B Workstations 4.5 7.5 2.3 13.56 4 months WF/DI
8 database2 B Database 3.8 2.2 1.3 0.23 3 days DF

Table 1: Collected Datasets. Class can be B ”Backup,” LT-B or“Long Term Backup.” Retention can be MF “Monthly
Full,” WF “Weekly Full,” DF “Daily Full,” or DI “Daily Incremental.” We report cumulative and one-week dedupli-
cation. MedAge is the mid-point at which half the data is newer or older.

0%

2%

4%

6%

8%

10%

12%

1x 2x 3x 4x 5x 6x 7x 8x
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f S
ys

te
m

s

Local Compression Ratio

O Mean = 1.9x
X Median = 1.7x

Backup 2011 (hist)
Backup 2011 (cdf)

OX
>9x

Figure 10: Local compression

As a result, the effectiveness of post-deduplication
compression in a backup workload will typically be com-
parable to that of a primary workload. Figure 10 shows
the local compression we see across production backup
workloads, with a mean value of almost 2X as the ex-
pected rule of thumb [19]. But as can be seen, there is
also a large variation across systems with some data in-
herently more random than others.

5 Sensitivity Analyses of Deduplicating
Backup Systems

Deduplication has enabled the transition from tape to
disk-based data protection. Storing multiple protected
copies on disk is only cost effective when efficient re-
moval of data redundancy is possible. In addition dedu-
plication provides for higher write throughput (fewer
disk writes), which is necessary to meet the high churn

associated with backup storage (see §4.4). However, read
performance can be negatively impacted by the fragmen-
tation introduced by deduplication [25].

In this section we use trace-driven simulation to evalu-
ate the effect of chunk size on deduplication rates (§5.1)
and to evaluate alternatives for caching the fingerprints
used for detecting duplicates (§5.2). First we describe
the metadata collections, which are used for the sensitiv-
ity analyses, in greater detail. Table 1 lists the data sets
collected and their properties, in decreasing order of pre-
deduplication size. They span a wide range of sizes and
deduplication rates. Most are straightforward “backup”
workloads while one includes some data meant for long-
term retention. They range from traces representing as
little as 4–5TB of pre-deduplicated content up to 200TB.
The deduplication ratio (using the default 8KB target
chunk size) also has a large range, from as little as 2.2
to as much as 14.0; the data sets with the lowest dedupli-
cation have relatively few full backups, with the extreme
case being a mere 3 days worth of daily full backups.

Deduplication over a prolonged period can be substan-
tial if many backups are retained, but how much dedupli-
cation is present over smaller windows, and how skewed
is the stored data? These metrics are represented in the
1-Wk Dedup. and MedAge columns. The former es-
timates the average deduplication seen within a single
week, which typically includes a full backup plus in-
crementals. This is an approximation of the intra-full
deduplication which cannot be determined directly be-
cause the collected datasets do not provide information
about full backup file boundaries. The median age is the
point by which half the stored data was first written, and
it provides a view into the retention and possible dedu-
plication. For instance, half of the data in homedirs had

9

42 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

been stored for 3.5 weeks or less. With daily full back-
ups stored 5 weeks we would expect a median age of 2.5
weeks, but the monthly full backups compensate and in-
crease the median.

5.1 Effect of Varying Chunk Size

The systems studied use a default average chunk size of
8KB, but smaller or larger chunks are possible. Varying
the unit of deduplication has been explored many times
in the past, usually by chunking the data at multiple sizes
and comparing the deduplication achieved [18, 22, 28];
it is also possible to vary the deduplication unit dynam-
ically [4, 17]. The smaller the average chunk size, the
finer-grained the deduplication. When there are long re-
gions of unchanged data, the smaller chunk size has lit-
tle effect, since any chunk size will deduplicate equally
well. When there are frequent changes, spaced closer to-
gether than a chunk, all chunks will be different and fail
to deduplicate. But when the changes are sporadic rel-
ative to a given chunk size, having smaller chunks can
help to isolate the parts that have changed from the parts
that have not.

5.1.1 Metadata Overhead

Since every chunk requires certain metadata to track its
location, the aggregate overhead scales inversely with the
chunk size. We assume a small fixed cost, 30 bytes, per
physical chunk stored in the system and the same cost per
logical chunk in a file recipe (where physical and logi-
cal are post-deduplication and pre-deduplication, respec-
tively). The 30 bytes represent the cost of a fingerprint,
chunk length, and a small overhead for other metadata.

Kruus, et al., described an approach to chunking
data at multiple granularities and then selecting the
most appropriate size for a region of data based on its
deduplication rate [17]. They reported a reduction in
deduplication effectiveness by a factor of 1

(1+ f) , where
f is defined as the metadata size divided by the average
chunk size. For instance, with 8KB chunks and 30
bytes of metadata per chunk, this would reduce the
effectiveness of deduplication by 0.4%.

However, metadata increases as a function of
both post-deduplication physical chunks and pre-
deduplication logical chunks, i.e., it is a function of
the deduplication rate itself. If the metadata for the file
recipes is stored outside the deduplication system, the
formula for the overhead stated above would be correct.
If the recipes are part of the overhead, we must account
for the marginal costs of each logical chunk, not only the
post-deduplication costs. Since the raw deduplication
D is the ratio of logical to physical size (i.e., D = L/P)
while the real deduplication D′ includes metadata costs
(D′ = L

P+ f P+ f L), we can substitute L = DP in the latter

equation to get:

D′ =
D

1+ f (1+D)
.

Intuitively, we are discounting the deduplication by the
amount of metadata overhead for one copy of the phys-
ical data and D copies of the logical data. For a dedu-
plication rate of 10X, using this formula, this overhead
would reduce deduplication by 4% rather than 0.4%.

However, as chunks get much smaller, the metadata
costs for increasing the number of chunks can dominate
the savings from a smaller chunksize. We can calculate
the breakeven point at which the net physical space using
chunksize C1 is no greater than using twice that chunk-
size (C2, where C2 = 2C1). First, we note that f1 = 2 f2
since the per-chunk overhead doubles. Then we com-
pare the total space (physical post-deduplication Pi plus
overhead) for both chunk sizes, using a single common
logical size L:

P1 +2 f (L+P1) ≤ P2 + f (L+P2).

Since Di = L/Pi we can solve for the necessary D1:

D1 ≥
D2(1+2 f)

1+ f (1−D2)
.

This inequality shows where the improvement in raw
deduplication (not counting metadata) is at least as much
as the increased metadata cost.1 As an example, with the
30 bytes of overhead and 10X raw deduplication at 2KB
chunks, one would need to improve to 11.9X or more
raw deduplication at the 1KB chunk size to fare at least
as well.

5.1.2 Subchunking and Merging Chunks

We are able to take snapshots of fingerprints but not of
content, so it is not possible to rechunk content at many
sizes. While we could chunk data from a system at nu-
merous sizes at the time the snapshot is created, that
would require more processing and more storage than
are feasible. Thus, to permit the analysis of pre-chunked
data, for which we can later store the fingerprints but not
the content, we take a novel approach. To get smaller
chunks than the native 8KB size, during data collection
we read in a chunk at its original size, sub-chunk it at a
single smaller size (1KB), and store the fingerprints and
sizes of the smaller sub-chunks along with the original
chunk metadata. We can then analyze the dataset with
1KB chunks, or merge 1KB chunks into larger chunks

1There is also a point at which the deduplication at one size is so
high that the overhead from doubling the metadata costs would domi-
nate any possible improvement from better deduplication, around 67X
for our 30-byte overhead. Also, the formula applies to a single factor
of two but could be adjusted to allow for other chunk sizes.

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 43

(such as 2KB or 4KB on average). We can also merge
the original 8KB chunks into larger units (powers of two
up to 1MB). To keep the merged chunks distinct from the
native 8KB chunks or the 1KB sub-chunks, we will refer
to merged chunks as mchunks.

For a given average chunk size, the system enforces
both minimum and maximum sizes. To create an mchunk
within those constraints, we group a minimum number
of chunks (or sub-chunks) to reach the minimum size,
then determine how many additional chunks to include
in the mchunk in a content-aware fashion, similar to how
chunks are created in the first place. For instance, to
merge 1KB chunks into 4KB mchunks (2KB minimum
and 6KB maximum), we would start with enough 1KB-
average chunks to create at least a 2KB mchunk, then
look at the fingerprints of the next N chunks, where the
Nth chunk considered is the last chunk that, if included
in the mchunk, would not exceed the maximum chunk
size of 6KB.

At this point we have a choice among a few possi-
ble chunks at which to separate the current mchunk from
the next one. We need a content-defined method to se-
lect which chunk to use as the breakpoint, similar to the
method used for forming chunks in the first place within
a size range. Here, we select the chunk with the highest
value fingerprint as the breakpoint. Since fingerprints
are uniformly distributed, and the same data will pro-
duce the same fingerprint, this technique produces con-
sistent results (with sizes and deduplication comparable
to chunking the original data), as we discuss next. We
experimented with several alternative selection methods
with similar results.

5.1.3 Evaluation

A key issue in this process is evaluating the error intro-
duced by the constraints imposed by the merging pro-
cess. We performed two sets of experiments on the
sub-chunking and merging. The first was done on full-
content datasets, to allow us to quantify the difference
between ground truth and reconstructed metadata snap-
shots. We used two of the datasets from an earlier dedu-
plication study [8], approximately 5TB each, to com-
pute the “ground truth” deduplication and average chunk
sizes. We compare these to the deduplication rate and
average when merging chunks. (The datasets were la-
beled “workstations” and “email” in the previous study,
but the overall deduplication rates are reported slightly
differently because here we include additional overhead
for metadata; despite the similar naming, these datasets
should not be confused with the collected snapshots in
Table 1.) Table 2 shows these results: the average chunk
size from merging is consistently about 2–3% lower.
For the workstations dataset, the deduplication rate is
slightly higher, presumably due to smaller deduplication

1

2

5

10

20

 1 4 16 64 256 1024

D
ed

up
lic

at
io

n

Average chunk size (KB)

mixed2
workstations

mixed1
fileservers

Figure 11: Deduplication obtained as a function of chunk
size, using the merging technique. Both axes are on a log
scale.

units, while for the email dataset the deduplication rate is
somewhat lower (by 4–7%) with merging than when the
dataset is chunked at a given size. However, the numbers
are all close enough to serve as approximations to natural
chunking.

The second set of experiments, shown in Figure 11,
was performed on a subset of the collected datasets (we
selected a few for clarity and because the trends are so
similar). For these we have no “ground truth” other
than statistics for the original 8K chunks, but we report
the deduplication rates as a function of chunk size as
the size ranges from 1K sub-chunks to 1024KB (1MB)
mchunks. The 1KB sub-chunks are used to merge into
2-4KB mchunks and the 8KB original chunks are used
for the larger ones.

Looking at both the “ground truth” datasets and the
snapshot analyses, we see that deduplication decreases
as the chunk size increases, a result consistent with many
similar studies. For most of the datasets this is an im-
provement of 20–40% for each reduction of a power
of two, though there is some variability. As mentioned
in §5.1.1, there is also a significant metadata overhead
for managing smaller chunks. In Figure 11, we see
that deduplication is consistently worse with the small-
est chunks (1KB) than with 2KB chunks, due to these
overheads: at that size the metadata overhead typically
reduces deduplication by 10–20%, and in one case nearly
a factor of two. Large chunk sizes also degrade dedupli-
cation; in fact, the database1 dataset (not plotted) gets
no deduplication at all for large chunks. Excluding meta-
data costs, the datasets in Table 2 would improve dedu-
plication by about 50% when going from 2KB to 1KB
average chunk size, but when these costs are included the
improvement is closer to 10%; this is because for those
datasets, the improvement in deduplication sufficiently
compensates for the added per-chunk metadata.

11

44 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Target Workstations-full Email-full
Size Ground Truth Merged Ground Truth Merged
(KB) Dedup. Avg Size (KB) Dedup. Avg Size (KB) Dedup. Avg Size (KB) Dedup. Avg Size (KB)

1 10.48 1.04 N/A 10.88 1.05 N/A
2 9.29 2.08 9.30 2.02 9.54 2.09 9.19 2.03
4 7.28 4.15 7.28 4.09 7.84 4.18 7.48 4.08
8 5.49 8.34 N/A 6.61 8.33 N/A

16 4.16 16.68 4.17 16.18 5.37 16.64 5.08 16.19
32 3.23 33.33 3.24 32.69 4.18 33.41 3.90 32.66
64 2.59 66.67 2.64 65.62 3.21 66.43 3.03 65.52

Table 2: Comparison of the ground truth deduplication rates and chunk sizes, compared to merging sub-chunks (to
4KB) or chunks (above 8KB), on two full-content snapshots. The target sizes refer to the desired average chunk size.
The ground truth values for 1KB and 8KB average chunk sizes are included for completeness.

Data and analysis such as this can be useful for assess-
ing the appropriate unit of deduplication when variable
chunk sizes are supported [4, 17].

5.2 Cache Performance Analysis

In deduplicating systems, the performance bottleneck is
often the lookup for duplicate chunks. Systems with hun-
dreds of terabytes of data will have tens of billions of
chunks. With each chunk requiring about 30 bytes of
metadata overhead, the full index will be many hundreds
of gigabytes. On today’s systems, indexes of this size
will not fit in memory and thus require an on-disk index,
which has high access latency [34].

Effective caching techniques are necessary to allevi-
ate this index lookup bottleneck, and indeed there have
been numerous efforts at improving locality (e.g., Data
Domain’s Segment-Informed Stream Locality [34], HP’s
sparse indexing [21], and others). These studies have in-
dicated that leveraging stream locality in backup work-
loads can significantly improve write performance, but
their analyses have been limited to a small number of
workloads and a fixed cache size. Unlike previous stud-
ies, we analyze for both read and write workloads across
a broader range of datasets and examine the sensitivity of
cache performance to cache sizes and the unit of caching.

5.2.1 Caching Effectiveness for Writes

As seen in §4, writes are a predominant workload
for backup storage. Achieving high write throughput
requires avoiding expensive disk index lookups by
having an effective chunk-hash cache. The simplest
caching approach would be to use an LRU cache of
chunk hashes. An LRU cache relies on duplicate chunks
appearing within a data window that is smaller than the
cache size. For backup workloads, duplicate chunks
are typically found once per full backup, necessitating
a cache sized as large as a full backup per client. This is
prohibitively large.

To improve caching efficiency, stream locality hints

can be employed. [21, 34]. Files are typically grouped
in a similar order for each backup, and re-ordering of
intra-file content is rare. The consistent stream-ordering
of content can be leveraged to load the hashes of nearby
chunks whenever an index lookup occurs. One method
of doing so is to pack post-deduplicated chunks from the
same stream together into disk regions.

To investigate caching efficiency, we created a cache
simulator to compare LRU versus using stream locality
hints. The results for writing data are shown in Fig-
ure 12(a). The LRU simulator does per-chunk caching
and its results are reported in the figure with the dotted
blue lines. The stream locality caching groups chunks
into 4MB regions called ”containers” and its results are
reported in that figure with solid black lines. We sim-
ulate various cache sizes from 32MB up to 1TB where
the cache only holds chunk fingerprints (not the chunk
data itself).2 For these simulations, we replay starting
with the beginning of the trace to warm the cache and
then record statistics for the final interval representing
approximately the most recent backup.

Note that deduplication write workloads have two
types of compulsory misses, those when the chunk is in
the system but not represented in the cache (duplicate
chunks), and those for new chunks that are not in the sys-
tem (unique chunks). This graph includes both types of
compulsory misses. Because the misses for new chunks
are included, the maximum hit ratio is the inverse of the
deduplication ratio for that backup.

Using locality hints reduces the necessary cache size
by up to 3 orders of magnitude. Notice that LRU does
achieve some deduplication with a relatively small cache,
i.e., 5-40% of duplicates could be identified with a 32MB

2To make the simulation tractable, we sampled 1 in 8 cache units,
then scaled the memory requirement by the sampling rate. We validated
this sampling against unsampled runs using smaller datasets. The cache
size is a multiple of the cache unit for a type; therefore, data points of
similar cache size do not align completely within Figure 12(a) and (b).
We crop the results of Figure 12(a) at 32MB to align with Figure 12(b).

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 45

0%

20%

40%

60%

80%

100%

32M 1G 32G 1T

H
it

R
at

io

Size of (Metadata) Cache (Bytes)

containers

chunks

(a) Writes

0%

20%

40%

60%

80%

100%

32M 1G 32G 1T 32T

H
it

R
at

io

Size of (Data and Metadata) Cache (Bytes)

containers
compression regions
chunks

database1
database2

email
fileservers

homedirs
mixed1

mixed2
workstations

(b) Reads

Figure 12: Cache results for writing or reading the final portion of each dataset. For writes, the cache consists just of
metadata, while for reads it includes the full data as well and must be larger to have the same hit ratio. Differences in
marks represent the datasets, while differences in color represent the granularity of caching (containers, chunks, or in
the case of reads, compression regions).

cache (dotted blue lines). These duplicates which occur
relatively close together in the logical stream may rep-
resent incremental backups that write smaller regions of
changed data. However, effective caching is not typically
achieved with the LRU cache until the cache size is many
gigabytes in size, likely representing, at that point, a large
portion of the unique chunks in the system. In contrast,
using stream locality hints achieves good deduplication
hit rates with caches down to 32MB in size (solid black
lines across the top of the figure). Since production sys-
tems typically handle tens to hundreds of simultaneous
write streams, each stream with its own cache, keeping
the per-stream cache size in the range of megabytes of
memory is important.

5.2.2 Caching Effectiveness for Reads

Read performance is also important in backup systems to
provide fast restores of data during disaster recovery. In

this subsection, we present a read caching analysis simi-
lar to that of the previous subsection.

There are three main differences between the read and
write cache analysis. The first is that read caches con-
tain the data whereas the write caches only needs the
chunk fingerprints. The second is that reads have only
one kind of compulsory miss, those due to cache misses,
while writes can also miss due to the first appearance
of a chunk. The third is that in addition to analyzing
stream locality hints at the container level (which rep-
resents 4MB of chunks) we also analyze stream locality
at the compression-region level, a 128KB grouping of
chunks.

Figure 12(b) shows the comparison of LRU with
stream locality hints at the container and compression-
region granularity for read streams. The effectiveness
of using stream locality hints is even more exaggerated
here than for write workloads. Stream locality hints still

13

46 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

allow cache sizes of less than 32MB for container level
caching (solid black lines), but chunk-level LRU (dotted
blue lines) now requires up to several terabytes of cache
(chunk data) to achieve effective hit rates. There is now
a 4-6 order of magnitude difference in required cache
sizes. Compression-region caching (dashed green lines)
is as effective as container-level for 6 of the datasets,
but 2 show significantly degraded hit ratios. These
two datasets are from older systems which apparently
have significant fragmentation at the compression-region
level, which is smoothed out at the container level.

Fragmentation has two implications on performance.
One is that data that appear consecutively in the logical
stream can be dispersed physically on disk, impacting
read performance [25]. Another is that the unit of trans-
fer may not correspond to the unit of access; e.g., one
may read a large unit such as a container just to access
a small number of chunks. The impact of fragmentation
on performance is the subject of recent and ongoing work
(e.g., SORT [33]).

6 Conclusion
We have conducted a large-scale study of deduplicated
backup storage systems to discern their main character-
istics. The study looks both broadly at autosupport data
from over 10,000 deployed systems and in depth at con-
tent metadata snapshots from a few representative sys-
tems. The broad study examines filesystem characteris-
tics such as file sizes, ages and churn rates while the de-
tailed study focuses on deduplication and caching effec-
tiveness. We contrast these results with those of primary
filesystems from Microsoft [22].

As can be seen from §4, backup filesystems tend
to have fewer, larger and shorter-lived files. Back-
ups typically comprise either large repositories, such as
databases, or large concatenations of protected files (e.g.,
tarfiles). As backup systems ingest these primary data
stores on a repeating schedule they must delete and clean
an equal amount of older data to maintain within capacity
limits. This high data churn, averaging 21% of total stor-
age per week leads to some unique demands of backup
storage. They must sustain high write throughput and
scale as primary capacity grows. This is not a trivial task
as primary capacity scales with Kryder’s law (about 100x
per decade) but disk, network, and interconnect through-
put have not scaled nearly as quickly [13]. To keep up
with such workloads requires data reduction techniques,
with deduplication being an important component of any
data protection system. Additional techniques for reduc-
ing the ingest to a backup system, such as change-block
tracking, are also important as systems scale further.

Backup workloads have two properties that help meet
these challenging throughput demands. One is that the
data is highly redundant between full backups. The other

is that the data exhibits a lot of stream locality; that is,
neighboring chunks of data tend to remain nearby across
backups [34]. As seen in §5.2, leveraging these two
qualities allows for very efficient caching, with dedu-
plication hit rates of about 90% (including compulsory
misses from new chunks).

Another interesting point is that backup storage work-
loads typically have higher demands for writing than
reading. Primary storage workloads, which have less
churn and longer-lived data, are skewed to relatively
more read than write workload (2:1 as a typical met-
ric [20]). However backup storage must be able to ef-
ficiently support read workloads, as well, to process ef-
ficient restores when needed and to replicate data off-
site for disaster recovery. Optimizing for reads requires a
more sequential disk layout and can be at odds with high
deduplication rates, but effective backup systems must
balance between both demands, which is an interesting
area of future work.

The shift from tape-based backup to disk-based,
purpose-built backup appliances has been swift and con-
tinues at a rate of almost 80% annually. By 2015 it is
projected that disk-based deduplicating appliances will
protect over 8EB of data [16]. Scaling write through-
put at the same rate as data is growing, optimizing data
layout, and providing efficiencies in capacity usage are
challenging and exciting problems. The workload char-
acterizations presented in this paper are a first step at bet-
ter understanding a vital, unique, and under-served area
in file systems research and we hope that it will stimulate
further exploration.

Acknowledgments
We thank Stephen Manley, Hyong Shim, and Florin Sul-
tan for helpful comments on earlier drafts. We are es-
pecially grateful to Bill Bolosky for sharing the statis-
tical spreadsheet from the Microsoft FAST 2011 study,
and to the anonymous referees and our shepherd, Flo-
rentina Popovici, for their feedback and guidance. We
very much appreciate the many people within and out-
side EMC who enabled the metadata collection, particu-
larly Hugo Patterson and Edgard Capdevielle.

References
[1] N. Agrawal, W. Bolosky, J. Douceur, and J. Lorch.

A five-year study of file-system metadata. In
FAST’07: Proceedings of 5th Conference on File
and Storage Technologies, pages 31–45, February
2007.

[2] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.
Shirriff, and J. K. Ousterhout. Measurements of
a distributed file system. In Proceedings of the
Thirteenth Symposium on Operating Systems Prin-
ciples, Oct. 1991.

14

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 47

[3] J. Bennett, M. Bauer, and D. Kinchlea. Charac-
teristics of files in NFS environments. In SIGS-
MALL’91: Proceedings of 1991 Symposium on
Small Systems, June 1991.

[4] D. R. Bobbarjung, S. Jagannathan, and C. Dub-
nicki. Improving duplicate elimination in stor-
age systems. Transactions on Storage, 2:424–448,
November 2006.

[5] W. J. Bolosky, S. Corbin, D. Goebel, and J. R.
Douceur. Single instance storage in Windows 2000.
In Proceedings of the 4th conference on USENIX
Windows Systems Symposium - Volume 4, pages 2–
2, Berkeley, CA, USA, 2000. USENIX Associa-
tion.

[6] M. Chamness. Capacity forecasting in a backup
storage environment. In LISA’11: Proceedings of
the 25th Large Installation System Administration
Conference, Dec. 2011.

[7] A. Chervenak, V. Vellanki, and Z. Kurmas. Protect-
ing file systems: A survey of backup techniques.
In Joint NASA and IEEE Mass Storage Conference,
1998.

[8] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy,
and P. Shilane. Tradeoffs in scalable data routing
for deduplication clusters. In FAST’11: Proceed-
ings of 9th Conference on File and Storage Tech-
nologies, Feb. 2011.

[9] J. Douceur and W. Bolosky. A large scale study
of file-system contents. In SIGMETRICS’99: Pro-
ceedings of 1999 Conference on Measurement and
Modeling of Computer Systems, May 1999.

[10] C. Dubnicki, G. Leszek, H. Lukasz, M. Kaczmar-
czyk, W. Kilian, P. Strzelczak, J. Szczepkowski,
C. Ungureanu, and M. Welnicki. HYDRAstor: a
scalable secondary storage. In FAST’09: Proceed-
ings of the 7th conference on File and Storage Tech-
nologies, pages 197–210, February 2009.

[11] EMC Corporation. Data Domain Boost Soft-
ware, 2010. http://www.datadomain.com/
products/dd-boost.html.

[12] EMC Corporation. Data Domain products. http:
//www.datadomain.com/products/, 2011.

[13] J. Gantz and D. Reinsel. Extracting value from
chaos. IDC Iview, available at http://www.
emc.com/collateral/analyst-reports/
idc-extracting-value-from-chaos-ar.
pdf, June 2011.

[14] F. Guo and P. Efstathopoulos. Building a high-
performance deduplication system. In Proceedings
of the 2011 USENIX conference on USENIX An-
nual Technical Conference, 2011.

[15] W. Hsu and A. J. Smith. Characteristics of I/O traf-
fic in personal computer and server workloads. IBM
Systems Journal, 42:347–372, April 2003.

[16] IDC. Worldwide purpose-built backup appliance
2011-2015 forecast and 2010 vendor shares, 2011.

[17] E. Kruus, C. Ungureanu, and C. Dubnicki. Bimodal
content defined chunking for backup streams. In
FAST’10: Proceedings of the 8th Conference on
File and Storage Technologies, February 2010.

[18] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey.
Redundancy elimination within large collections of
files. In Proceedings of the USENIX Annual Tech-
nical Conference, pages 59–72, 2004.

[19] D. A. Lelewer and D. S. Hirschberg. Data compres-
sion. ACM Computing Surveys, 19:261–296, 1987.

[20] A. Leung, S. Pasupathy, G. Goodson, and E. L.
Miller. Measurement and analysis of large-scale
network file system workloads. In Proceedings
of the 2008 USENIX Technical Conference, June
2008.

[21] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-
likar, G. Trezise, and P. Camble. Sparse indexing:
large scale, inline deduplication using sampling and
locality. In FAST’09: Proceedings of the 7th Con-
ference on File and Storage Technologies, pages
111–123, 2009.

[22] D. Meyer and W. Bolosky. A study of practi-
cal deduplication. In FAST’11: Proceedings of
9th Conference on File and Storage Technologies,
February 2011.

[23] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I.
Eom. SFS: Random write considered harmful in
solid state drives. In FAST’12: Proceedings of the
10th Conference on File and Storage Technologies,
2012.

[24] A. Muthitacharoen, B. Chen, and D. Mazières. A
low-bandwidth network file system. In SOSP’01:
Proceedings of the 18th ACM Symposium on Oper-
ating Systems Principles, pages 174–187, 2001.

[25] Y. Nam, G. Lu, N. Park, W. Xiao, and D. H. C. Du.
Chunk fragmentation level: An effective indicator
for read performance degradation in deduplication

15

48 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

storage. In Proceedings of the 2011 IEEE Interna-
tional Conference on High Performance Comput-
ing and Communications, HPCC’11, pages 581–
586, Washington, DC, USA, 2011. IEEE Computer
Society.

[26] J. Ousterhout, H. DaCosta, D. Harrison, J. Kuntze,
M. Kupfer, and J. G. Thompson. A trace driven
analysis of the unix 4.2 BSD file system. Proceed-
ings of the Tenth Symposium on Operating Systems
Principles, Oct. 1985.

[27] N. Park and D. J. Lilja. Characterizing datasets for
data deduplication in backup applications. In Pro-
ceedings of the IEEE International Symposium on
Workload Characterization (IISWC’10), 2010.

[28] C. Policroniades and I. Pratt. Alternatives for de-
tecting redundancy in storage systems data. In Pro-
ceedings of the USENIX Annual Technical Confer-
ence, pages 73–86, 2004.

[29] S. Quinlan and S. Dorward. Venti: a new approach
to archival storage. In FAST’02: Proceedings of
the 1st USENIX conference on File and Storage
Technologies, 2002.

[30] D. Roselli, J. Lorch, and T. Anderson. A compar-
ision of file system workloads. In Proceedings of
2000 USENIX Annual Technical Conference, June
2000.

[31] M. Satyanarayanan. A study of file sizes and func-
tional life-times. In SOSP’81: Proceedings of 8th
ACM Symposium on Operating Systems Principles,
December 1981.

[32] P. Shilane, M. Huang, G. Wallace, and W. Hsu.
WAN optimized replication of backup datasets
using stream-informed delta compression. In
FAST’12: Proceedings of the 10th Conference on
File and Storage Technologies, 2012.

[33] Y. Tan, D. Feng, F. Huang, and Z. Yan. SORT: A
similarity-ownership based routing scheme to im-
prove data read performance for deduplication clus-
ters. IJACT, 3(9):270–277, 2011.

[34] B. Zhu, K. Li, and H. Patterson. Avoiding the disk
bottleneck in the Data Domain deduplication file
system. In FAST’08: Proceedings of the 6th Con-
ference on File and Storage Technologies, pages
269–282, February 2008.

16

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 49

WAN Optimized Replication of Backup Datasets

Using Stream-Informed Delta Compression

Philip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu

Backup Recovery Systems Division

EMC Corporation

Abstract

Replicating data off-site is critical for disaster recov-

ery reasons, but the current approach of transferring

tapes is cumbersome and error-prone. Replicating across

a wide area network (WAN) is a promising alternative,

but fast network connections are expensive or impracti-

cal in many remote locations, so improved compression

is needed to make WAN replication truly practical. We

present a new technique for replicating backup datasets

across a WAN that not only eliminates duplicate regions

of files (deduplication) but also compresses similar re-

gions of files with delta compression, which is available

as a feature of EMC Data Domain systems.

Our main contribution is an architecture that adds

stream-informed delta compression to already existing

deduplication systems and eliminates the need for new,

persistent indexes. Unlike techniques based on know-

ing a file’s version or that use a memory cache, our ap-

proach achieves delta compression across all data repli-

cated to a server at any time in the past. From a de-

tailed analysis of datasets and hundreds of customers us-

ing our product, we achieve an additional 2X compres-

sion from delta compression beyond deduplication and

local compression, which enables customers to replicate

data that would otherwise fail to complete within their

backup window.

1 Introduction

Creating regular backups is a common practice to pro-

tect against hardware failures and user error. To protect

against site disasters though, replicating backups to a re-

mote repository is necessary. Shipping tapes has been

a common practice but has the disadvantages of being

cumbersome, open to security breaches, and difficult to

verify success. Replicating across the WAN is a promis-

ing alternative, but high-speed network connectivity is

expensive and has been reserved mainly for Tier 1, pri-

mary data, which has not been available for backup repli-

cation.

Moreover, WAN bandwidth has not increased with

data growth rates. While we tend to think of important

data residing in corporate centers or data warehouses,

computation has become pervasive and valuable data is

increasingly generated in remote locations such as ships,

oil platforms, mining sites, or small branch offices. Net-

work connectivity may either be expensive or only avail-

able at low bandwidths.

Since network bandwidth across the WAN is often

a limiting factor, compressing data before transfer im-

proves effective throughput. More data can be protected

within a backup window, or, for the same reasons, data

is protected against disasters more quickly. Numerous

systems have explored data reduction techniques during

network transfer including deduplication [14, 25, 35, 37],

which is effective at replacing identical data regions

with references. A promising technique to achieve ad-

ditional compression is delta compression, which com-

presses relative to similar regions by calculating the dif-

ferences [17, 19, 36].

For both deduplication and delta compression, the goal

is to find previous data that is either a duplicate or sim-

ilar to data being transferred. We would like the pool

of eligible data to include previous versions, maximiz-

ing our potential compression gains. A standard ap-

proach is to use a full index across the entire dataset,

which requires space on disk, disk I/O, and ongoing up-

dates [1, 19]. An alternative is to use a partial index

holding data that has recently been transferred, which

removes the persistent structures but shrinks the pool

of eligible data [35]. Depending on the backup cycle,

a week’s worth of data or more may have to reside in

an index to achieve much compression. We present a

novel technique called Stream-Informed Delta Compres-

sion that achieves identity and delta compression across

petabyte backup datasets with no prior knowledge of file

versions while also reducing the index overheads of sup-

porting both compression techniques.

50 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Repeated patterns in backup datasets have been lever-

aged to design effective caching strategies to minimize

disk accesses for deduplication [2, 16, 20, 23, 39, 41].

Their key observation is that for backup workloads, cur-

rent data streams tend to have patterns that correspond

to an earlier stream, which can be leveraged for effec-

tive caching. Our investigations show that the same data

patterns exist for identifying similar data as well as du-

plicates, without additional index structures.

Our technique assumes that backup data is stored in a

deduplicated format on both the backup server and re-

mote backup repository. As streams of data are writ-

ten to the backup server, they are divided into content-

defined chunks, a secure fingerprint is calculated over

each chunk, and only non-duplicate chunks are stored in

containers devoted to that particular stream.

We augment this standard technique by calculating a

sketch of each non-duplicate chunk. Sketches, some-

times referred to as resemblance hashes, are weak hashes

of the chunk data with the property that if two chunks

have the same sketch they are likely near-duplicates.

These can be used during replication to identify simi-

lar (non-identical) chunks. Instead of using a full index

mapping sketches to chunks, we rely on the deduplica-

tion system to load a cache with sketches from a previ-

ous stream, which we demonstrate in Section 6 leads to

compression close to using a full sketch index. During

replication, chunks are deduplicated, and non-duplicate

chunks are delta compressed relative to similar chunks

that already reside at the remote repository. We then

apply GZ [15] compression to the remaining bytes and

transfer across the WAN to the repository where delta

compressed data is first decoded and then stored.

There are several important properties of Stream-

Informed Delta Compression. First, we are able to

achieve delta compression against any data previously

stored and are not limited to a single identified file or the

size constraints of a partial index. Since delta compres-

sion relies upon a deduplication system to load a cache,

there is a danger of missing potential compression, but

our experiments demonstrate the loss is small and is a

reasonable trade-off.

Second, our architecture only requires one index of

fingerprints, while traditional similarity detection re-

quired one or more on-disk indexes for sketches [1, 19]

or used a partial index with a decrease in compression.

Another important consideration in minimizing the num-

ber of indexes is that updating the index during file dele-

tion is a complicated step, and reducing complexity/error

cases is important for production systems.

Our delta compression algorithm has been released

commercially as a standard feature for WAN replication

between Data Domain systems. Customers have the op-

tion of turning on delta compression when replicating

between their deduplicated backup storage systems to

achieve higher compression and correspondingly higher

effective throughput. Analyzing statistics from hundreds

of customers in the field shows that delta compression

adds an additional 2X compression and enables the repli-

cation of more data across the WAN than could otherwise

be protected.

2 Similarity Index Options

To achieve the highest possible compression during

WAN replication, we would like to find similarity

matches across the largest possible pool of chunks.

While previous projects have delta encoded data for

replication, the issue of indexing sketches efficiently has

not been explored. In this section, we discuss tradeoffs

for three indexing options.

2.1 Full Sketch Index

The conceptually simplest solution is to use a full in-

dex mapping from sketch to chunk. Unfortunately, for

terabytes or petabytes of storage, the index is too large

for memory and must be kept on disk, though sev-

eral previous projects have used a full index for storing

sketches [1, 18, 19, 40]. As an example, for a produc-

tion deduplicated storage system with 256 TB of capac-

ity, 8 KB average chunk size, and 16 bytes per record,

the sketch index would be a half-TB. Sketches are ran-

dom values so there is little locality in an index system,

and every query will cause a disk access.

Also, a common technique is for sketches to actually

consist of subunits called super-features that are indexed

independently [4, 19]. Using multiple super-features in-

creases the probability of finding a similar chunk (see

Section 4.1), but it also requires a disk access for each

super-feature’s on-disk index, followed by a disk access

for the base chunk itself. Unless the number of disk

spindles increases, lookups will be slowed by disk ac-

cesses. Another detail that is often neglected is that each

index has to be updated as chunks are written and deleted

from the system, which can be complicated in a live sys-

tem. Moving the index to flash memory decreases lookup

time [10] but increases hardware cost.

2.2 Partial Sketch Index

An alternative to a full index is to use a partial in-

dex holding recently transmitted sketches, which would

probably reside in memory, but could also exist on disk.

The advantage of a partial index is that it can be cre-

ated as data is replicated without the need for persis-

tent data structures, and several projects [33, 35] and

products [32] use a cache structure. Sizing and updat-

ing a partial index are important considerations. The

most common implementations are FIFO or LRU poli-

cies [33], which have the advantage of finding similar

chunks nearby in the replication stream, but will miss

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 51

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

N
o
rm

a
liz

e
d
 C

o
m

p
re

s
s
io

n
(a

c
tu

a
l
v
e
rs

u
s
 f

u
ll

in
d
e
x
)

partial-index size / first week’s data size
(after deduplication)

Src Code
Sys Logs

Email
Workstations

Home Dirs

Figure 1: Optimal compression in a backup configura-

tion (e.g. weekly full backup) requires an index to in-

clude at least a full backup cycle (1.0 on the x-axis).

distant matches. For backup workloads, repeated data

may not appear until next week’s full backup takes place,

and enterprise organizations typically have hundreds to

thousands of primary storage machines to be backed up

within that time. Therefore, a partial index would have

to be large enough to hold all of an organization’s pri-

mary data. Riverbed [32] uses an array of disks to index

recently transferred data.

Another form of a partial-index is to use version infor-

mation. As an example, rsync [37] uses file pathnames

as the mechanism to find previous versions to perform

compression before network transfer.

We analyze this experimentally in Figure 1, which

shows how much compression is achieved as index cov-

erage increases (more details are in Section 6). The

datasets consist of two weeks worth of backup data,

and the combination of deduplication and delta compres-

sion across both weeks is presented, normalized relative

to compression achievable with a full index (right-most

data points). This result shows a sharp increase in com-

pression aligned with the one week boundary when suffi-

cient data are covered by an index for both deduplication

and delta compression. Effectively, a partial index would

have to be nearly as large as a full index to achieve high

compression.

2.3 Stream-Informed Sketch Cache

Numerous papers have explored properties of backup

datasets and found that there are repeated patterns related

to backup policies. These patterns have been leveraged

in deduplication systems to prefetch fingerprints written

sequentially by a previous data stream [2, 16, 20, 39, 41].

We discovered that similarity detection has the same

stream properties as deduplication, because small edits to

a file will probably be a similarity match to the previous

backup of the same file, and edits may be surrounded by

duplicate regions that can load a cache effectively. This

exploration of similarity locality is one of the major con-

tributions of our work.

Following on previous work, we could build a cache

and indexing system similar to deduplicating systems

(i.e. Bloom filters and indexes), but a disadvantage of

this approach is that the number of indexing structures in-

creases with the number of super-features and adds com-

plexity to our system.

Instead, we leverage the same cache-loading technique

used by our storage system for deduplication [41]. While

loading a previous stream’s fingerprints into a cache, we

also load sketches from the same stream. This has the

significant advantage of removing the need for extra on-

disk indexes that must be queried and maintained, but

it also has the potential disadvantage of less similarity

detection than indexing sketches directly.

To explore these alternatives, we built a full sketch in-

dex, a partial index, and a stream-informed cache that

piggy-backs on deduplication infrastructure. In Section 6

we explore trade-offs between these three techniques.

3 Delta Replication Architecture

While our research has focused on improving the com-

pression and throughput of replication, it builds upon

deduplication features of Data Domain backup storage

systems. We first present an overview of our efficient

caching technique before augmenting that architecture to

support delta compression in replication.

3.1 Stream-Informed Cache for Deduplication

A typical deduplication storage system receives a stream

consisting of numerous smaller files concatenated to-

gether in a tar-like structure. The file is divided into

content-defined chunks [22, 25], and a secure hash value

such as SHA-1 is calculated over each chunk to repre-

sent it as a fingerprint. The fingerprint is then compared

against an index of fingerprints for previously stored

chunks. If the fingerprint is new, then the chunk is stored

and the index updated, but if the fingerprint already ex-

ists, only a reference to the previous chunk is maintained

in a file’s meta data. Depending on backup patterns

and retention period, customers may experience 10X or

higher deduplication (logical file size divided by post-

deduplication size).

Early deduplication storage systems ran into a fin-

gerprint index bottleneck, because the index was too

large to fit in memory, and index lookups limited overall

throughput [30]. Several systems addressed this prob-

lem by introducing caching techniques. The key insight

of the Data Domain system [41] is that when a finger-

print is a duplicate, the following fingerprints will likely

match data written consecutively in an earlier stream.

We present our basic deduplication architecture along

with highlighted modifications in Figure 2. Fingerprints

3

52 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Duplicate
Filtering

Data to store

Store New
Chunks, Fps,
& Sketches

Data Chunks

Bloom Filter Fingerprint & Sketch Cache

Fingerprint Index

Fp, Cont
Fp, Cont

Disk

…

Containers

Chunks

Load Fps & Sketches

Fps & Sketches

Figure 2: Data Domain deduplication architecture with

cache, Bloom filter, fingerprint index, and containers.

Highlighted modifications show sketches stored in con-

tainers and loaded in a stream-informed cache when fin-

gerprints are loaded.

and chunks are laid out in containers and can be loaded

into a fingerprint cache. When a chunk is presented for

storage, its fingerprint is compared against the cache,

and on a miss, a Bloom filter is checked to determine

whether the fingerprint is likely to exist in an on-disk in-

dex. If so, the index is checked, and the corresponding

container’s list of fingerprints is loaded into the cache.

When eviction occurs, based on an LRU policy, all fin-

gerprints from a container are evicted as a group. Other

techniques for maintaining fingerprint locality have been

presented [2, 16, 20, 23, 39], which indexed either dedu-

plicated chunks or the logical stream of file data.

3.2 Replication with Deduplication

For disaster recovery purposes, it is important to repli-

cate backups from a backup server to a remote repository.

Replication is a common feature in storage systems [28],

and techniques exist to synchronize versions of a reposi-

tory while minimizing network transfer [18, 37]. In most

cases, these approaches result in completely reconstruct-

ing files at the destination.

For deduplication storage systems, it is natural to only

transfer the unique chunks and the meta data needed to

reconstruct logical files. Although not described in de-

tail, products such as Data Domain BOOST [13] already

support deduplicated replication by querying the remote

repository with fingerprints and only transferring unique

chunks, which can be compressed with GZ or other lo-

cal compressors. Earlier work by Eshghi et al. [14] pre-

sented a similar approach that minimized network trans-

fer by querying the remote repository with a hierarchical

Backup�Server Remote�Repository

Load�cache�with�fingerprints

and�sketches�

Respond�with�duplicate

status�of�fingerprints

Send�batch�of�fingerprints

for�file�being�transferred

For�non-duplicate�chunks,

send�sketches

Check�sketch�cache�and

send�base�fingerprints

Delta�encode�chunks

Locally�compress�and�send

Yes
No

If�delta�compressed,�

decode

Phase�1

Phase�2

Delta�Phase

Phase�3

Store�to�disk

Does�base�

fingerprint

exist�

Figure 3: Replication protocol modified to include delta

compression.

file consisting of hashes of chunks. These approaches re-

moves duplicates in network-constrained environments.

3.3 Delta Replication

We expand upon standard replication for deduplication

systems by introducing delta compression to achieve

higher total compression than deduplication and local

compression can achieve. We modified the basic ar-

chitecture in Figure 2, adding sketches to the container

meta data section. Sketches are designed so that similar

chunks often have identical sketches. As data is written

to a deduplicating storage node, non-duplicate chunks

are further processed to create a sketch, which is stored

in the container along with the fingerprint. During du-

plicate filtering at the repository, both fingerprints and

sketches are loaded into a cache. In later sections, we

explore trade-offs of this architecture decision.

3.4 Network Protocol Considerations for Delta

Compression

The main issue to address is that both source and des-

tination must agree on and have the same base chunk,

the source using it to encode and the destination to de-

code. Figure 3 shows the protocol we chose for com-

bining deduplication and delta compression. The backup

server sends a batch of fingerprints to the remote repos-

itory, which loads its cache, performs filtering, and re-

sponds indicating which corresponding chunks are al-

ready stored. For delta compression, the backup server

then sends the sketches of unique chunks to the repos-

itory, and the repository checks the cache for matching

sketches. The repository responds with the fingerprint

corresponding to the similar chunk, called the base fin-

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 53

gerprint, or indicates that there is no similarity match. If

the backup server has the base fingerprint, it delta com-

presses a chunk relative to the base before local com-

pression and transfer. At the repository, delta encoded

and compressed chunks are uncompressed and decoded

in preparation for storage.

We considered sending sketches with fingerprints in

Phase 1, but sending sketches after filtering (Phase 2) re-

duces wasted meta data overhead, compared to sending

the sketches for all chunks. Fingerprint filtering occurs

on the destination, and its cache is properly set up to find

similar chunks. So in practice, it is best if the destination

performs similarity lookup.

4 Implementation Details

In this section, we discuss: creating sketches, selecting

a similar base chunk, and delta compression relative to a

base.

4.1 Similarity Detection with Sketches

In order to delta compress chunks, we must first find

a similar chunk already replicated. Numerous previous

projects have used sketches to find similar matches, and

our technique is most similar to the work of Broder et

al. [4, 5, 6].

Intuitively, similarity sketches work by identifying

“features” of a chunk that would not likely change even

as small variations are introduced in the data. One ap-

proach is to use a rolling hash function over all overlap-

ping small regions of data (e.g. 32 byte windows) and

choose as the feature the maximal hash value seen. This

can be done with multiple different hash functions gen-

erating multiple features. Chunks that have one or more

features (maximal values) in common are likely to be

very similar, but small changes to the data are unlikely

to perturb the maximal values [4].

Figure 4 shows an example with data chunks 1 and 2

that are similar to each other and have four sketch fea-

tures (maximal values) in common. They have the same

maximal values because the 32-byte windows that gener-

ated the maximal values were not modified by the added

regions (in red). If different regions had changed it could

affect one or more of the maximal values, so different

maximal features would be selected to represent chunk

2. This would cause a feature match to fail. In general,

as long as some set of the maximal values are unchanged,

a similarity match will be possible.

For our sketches we group multiple features together

to form “super-features” (also called super-fingerprints

in [19]). The super-feature value is a strong hash of the

underlying feature values. If two chunks have an identi-

cal super-feature then all the underlying features match.

Using super-features helps reduce false positives and re-

quires chunks to be more similar for a match to be found.

Data

Chunk 1

Data

Chunk 2

Maximal

Value 1

Maximal

Value 2

Maximal

Value 3

Maximal

Value 4

Regions of

difference

(similar to chunk 1)

Figure 4: Similar chunks tend to have the same maximal

values, which can be used to create features for a sketch.

To generate multiple, independent features, we first

generate a Rabin fingerprint Rabin fp over rolling win-

dows w of chunk C and compare the fingerprint against a

mask for sampling purposes. We then permute the Rabin

fingerprint to generate multiple values with function πi

with randomly generated coprime multiplier and adder

values m and a.

fp = Rabin fp(w)

πi(fp) = (mi ∗ fp+ai) mod 232

If the result of πi(fp) is maximal for all w, then we re-

tain the Rabin fingerprint as featurei. After calculating

all features, a super-feature sf j is formed by taking a Ra-

bin fingerprint over k consecutive features. We represent

consecutive features as featureb...e for beginning and end-

ing positions b and e, respectively.

sf j = Rabin fp(feature j∗k... j∗k+k−1)

As an example, to produce three super-features with

k = 4 features each, we generate twelve features, and

calculate super-features over the features 0...3, 4...7, and

8...11.

We performed a large number of experiments varying

the number of features per super-feature and number of

super-features per sketch. Increasing the number of fea-

tures per super-feature increases the quality of matches,

but also decreases the number of matches found. In-

creasing the number of super-features increases the num-

ber of matches but with increased indexing requirements.

We typically found good similarity matches with four

features per super-feature and a small number of super-

features per sketch. These early experiments were com-

pleted with datasets that consisted of multiple weeks of

backups and had sizes varying from hundreds of giga-

bytes to several terabytes. We explore the delta com-

pression benefits of using more than one super-feature in

Section 6.4.

To perform a similarity lookup, we use each super-

feature as a query to an index representing the corre-

sponding super-features of previously processed chunks.

5

54 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Chunks that match on more super-features are consid-

ered better matches than those that match on fewer super-

features, and experiments show a correlation between

number of super-feature matches and delta compression.

Other properties can be used when selecting among can-

didates including age, status in a cache, locality on disk,

or other criteria.

4.2 Delta Compression

Once a candidate chunk has been selected, it is referred

to as the base used for delta compression, and the tar-

get chunk currently being processed will be represented

as a 1-level delta of the base. To perform delta encod-

ing, we use a technique based upon Xdelta [21] which is

optimized for compressing highly similar data regions.

We initialize the encoding by iterating through the

base chunk, calculating a hash value at subsampled po-

sitions, and storing the hash and offset in a temporary

index. We then begin processing the target chunk by cal-

culating a hash value at rolling window positions. We

look up the hash value in the index to find a match against

the base chunk. If there is a match, we compare bytes in

the base and target chunks forward and backward from

the starting position to create the longest match possible,

which is encoded as a copy instruction. If the bytes fail

to match, we issue an insert instruction to insert the

target’s bytes into the output buffer, and we also add this

region to the hash index. During the backward scans,

we may intersect a region previously encoded. We han-

dle this by determining whether keeping the previous in-

struction or updating it will lead to greater compression.

Since we are performing delta compression at the chunk

level, as compared to the file level, we are able to main-

tain this temporary index and output buffer in memory.

5 Experimental Details

We perform actual replication experiments on working

hardware with multi-month datasets whenever practical,

but we also use simulators to compare alternative tech-

niques. In this section, we first present the datasets

tested, then details of our experimental setup, and finally

compression metrics.

5.1 Datasets

In this paper we use backup datasets collected over sev-

eral months as shown in Table 1, which lists the type of

data, total size in TB, months collected, deduplication,

delta, GZ, and total compression. Total compression is

measured as data bytes divided by replicated bytes (after

all types of compression) and is equivalent to the multi-

plication of deduplication, delta, and GZ. For the com-

pression values, we used results from our default con-

figuration. These datasets were previously studied for

deduplication [11, 27] but not delta compression. Note

that our deduplication results vary slightly (within 5%)

from Dong et al. [11] due to implementation differences.

We also highlight steady-state delta compression after

a seeding period has completed. For all of the datasets

except Email, seeding was one week, and the period af-

ter seeding is the remaining months of data. Customers

often handle initial seeding by keeping pairs of replicat-

ing machines on a LAN (when new hardware is installed)

until seeding completes and then move the destination

machine to the long-term location. Alternatively, seed-

ing can be handled using backups available at the des-

tination. While there is some delta compression within

the seeding period, delta compression increases once a

set of base chunks become available, and the period after

seeding is indicative of what customers will experience

for the lifetime of their storage.

These datasets consist of large “tar” type files repre-

senting many user files or objects concatenated together

by backup software. Except for Email (explained be-

low), these datasets consist of a repeated pattern of a

weekly full backup followed by six, smaller incremen-

tal backups.

Source Code Repository: Backups from a version con-

trol repository containing source code.

Workstations: Backups from 16 desktops used by soft-

ware engineers.

Email: Backups from a Microsoft Exchange server. Un-

like the other datasets, Email consists of daily full back-

ups, and the seeding phase consists of a single backup

instead of a week’s worth of data.

System Logs: Backups from a server’s /var directory,

mostly consisting of emails stored by a list server.

Home Directories: Backups from software engineers’

home directories containing source code, office docu-

ments, etc.

5.2 Delta Replication Experiments

Many of our experiments were performed on production

hardware replicating between pairs of systems in our lab.

We actually used a variety of machines that varied in stor-

age capacity (350 GB - 5 TB), RAM (4 GB - 16 GB),

and computational resources (2 - 8 cores). We have con-

trolled internal parameters and confirmed that disparate

machines produce consistent results. Unless specifically

stated, we ran all experiments with 3 super-features per

sketch, 12 MB sketch cache, 8 KB average chunk size,

and 4.5 MB containers holding meta data and locally

compressed chunks. When applying local compression,

we create compression regions of approximately 128 KB

of chunks.

5.3 Simulator Experiments

We compare our technique of replication with a finger-

print index and sketch cache against two alternative ar-

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 55

Name
Properties Entire Dataset Seeding After Seeding

TB Months Dedupe Delta GZ Total GB Dedupe Delta GZ Total

Source Code 4.6 6 20.25 2.97 3.24 194.86 140 24.91 3.75 3.99 372.72

Workstations 4.9 6 5.62 4.44 1.93 48.16 166 5.70 4.62 1.91 50.30

Email 5.2 7 6.79 1.95 2.95 39.06 16 6.90 1.97 2.96 40.24

System Logs 5.4 4 37.19 2.39 2.38 211.54 254 57.94 3.55 2.86 588.26

Home Dirs 12.9 3 19.20 1.90 1.48 53.99 491 31.66 2.89 1.91 174.76

Table 1: Summary of datasets. Deduplication, delta, and GZ compression factors are shown across the entire dataset

as well as for the period after seeding, which was typically one week.

chitectures: 1) full fingerprint and sketch indexes and 2)

a partial-index of fingerprints and sketches implementing

an LRU eviction policy.

Before building the production system, we actually

started with a simplified simulator that maintained a full

index of fingerprints and sketches in memory. To de-

crease memory overheads, we use 12 bytes per finger-

print as compared to larger fingerprints necessary for a

product such as a 20 byte SHA-1. In a separate analy-

sis, we found that 12 byte fingerprints only cause a small

number of collisions out of the hundreds of millions of

chunks processed. To maximize throughput and simplify

the code, we try to keep the entire index in RAM. Also,

instead of implementing a full replication protocol, we

record statistics as the client deduplicates and delta com-

presses chunks without network transfer. Our simulator

did not apply local compression with the same technique

as our replication system, so comparisons to the simula-

tor do not include local compression.

Our second simulator explores the issues of data lo-

cality and index requirements with an LRU partial-index

of fingerprints and sketches. This partial-index is a mod-

ification of the previous simulator with the addition of

parameters to control the index size. The partial-index

only holds meta data, fingerprints and sketches, which

each reference chunks stored on disk. The fingerprint

and sketches for a chunk maintain the same age in the

partial-index, so they are added and evicted as a unit. If a

fingerprint is referenced as a duplicate of incoming data

or a sketch is selected as the best similarity match for

compression, the age is updated.

5.4 Compression Metrics

Our focus is on improving replication across the WAN,

specifically for customers with low network connectiv-

ity. For that reason, we mostly focus on compression

metrics, though we also present throughput results from

experiments and hundreds of customer systems.

We tend to use the term compression generically to re-

fer to any type of data reduction during replication such

as deduplication, delta compression, or local compres-

sion with an algorithm such as GZ. Compression is cal-

culated as original bytes/post compression bytes. How-

ever, we generally use the term total compression to

mean data reduction achieved by deduplication, delta,

and GZ in combination. As an example, if the deduplica-

tion factor is 10X , delta is 2X , and GZ is 1.5X then total

compression is 30X since these techniques have a mul-

tiplicative effect. A compression factor of 1X indicates

no data reduction. In order to show different datasets

on the same graph, we often plot normalized compres-

sion, which is total compression of a particular exper-

iment divided by the maximum total compression. As

explained in Section 6, maximum compression is mea-

sured using a full index or the appropriate baseline for

each experiment and dataset. Normalized compression

is in the range (0...1].

6 Results

In this section, we begin by exploring parameters of our

system (cache size, number of super-features, and multi-

level delta) and then compare Stream-Informed Delta

Compression to alternative techniques such as using a

full sketch index or maintaining a partial-index of re-

cently used sketches. We then investigate the interaction

of delta and GZ compression.

6.1 Sketch Cache Size

When designing our cache-based delta system, sizing the

cache is an important consideration. If datasets have

similarity locality that matches up perfectly to dedupli-

cation locality, then a cache holding a single container

could theoretically achieve all of the possible compres-

sion. With a larger cache, similarity matches may be

found to chunks loaded in the recent past, with com-

pression growing with cache size. We found that the hit

rate is maximized with a cache sized consistently across

datasets even though Home Directories is over twice as

large as the other datasets.

We evaluated the sketch cache hit rate in Figure 5, by

increasing the sketch cache size (x-axis) and measuring

the number of similarity matches found in the cache rel-

ative to using a full index. The sketch cache size refers to

the amount of memory required to hold sketches, which

is approximately 12 bytes per super-feature. Therefore a

cache of 12 MB corresponds to 1 million super-features

7

56 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10 12 14 16 18 20

S
k
e
tc

h
 C

a
c
h
e
 H

it
 R

a
te

(a
c
tu

a
l
v
e
rs

u
s
 f

u
ll

in
d
e
x
)

Sketch Cache Size MB

Src Code
Workstations

Email
Sys Logs

Home Dirs

Figure 5: Locality-informed sketch cache hit rate reaches

its maximum with a cache of 12-16 MB.

and 1/3 million chunks, since we have 3 super-features

per sketch by default.

With a cache of 4 MB, the hit rate is between 50%

and 90% of the maximum, and the hit rate grows until

around 12 or 16 MB, when it is quite close to the final

value we show at 20 MB. Email showed the worst hit

rate, maxing at around 80%, which is still a reasonably

high result. Email has worse deduplication locality than

the other datasets and this impacts delta compression in

a data-dependent manner. Regardless of the dataset size

(5 TB up to 13 TB) and deduplication (5-37X), all of

the datasets reached their maximum hit rates with a sim-

ilarly sized cache. Our implementation has a minimum

cache size related to the large batches of chunks trans-

ferred during replication as well as the multiple stages of

pipelined replication that either add data to the cache or

need to check for matches in the cache.

Although it may be reasonable to use a larger cache

in enterprise-sized servers, note that our experiments are

for single datasets at a time. A storage server would

normally handle numerous simultaneous streams, each

needing a portion of the cache, so our single-stream

results should be scaled accordingly. Since the lo-

cality of delta compression for backup datasets corre-

sponds closely to identity locality, only a small cache

is needed, and our memory requirements should scale

well with the number of backup streams. Our intuition

is that users/applications often make small modifications

to files, so duplicate chunks indicate a region of the pre-

vious version of a file that is likely to provide delta com-

pression.

6.2 Delta Encoding

Our similarity detection technique is able to find matches

for most chunks during replication and achieves high en-

coding compression on those chunks. The second col-

umn of Table 2 shows the percentage of bytes after dedu-

plication that are delta encoded after seeding. 55-82%

Name
% Post- Encoding Delta

Dedupe Bytes Factor Factor

Source Code 82 8.91 3.75

Workstations 81 30.05 4.62

Email 55 10.05 1.97

System Logs 77 15.65 3.55

Home Dirs 68 30.11 2.89

Median 77 15.65 3.55

Table 2: Datasets, percent of post-deduplication bytes

delta encoded, delta encoding factor, and resulting delta

factor for each dataset, which corresponds to Table 1 af-

ter seeding.

of bytes undergo delta encoding with a median of 77%.

Delta encoding factors vary from 8.91-30.11X with a

median of 15.65X. As an example of how the delta fac-

tor is calculated for System Logs, 77% of bytes after

deduplication are delta encoded to 1
15.65

of their origi-

nal size, and 23% of bytes are not encoded. Therefore,
1

.77
15.65 +.23

≈ 3.55 (rounding in the tables affects accuracy),

which is equivalent to dividing post-deduplication bytes

by post-delta compression bytes.

While further improvements in encoding compression

are likely possible, we are already shrinking delta en-

coded chunks to a small fraction of their original size.

On the other hand, increasing the fraction of chunks that

receive delta encoding could lead to larger savings.

6.3 Multi- vs 1-Level Delta

While we have described the delta compression algo-

rithm as representing a chunk as a 1-level delta from a

base, because we decode chunks at the remote repository,

our delta replication is actually multi-level. Specifically,

consider a delta encoded chunk B transferred across the

network that is then decoded using base chunk C and

stored. At a later time, another delta encoded chunk A

is transferred across the network that uses B as a base.

Although B exists in a decoded form, it was previously a

1-level delta encoded chunk, so A is effectively a 2-level

delta because A referenced B, which referenced C. Our

replication system, like many, does not bound the delta

level, since chunks are decoded at the destination, and we

effectively achieve multi-level delta across the network.

As compared to replicating delta compressed chunks,

storing such chunks introduces extra complexity. Al-

though n-level delta is possible for any value of n, de-

coding an n-level delta entails n reads of the appropriate

base chunks, which can be inefficient in a storage sys-

tem. For this reason, a delta storage system [1] may only

support 1− or 2-level delta encodings to bound decode

times.

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 57

 0

 0.2

 0.4

 0.6

 0.8

 1

Src C
ode

W
orkst.

Em
ail

Sys L.

H
om

e D
.

N
o
rm

a
liz

e
d
 C

o
m

p
re

s
s
io

n

1-level Muli-level

Figure 6: Multi-level delta compression improves 6-30%

beyond 1-level delta.

To compare the benefits of multi- and 1−level delta,

we studied the compression differences. We modified

our replication system so that after a chunk is delta en-

coded, its sketch is then invalidated. This ensures that

delta encoded chunks will never be selected as the base

for encoding other chunks, preventing 2-level or higher

deltas.

In Figure 6, multi- and 1−level delta are compared,

with multi-level delta adding 1.03 - 1.18X additional

compression. As an example, Source Code increased

from 178X to 194X total compression (deduplication,

delta, and GZ), which is roughly similar to adding a sec-

ond super-feature as discussed in Section 6.4. These re-

sults also highlight that 1-level delta is a reasonable ap-

proximation to multi-level, when multi-level is impracti-

cal. Unlike a storage system, we are able to get the com-

pression benefits of multi-level without the slowdowns

related to decoding n-level delta chunks.

6.4 Sketch Index vs Stream-Informed Sketch Cache

We next investigate how our stream-informed caching

technique compares to the alternative of a full sketch in-

dex. We expect that using a full sketch index could find

potential matches that a sketch cache will miss because

of imperfect locality, but maintaining indexes for billions

of stored chunks adds significant complexity. We explore

the compression trade-offs by comparing delta replica-

tion with a cache against a simulator with complete in-

dexes for each super-feature.

Figure 7 compares compression results for the index

and cache options. The lowest region of each vertical bar

is the amount of compression achieved by deduplication,

and because of differences in implementation between

our product and simulator, these numbers vary slightly.

The next four sets of colored regions show how much ex-

tra compression is achieved by using 1-4 super-features.

The cache experiments ran on production hardware, and

the cache was fixed at 12 MB. Also, our simulator with

 0

 0.2

 0.4

 0.6

 0.8

 1

Ind.
C
ac.

Ind.
C
ac.

Ind.
C
ac.

Ind.
C
ac.

Ind.
C
ac.

N
o
rm

a
liz

e
d
 C

o
m

p
re

s
s
io

n

Dedupe
1 SF
2 SF

3 SF
4 SF

Home DirsSys LogsEmailWorkstSrc Code

Figure 7: Using a stream-informed sketch cache results

in nearly as much compression as using a full index,

and using two super-features with a cache achieves more

compression than a single super-feature index.

index did not apply local compression, so only dedupli-

cation and delta compression are analyzed.

In all cases, using a single super-feature adds sig-

nificant compression beyond deduplication alone, with

decreasing benefit as the number of super-features in-

creases. Although using a sketch cache generally has

lower delta compression than an index, the results are

reasonably close (Workstations with 1 super-feature

and a cache is within 14% of the index with 1 super-

feature). Importantly, we can use more than one super-

feature in our cache with little additional overhead com-

pared to multiple on-disk indexes for super-features. Us-

ing a cache with two or more super-features achieves

greater compression than a single index, which is why

we decided to pursue the caching technique.

An interesting anomaly is that Source Code achieved

higher delta compression with a stream-informed sketch

cache than a full index, even though we would ex-

pect a limited-size cache to be an approximation to a

full index. We found that Source Code and Home

Directories had extremely high numbers of potential

similarity matches (> 10,000) all with the same num-

ber of super-feature matches, which was likely due to

repeated headers in source files1. Selecting among the

candidates leads to differences in delta compression, and

the selection made by a stream-informed cache leads

to higher compression for Source Code than our tie-

breaking technique for the index (most recently written).

1This caused slowed throughput for Home Directories, and

those experiments would not have completed without adjusting

the sketch index. We modified the sketch index for all Home

Directories results such that if a sketch has more than 128 similarity

matches, the current sketch is not added to the index.

9

58 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Home Directories had similar compression with ei-

ther a cache or index.

Another unexpected result is that increasing the num-

ber of super-features used with our cache did not always

increase total compression. Since we fix the size of our

cache at 12 MB, when the number of super-features in-

creases, fewer chunks are represented in the cache. The

optimal cache size tends to increase with the number of

super-features, but the index results indicate that adding

super-features has diminishing benefit.

6.5 Partial-index of Fingerprints and Sketches

As a comparison to previous work, we implemented a

partial-index of fingerprints and sketches that updates

ages when either a chunk’s fingerprint or sketch is ref-

erenced and evicts from the partial-index with an LRU

policy. While it is somewhat unfair to compare a partial-

index to our technique, it is useful for analyzing the scal-

ability of such systems.

To focus on the data patterns of typical backups, we

limit this experiment to two full weeks of each dataset,

which typically consists of a full backup followed by

six incremental backups followed by another full and six

incremental backups. For Email, we selected two full

backups a week apart, since a full backup was created

each day.

Figure 1 (presented in Section 2) shows the amount

of compression achieved (deduplication and delta) as the

partial-index size increases along the x-axis, which is

measured as the fraction of the first week’s data kept in

a partial-index. When the partial-index is able to hold

more than a week’s worth of data (1.0 on x-axis), com-

pression jumps dramatically as the second week’s data

compresses against the first week’s data. To highlight

this property, the horizontal axis is normalized based

on the first week’s deduplication rate, since the post-

deduplication size affects how many fingerprints and

sketches must be maintained.

These results highlight that techniques using a partial-

index must hold a full backup cycle’s worth of data (e.g.

at least one full backup) to achieve significant compres-

sion, while our delta compression technique uses a com-

bination of a deduplication index and stream-informed

sketch cache to achieve high compression with small

memory overheads. For storage systems with large back-

ups or backups from numerous sources, our algorithm

would tend to scale memory requirements better, since

Figure 5 demonstrates that we only need a fixed-size

cache regardless of the dataset size.

6.6 Interaction of Delta and Local Compression

Our replication system includes local compressors such

as GZ that can be selected by the administrator. During

replication, chunks are first deduplicated and many of the

Name
No Delta With Delta Delta

GZ Delta GZ Improve.

Source Code 7.20 3.75 3.99 2.08

Workstations 2.83 4.62 1.91 3.12

Email 3.12 1.97 2.96 1.87

System Logs 4.63 3.55 2.86 2.19

Home Dirs 3.12 2.89 1.91 1.77

Median 3.12 3.55 2.86 2.08

Table 3: Delta encoding overlaps with the effectiveness

of GZ, but total compression including delta is still a 2X

improvement beyond alternative approaches. Results are

after initial seeding.

remaining chunks are delta compressed. All remaining

data bytes (delta compressed or not) are then compressed

with a local compressor. A subtle detail of delta com-

pression is that it reduces redundancies within a chunk

that appear in the previous base chunk and within itself,

which overlaps with compression that local compressors

might find.

We evaluated the impact of delta compression on GZ

and total compression by rerunning our replication ex-

periments with GZ enabled and delta compression ei-

ther enabled or disabled. Table 3 shows GZ compression

achieved both with and without delta after seeding. Re-

sults with delta enabled are the same as Table 1. Dedu-

plication factors are the same with or without delta en-

abled, and are removed from the table for space reasons.

GZ and delta overlap by 5-50% (7.20X vs 3.99X for GZ

on Source Code), but using delta in combination with

GZ still provides improved total compression (2.08X for

Source Code). The overlap of local compression and

delta compression varies with dataset and type of local

compressor selected (GZ, LZ, etc.), but we typically see

significant advantages to using both techniques in com-

bination with deduplication.

6.7 WAN Replication Improvement

We performed numerous replication experiments mea-

suring network and effective throughput. Figure 8 shows

a representative replication result for the Workstations

dataset. Throughput was throttled at T3 speed (44 Mb/s)

and measured every 10 minutes. We found effective

throughput is 1-2 orders of magnitude faster than net-

work throughput, which corresponds to total compres-

sion. Although throughput could be further improved

with better pipelining and buffering, this result highlights

that compression boosts effective throughput and reduces

the time until transfer is complete.

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 59

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000

M
b
/s

minutes

effective tput network tput

Figure 8: Effective throughput is higher than network

throughput due to compression during replication.

7 Performance Characteristics

In this section, we discuss overheads of delta compres-

sion and limitations of stream-informed delta compres-

sion.

7.1 Delta Overheads

First, capacity overheads for storing sketches are rela-

tively small. Each chunk stored in a container (after

deduplication) also has a sketch added to the meta data

section of the container, which is less than 20 bytes, but

our stream-informed approach removes the need for a

full on-disk index of sketches.

There are also two performance overheads added to

the system: sketching on the write path and reading sim-

ilar base chunks to perform delta compression. First,

incoming data is sketched before being written to disk,

which introduces a 20% slowdown in unoptimized tests.

The sketching stage happens after deduplication, so after

the first full backup, later backups experience less slow-

down since a large fraction of the data is duplicate and

does not need to be sketched. As CPU cores increase

and pipelining is further optimized, this overhead may

become negligible.

The second, and more sizable throughput overhead,

is during replication when similar chunks are read from

disk to serve as the base for delta compression, which

limits our throughput by the read speed of our storage

system. Our read performance varies with the number

of disk spindles and data locality, which we are continu-

ing to investigate. Remote sites also tend to have lower-

end hardware with fewer disk spindles than data ware-

houses. For these reasons, we recommend turning on

delta compression for low bandwidth connections (6.3

Mb/s or slower), where delta compression is not the bot-

tleneck and extra delta compression multiplies the effec-

tive throughput. Also, it should be noted that read over-

heads only take place when delta compression occurs, so

 0

 2

 4

 6

 8

 10

1 3 6 9 12

%
 R

e
s
o
u
rc

e
s

Fan-in

CPU
Disk

Figure 9: CPU and disk utilization grows fairly linearly

on the remote repository as the number of replication

streams increases. Error bars indicate a standard devi-

ation.

if no similarity matches are found, read overhead will be

minimal.

Effectively, we are trading computation and I/O re-

sources for higher network throughput, and we expect

computation and I/O to improve at a faster rate than net-

work speeds increase, especially in remote areas. We

expect this tradeoff to become more important in the fu-

ture as data sizes continue to grow. Improvements to our

technique and hardware may also expand the applicabil-

ity of delta replication to a larger range of customers.

Delta compression increases computational and I/O

demands on both the backup server and remote reposi-

tory. We set up an experiment replicating from twelve

small backup servers (2 cores and 3-disk RAID) to a

medium-sized remote repository (8 cores and 14-disk

RAID) with a T1 connection (1.5 Mb/s). At the backup

servers, the CPU and disk I/O overheads were modest

(2% and 4% respectively). At the remote repository,

CPU and disk overhead scaled linearly as the number of

replication streams grew from 1 to 12 as shown in Fig-

ure 9. Measurements were made over every 30 second

period after the seeding phase, and standard deviation er-

ror bars are shown. These results suggest that dozens of

backup servers could be aggegated to one medium-sized

remote repository. As future work, we would like to in-

crease the scaling tests.

7.2 Stream-Informed Cache Limitations

Since we do not have a full sketch index, loss of cache

locality translates to a loss in potential compression.

While earlier experiments showed that stream-informed

caching is effective, those experiments were on individ-

ual datasets. In a realistic environment, multiple datasets

have to share a cache, and garbage collection further de-

grades locality on disk because live chunks from differ-

ent containers and datasets can be merged into new con-

tainers.

11

60 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

We ran an experiment with a midsize storage appli-

ance with a 288 MB cache sized to handle approximately

20 replicating datasets. The experiment consisted of

replicating a real dataset to this appliance while vary-

ing the number of synthetic datasets also replicated be-

tween 0, 24, and 49. This test was performed with three

real datasets. The synthetic datasets were generated with

an internal tool that had deduplication of 12X and delta

compression of 1.7X, which exercises our caching in-

frastructure in a realistic manner. When the number of

datasets was increased to 25 (1 real and 24 synthetic),

delta compression decreased 0%, 6% and 12% among

the three real datasets relative to a baseline of replicat-

ing each real dataset individually. Increasing to 49 syn-

thetic datasets (beyond what is advised for this hardware)

caused delta compression to decrease 0%, 12%, and 27%

from the baseline for the three real datasets. Our intuition

is that the variability in results is due to locality differ-

ences among these datasets. In general, these results sug-

gest our caching technique degrades in a gradual manner

as the number of replicating datasets increases relative to

the cache size.

This experiment investigates how multiple datasets

sharing a cache affect delta compression, and we vali-

date these findings with results from the field presented

in Section 8, where customers achieved 2X additional

delta compression beyond deduplication even though

their systems had multiple datasets sharing a storage ap-

pliance. While we do not know the upper bound on

how much delta compression these customers could have

achieved in a single-dataset scenario, these results sug-

gest sizable network savings.

8 Results from Customers

Basic replication has been available with EMC Data Do-

main systems for many years using the deduplication

protocol of Figure 3, and the extra delta compression

stage became available in 2009. The version available to

customers has a cache scaled to the number of supported

replication streams.

We analyzed daily reports from several hundred stor-

age systems used by our customers during the second

week of August 2011, including a variety of hardware

configurations. Reporting median values, a typical cus-

tomer transferred 1 TB of data across a 3.1 Mb/s link dur-

ing the week, though because of our compression tech-

niques, much less data was physically transferred across

the network. Median total compression was 32X includ-

ing deduplication, delta, and local compression. Fig-

ure 10 shows the distribution of delta compression with

50% of customers achieving over 2X additional com-

pression beyond what deduplication alone achieves, and

outliers achieving 5X additional delta compression. Con-

 0

 2

 4

 6

 8

 10

 12

 1 1.5 2 2.5 3 3.5 4 4.5 5
 0

 20

 40

 60

 80

 100

P
e
rc

e
n
t

o
f

c
u
s
to

m
e
rs

c
d
f

Delta compression factor

histogram
cdf

Figure 10: Distribution of delta compression. 50% of

customers achieve over 2X additional delta compression.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000
 0

 20

 40

 60

 80

 100

P
e

rc
e

n
t
o

f
c
u

s
to

m
e

rs

c
d

f

Hours saved

histogram
cdf

Figure 11: Distribution of hours saved by customers. We

estimate that 50% of customers save over 588 hours of

replication time per week because of our combination of

compression techniques.

current work [38] provides further analysis of replication

and backup storage in general.

Finally, in Figure 11, we show how much time was

saved by our customers versus sending data without any

compression. Our reports indicate how much data was

transferred, an estimate of network throughput (though

periodic throttling is difficult to extract), and compres-

sion, so we can calculate how long replication would

take without compression. The median customer would

need 608 hours to fully replicate their data (more hours

than are in a week), but with our combined compres-

sion, replication reduced to 20 hours (saving 588 hours

of network transfer time). For such customers, it would

be impossible for them to replicate their data each week

without compression, so delta replication significantly

increases the amount of data that can be protected.

9 Related Work

Our stream-informed delta replication project builds

upon previous work in the areas of optimizing network

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 61

transfer, delta compression, similarity detection, dedu-

plication, and caching techniques.

Minimizing network transfer has been an area of on-

going research. One of the earliest projects by Spring

et al. [33] removed duplicate regions in packets with a

synchronized cache by expanding from duplicate start-

ing points. LBFS [25] divided a client’s file into chunks

and deduplicated chunks against any previously stored.

Jumbo Store [14] used a hierarchical representation of

files that allowed them to quickly check whether large

subregions of files were unchanged. CZIP [26] applied a

similar technique with user level caches to remove dupli-

cate chunks while synchronizing remote repositories.

Most work in file synchronization has assumed that

versions are well identified so that compression can

be achieved relative to one (or a few) specified file(s).

Rsync [37] is a widely used tool for synchronizing fold-

ers of files based on compressing against files with the

same pathname. An improvement [35] recursively split

files to find large duplicate regions using a memory

cache.

Beyond finding duplicates during network transfer,

delta compression is a well known technique for com-

puting the difference between two files or data ob-

jects [17, 36]. Delta compression was applied to web

pages [8, 24] and file transfer and storage [7, 9, 21, 34]

using a URL and file name, respectively, to identify a

previous version.

When versioning information is unavailable, a mecha-

nism is needed to find a previous, similar file or data ob-

ject to use as the base for delta compression. Broder [4,

5] performed some of the early work in the resem-

blance field by creating features (such as Rabin finger-

prints [31]) to represent data such that similar data tend

to have identical features. Features were further grouped

into super-features to improve matching efficiency by

reducing the number of indexes. Features and super-

features were used to select an appropriate base file for

deduplication and delta compression [12, 19], removing

the earlier requirement for versioning information. TA-

PER [18] presented an alternative to super-features by

representing files with a Bloom filter storing chunk fin-

gerprints and measuring file similarity based on the num-

ber of matching bits between Bloom filters and then delta

compressing similar files. Delta compression within the

storage system has used super-feature techniques to iden-

tify similar files or regions of files [1, 40]. Aronovich et

al. [1] used 16 MB chunks to decrease sketch indexing

requirements and had hundreds of disk spindles for per-

formance.

Storage systems have eliminated duplicate regions

based on querying an index of fingerprints [3, 22, 29, 30].

Noting that the fingerprint index becomes much larger

than will fit in memory and that disk accesses can be-

come the bottleneck, Zhu et al. [41] presented a tech-

nique to take advantage of stream locality to reduce

disk accesses by 99%. Several variants of this ap-

proach explored alternative indexing strategies to load

a fingerprint cache such as moving the index to flash

memory [10] and indexing a subset of fingerprints ei-

ther based on logical or post-deduplication layout on

disk [2, 16, 20, 23, 39]. Our similarity detection ap-

proach builds upon these caching ideas to load sketches

as well as fingerprints into a stream-informed cache.

10 Conclusion and Future Work

In this paper, we present stream-informed delta com-

pression for replication of backup datasets across a

WAN. Our approach leverages deduplication locality to

also find similarity matches used for delta compression.

While locality properties of duplicate data have been pre-

viously studied, we present the first evidence that similar

data has the same locality. We show that using a compact

stream-informed cache to load sketches achieves almost

as much delta compression as using a full index without

extra data structures. Our technique has been incorpo-

rated into the Data Domain systems, and average cus-

tomers achieve 2X additional compression beyond dedu-

plication and save hundreds of hours of replication time

each week.

In future work, we would like to expand the number

of WAN environments that benefit from delta replica-

tion by improving the read throughput, which currently

gates our system. Also, we would like to further ex-

plore delta compression techniques to improve compres-

sion and scalability.

Acknowledgments

We thank Fred Douglis, Kai Li, Stephen Manley, Hugo

Patterson, Hyong Shim, Benjamin Zhu, Cezary Dubnicki

(our shepherd), and our reviewers for their feedback. We

would also like to acknowledge the many EMC engineers

who continue to improve and support delta replication.

References

[1] L. Aronovich, R. Asher, E. Bachmat, H. Bitner,

M. Hirsch, and S. T. Klein. The design of a similar-

ity based deduplication system. In Proceedings of

SYSTOR 2009: The Israeli Experimental Systems

Conference, SYSTOR ’09, pages 6:1–6:14, New

York, NY, USA, 2009.

[2] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillib-

ridge. Extreme binning: scalable, parallel dedupli-

cation for chunk-based file backup. In Proceedings

of the 17th IEEE International Symposium on Mod-

eling, Analysis, and Simulation of Computer and

Telecommunication Systems, Sept. 2009.

13

62 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[3] D. R. Bobbarjung, S. Jagannathan, and C. Dub-

nicki. Improving duplicate elimination in storage

systems. Trans. Storage, 2:424–448, November

2006.

[4] A. Broder. On the resemblance and containment of

documents. In Proceedings of the Compression and

Complexity of Sequences, page 21, 1997.

[5] A. Broder. Identifying and filtering near-duplicate

documents. In Proceedings of the 11th Annual Sym-

posium on Combinatorial Pattern Matching, pages

1–10, 2000.

[6] A. Z. Broder, M. Charikar, A. M. Frieze, and

M. Mitzenmacher. Min-wise independent permu-

tations (extended abstract). In Proceedings of the

30th annual ACM symposium on Theory of comput-

ing, pages 327–336, New York, NY, USA, 1998.

[7] R. C. Burns and D. D. E. Long. Efficient distributed

backup with delta compression. In Proceedings of

the 5th workshop on I/O in parallel and distributed

systems, pages 27–36, New York, NY, USA, 1997.

[8] M. C. Chan and T. Y. C. Woo. Cache-based com-

paction: a new technique for optimizing web trans-

fer. In INFOCOM’99 conference, March 1999.

[9] Y. Chen, Z. Qu, Z. Zhang, and B.-L. Yeo. Data

redundancy and compression methods for a disk-

based network backup system. International Con-

ference on Information Technology: Coding and

Computing, 1:778, 2004.

[10] B. Debnath, S. Sengupta, and J. Li. Chunkstash:

speeding up inline storage deduplication using flash

memory. In Proceedings of the USENIX Annual

Technical Conference, Berkeley, CA, USA, 2010.

[11] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy,

and P. Shilane. Tradeoffs in scalable data routing

for deduplication clusters. In Proceedings of the

9th USENIX Conference on File and Storage Tech-

nologies, 2011.

[12] F. Douglis and A. Iyengar. Application-specific

delta-encoding via resemblance detection. In Pro-

ceedings of the USENIX Annual Technical Confer-

ence, pages 113–126, 2003.

[13] EMC Corporation. Data Domain Boost Soft-

ware, 2010. http://www.datadomain.com/

products/dd-boost.html.

[14] K. Eshghi, M. Lillibridge, L. Wilcock, G. Bel-

rose, and R. Hawkes. Jumbo store: Providing ef-

ficient incremental upload and versioning for a util-

ity rendering service. In Proceedings of the 5th

USENIX Conference on File and Storage Technolo-

gies, 2007.

[15] J. L. Gailly and M. Adler. The GZIP compressor.

http://www.gzip.org.

[16] F. Guo and P. Efstathopoulos. Building a high-

performance deduplication system. In Proceedings

of the USENIX Annual Technical Conference, 2011.

[17] J. J. Hunt, K.-P. Vo, and W. F. Tichy. Delta algo-

rithms: an empirical analysis. ACM Trans. Softw.

Eng. Methodol., 7:192–214, April 1998.

[18] N. Jain, M. Dahlin, and R. Tewari. Taper: tiered ap-

proach for eliminating redundancy in replica syn-

chronization. In Proceedings of the 4th USENIX

Conference on File and Storage Technologies,

2005.

[19] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey.

Redundancy elimination within large collections of

files. In Proceedings of the USENIX Annual Tech-

nical Conference, pages 59–72, 2004.

[20] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-

likar, G. Trezise, and P. Camble. Sparse indexing:

large scale, inline deduplication using sampling and

locality. In Proceedings of the 7th USENIX Confer-

ence on File and Storage Technologies, pages 111–

123, 2009.

[21] J. MacDonald. File system support for delta com-

pression. Master’s thesis, Department of Electrical

Engineering and Computer Science, University of

California at Berkeley, 2000.

[22] U. Manber. Finding similar files in a large file sys-

tem. In Proceedings of the USENIX Winter Techni-

cal Conference, pages 1–10, 1994.

[23] J. Min, D. Yoon, and Y. Won. Efficient deduplica-

tion techniques for modern backup operation. IEEE

Transactions on Computers, 99, 2010.

[24] J. C. Mogul, F. Douglis, A. Feldmann, and B. Kr-

ishnamurthy. Potential benefits of delta encoding

and data compression for http. In Proceedings of

the ACM SIGCOMM 1997 Conference, pages 181–

194, 1997.

[25] A. Muthitacharoen, B. Chen, and D. Mazières. A

low-bandwidth network file system. In SOSP ’01:

Proceedings of the 18th ACM Symposium on Oper-

ating Systems Principles, pages 174–187, 2001.

[26] K. Park, S. Ihm, M. Bowman, and V. S. Pai. Sup-

porting practical content-addressable caching with

14

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 63

CZIP compression. In Proceedings of the USENIX

Annual Technical Conference, pages 14:1–14:14,

Berkeley, CA, USA, 2007.

[27] N. Park and D. Lilja. Characterizing datasets for

data deduplication in backup applications. In IEEE

International Symposium on Workload Characteri-

zation, 2010.

[28] H. Patterson, S. Manley, M. Federwisch, D. Hitz,

S. Kleiman, and S. Owara. Snapmirror: file sys-

tem based asynchronous mirroring for disaster re-

covery. In Proceedings of the 1st USENIX Confer-

ence on File and Storage Technologies, Berkeley,

CA, USA, 2002.

[29] C. Policroniades and I. Pratt. Alternatives for de-

tecting redundancy in storage systems data. In Pro-

ceedings of the USENIX Annual Technical Confer-

ence, pages 73–86, 2004.

[30] S. Quinlan and S. Dorward. Venti: a new ap-

proach to archival storage. In Proceedings of the

1st USENIX Conference on File and Storage Tech-

nologies, 2002.

[31] M. O. Rabin. Fingerprinting by random polynomi-

als. Technical report, Center for Research in Com-

puting Technology, 1981.

[32] Riverbed Technology. Riverbed Steelhead Product

Family, 2011. http://www.riverbed.com/

us/assets/media/documents/data_sheets/

DataSheet%-Riverbed-FamilyProduct.pdf.

[33] N. T. Spring and D. Wetherall. A protocol-

independent technique for eliminating redundant

network traffic. In Proceedings of the ACM SIG-

COMM 2000 Conference, pages 87–95, 2000.

[34] T. Suel and N. Memon. Algorithms for delta

compression and remote file synchronization. In

K. Sayood, editor, Lossless Compression Hand-

book. 2002.

[35] T. Suel, P. Noel, and D. Trendafilov. Improved file

synchronization techniques for maintaining large

replicated collections over slow networks. In

20th International Conference on Data Engineer-

ing, 2004.

[36] D. Trendafilov, N. Memon, and T. Suel. zdelta: An

efficient delta compression tool. Technical report,

Department of Computer and Information Science

at Polytechnic University, 2002.

[37] A. Tridgell. Efficient algorithms for sorting and

synchronization. PhD thesis, Australian National

University, April 2000.

[38] G. Wallace, F. Douglis, H. Qian, P. Shilane,

S. Smaldone, M. Chamness, and W. Hsu. Char-

acteristics of backup workloads in production sys-

tems. In Proceedings of the 10th USENIX Confer-

ence on File and Storage Technologies, 2012.

[39] W. Xia, H. Jiang, D. Feng, and Y. Hua. Silo: A

similarity-locality based near-exact deduplication

scheme with low ram overhead and high through-

put. In Proceedings of the USENIX Annual Techni-

cal Conference, 2011.

[40] L. You and C. Karamanolis. Evaluation of effi-

cient archival storage techniques. In Proceedings

of the 21st Symposium on Mass Storage Systems,

Apr. 2004.

[41] B. Zhu, K. Li, and H. Patterson. Avoiding the disk

bottleneck in the Data Domain deduplication file

system. In Proceedings of the 6th USENIX Confer-

ence on File and Storage Technologies, pages 269–

282, February 2008.

15

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 65

Power Consumption in Enterprise-Scale Backup Storage Systems
Zhichao Li† Kevin M. Greenan‡ Andrew W. Leung‡ Erez Zadok†

†Stony Brook University ‡Backup Recovery Systems Division
EMC Corporation

Abstract
Power consumption has become an important factor

in modern storage system design. Power efficiency is
particularly beneficial in disk-based backup systems that
store mostly cold data, have significant idle periods, and
must compete with the operational costs of tape-based
backup. There are no prior published studies on power
consumption in these systems, leaving researchers and
practitioners to rely on existing assumptions. In this pa-
per we present the first analysis of power consumption
in real-world, enterprise, disk-based backup storage sys-
tems. We uncovered several important observations, in-
cluding some that challenge conventional wisdom. We
discuss their impact on future power-efficient designs.

1 Introduction
Power has become an important design consideration
for modern storage systems as data centers now account
for close to 1.5% of the world’s total energy consump-
tion [14], with studies showing that up to 40% of that
power comes from storage [25]. Power consumption is
particularly important for disk-based backup systems be-
cause: (1) they contain large amounts of data, often stor-
ing several copies of data in higher storage tiers; (2) most
of the data is cold, as backups are generally only accessed
when there is a failure in a higher storage tier; (3) backup
workloads are periodic, often leaving long idle periods
that lend themselves to low power modes [31, 35]; and
(4) they must compete with the operational costs of low
power, tape-based backup systems.

Even though there has been a significant amount
of work to improve power consumption in backup or
archival storage systems [8,21,27], as well as in primary
storage systems [3, 33, 36], there are no previously pub-
lished studies of how these systems consume power in
the real world. As a result, power management in backup
storage systems is often based on assumptions and com-
monly held beliefs that may not hold true in practice. For
example, prior power calculations have assumed that the
only power needed for a drive is quoted in the vendor’s
specification sheet [8, 27, 34]. However, an infrastruc-
ture, including HBAs, enclosures, and fans, is required to
support these drives; these draw a non-trivial amount of
power, which grows proportionally with the number of
drives in the system.

In this paper, we present the first study of power
consumption in real-world, large-scale, enterprise, disk-
based backup storage systems. We measured systems

representing several different generations of production
hardware using various backup workloads and power
management techniques. Some of our key observa-
tions include considerable power consumption variations
across seemingly similar platforms, disk enclosures that
require more power than the drives they house, and the
need for many disks to be in a low-power mode before
significant power can be saved. We discuss the impact of
our observations and hope they can aid both the storage
industry and research communities in future development
of power management technologies.

2 Related Work

Empirical power consumption studies have guided the
design of many systems outside of storage. Mobile
phones and laptop power designs, which are both sensi-
tive to battery lifetime, were influenced by several stud-
ies [7, 17, 22, 24]. In data centers, studies have focused
on measuring CPU [18, 23], OS [5, 6, 11], and infrastruc-
ture power consumption [4] to give an overview of where
power is going and the impact various techniques have,
such as dynamic voltage and frequency scaling (DVFS).
Recently, Sehgal et al. [26] measured how various file
system configurations impact power consumption.

Existing storage system power management has
largely focused on managing disk power consumption.
Much of this existing work assumes that as storage
systems scale their capacity—particularly backup and
archival systems—the number of disks will increase to
the point where disks are the dominant power con-
sumers. As a result, most solutions try to keep as
many drives powered-off as possible, spun-down, or spun
at a lower RPM. For example, archival systems like
MAID [8] and Pergamum [27] use data placement, scrub-
bing, and recovery techniques that enable many of the
drives in the system to be in a low-power mode. Sim-
ilarly, PARAID [33] allows transitioning between sev-
eral different RAID layouts to trade-off energy, perfor-
mance, and reliability. Hibernator [36] allows drives in a
RAID array to operate at various RPMs, reducing power
consumption while limiting the impact to performance.
Write Off-Loading [19] redirects writes from low-power
disks to available storage elsewhere, allowing disks to
stay in a low-power mode longer.

Our goal is to provide power consumption measure-
ments from real-world, enterprise-scale backup systems,
to help guide designs of power-managed storage systems.

1

66 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

3 Methodology

We measured several real-world, enterprise-class backup
storage systems. Each used a Network-Attached-Storage
(NAS) architecture with a storage controller connected to
multiple, external disk drive enclosures. Figure 1 shows
the basic system architecture. Each storage controller ex-
ports to file-based interfaces to clients, such as NFS and
CIFS—and backup-based interfaces, such as VTL and
those of backup software (e.g., Symantec’s OST [20]).
Each storage controller performs inline data deduplica-
tion; typically these systems contain more CPUs and
memory than other storage systems to perform chunking
and to maintain a chunk index.

Client 2
.
.

Backup Streams

Client 1

.

Client N

Backup Controller Disk Enclosure
Storage

Figure 1: Backup system architecture

DD880 DD670 DD860 DDTBD
Ship Year 2009 2010 2011 Future
Intel CPU X7350 E5504 E5504 E7-4870
CPUs 2 1 2 4
RAM 64GB 16GB 72GB 256GB

NVRAM 2GB 1GB 1GB 4GB
Disks 4 7 4 4

Pow Sup 2 2 2 4
Fans 8 8 8 8
NICs 1 1 1 2
HBAs 3 1 3 4

Table 1: Controller hardware summary

Table 1 details the four different EMC controllers that
we measured. Each controller was shipped or will be
shipped in a different year and represents hardware up-
grades over time. Each controller, except for DD670,
stores all backup data on disks in external enclosures,
and the four disks (three active plus a spare) in the con-
troller store only system and configuration data. DD670
is a low-end, low-cost system that stores both user and
system data in its seven disks (six active plus a spare).
DDTBD is planned for a future release and does not yet
have a model number. Each controller ran the same soft-
ware version of the DDOS operating system.

Table 2 shows the two different enclosures that we
measured. Each enclosure can support various capacity
SATA drives. Based on vendor specifications, the drives
we used have power usage of about 6–8W idle, 8–12W
active, and less than 1W when spun-down. Controllers
communicate with the enclosures via Serial Attached
SCSI (SAS). Large system configurations can support
more than fifty enclosures attached to a single controller,
which can host more than a petabyte of physical capacity
and tens of petabytes of logical, deduplicated capacity.

ES20 ES30
Ship Year 2006 2011
Disks 16 15

SAS Controllers 2 2
Power Supplies 2 2

Fans 2 4
Table 2: Enclosure hardware summary

Experimental setup. We measured controller power
consumption using a Fluke 345 Power Quality Clamp
Meter [10], an in-line meter that measures the power
draw of a device. The meter provides readings with an er-
ror of ±2.5%. We measured enclosure power consump-
tion using a WattsUP Pro ES [32], another in-line me-
ter, with an accuracy of ±1.5% for measured value plus
a constant error of ±0.3 watt-hours. All measurements
were done within a data center environment with room
temperature held between 70 ◦F and 72 ◦F.

We connected the controllers and enclosures to the me-
ters separately, to measure their power. Thus we present
component’s measurement separately, rather than as an
entire system (e.g., a controller attached to several enclo-
sures). The meters we used allowed us to measure only
entire device power consumption, not individual com-
ponents (e.g., each CPU or HBA) or data-center factors
(e.g., cooling or network infrastructure). We present all
measurements in watts and all results are an average of
several readings with standard deviations less than 5%.

Benchmarks. For each controller and enclosure, we
measured the power consumption when idle and when
under several backup workloads. Each workload is a
standard, reproducible workload used internally to test
system performance and functionality. The workloads
consist of two clients connecting over a 10 GigE network
to a controller writing 36 backup streams. Each backup
stream is periodic in nature, where a full backup image is
copied to the controller, followed by several incremental
backups, followed by another full backup, and so on. For
each workload we ran 42 full backup generations. The
workloads are designed to mimic those seen in the field
for various backup protocols.

WL-A WL-B WL-C
Protocol NFS OST BOOST

Chunking Server Server Client
Table 3: Backup workloads used

We used the three backup protocols shown in Ta-
ble 3. Clients send backup streams over NFS in WL-A,
and over Symantec’s OST in WL-B. In both cases, all
deduplication is performed on the server. WL-C uses,
BOOST [9], an EMC backup client that performs stream
chunking on the client side and sends only unique chunks
to the server, reducing network and server load. To mea-
sure the power consumption of a fully utilized disk sub-
system, we used an internal tool that saturates each disk.

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 67

4 Discussion
We present our analysis for a variety of configurations
in three parts: isolated controller measurements, isolated
enclosure measurements, and whole-system analysis us-
ing controller and enclosure measurements.

4.1 Controller Measurements
We measured storage controller power consumption un-
der three different scenarios: idle, loaded, and power
managed using processor-specific power-saving states.

Controller idle power. A storage controller is consid-
ered idle when it is fully powered on, but is not handling
a backup or restore workload. In our experiments, each
controller was running a full, freshly installed, DDOS
software stack, which included several small background
daemon processes. However, as no user data was placed
on the systems, background jobs such as garbage collec-
tion, were not run. Idle power consumption indicates the
minimum amount of power a non-power-managed con-
troller would consume when sitting in the data center.

It is commonly assumed that disks are the main con-
tributor to power in a storage system. As shown in Ta-
ble 4, the controllers can also consume a large amount of
power. In the case of DDTBD, the power consumption
is almost equal to that of 100 2TB drives [13]. This is
significant because even a controller with no usable disk
storage can consume a lot of power. Yet, the performance
of the controller is critical to maintain high deduplication
ratios, and necessary to support petabytes of storage—
requiring multiple fast CPUs and lots of RAM. These
high idle power-consumption levels are well known [15].
Although computer component vendors have been reduc-
ing power consumption in newer systems, there is a long
way to go to support true power proportionality in com-
puting systems; therefore, current idle controller power
levels must be factored into future designs.
� Observation 1: The idle controller power consump-
tion is still significant.

Table 4 shows a large difference in power consumption
between controllers. DDTBD consumes almost 3.5×
more power than DD670. Here, difference is largely due
to the different hardware profiles. DDTBD is a more
powerful, high-end controller with significantly more
CPU and memory, whereas DD670 is a low-end model.
However, this is not the case for the power differences be-
tween DD880 and DD860. DD880 consumes more than
twice the power as DD860, yet Table 1 shows that their
hardware profiles are fairly similar. The amount of CPU
and memory plays a major role in power consumption;
however, other factors such as the power efficiency of in-
dividual components also contribute. Unfortunately, our
measurement methodology prevented us from identify-
ing the internal components that contribute to this differ-

DD880 DD670 DD860 DDTBD
Idle Power (W) 555 225 261 778
Table 4: Idle power consumptions for storage controllers

ence. However, part of this difference can be attributed to
DD860 being a newer model with hardware components
that consume less power than older models.

To better compare controller power consumption, we
normalized the power consumption numbers in Table 4
to the maximum usable physical storage capacity. The
maximum capacities for the DD880, DD670, DD860,
and DDTBD are 192TB, 76TB, 192TB, and 1152TB,
respectively. This gives normalized power consumption
values of 2.89W/TB for DD880, 2.96W/TB for DD670,
1.35W/TB for DD860, and 0.675W/TB for DDTBD. Al-
though the normalized values are roughly the same for
DD880 and DD670, the watts consumed per raw byte
trends down with newer generation platforms.

� Observation 2: Whereas idle controller power con-
sumption varies between models, normalized watts per
byte goes down with newer generations.

Controller under load. We measured the power con-
sumption of each controller while running the aforemen-
tioned workloads. Each controller ran the DDFS dedup-
licating file system [35] and all required software ser-
vices. Services such as replication were disabled. The
power consumed under load approximates the power typ-
ically seen for controllers in-use in a data center. The
workloads used are performance-qualification tests that
are designed to mimic real customer workloads, but do
not guarantee that the controllers are stressed maximally.

Figure 2(a) shows the power consumed by DDTBD
while running the WL-A workload. The maximum power
consumed during the run was 937W, which is 20% higher
than the idle power consumption. Since the power only
increased 20% when under load, it may be more bene-
ficial to improve idle consumption before trying to im-
prove active (under load) consumption.

DD880 DD670 DD860 DDTBD
WL-A 44% 24% 58% 20%
WL-B 58% 29% 61% 36%
WL-C 56% 28% 57% 23%

Table 5: Power increase ratios from idle to loaded system
Table 5 shows the power increase percents from idle

to loaded across controller and workload combinations.
Several combinations have an increase of less than 30%,
while others exceed 50%. Unfortunately, our method-
ology did not allow us to identify which internal compo-
nents caused the increase. One noticeable trend is that the
increase in power is mostly due to the controller model
rather than the workload, as DD880 and DD860 always
increased more than DD670 and DDTBD.

3

68 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 50 100 150 200 250

Po
w

er
 (W

at
ts

)

Time (minutes)

DDTBD
ES30 (5x)

(a) Power consumption

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 50 100 150 200 250

B
lk

s p
er

 S
ec

on
d

(x
10

00
)

Time (minutes)

Read
Write

(b) I/O statistics

Figure 2: Power consumption and I/O statistics for WL-A on DDTBD, along with the 5 ES30 enclosures attached to it

� Observation 3: The increase in controller power
consumption under load varies much across models.

I/O statistics from the disk sub-system help explain the
increases in controller power consumption. Figure 2(b)
shows the number of blocks per second read and written
to the enclosures attached to DDTBD during WL-A. We
see that a higher rate of disk I/O activity generally cor-
responds to higher power consumption in both the con-
troller and disk enclosures. Whereas I/Os require the con-
troller to wait on the disk sub-system, they also increase
memory copying activity, communication with the sub-
system, and deduplication fingerprint hashing.

Power-managed controller. Our backup systems per-
form in-line, chunk-based deduplication, requiring sig-
nificant CPU and RAM amounts to compute and manage
hashes. As the data path is highly CPU-intensive, apply-
ing DVFS techniques during backup—a common way to
manage CPU power consumption—can degrade perfor-
mance. Although it is difficult to throttle CPU during a
backup, the backup processes are usually separated by
large idle periods, which provide an opportunity to ex-
ploit DVFS an other power-saving techniques.

Intel has introduced a small set of CPU power-saving
states, which represent a range of CPU states from fully
active to mostly powered-off. For example, on the
Corei7, C1 uses clock-gating to reduce processor activ-
ity, C3 powers down L2 caches, and C6 shuts off the
core’s power supply entirely [28]. To evaluate the effi-
cacy of the Intel C states on an idle controller, we mea-
sured the power savings of the deepest C state. Unfor-

tunately, DDTBD was the only model that supported the
Intel C states. We used a modified version of CPUIDLE
to place DDTBD into the C6 state [16]. In this state,
DDTBD saved just 60W, a mere 8% of total controller
power consumption. This finding suggests that DVFS
alone is insufficient for saving power in controllers with
today’s CPUs and a great deal of RAM. Moreover, deeper
C states incur higher latency penalties and slow controller
performance. We found that the latencies made the con-
troller virtually unusable when in the deepest C state.
� Observation 4: Placing today’s Intel CPUs into
deep C state saves only a small amount of power and
significantly harms controller performance.

4.2 Enclosure Measurements
We now analyze the power consumption of two genera-
tions of disk enclosures. Similar to Section 4.1, we an-
alyzed the power consumption of the enclosures when
idle, under load, and using power-saving techniques.

Enclosure idle power. An enclosure is idle when it
is powered on and has no workload running. The idle
power consumption of an enclosure represents the lowest
amount of power a single enclosure and the housed disks
consume without power-management support. Figure 3
shows that an idle ES20 consumes 278W. The number of
active enclosures in a high-capacity system can exceed
50, so the total power consumption of the disk enclosures
alone can exceed 13kW.

We found that the enclosures have very different power
profiles. The idle ES20 consumes 278W, which is 55%

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 69

 0
 50

 100
 150
 200
 250
 300
 350
 400

ES20 ES30

Po
w

er
 (W

at
ts

)

Enclosure Type

278

176 155
179

80
40

Idle
Disk Spin Down

Disk Power Down

Figure 3: Disk power down vs. spin down. ES20 and ES30 are
specified as in Table 2.

higher than the idle ES30, at 179W. We believe that
newer hardware largely accounts for this difference. For
example, it is well known that power supplies are not
100% efficient. Modern power supplies often place guar-
antees on efficiency. One standard [1] provides an 80%
efficiency guarantee, which means the efficiency will
never go below 80% (e.g., for every 10W drawn from the
wall, at least 8W is usable by components attached to the
power supply). The ES30 has newly designed power sup-
plies, temperature-based fan speeds, and a newer internal
controller, which contribute to this difference.
� Observation 5: The idle power consumption varies
greatly across enclosures with new ones being more
power efficient.

Enclosure under load. We also measured the power
consumption of each enclosure under the workloads dis-
cussed in Section 3. We considered an enclosure under
load when it was actively handling an I/O workload.

As shown in Figure 2(a), the total power consumption
of the five ES30 enclosures connected to DDTBD, pro-
cessing WL-A, increased by 10% from 900W when idle
to about 1kW. Not surprisingly, Figure 2(b) shows that an
increase in enclosure power correlates with an increase in
I/O traffic. Percentages for the other enclosure and work-
load combinations ranged from 6–22%.

Our deduplicating file system greatly reduces the
amount of I/O traffic seen by the disk sub-system. As
described in Section 3, we used an internal tool to mea-
sure the power consumption of a fully utilized disk sub-
system. Table 6 shows that ES20 consumption grew by
22% from 278W when idle to 340W. ES30 increased
15% from 179W idle to 205W. Interestingly, these in-
creases are much smaller than those observed for the con-
trollers under load in Section 4.1.
� Observation 6: The consumption of the enclosures
increases between 15% and 22% under heavy load.

Power managed enclosure. We compared the power
consumption of ES20 and ES30 using two disk power-
saving techniques: power-down and spin-down. With
spin-down, the disk is powered on, but the head is parked
and the motor is stopped. With power-down, the enclo-

ES20 ES30
Idle Power (W) 278 179
Max Power (W) 340 205

Table 6: Max power for enclosures ES20 and ES30
sure’s disk slot is powered off, cutting off all drive power.

As shown in Figure 3, the relative power savings of
the ES20 and ES30 are quite different. For ES30, spin-
down reduced power consumption by 55% from 179W
to 80W. For ES20, the power dropped by 37% from
278W to 176W. Although the absolute spin-down savings
was roughly 100W for both enclosures, power-down was
much more effective for ES30 than ES20. Power-down
for ES30 reduced power consumption by 78%, but only
44% for ES20. As mentioned in Section 3, each disk con-
sumes less than 1W when spun-down. However, for both
ES20 and ES30, power-down saved more than 1W per
disk compared to spin-down.
� Observation 7: Disk power-down may be more ef-
fective than disk spin-down for both ES20 and ES30.

Looking closer at the ES20 power savings, the enclo-
sure actually consumes more power than the disks it is
housing (an improvement opportunity for enclosure man-
ufactures). With all disks powered down, ES20 consumes
155W, which is more than the 123W saved by powering
down the disks (consistent with disk vendor specs).
� Observation 8: Disk enclosures may consume more
power than the drives they house. As a result, effec-
tive power management of the storage subsystem may
require more than just disk-based power-management.

We observed that an idle ES30 enclosure consumes
64% of an idle ES20, while a ES30 in power-down mode
consumes only 25% of the power of an ES20 in power-
down mode. This suggests that newer hardware’s idle
and especially power-managed modes are getting better.

4.3 System-Level Measurements
A common metric for evaluating a power management
technique is the percentage of total system power that is
saved. We measured the amount of power savings for dif-
ferent controller and enclosure combinations using spin-
down and power-down techniques. We considered sys-
tem configurations with an idle controller and 32 idle en-
closures (which totals 512 disks for ES20 and 480 disks
for ES30) and we varied the number of enclosures that
have all their disks power managed. We excluded DD670
because it supports only up to 4 external shelves.

Figure 4 shows the percentage of total system power
saved as the number of enclosures with power-managed
disks was increased. In Figure 4(a) disks were spun
down, while in Figure 4(b) disks were powered down.
We found that it took a considerable number of power-
managed disks to yield a significant system power sav-
ings. In the best case with DD860 and ES30, 13 of the 32

5

70 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

(a) Disk Spin Down vs. Power Savings Percentage (b) Disk Power Down vs. Power Savings Percentage

Figure 4: Total system power savings using disk power management

enclosures must have their disks spun down to achieve
a 20% power savings. In other words, over 40% of the
disks must be spun down to save 20% of the total power.
In the worse case with DDTBD and ES20, 19 of the 32
enclosures must have their disks spun down to achieve a
20% savings. This scenario required almost 60% of the
disks to be spun down to save 20% of the power. Only
two of our six configurations were able to achieve more
than 50% savings even when all disks were spun down.
These numbers were improved when power down is used,
but a large number of disks was still needed to achieve
significant savings.
� Observation 9: To save a significant amount of
power, many drives must be in a low power mode.

The limited power savings is due in part to the con-
trollers consuming a large amount of power. As seen in
Section 4.1, a single controller may consume as much
power as 100 disks. Additionally, as shown in Sec-
tion 4.2, disk enclosures can consume more power than
all of the drives they house, and the number of enclosures
must scale with the number of drives in the system. These
observations indicate that for some systems, even aggres-
sive disk power management may be insufficient to save
enough power and that power must be saved elsewhere in
the system (e.g., reducing controller and enclosure power
consumption, new electronics, etc.).

5 Conclusions
We presented the first study of power consumption in
real-world, large-scale, enterprise, disk-based backup
storage systems. Although we investigated only a hand-
ful of systems, we already uncovered a three interesting
observations that may impact the design of future power-
efficient backup storage systems.

(1) We found that components other than disks con-
sume a significant amount of power, even at large scales.
We observed that both storage controllers and enclosures
can consume large amounts of power. For example,
DDTBD consumes more power than 100 2TB drives and
ES20 consumes more power than the drives it houses. As
a result, future power-efficient designs should look be-

yond disks to target controllers and enclosures as well.
(2) We found a large difference between idle and ac-

tive power consumption across models. For some mod-
els, active power consumption is only 20% higher than
idle, while it is up to 60% higher for others. This ob-
servation indicates that existing systems are not achiev-
ing energy proportionality [2, 4, 12, 29, 30], which states
that systems should consume power proportional to the
amount of work performed. For some systems, we found
a disproportionate amount of power used while idle. As
backups often run on particular schedules, these systems
may spend a lot of time idle, opening up opportunities to
further reduce power consumption.

(3) We discovered large power consumption differ-
ences between similar hardware. Despite having simi-
lar hardware specifications, we observed that the older
DD880 model consumed twice as much idle power as
the newer DD860 model. We also saw that an idle ES20
consumed 55% more power than an idle ES30. This sug-
gests that the power profile of an existing system can be
improved by retiring old hardware with newer, more effi-
cient hardware. We hope to see continuing improvements
from manufacturers of electronics and computer parts.

Future work. To evaluate the steady state power pro-
file of a backup storage system, we plan to measure a
system that has been aged and a system with active back-
ground tasks. For comparison, we would like to study
power use of primary storage systems and clustered stor-
age systems, whose hardware and workloads are different
than backup systems. Lastly, we would like to investigate
the contribution of individual computer component (e.g.,
CPUs and RAM) on overall power consumption.

Acknowledgements. We thank the EMC/Data Domain
performance team for their help. We also thank Windsor
Hsu, our shepherd Jiri Schindler and our anonymous re-
viewers for their helpful feedback. This work was sup-
ported in part by NSF award CCF-0937854.

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 71

References
[1] 80 PLUS Certified Power Supplies and Manufacturers. www.

plugloadsolutions.com/80PlusPowerSupplies.aspx.
[2] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and

K. Schwan. Robust and flexible power-proportional storage. In
Proceedings of the 1st ACM Symposium on Cloud Computing,
SoCC ’10, 2010.

[3] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: A Fast Array of Wimpy
Nodes. In Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles (SOSP ’2009), pages 1–14. ACM
SIGOPS, October 2009.

[4] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. Computer, 40:33–37, December 2007.

[5] F. Bellosa. The benefits of event: driven energy accounting in
power-sensitive systems. In Proceedings of the 9th workshop on
ACM SIGOPS European workshop, pages 37–42, 2000.

[6] W.L. Bircher and L.K. John. Complete system power estimation:
A trickle-down approach based on performance events. In Pro-
ceedings of the 2007 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, pages 158–168, 2007.

[7] A. Carroll and G. Heiser. An analysis of power consumption in
a smartphone. In Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference, Boston, MA, USA,
2010.

[8] D. Colarelli and D. Grunwald. Massive Arrays of Idle Disks
for Storage Archives. In Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, pages 1–11, 2002.

[9] Data Domain Boost Software, EMC Corporation, 2012. http:
//www.datadomain.com/products/dd-boost.html .

[10] Fluke 345 Power Quality Clamp Meter. www.fluke.com/fluke/
caen/products/categorypqttop.htm .

[11] D. Grunwald, C. B. Morrey III, P. Levis, M. Neufeld, and K. I.
Farkas. Policies for dynamic clock scheduling. In Proceedings
of the 4th Symposium on Operating System Design & Implemen-
tation, San Diego, CA, 2000.

[12] J. Guerra, W. Belluomini, J. Glider, K. Gupta, and H. Pucha.
Energy proportionality for storage: Impact and feasibility. ACM
SIGOPS Operating Systems Review, pages 35 – 39, 2010.

[13] Hitachi Deskstar 7K2000. www.hitachigst.com/deskstar-
7k2000.

[14] J. G. Koomey. Growth in data center electricity use 2005 to 2010.
Technical report, Standord University, 2011. www.koomey.com.

[15] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Energy and
Performance Evaluation of Lossless File Data Compression on
Server Systems. In Proceedings of the Second ACM Israeli
Experimental Systems Conference (SYSTOR ’09), Haifa, Israel,
May 2009. ACM.

[16] S. Li and A. Belay. cpuidle — do nothing, efficiently... In Pro-
ceedings of the Linux Symposium, volume 2, Ottawa, Ontario,
Canada, 2007.

[17] J. R. Lorch. A Complete Picture of the Energy Consumption of
a Portable Computer. Master’s thesis, University of California
at Berkeley, 1995. http:// research.microsoft.com/users/ lorch/
papers/masters.ps .

[18] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and
R. Rajkumar. Critical power slope: understanding the runtime
effects of frequency scaling. In Proceedings of the 16th Interna-
tional Conference on Supercomputing (ICS ’02), pages 35–44,
2002.

[19] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading:
practical power management for enterprise storage. In Proceed-
ings of the 6th USENIX Conference on File and Storage Tech-
nologies (FAST 2008), 2008.

[20] Symantec OpenStorage, Symantec Corporation, 2012. http://
www.symantec.com/theme.jsp?themeid=openstorage .

[21] E. Pinheiro and R. Bianchini. Energy Conservation Techniques
for Disk Array-Based Servers. In Proceedings of the 18th In-
ternational Conference on Supercomputing (ICS 2004), pages
68–78, 2004.

[22] A. Sagahyroon. Power consumption breakdown on a modern
laptop. In Proceedings of the 2004 Workshop on Power-Aware
Computer Systems, pages 165–180, Portland, OR, 2004.

[23] A. Sagahyroon. Analysis of dynamic power management on
multi-core processors. In Proceedings of the International Sym-
posium on Circuits and Systems, pages 1721–1724, 2006.

[24] A. Sagahyroon. Power consumption in handheld computers. In
Proceedings of the IEEE Asia Pacific Conference on Circuits and
Systems, pages 1721–1724, Singapore, 2006.

[25] G. Schulz. Storage industry trends and it infrastructure resource
management (irm), 2007. www.storageio.com/DownloadItems/
CMG/MSP CMG May03 2007.pdf .

[26] P. Sehgal, V. Tarasov, and E. Zadok. Evaluating Performance
and Energy in File System Server Workloads Extensions. In
FAST’10: Proceedings of the 8th USENIX Conference on File
and Storage Technologies, pages 253–266, San Jose, CA, Febru-
ary 2010. USENIX Association.

[27] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti.
Pergamum: replacing tape with energy efficient, reliable, disk-
based archival storage. In Proceedings of the Sixth USENIX
Conference on File and Storage Technologies (FAST ’08), San
Jose, CA, February 2008. USENIX Association.

[28] E. L. Sueur and G. Heiser. Slow down or sleep, that is the ques-
tion. In Proceedings of the 2011 USENIX Annual Technical Con-
ference, Portland, Oregon, USA, 2011.

[29] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: a power-
proportional, distributed storage system. In Proceedings of Eu-
roSys 2011, 2011.

[30] A. Verma, R. Koller, L. Useche, and R. Rangaswami. Srcmap:
Energy proportional storage using dynamic consolidation. In
Proceedings of the 8th USENIX Conference on File and Storage
Technologies, FAST’10, 2010.

[31] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,
M. Chamness, and W. Hsu. Characteristics of backup workloads
in production systems. In Proceedings of the Tenth USENIX
Conference on File and Storage Technologies (FAST ’12), San
Jose, CA, February 2012. USENIX Association.

[32] Watts up? PRO ES Power Meter. www.wattsupmeters.com/
secure/products.php.

[33] C. Weddle, M. Oldham, J. Qian, A. A. Wang, P. Reiher, and
G. Kuenning. PARAID: A gear-shifting power-aware RAID. In
Proceedings of the Fifth USENIX Conference on File and Stor-
age Technologies (FAST ’07), pages 245–260, San Jose, CA,
February 2007. USENIX Association.

[34] A. Wildani and E. Miller. Semantic data placement for power
management in archival storage. In PDSW 2010, New Orleans,
LA, USA, 2010. ACM.

[35] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck
in the data domain deduplication file system. In Proceedings of
the Sixth USENIX Conference on File and Storage Technologies
(FAST ’08), San Jose, California, USA, 2008.

[36] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes.
Hibernator: Helping Disk Arrays Sleep Through the Winter. In
Proceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP ’05), pages 177–190, Brighton, UK, October
2005. ACM Press.

7

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 73

Recon: Verifying File System Consistency at Runtime

Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng,
Shaun Benjamin, Ashvin Goel, Angela Demke Brown

University of Toronto

Abstract
File system bugs that corrupt file system metadata on disk
are insidious. Existing file-system reliability methods,
such as checksums, redundancy, or transactional updates,
merely ensure that the corruption is reliably preserved.
The typical workarounds, based on using backups or re-
pairing the file system, are painfully slow. Worse, the re-
covery is performed long after the original error occurred
and thus may result in further corruption and data loss.

We present a system called Recon that protects file sys-
tem metadata from buggy file system operations. Our ap-
proach leverages modern file systems that provide crash
consistency using transactional updates. We define declar-
ative statements called consistency invariants for a file
system. These invariants must be satisfied by each trans-
action being committed to disk to preserve file system in-
tegrity. Recon checks these invariants at commit, thereby
minimizing the damage caused by buggy file systems.

The major challenges to this approach are specifying
invariants and interpreting file system behavior correctly
without relying on the file system code. Recon provides
a framework for file-system specific metadata interpreta-
tion and invariant checking. We show the feasibility of
interpreting metadata and writing consistency invariants
for the Linux ext3 file system using this framework. Re-
con can detect random as well as targeted file-system cor-
ruption at runtime as effectively as the offline e2fsck file-
system checker, with low overhead.

1 Introduction
It is no surprise that file systems have bugs [20, 29, 31].
Modern file systems are designed to support a range of en-
vironments, from smart phones to high-end servers, while
delivering high performance. Further, they must handle a
large number of failure conditions while preserving data
integrity. Ironically, the resulting complexity leads to bugs
that can be hard to detect even under heavy testing. These
bugs can cause silent data corruption [20, 19], random ap-
plication crashes, or even worse, security exploits [30].

Unlike hardware errors and crash failures, it is much
harder to recover from data corruption caused by bugs
in file-system code. Hardware errors can be handled
by using checksums and redundancy for error detection
and recovery [4, 10]. Crash failure recovery can be
performed using transactional methods, such as journal-
ing [12], shadow paging [14], and soft updates [9]. Mod-

ern file systems, such as ZFS, are carefully designed to
handle a wide range of disk faults [32]. However, the ma-
chinery used for protecting against disk corruption (e.g.,
checksums, replication and transactional updates) does
not help if the file system code itself is the source of an
error, in which case these mechanisms only serve to faith-
fully preserve the incorrect state.

File system bugs that cause severe metadata corrup-
tion appear regularly. We compiled a list of bugs in the
Linux ext3 and the recently deployed btrfs file systems,
by searching for “ext3 corruption” and “btrfs corruption”
in various distribution-specific bug trackers or mailing
lists. Based on the bug description and discussions, we
removed bugs that did not cause metadata inconsistency,
or were not reproducible, or were reported by a single user
only. Table 1 summarizes the remaining bugs. Note that
ext3, despite its maturity and widespread use, shows con-
tinuing reports of corruption bugs. One recent example is
not yet closed, while another closed only in 2010 and af-
fected the ext2, ext3 and ext4 file systems. These reports
likely under-represent the problem because the bugs that
cause metadata corruption may be fail silent, i.e., the error
is not reported at the time of the original corruption. By
the time the inconsistencies appear, the damage may have
escalated, making it harder to pinpoint the problem.

When metadata corruption is discovered, it requires
complex recovery procedures. Current solutions fall in
two categories, both of which are unsatisfactory. One
approach is to use disaster recovery methods, such as
a backup or a snapshot, but these can cause significant
downtime and loss of recent data. Another option is to
use an offline consistency check tool (e.g., e2fsck) for
restoring file system consistency. While a consistency
check can detect most failures, it requires the entire disk
to be checked, causing significant downtime for large file
systems. This problem is getting worse because disk ca-
pacities are growing faster than disk bandwidth and seek
time [13]. Furthermore, the consistency check is run after
the fact, often after a system crash occurs or even less fre-
quently with journaling file systems. Thus an error may
propagate and cause significant damage, making repair a
non-trivial process [11]. For example, Section 5 shows
that a single byte corruption may cause repair to fail.

To minimize the need for offline recovery methods, our
aim is to verify file-system metadata consistency at run-
time. Metadata is more vulnerable to corruption by file

74 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

FS Source Bug Title Closed

ext3 http://lwn.net/Articles/2663/ ext3 corruption fix 2002-06

ext3 kerneltrap.org/node/515 Linux: Data corrupting ext3 bug in 2.4.20 2002-12

ext3 Redhat, #311301 panic/ext3 fs corruption with RHEL4-U6-re20070927.0 2007-11

ext3 https://lkml.org/lkml/2008/12/6/88 Re: [2.6.27] filesystem (ext3) corruption (access beyond end) 2008-06

ext3 Debian, #425534 linux-2.6: ext3 filesystem corruption 2008-09

ext3 Debian, #533616 linux-image-2.6.29-2-amd64: occasional ext3 filesystem corruption 2009-06

ext3 Redhat, #515529 ENOSPC during fsstress leads to filesystem corruption on ext2, ext3, and ext4 2010-03

ext3 https://lkml.org/lkml/2011/6/16/99 ext3: Fix fs corruption when make_indexed_dir() fails 2011-06

ext3 Redhat, #658391 Data corruption: resume from hibernate always ends up with EXT3 fs errors Not yet

btrfs https://lkml.org/lkml/2009/8/21/45 btrfs rb corruption fix 2009-08

btrfs https://lkml.org/lkml/2010/2/25/376 [2.6.33 regression] btrfs mount causes memory corruption 2010-02

btrfs https://lkml.org/lkml/2010/11/8/248 DM-CRYPT: Scale to multiple CPUs v3 on 2.6.37-rc* ? 2010-09

btrfs https://lkml.org/lkml/2011/2/9/172 [PATCH] btrfs: prevent heap corruption in btrfs_ioctl_space_info() 2011-02

btrfs https://lkml.org/lkml/2011/4/26/304 btrfs updates (slab corruption in btrfs fitrim support) 2011-04

Table 1: File system bugs causing data corruption. All Red Hat and Debian bugs are rated high-severity. The severity
level of bugs obtained from mailing lists is not known.

system bugs because the file system directly manipulates
the contents of metadata blocks. Metadata corruption may
also result in significant loss of user data because a file
system operating on incorrect metadata may overwrite ex-
isting data or render it inaccessible.

We present a system called Recon that aims to pre-
serve metadata consistency in the face of arbitrary file-
system bugs. Our approach leverages modern file systems
that provide crash consistency using transactional meth-
ods, such as journaling [28, 6, 27] and shadow paging file
systems [14, 4, 16]. Recon checks that each transaction
being committed to disk preserves metadata consistency.
We derive the checks, which we call consistency invari-
ants, from the consistency rules used by the offline file
system checker. A key challenge is to correctly interpret
file system behavior without relying on the file system
code. Recon provides a block-layer framework for inter-
preting file system metadata and invariant checking.

An important benefit of Recon is its ability to convert
fail-silent errors into detectable invariant violations, rais-
ing the possibility of combining Recon with file system
recovery techniques such as Membrane [26], which are
unable to handle silent failures.

Our current implementation of Recon shows the feasi-
bility of interpreting metadata and writing consistency in-
variants for the widely used Linux ext3 file system. Recon
checks ext3 invariants corresponding to most of the con-
sistency properties checked by the e2fsck offline check
program. It detects random and type-specific file-system
corruption as effectively as e2fsck, with low memory and
performance overhead. At the same time, our approach
does not suffer from the limitations of offline checking
described earlier because corruption is detected immedi-
ately. The rest of the paper describes our approach in de-
tail and presents the results of our initial evaluation.

2 Approach
The Recon system interposes between the file system and
the storage device at the block layer and checks a set of
consistency invariants before permitting metadata writes
to reach the disk. We derive the invariants from the rules
used by the file system checker. As an example, the e2fsck
program checks that file system blocks are not doubly al-
located. Our invariants check this property at runtime and
thus prevent file-system bugs from causing any double al-
location corruption on disk.

Figure 1 shows the architecture of the Recon system.
Recon provides a framework for caching metadata blocks
and an API for checking file-system specific invariants us-
ing its metadata cache. A separate cache is maintained
because the file system cache is untrusted and because it
allows checking the invariants efficiently. Besides ext3,
we have also examined the consistency properties of the
Linux btrfs file system and implemented several btrfs in-
variants. The paper describes our initial experience with
adapting our system for btrfs.

Our approach addresses three challenges: 1) when
should the consistency properties be checked, 2) what
properties should be checked, and 3) how should they be
checked. Below, we describe these challenges and how
we address them. The caching framework and the file-
system specific Recon APIs are described in Section 4.

2.1 When to Check Consistency?
The in-memory copies of metadata may be temporarily
inconsistent during file system operation and so it is not
easy to check consistency properties at arbitrary times. In-
stead, checks can be performed when the file system itself
claims that metadata is consistent. For example, journal-
ing and shadow-paging file systems are already designed

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 75

Reconrecon_write,
recon_commit

recon_read

Kernel

User
FS request

disk

File System

Block Layer

Metadata
Write Cache

Ext3_Recon

Btrfs_Recon

FS Recon API

Metadata
Read Cache

Figure 1: The Recon Architecture

to ensure crash consistency using transactional methods,
wherein disk blocks from one or more operations, such as
the creation of a directory and a file write, are grouped into
transactions. Transaction commits are well-defined points
at which the file system believes that it is consistent, and
hence transaction boundaries serve as convenient vantage
points for verifying consistency properties. Recon checks
transactions before they commit, thereby ensuring that a
committed transaction is consistent, even in the face of
arbitrary file system bugs.1

Checking consistency for shadow paging systems is
relatively straightforward because all transaction data is
written to disk before the commit block. For example,
btrfs writes all blocks in a transaction, and then commits
the transaction by writing its superblock. Recon checks
each transaction before the superblock is written to disk.

Checking consistency for journaling file systems is
more complicated because transaction data is written to
disk both before and after the commit block. For ex-
ample, ext3 writes metadata to disk in several steps: 1)
write metadata to journal, 2) write commit block to jour-
nal, at which point the transaction is committed, 3) write
(or checkpoint) metadata to its final destination on disk,
and 4) free space in the journal.

During Step 1, Recon copies metadata blocks into its
write cache, giving it a view of all the updates in a trans-
action. Then it checks the ext3 transaction in Step 2, i.e.,
before the commit block is written to the journal, which
ensures that all blocks in the transaction are checked for
consistency before they become durable. Checking con-
sistency after commit could lead to checkpointing a cor-

1Implementing consistency invariants for soft update file systems [9]
that provide consistency after each write but do not use transactions
should be possible but will likely be more complicated.

rupt block, and furthermore it would not be possible to
undo such corruption. Besides checking consistency at
commit, we also need to verify the checkpointing process.
This step requires checking that all the committed blocks
and their contents are checkpointed correctly.

2.2 What Consistency Properties to Check?
Identifying the correct consistency properties is challeng-
ing because the behavior of the file system is not for-
mally specified. Fortunately, we can derive an informal
specification of metadata consistency properties from of-
fline file-system consistency checkers, such as the Linux
e2fsck program. For example, Gunawi et al. found that
the Linux e2fsck program checks 121 properties that are
common to both ext2 and ext3 file systems and some ext3
journal properties and optional features [11].

These consistency properties define what it means to
have consistent metadata on disk. Our aim is to ensure
that any metadata committed to disk will maintain these
same consistency properties. Unfortunately, consistency
properties are global statements about the file system. For
example, a simple check implemented by e2fsck is that
the deletion times of all used inodes are zero. Determin-
ing the in-use status of all inodes, and checking the dele-
tion time of all used inodes is infeasible at every trans-
action commit. Similarly, another consistency property is
that all live data blocks are marked in the block bitmap.
Checking these global properties requires a full disk scan.

Instead, we derive a consistency invariant from each
consistency property. The invariant is a local assertion
that must hold for a transaction to preserve the corre-
sponding file system consistency property. For example,
consider the “all live data blocks are marked in the block
bitmap” property. The corresponding consistency invari-
ant is that a transaction that makes a data block live (i.e.,
by adding a pointer to the block) must also contain a corre-
sponding bit-flip (from 0 to 1) in the block bitmap within
the same transaction, i.e., the invariant is “block pointer
set from 0 to N ⇔ bit N set in bitmap”. This invariant can
be checked by examining only the updated blocks, i.e., the
updated pointer block and the updated block bitmap must
be part of the same transaction. We describe this invariant
in more detail in Section 3.2.

We structure a consistency invariant as an implication,
A ⇒ B. The premise A always involves an update to some
data structure field, and hence checking the invariant is
triggered by a change in that field. When such an update
occurs then the conclusion B must be true to preserve the
invariant. If a converse B ⇒ A invariant also exists, then
we refer to the two invariants as a biconditional invariant
A ⇔ B, as shown in the example above.

We rely on the ability to convert consistency proper-
ties requiring global information into invariants that can
be checked using information “local” to the transaction,

76 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

as described in the previous example. Such a transfor-
mation must be possible because file systems keep them-
selves consistent without examining the entire disk state.
In other words, our invariant checking should not require
much more data than the file system itself needs for its
operations. Section 5 shows that this is indeed the case
because Recon has low overheads.

Finally, our invariant checking approach relies on an
inductive argument. It assumes that the file system is con-
sistent before each transaction. If the updates in the trans-
action meet the consistency invariants, the file system will
remain consistent after the transaction. Likewise, if an in-
variant is violated, there is potential for data loss or in-
correct data being returned to applications. Section 2.4
provides more details about our assumptions.

2.3 How to Check Consistency Invariants?
Consistency invariants are expressed in terms of logical
file-system data structures, such as current and updated
values of block pointers, bits in block bitmap, etc.. How-
ever, Recon needs to observe physical blocks below the
file system because it cannot trust a buggy file system to
provide the correct logical data structure information. We
bridge this semantic gap by inferring the types of metadata
blocks when they are read or written, which allows pars-
ing and interpreting them, similar to semantically smart
disks [24]. Then Recon checks invariants on the typed
blocks at commit points, as described below.

Metadata interpretation Block typing and metadata
interpretation depend on the idea that file systems access
metadata by following a graph of pointers. For example,
a pointer to a block is read before the pointed-to block is
read, which we call the pointer-before-block assumption.
These pointers may be explicit block pointers or are im-
plied by the structure of the file system. For example, ext3
will read an inode containing a pointer to an indirect block
before reading the indirect block. When an inode block is
read, Recon copies it into its read cache and then parses
the inodes in the block to create a mapping from a block to
its type for any metadata blocks pointed to by the inodes.
In this case, Recon creates a block-type mapping associat-
ing the “indirect block” type with the block pointed to by
the EXT3_IND_BLOCK pointer in the inode. As a result,
Recon recognizes an indirect block when it is read.

Similarly, the block group descriptor (BGD) tables in
ext3 describe the locations of inode blocks and inode and
block allocation bitmaps. The BGD tables must be read
before any of the blocks that they point to, allowing Re-
con to create block-type mappings for inode and bitmap
blocks. This block-type identification is bootstrapped us-
ing the superblock, which exists at a known location.

When a metadata block is newly allocated in a transac-
tion, Recon does not yet know its type. In this case, there

must exist an updated metadata block in the transaction
with a known type that points to this unclassified block
directly or indirectly, or else the newly allocated block
would not be reachable in the file system. By following
the path of pointers from the known metadata block to
the newly allocated block, Recon can always create block-
type mappings for newly allocated blocks.

For example, suppose a block is allocated to an indirect
block of a file. If the file already existed then its inode
block must have been read and updated in the transac-
tion. Since the inode block was read previously, Recon
knows its type and can determine the type of the newly
allocated indirect block. Similarly, if the file did not exist
then its parent directory must have existed and been up-
dated, which helps determine the types of the (possibly
newly allocated) inode block and then the indirect block.
Determining the types of newly allocated blocks may re-
quire multiple passes over the blocks updated in the trans-
action. At the end, all new metadata blocks must be typed
or else the pointer-before-block assumption is violated.

Commit processing At commit, Recon uses the block-
type mapping to determine the data structures in each of
the (updated) transaction blocks, available in the Recon
write cache. These data structures are compared with their
previous versions, which are derived from the Recon read
cache, at the granularity of data structure fields. Each field
update generates a logical change record with the format
[type, id, field, oldval, newval].

The type specifies a data structure (e.g., inode, directory
block). The id is the unique identifier of a specific object
of the given type (e.g. inode number). The (type, id) pair
allows locating the specific data structure in the file sys-
tem image. The field is a field in the structure (e.g. inode
size field) or a key from a set (e.g. directory entry name).
The oldval and newval are the old and new values of the
corresponding field. These records are generated for ex-
isting, newly allocated and deallocated metadata blocks.
When an item is newly created or allocated, the oldval is
φ (a sentinel value). Similarly, when an item is destroyed
or deallocated, the newval is φ .

Figure 2 shows an example of a set of change records
associated with an ext3 transaction in which a single
write operation increases the size of a file from one block
to two blocks. Change records serve as an abstraction,
cleanly separating the interpretation of physical metadata
blocks from invariant checking on logical data structures.
We show how invariants are implemented using change
records in Section 3. When all invariants are checked suc-
cessfully, the transaction is allowed to commit.

2.4 Fault Model
Our goal is to preserve file-system metadata consistency
in the presence of arbitrary file-system bugs. We make

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 77

Figure 2: Change records when a block is added to a file

three assumptions to provide this guarantee. First, we
assume that the Recon code and its invariant checks are
correct and immutable and the Recon metadata cache is
protected. If these assumptions are incorrect, it is unlikely
that an inconsistent transaction would pass our checks, be-
cause the file-system bug and our corrupted check would
need to be correlated. However, Recon may generate false
alarms, indicating corruption even when a transaction is
consistent. Such corruption is still an indication of a bug
in the overall system. A hypervisor-based Recon imple-
mentation would provide stronger isolation of the Recon
code and data from the kernel, helping ensure metadata
consistency in the face of arbitrary kernel bugs.

Second, if the ext3 file system writes a metadata block
before Recon knows its type then Recon will assume that
a data block is being written and will allow the opera-
tion. For example, a file system bug may corrupt the block
number in a disk request structure and cause a misdirected
write to a metadata block. Recon will not detect this er-
ror because the write violates our pointer-before-block as-
sumption, and ext3 does not provide any other way to
identify the block being updated.2 As future work, we
plan to retrofit ext3 to allow such identification. Misdi-
rected writes will not cause a problem with btrfs because
its extents are self-identifying [2].

Finally, our inductive assumption about metadata con-
sistency before each transaction (discussed in Section 2.2)
requires correct functioning of the lower layers of the sys-
tem, including the Linux block device layer and all hard-
ware in the data path. It is possible to detect and recover
from errors at these layers by using metadata checksums
and redundancy. This functionality could be implemented
at the block layer for the ext3 file system [10]. The btrfs
file system already provides such functionality [16]. If
these assumptions are not met, offline checking and repair
should be used as a last resort.

3 Consistency Invariants
A file system checker verifies file system consistency by
applying a comprehensive set of rules for detecting and
optionally repairing inconsistencies. We are primarily in-

2We did not observe this problem because our fault injector corrupts
metadata blocks but does not cause misdirected writes (see Section 5.2).

terested in checking consistency properties and can reuse
the rules associated with detecting, but not repairing, in-
consistencies. We have applied our approach to the ext3
and the btrfs file systems. Below, we provide an overview
of the consistency rules for these file systems.

The SQCK system [11] encapsulates the 121 checks of
the ext3 fsck program in a set of SQL queries. Although
there is a close correspondence between SQCK queries
and e2fsck checks, some SQCK queries combine multi-
ple checks. Table 2 provides a breakdown of the number
of rules checked by SQCK for different file-system data
structures. We show 101 rules in Table 2, because the rest
are used for repair. The simplest checks (lines starting
with the word Within) examine individual structures (e.g.,
superblock fields, inode fields, and directory entries ap-
pear valid). Some checks ensure that pointers lie within an
expected range. More complicated checks (lines starting
with the word Between) ensure that block pointers (across
all files) do not point to the same data blocks, and direc-
tories form a connected tree.

We have done a similar classification of the rules
checked by the btrfs checker, as shown in Table 3. Btrfs is
an extent-based, B-tree file system that stores file-system
metadata structures (e.g., inodes, directories, etc.) in B-
tree leaves [16]. It uses a shadow-paging transaction
model for updates and for supporting file-system snap-
shots. Extent allocation information is maintained in an
extent B-tree, which serves the same purpose as ext3
block bitmaps. The roots for all the B-trees are maintained
in a top-level B-tree called the root tree. Although the
btrfs checker is still a work in progress (e.g., it performs
no repair), currently it uses 30 rules for detecting inconsis-
tencies. Of these, the first four rule sets are used to check
the structure of the B-tree, while the rest deal with typical
file-system objects such as inodes and directories.

Next, we provide several examples that show how
we transform the consistency properties for various data
structures shown in Tables 2 and 3 into invariants. An
invariant is implemented by pattern matching change
records. When such a match occurs, some invariants accu-
mulate bookkeeping information then require some final
processing at transaction commit.

78 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Datatype #rules
A Within superblock 23
B Within block group descriptors (BGD) 5
C Within a single inode 28
D Within a single directory 14
E Between inode and directory entries 5
F Between inode and its block pointers 2
G Between inode, inode bitmap, orphan list 3
H Between block bitmap and block pointers 5
I Between block, inode bitmap, BGD table 3
J Between directories 4
K Bad blocks inode 7
L Extended attributes ACL 2

Table 2: Number of Ext3/SQCK rules by datatype

3.1 Ext3 Immutable Fields, Range Checks
The ext3 fsck program checks for valid values in several
fields of the superblock and group descriptor table (rows
A and B in Table 2). Many of these fields are initialized
when a file system is created and should never be mod-
ified by a running file system. Invariants on these fields
are implemented by pattern matching a change record of
the form [Superblock, _, immutable_field, _, _], where
immutable_field is the name of the field that should not
change, and _ matches any value. The existence of this
record indicates that the field was modified, and signals a
violation. Another similar class of consistency properties
requires simple range checks on the values of given fields.

3.2 Ext3 Block Bitmap and Block Pointers
An important consistency properties in ext3 is that no data
block may be doubly allocated, i.e., every block pointer
(whether it is found in a live inode or indirect block) must
be unique or 0. Checking this property would be expen-
sive if we simply scanned all inodes and indirect blocks
searching for another instance of the pointer.

The file system maintains this property without examin-
ing the entire disk state by using block allocation bitmaps
(row H in Table 2), with the resulting consistency property
being that “all live data blocks are marked in the block
bitmap”. The corresponding consistency invariant is that
a transaction that makes a data block live (i.e., by adding
a pointer to the block) must also contain a corresponding
bit-flip (from 0 to 1) in the block bitmap within the same
transaction, as shown below.
block pointer set to N from 0 ⇔ bit N set in bitmap (1)
block pointer set to 0 from N ⇔ bit N unset in bitmap (2)

These invariants involve relationships between differ-
ent fields and require matching multiple change records.
The left side of the first invariant is triggered by match-
ing change records of the form [_, _ , block_pointer_field,
0, X], indicating a new pointer to block X. When such a
match occurs, we insert a “new pointer” flag with key X

Datatype #rules
A Within tree block 2
B Between parent and child tree blocks 3
C Between extent tree and extents 3
D Within an extent item in extent tree 2

E Between inodes and file system trees 2
F Between inode and directory entries 4
G Between inodes, inode refs and dir. entries 2
H Within directory entries 1
I Between inode, data extents, checksum tree 6
J Between inode and orphan items 1
K Between root tree and file system trees 3
L Between root tree and orphan items 1

Table 3: Number of Btrfs rules by datatype

into a rule-specific table. The right side of this (bicon-
ditional) invariant is triggered by matching [BBM, Y, _,
0, 1] records, indicating bit Y in the allocation bitmap is
newly set. When this match occurs, we insert a “bit set”
flag with key Y into the same table. During final process-
ing, the implementation verifies that for each key in the
table, both flags are set. Otherwise the invariant has been
violated. For example, in the simple transaction shown in
Figure 2, there is exactly one record matching each of the
left and right sides of Invariant 1 shown above, and the
values of X and Y are both 22717.

Invariants 1 and 2 ensure that when a block pointer is
set, the corresponding bit in the bitmap is also set. How-
ever, we must also ensure that a pointer to the same block
is set only once in a transaction, i.e., we must check for
double allocation within a transaction. To do so, we sim-
ply count the number of times we see a block pointer set
to a given block in the transaction:
block pointer set to N ⇒

(count(block pointer==N) in transaction)==1 (3)

3.3 Ext3 Directories
The inter-directory consistency properties essentially en-
sure that the directory tree forms a single, bidirected3

tree (row J in Table 2). This complex consistency prop-
erty requires two biconditional and two regular invariants.
Whenever a directory is linked (or its “..” entry changes),
Invariant 4 checks that the directory’s parent (child) has
the directory as its child (parent). This check also ensures
that a directory does not have multiple parents. When a
directory is unlinked (or moved), Invariant 5 checks that
it is unlinked on both sides (although not shown, we also
check that an unlinked directory is empty). When a direc-
tory’s “.” entry is updated, Invariant 6 checks that the “.”
entry points to itself.

[Dir, C, “..”, _, P] ⇔ [Dir, P, nm, _, C] and (nm != “..”) (4)

3A bidirected tree is the directed graph obtained from an undirected
tree by replacing each edge by two directed edges in opposite directions.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 79

[Dir, C, “..”, P, _] ⇔ [Dir, P, nm, C, _] and (nm != “..”) (5)
[Dir, D1, “.”, _, D2] ⇒ D1==D2 (6)
[Dir, _, “..”, _, P] ⇒ is_ancestor(ROOT, P) (7)

Finally, Invariant 7 checks that a directory update does
not cause cycles. Invariants 4 and 5 do not prohibit cy-
cles. For example, suppose that the file system allows the
command “mv /a /a/b” to complete successfully. This up-
date would be allowed by the Invariants 4 and 5, but it
would create a disconnected cycle consisting of a and b.
Invariant 7 checks for cycles when a directory’s parent en-
try (the “..” entry) is updated. It ensures that the chain of
parent directories eventually reaches the root directory, or
a cycle is detected. The is_ancestor() primitive operates
on the Recon metadata caches described in Section 4.

3.4 Btrfs Inode and Directory Entries
Metadata structures in btrfs are indexed by a 17-byte key
consisting of the tuple (objectID, type, offset). ObjectID
is roughly analogous to an inode number in ext3. The type
field determines the type of the structure, and the meaning
of “offset” depends on the type. Each key is unique within
a btrfs tree, so the unique (type, id) pair for our change
records consists of (type, (tree id, objectid, offset)).

A btrfs consistency property is that the inode associ-
ated with a directory item (that is, a btrfs directory entry)
has a directory mode (row F in Table 3). An invariant
derived from this property is that when we add a new di-
rectory item, there must exist an appropriate inode item
after transaction commit. We can represent this as:
[DIR_ITEM, (T, I, _), _, φ , _] ⇒

exists(T, I, INODE_ITEM, 0) and
ISDIR(get_item(T, I, INODE_ITEM, 0).mode)

The left hand side matches a directory item within snap-
shot tree T and objectid I that is being newly created. This
invariant asserts that 1) there is a matching inode item, and
2) its mode is of directory type. The exists() primitive re-
turns true if the given item can be found in tree T, and the
get_item primitive obtains the contents of the item, allow-
ing us to check the mode. These primitives operate on the
Recon metadata caches.

4 Implementation
We use the Linux device mapper framework to interpose
on all file system I/O requests at the block layer, as shown
in Figure 1. On a metadata block read, recon_read caches
the block in the Recon read cache. This cache allows ac-
cessing the disk or the pre-update file-system metadata
state efficiently. Its contents are trusted because its blocks
have been verified previously. On a metadata block write,
recon_write caches the updated block in the Recon write
cache. The write cache may contain corrupt data and thus
any code accessing this cache must perform careful vali-
dation. Both caches also store block-specific information

such as the block-type map. Similar to a file system buffer
cache, neither Recon cache persists across reboots.

4.1 Commit Process
At commit, our framework requires that 1) all transac-
tion blocks must have been recorded using recon_write,
and 2) recon_commit is called before the commit block
reaches the disk. We can record blocks and detect com-
mit either from the transaction subsystem (transaction-
layer commit) or at the block layer (block-layer commit).
With transaction-layer commit, the file system’s transac-
tion commit code is modified to invoke recon_write on
the updated metadata blocks, and invoke recon_commit
before writing the commit block. This method is simpler
to implement, but it makes us dependent on the transac-
tion layer code, such as JBD in ext3. In particular, it does
not allow us to verify the ext3 checkpointing process.

With block-layer commit, recon_write could be in-
voked on all block writes. The challenge is to separate
metadata blocks from data blocks because we do not want
to cache every data block. However, we can only identify
newly allocated metadata blocks at commit, making them
hard to distinguish from data on each write. Fortunately,
for ext3, metadata blocks are written to the journal, and
thus we can ignore blocks that are not journaled. This
approach requires interpreting journal writes at the block
layer, which also helps detect commit. While this im-
plementation is more complicated, it removes any depen-
dency on the journaling code. For btrfs, metadata writes
can be easily distinguished because they are directed to
designated regions on disk called btrfs chunks. Btrfs com-
mits occur when the superblock is written, which is easy
to detect because the superblock is in a known location.

We have implemented both transaction-layer and
block-layer commit, but currently we have only evaluated
the transaction-layer commit implementation.

4.2 Cache Pinning and Eviction
We control the amount of memory used by the Re-
con caches with a simple LRU mechanism for replacing
blocks from the read cache when it grows beyond a user-
configurable limit. All read cache blocks are pinned dur-
ing recon_commit processing to simplify implementation.
We expect that recon_commit will run quickly because
the blocks needed for commit processing have likely been
read by the file system recently and so they will not need
to be read from disk to populate the read cache. We pin
the Recon write cache for the duration of the transaction
because we will need these blocks for checking invariants.
This approach is similar to the ext3 file system pinning its
journal blocks for performance. However, we could unpin
a block once it reaches disk, e.g., the journal in ext3.

After commit, the contents of the write cache are
merged into the read cache, thus updating Recon’s view

80 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

FS Recon API Invoked on
references Read provides type and id information for data structures in referenced blocks
process_write Commit provides type and id information for newly allocated metadata blocks
process_txn Commit generates change records
txn_check Commit checks invariants using change records and metadata read/write caches

Table 4: File-system specific Recon API

of file-system state, and the write cache is cleared. At this
point, we can unpin the read cache because all the blocks
in the cache are on disk (e.g., either in the journal or the
checkpointed location in ext3). However, our transaction-
layer commit implementation for ext3 does not track the
location of blocks in the journal. To avoid evicting a block
that may be in the journal, we keep a list of most recently
updated blocks in the read cache. This list contains as
many blocks as it takes to fill the journal and we pin these
blocks. Once a block is evicted from this list, it must have
been checkpointed, or else it would have been overwritten
in the journal, and so we can unpin it.

4.3 File-System Specific Processing
Recon invokes file-system specific API functions for
metadata interpretation and invariant checking, as shown
in Table 4. The references function is invoked by re-
con_read to parse a metadata block and create block-type
mappings for pointed-to blocks. This function is also used
to distinguish between data and metadata on the read path.

The rest of the functions in Table 4 are invoked by
recon_commit. The process_write function is similar to
the references function but invoked on all the blocks in
the write cache (i.e., each updated or newly allocated
metadata block). This function must validate the updated
blocks by checking that any pointers, strings and size
fields within the block have reasonable values so that fur-
ther processing is not compromised. Recon ignores un-
known blocks and only processes updated blocks whose
types are known. As unknown blocks become known,
they are added to the queue of blocks being processed.
At the end of write processing, if any unknown blocks re-
main, Recon signals a reachability invariant violation, as
discussed in Section 2.3.

Once the block and data types within blocks are known,
the process_txn function compares updated data structures
with their previous versions to derive a set of change
records. The previous version of a data structure is
uniquely determined by the (type, id) pair of the change
record. In ext3, the type is determined by block type and
the id is typically an inode number or a block number. In
btrfs, the type and id are determined by the tree and the
key, as discussed in Section 3.4.

While the process of comparing data structures is
clearly file-system specific, we found two common cases.
When data structures have fixed size, such as inodes in
ext3 and most items in btrfs, we use a simple byte-level

diff that is driven by tables that describe the layout of
the data structures. These tables are generated from the
data structures using C macros. When data structures
themselves contain sets of smaller items, such as direc-
tory entries in ext3, or extent items in btrfs, we use a set-
intersection method to derive three sets consisting of new
items, deleted items and modified items. Change records
can be generated from these sets, using the identity of the
containing item (e.g., directory inode) and some key as
field name (such as the “name” for directory entries).

The txn_check function implements invariant checking
as described in Section 3 with examples.

4.4 Handling Invariant Violation
The final problem for an online consistency checker like
Recon is dealing with invariant violations. It is important
to ensure that recovery from a violation is correct and so
the safest strategy is to disable all further modifications
to the file system to avoid corruption. The file system
can then be unmounted and restarted manually or trans-
parently to applications [26]. In this case, the file system
is not corrupt but may have lost some data. If the ability
to create a snapshot (e.g., a btrfs snapshot) is available,
then a snapshot could be created immediately, the prob-
lem reported, and then we could continue running the file
system. It is important to isolate the snapshot from the
buggy file system, e.g., by directing all further writes to a
separate partition. In this case, data is preserved but the
file system may be corrupt. Finally, it may be possible to
repair file system data structures dynamically [8].

5 Evaluation
In this section, we evaluate our Recon implementation for
ext3 in terms of its 1) complexity, 2) ability to detect meta-
data corruption at runtime, and 3) its performance impact.
Currently, we are finishing our btrfs implementation, and
we plan to evaluate it in the near future.

5.1 Completeness and Complexity
We have implemented all of the checks performed by the
e2fsck file system checker, as encapsulated by the SQCK
rules, for the mandatory file system features. Overall,
we need only 31 invariants (vs 101 SQCK rules) because
some properties are easier to verify at runtime. For exam-
ple, a large number of fields in the superblock and block
group descriptors are protected with the simple invariant
that they should not be changed by a running file system.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 81

We also avoid explicit range check invariants in several
cases because they are naturally embedded in other in-
variants that must check for setting or clearing of bits in
bitmaps. There are a small number of properties on op-
tional features that we do not check, such as OS-specific
fields in inodes and the extended attributes ACLs.

Our entire system consists of 3.8k lines of C code
(kLOC), as measured by the cloc [7] tool. Of these, 1.5
kLOC are in the generic framework which can be reused
across file systems, 1.5 kLOC are for interpreting the ext3
metadata, and only 0.8 kLOC are involved in checking the
invariants. Our dependence on the journal checkpointing
code adds another 311 lines. The code required to do the
checking is simpler than the file system code for several
reasons. First, within the thread checking a transaction,
we do not need to worry about concurrency, as the buffers
we are examining are under the control of the journal. In
contrast, the file system needs to be servicing multiple
client threads. Second, the implementation of each invari-
ant check is independent of the other checks because each
rule uses its own data structures to keep track of properties
that must be verified. Finally, the implementation of each
rule is usually quite simple, requiring several lines of C to
accumulate the necessary data and a few more (often just
a single boolean expression) to verify.

5.2 Ability to Detect Corruption
Evaluating resiliency against metadata corruption is
tricky. To best represent real-world corruption scenarios,
we would either inject subtle bugs in the file-system or
reproduce known bugs. However, subtle bugs (i.e., bugs
not easily found in a heavily-used file system) are hard
to design or reproduce. Reproducing known bugs is dif-
ficult as they often depend on specific kernel versions,
combinations of loadable modules, concurrency levels, or
workloads. Instead, we settled for deliberately injecting
corruption of bytes within metadata blocks. This mim-
ics the corruption that could result from several types of
bugs (e.g., setting values in arbitrary fields incorrectly)
both within the file system or in the overall kernel. We in-
jected both type-specific corruption, where we target spe-
cific metadata block types and fields, and fully random
corruption where we corrupt a sequence of 1 to 8 bytes
within some number of blocks in a transaction.

Setup We compare Recon against e2fsck by corrupting
metadata just before it is committed to the journal. We
begin each corruption experiment by creating and pop-
ulating a fresh file system, to ensure that there are no
errors initially. Next, we start a process that creates a
background of I/O operations (specifically we run a ker-
nel compile and clean, repeatedly). The corruptor then
sleeps for 20-90 seconds, wakes up, and performs the re-
quested corruption (type-specific or random). We record

31

79

52
59 112 17 72 352

2

2

1

4

25 8 23

31

0%

100%

%
 C

or
ru

pt
io

ns
 C

au
gh

t

Detected by both e2fsck only Recon only

inode
(stat)

inode
(blk ptr)

inode
(others)

dir

bgd

bbm

ibm

random

Figure 3: Comparison of corruption detection accuracy

the corruption performed and whether or not Recon de-
tected it. Next, we allow the transaction to commit, and
then immediately prevent any future writes. This step en-
sures that the corruption is limited to the bytes that we
selected, rather than the result of the file system acting
further on corrupt data. Next, we unmount the file sys-
tem, run e2fsck on it, and record whether it found and
repaired any errors. Finally, we run e2fsck a second time
to see if the file system is clean after the repairs, and then
reboot the system for the next experiment. For these ex-
periments, we use a 4 GB file mounted as a loop device
for our file system. This simplified the restoration of the
file system following each corruption experiment.

Our corruption framework can only corrupt blocks that
the file system is already modifying in some transaction.
In particular, we never corrupt the superblock since the
running file system never includes writes to it. We do
not consider this to be a serious limitation to our test re-
sults since nearly all superblock corruptions would be triv-
ially detected by Recon. Specifically, Recon protects most
fields in the superblock with the invariant that they should
not be modified at all, which is very easy to check.

Results Figure 3 summarizes the results of our corrup-
tion experiments. We show a wide bar and two stacked
bars for each type of metadata corruption and random cor-
ruption. The wide bar shows the percent of corruptions
(Y axis) that were caught by both e2fsck and Recon. The
stacked bars show the percent of corruptions that were de-
tected by only one checker. Numbers in the bars show the
absolute number of corruptions detected.

For inodes, we present 3 sets of bars, representing dif-
ferent types of inode fields. The first group includes fields
that are reported by “stat”, the second group consists of all
the block pointer fields, and the third group consists of ev-
erything else. Our coverage is nearly identical to e2fsck in
all cases. Many of the inode stat fields are unrelated to file
system consistency (e.g. the timestamps and userids) and
are permitted to change arbitrarily, making it hard to de-
tect corruption with either checker. However, both check-

82 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

ers are effective at catching corruption of block pointers.
Recon achieves 100% in this case because it checks all
inodes in a block being written to disk while e2fsck ig-
nores unused inodes. Although file system consistency is
not affected by changes to unused inodes, it is still useful
to detect this corruption because it indicates a bug in the
system. For the final set of inode fields, e2fsck detects
an invalid flag setting that Recon does not check in two
runs, while Recon catches corruption of some unused in-
ode flags and a corruption of the dir_acl field that appears
valid when checked by e2fsck after the fact in four runs.

For directory entries (dir), both checkers detect the
same corruptions, with neither checker detecting corrup-
tion of the name field. For the other metadata types,
Recon is more effective than e2fsck at detecting corrup-
tion, largely because it is able to take other runtime be-
havior into account. For example, Recon achieves 100%
detection for block group descriptor (bgd) corruption be-
cause most of these fields should not be changed by a run-
ning file system. Once corruption has reached the disk
however, it is not always possible to distinguish the cor-
rect values from corrupted, but still valid, values. Simi-
larly, Recon detects 100% of the block and inode bitmap
(bbm and ibm, respectively) corruptions while e2fsck has
a lower detection rate because it does not check unused
parts of metadata blocks. For example, e2fsck does not
check bits in the inode bitmap for non-existent inodes, or
bits in the block bitmap for uninitialized block group de-
scriptor table blocks. Recon’s higher coverage on specific
metadata fields leads to higher coverage for fully random
corruption as well. We expect that adding the final set of
ext3 invariants for OS-specific inode fields and extended
attributes will help us detect all ext3 structural consistency
violations. However, neither checker can achieve 100%
accuracy because some of the corruptions hit fields unre-
lated to structural consistency.

After e2fsck performs repair, it still detects errors in
28 out of 731 cases (3.8%), when it is run a second time
on the “repaired” file system. Two of these failures oc-
curred after a single byte was corrupted in a single meta-
data block. In our experiments, we unmount the file sys-
tem and check it with e2fsck immediately after the cor-
rupted transaction is committed to the journal. In reality,
it is likely that the file system would continue operation
with bad data for some time, making the chances of suc-
cessful repair even lower. In these cases, Recon’s ability
to prevent corruption from reaching the on-disk metadata
is particularly valuable.

5.3 Performance
Setup All performance tests were done on a 1 TB ext3-
formatted file system on a machine with 2GB total RAM
and dual 3 GHz Xeon CPUs. We used the Linux port
of FileBench (version 1.4.8.fsl.0.8) with the application

Personality Settings Data Size
Webserver nfiles=250k 3.9 GB
Webproxy nfiles=500k 7.8 GB
Varmail nfiles=250k 3.9 GB
Fileserver nfiles=500k,

filesize=32k
15.6 GB

MS-Networkfs based on [17] 19.9 GB
Table 5: Benchmark Characteristics

emulation workload personalities4. We included the Net-
workfs personality, which supports a more sophisticated
file system model, with a custom profile configured to
match the metadata characteristics from a recent study of
Windows desktops[17]. For Fileserver, we reduced the
default file size to 32k to increase the metadata to data
ratio in the file system. In all other cases, we used de-
fault parameter settings. Table 5 summarizes the basic
characteristics of our benchmarks.5 The metadata load
varies widely across the benchmarks, spanning the range
of Recon cache sizes, causing misses in the cache. In par-
ticular, the Fileserver benchmark uses over 25k directo-
ries. The metadata consumed by directory entry blocks
alone is greater than 100MB. The inodes for the direc-
tories and files would consume approximately 70MB if
they were stored compactly, but ext3 distributes alloca-
tion across different block groups, so unused inodes add
to the metadata overhead. While the Networkfs bench-
mark involves more file data, the total number of files is
lower because of the larger file size distribution.

The benchmarks are run for one hour for all workloads
to ensure that we capture steady-state behavior with Re-
con. We report the performance of Recon compared to
native ext3 for both the initial benchmark setup, which
involves heavy metadata writes (Table 6), and the actual
workload execution (Figure 4).

Our current transaction-layer commit implementation
(described in Section 4) cannot evict blocks from our
metadata cache that have not yet been checkpointed to the
file system. Thus, the metadata cache size must be larger
than the journal size. However, any memory consumed by
Recon’s metadata cache reduces the memory available for
the file system cache by the same amount because Linux
implements a shared page cache. We present results for
three different cache/journal sizes, for both native and Re-
con performance. FileBench emulates workloads using a
variety of random variables for file and operation selec-
tion. Thus, there is natural performance variation across
runs. Since this is representative of behavior “in the wild”,
we report the average of 5 runs with error bars. All tests
are done with cold caches on a freshly booted system.

4The OLTP personality did not work in the version we obtained.
5The full profile used in the experiments is available at

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 83

Cache=64MB, Journal=32MB Cache=128MB, Journal=64MB Cache=256MB, Journal=128MB
Setup (seconds) Ext3 Recon Ratio Ext3 Recon Ratio Ext3 Recon Ratio

Webserver 2171.0±42.8 2903.2±45.7 133.7 1722.0±77.4 1668.6±36.7 96.9 1405.6±24.4 1340.2±29.6 95.3
Webproxy 229.4±26.0 323.0±24.3 140.8 212.8±13.5 243.4±23.5 114.4 227.2±19.5 224.4±24.0 98.8
Varmail 110.2±11.4 110.8±4.4 100.5 118.6±12.3 113.8±16.2 96.0 109.4±9.5 123.0±5.0 112.4
Fileserver 13728.5±694.2 17705.8±413.5 129.0 11487.2±849.8 12906.8±1316.8 112.4 9785.6±491.6 10374.8±928.8 106.0
Networkfs 2096.8±140.4 2113.8±119.2 100.8 1757.4±70.2 1893.0±73.0 107.7 1651.8±113.8 1719.4±31.5 104.1

Table 6: Setup time for benchmarks (lower is better)

Results During the benchmark setup, when many files
are being created, there is a significant cost to Recon, par-
ticularly for small cache sizes. The dominating factor is
I/O time for metadata cache misses because file creation
quickly and repeatedly touches the entire working set of
metadata. However, as the cache size increases, the im-
pact is rapidly reduced. With a 128MB metadata cache,
the added overhead of Recon is within the experimental
error of ext3’s native performance. The impact of Recon
is less noticeable during normal benchmark operations.
With our smallest metadata cache size (64MB), there is a
worst case overhead of only 15% for Fileserver, which is
generally reduced as the cache size increases. The one ex-
ception to this trend is the Networkfs personality (ms_nfs
in Figure 4), where performance degrades with an increas-
ing Recon cache size. We believe this is the result of
memory pressure, as our increased metadata cache size
decreases the amount of memory available to the file sys-
tem buffer cache. Overall, a 128MB metadata cache with
a 64MB journal gives the best results for all workloads,
with only 8% degradation on average. In most cases, file
system throughput with Recon is within the margin of er-
ror of ext3 performance. Given the growth in main mem-
ory sizes, these are quite modest memory requirements for
the reliability benefits that Recon can deliver.

6 Related Work
We discuss several areas of research that are closely re-
lated to this work, including methods for 1) handling file
system bugs, 2) checking file system consistency, 3) inter-
preting file system semantics and verification.

6.1 Handling File System Bugs
File system bugs can be detected statically or at runtime.
Bug finding tools, based on model checking [29, 31] and
static analysis [21], have revealed scores of bugs in a vari-
ety of file systems. However, these tools cannot be relied
upon to identify all bugs because they need to perform
exhaustive evaluation. Furthermore, even when a bug is
known, a bug fix may not be easily available, or easy to
deploy in live systems [1]. These limitations can be ad-
dressed by tolerating bugs at runtime.

EnvyFS [3] applies N-version programming for detect-
ing file system bugs. It uses the common VFS interface
to pass each file system request received by the VFS layer
to three child file systems. The results are then compared

 0

 100

 200

 300

 400

 500

O
p
er

at
io

n
s/

S
ec

o
n
d

Performance (Cache Size = 64MB, Journal Size = 32MB)

webserver webproxy varmail fileserver ms_nfs

Ext3
Recon

 0

 100

 200

 300

 400

 500

O
p
er

at
io

n
s/

S
ec

o
n
d

Performance (Cache Size = 128MB, Journal Size = 64MB)

webserver webproxy varmail fileserver ms_nfs

Ext3
Recon

0

100

200

300

400

500

O
pe

ra
tio

ns
/S

ec
on

d

B, J ournal Size = 128MB)

webserver webproxy varmail fileserver ms_nfs

Ext3
Recon

Performance (Cache Size = 256M

Figure 4: Performance on FileBench workloads for vary-
ing metadata cache sizes

and the majority result is returned. EnvyFS avoids storing
3 data copies by using a customized single-instance store.
Although EnvyFS is able to detect and in some cases re-
pair errors introduced in child file systems, the run time
overheads are significant because the operations must be
issued to at least two file systems and the results compared
before an answer is returned. Also, subtle differences in
file system semantics can make it hard to compare results.

Membrane [26] proposes tolerating bugs by transpar-
ently restarting a failed file system. It assumes that file
system bugs will lead to detectable, fail-stop crash fail-
ures. However, inconsistencies may have propagated to
the on-disk metadata by the time the crash occurs. Our ap-
proach is complementary to Membrane, rather than wait-

84 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

ing for the file system to crash, a restart could be initiated
when Recon detects an inconsistent transaction.

6.2 Checking File System Consistency
SQCK [11] expresses the many complex checks per-
formed by e2fsck as a set of compact SQL queries. It
improves upon the repairs done by e2fsck by correcting
the order in which repairs were performed and by using
redundant file-system metadata ignored by e2fsck.

Chunkfs proposes reducing the consistency check time
by breaking the file system into chunks that can be
checked independently [13]. While this idea is appealing,
unfortunately the chunks are not independent and thus
cannot be checked truly independently. Specifically, path-
names can span chunks, and Chunkfs uses cross-chunk
references to handle hard links and files that are larger
than chunks or need allocation across chunks.

ZFS provides the ability to scrub disks and repair cor-
rupt blocks that have redundant copies [4]. Scrubbing can
detect latent hardware errors but does not necessarily de-
tect software bugs, e.g., if the block has a consistency er-
ror but passes the checksum. NetApp filers can run some
phases of the wafliron check program on an online system,
but this process is resource intensive and time-taking.

6.3 File System Semantics and Verification
Semantically-smart disks use probing to gather detailed
knowledge of file system behavior [24]. This knowledge
is used at the block interface to transparently improve per-
formance or enhance functionality, such as by implement-
ing track-aligned extents and secure delete. This work
builds on several ideas from semantically-smart disks.

The XN storage system of the Xok exokernel is de-
signed to protect library file systems that manage their
own disk blocks [15]. XN uses a file-system specific
function called own(), similar to the Recon references()
function, that returns the blocks controlled by a meta-data
block. This function allows XN to verify that a file system
can only access blocks that are allocated to it. XN can also
use a file-system specific function called reboot() that tra-
verses the entire file-system tree and detects whether the
file system is crash consistent. This work shows that file-
system consistency can be verified at runtime efficiently.
File systems must use an extended block interface (e.g.,
allocate, read, write, deallocate) and provide block type
information to XN and which allows easier verification,
while Recon only requires the basic block interface (e.g.,
read, write) and infers file system information. Also, XN
protects file systems from each other and may allow a file
system to corrupt itself, while our focus is on protecting
the file system from itself. Similar to XN, a type-safe
disk extends the disk interface by exposing primitives for
block allocation [23], which helps enforce invariants such
as preventing accesses to unallocated blocks.

There has been significant work on discovering pro-
gram invariants by capturing variable values at key points
in a program to repair data structures [8] and to patch
buggy deployed software [18]. We plan to apply these
methods to learn file-system invariants and repair updates
that cause invariant violations. Our work is influenced by
runtime verification, a technique that applies formal anal-
ysis to the running system rather than its model [25, 5].

Our system can be viewed as a firewall with a set of
rules that help protect disks from accesses that could com-
promise file-system integrity. Defining and implementing
these rules in a high-level language, such as the Linux ipt-
ables rules [22], is an avenue for future work.

7 Conclusions and Future Work
The Recon system protects file system metadata from
buggy file system operations. It uses two key ideas, using
commit points to verify consistency invariants. Modern
file systems aim to ensure file system consistency at com-
mit points. Consistency invariants are declarative state-
ments that must be satisfied at these points before data is
committed or else the file system may get corrupted. We
reuse the consistency rules used by a file system checker
to derive the invariants. As a result, Recon detects ran-
dom corruption at runtime as effectively as the file system
checker. It has low overhead because the data it interprets
has likely been recently accessed by the file system.

A system that checks the file system is easier to imple-
ment correctly than the file system itself. When check-
ing a transaction, we do not need to worry about concur-
rency because the buffers we are examining are under our
control. In contrast, the file system needs to be servicing
multiple client threads. Also, each invariant is indepen-
dent because it uses its own data structures to keep track
of the properties that must be checked, and we find that
the implementation of each rule usually quite simple. The
bulk of the complexity lies in interpreting metadata struc-
tures. We plan to develop a systematic way to describe
and interpret these structures.

While an offline checker can only make decisions based
on the current file system state, Recon can also observe the
file system operations in progress. We plan to investigate
whether this allows detecting certain operational bugs un-
related to file system consistency, e.g., updates to userid
or timestamp fields.

8 Acknowledgments
We thank the anonymous reviewers and our shepherd,
Junfeng Yang, for many insightful comments. This re-
search was supported by NSERC through the Discovery
Grants program.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 85

References
[1] ARNOLD, J., AND KAASHOEK, M. F. Ksplice: au-

tomatic rebootless kernel updates. In Proceedings
of the ACM SIGOPS European Conference on Com-
puter Systems (Eurosys) (2009), pp. 187–198.

[2] BAIRAVASUNDARAM, L. N., ARPACI-DUSSEAU,
A. C., ARPACI-DUSSEAU, R. H., GOODSON,
G. R., AND SCHROEDER, B. An analysis of data
corruption in the storage stack. Transactions of Stor-
age 4, 3 (2008), 1–28.

[3] BAIRAVASUNDARAM, L. N., SUNDARARAMAN,
S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Tolerating file-system mistakes
with envyfs. In Proceedings of the USENIX Techni-
cal Conference (June 2009).

[4] BONWICK, J., AND MOORE, B. ZFS - The Last
Word in File Systems.

.

[5] CHEN, F., AND ROŞU, G. Mop: an efficient and
generic runtime verification framework. In Proceed-
ings of the ACM OOPSLA (2007), pp. 569–588.

[6] CUSTER, H. Inside the Windows NT File System.
Microsoft Press, 1994.

[7] DANIAL, A. CLOC – Count Lines of Code.
.

[8] DEMSKY, B., AND RINARD, M. C. Goal-directed
reasoning for specification-based data structure re-
pair. IEEE Transactions on Software Engineering
32, 12 (2006), 931–951.

[9] GANGER, G. R., MCKUSICK, M. K., SOULES,
C. A. N., AND PATT, Y. N. Soft updates: a so-
lution to the metadata update problem in file sys-
tems. ACM Transactions on Computer Systems 18,
2 (2000), 127–153.

[10] GUNAWI, H. S., PRABHAKARAN, V., KRISH-
NAN, S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Improving file system reliability
with I/O shepherding. In Proceedings of the Sym-
posium on Operating Systems Principles (SOSP)
(2007), pp. 293–306.

[11] GUNAWI, H. S., RAJIMWALE, A., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
SQCK: A declarative file system checker. In Pro-
ceedings of the Operating Systems Design and Im-
plementation (OSDI) (Dec. 2008).

[12] HAGMANN, R. Reimplementing the Cedar file sys-
tem using logging and group commit. In Proceed-

ings of the Symposium on Operating Systems Prin-
ciples (SOSP) (Nov. 1987).

[13] HENSON, V., VAN DE VEN, A., GUD, A., AND
BROWN, Z. Chunkfs: Using divide-and-conquer to
improve file system reliability and repair. In Pro-
ceedings of the Workshop on Hot Topics in System
Dependability (HotDep) (2006).

[14] HITZ, D., LAU, J., AND MALCOLM, M. File sys-
tem design for an NFS file server appliance. In
Proceedings of the USENIX Technical Conference
(1994).

[15] KAASHOEK, F. M., ENGLER, D. R., GANGER,
G. R., BRICENO, H. M., HUNT, R., MAZIKRES,
D., PINCKNEY, T., GRIMM, R., JANNOTTI, J., ,
AND MACKENZIE, K. Application Performance
and Flexibility on Exokernel Systems. In Proceed-
ings of the Symposium on Operating Systems Prin-
ciples (SOSP) (1997), pp. 52–65.

[16] MASON, C., AND ET AL. Btrfs.
.

[17] MEYER, D. T., AND BOLOSKY, W. J. A study
of practical deduplication. In Proceedings of the
USENIX Conference on File and Storage Technolo-
gies (FAST) (2010).

[18] PERKINS, J. H., KIM, S., LARSEN, S., AMA-
RASINGHE, S. P., BACHRACH, J., CARBIN, M.,
PACHECO, C., SHERWOOD, F., SIDIROGLOU, S.,
SULLIVAN, G., WONG, W.-F., ZIBIN, Y., ERNST,
M. D., AND RINARD, M. C. Automatically patch-
ing errors in deployed software. In Proceedings
of the Symposium on Operating Systems Principles
(SOSP) (2009), pp. 87–102.

[19] PRABHAKARAN, V., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Model-based fail-
ure analysis of journaling file systems. In Proceed-
ings of the IEEE Dependable Systems and Networks
(DSN) (2005), pp. 802–811.

[20] PRABHAKARAN, V., BAIRAVASUNDARAM, L. N.,
AGRAWAL, N., GUNAWI, H. S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Iron file systems. In Proceedings of the Symposium
on Operating Systems Principles (SOSP) (2005),
pp. 206–220.

[21] RUBIO-GONZÁLEZ, CINDY, GUNAWI, S., H., LI-
BLIT, B., ARPACI-DUSSEAU, H., R., ARPACI-
DUSSEAU, AND C., A. Error propagation analysis
for file systems. In Proceedings of the ACM SIG-
PLAN conference on programming language design
and implementation (PLDI) (2009), pp. 270–280.

86 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[22] RUSSELL, R. Iptables.
.

[23] SIVATHANU, G., SUNDARARAMAN, S., AND
ZADOK, E. Type-safe disks. In Proceedings of
the Operating Systems Design and Implementation
(OSDI) (2006), pp. 15–28.

[24] SIVATHANU, M., PRABHAKARAN, V., POPOVICI,
F. I., DENEHY, T. E., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Semantically-smart
disk systems. In USENIX Conference on File and
Storage Technologies (FAST) (2003), pp. 73–88.

[25] SOKOLSKY, O., SAMMAPUN, U., LEE, I., AND
KIM, J. Run-time checking of dynamic properties.
Electronic Notes in Theoretical Computer Science
144 (May 2006), 91–108.

[26] SUNDARARAMAN, S., SUBRAMANIAN, S., RA-
JIMWALE, A., ARPACI-DUSSEAU, A. C., ARPACI-
DUSSEAU, R. H., AND SWIFT, M. M. Membrane:
Operating system support for restartable file sys-
tems. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST) (2010).

[27] SWEENEY, A., DOUCETTE, D., HU, W., ANDER-
SON, C., NISHIMOTO, M., AND PECK, G. Scala-
bility in the XFS file system. In Proceedings of the
USENIX Technical Conference (1996), pp. 1–14.

[28] TWEEDIE, S. C. Journalling the ext2fs filesystem.
In Proceedings of the 4th Annual Linux Expo (May
1998).

[29] YANG, J., SAR, C., AND ENGLER, D. Explode: a
lightweight, general system for finding serious stor-
age system errors. In Proceedings of the Operating
Systems Design and Implementation (OSDI) (2006).

[30] YANG, J., SAR, C., TWOHEY, P., CADAR, C.,
AND ENGLER, D. Automatically generating mali-
cious disks using symbolic execution. In Proceed-
ings of the IEEE Symposium on Security and Privacy
(2006), pp. 243–257.

[31] YANG, J., TWOHEY, P., ENGLER, D., AND MUSU-
VATHI, M. Using model checking to find serious
file system errors. ACM Transactions on Computer
Systems 24, 4 (2006), 393–423.

[32] ZHANG, Y., RAJIMWALE, A., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. End-to-end
data integrity for file systems: a ZFS case study. In
Proceedings of the USENIX Conference on File and
Storage Technologies (FAST) (2010).

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 87

Understanding Performance Implications of Nested File Systems
in a Virtualized Environment

Duy Le1, Hai Huang2, and Haining Wang1

1The College of William and Mary, Williamsburg, VA 23185, USA
2IBM T. J. Watson Research Center, Hawthorne, NY 10532 USA

Abstract
Virtualization allows computing resources to be utilized
much more efficiently than those in traditional systems,
and it is a strong driving force behind commoditizing
computing infrastructure for providing cloud services.
Unfortunately, the multiple layers of abstraction that vir-
tualization introduces also complicate the proper under-
standing, accurate measurement, and effective manage-
ment of such an environment. In this paper, we focus
on one particular layer: storage virtualization, which en-
ables a host system to map a guest VM’s file system to
almost any storage media. A flat file in the host file sys-
tem is commonly used for this purpose. However, as we
will show, when one file system (guest) runs on top of
another file system (host), their nested interactions can
have unexpected and significant performance implica-
tions (as much as 67% degradation). From performing
experiments on 42 different combinations of guest and
host file systems, we give advice on how to and how not
to nest file systems.

1 Introduction

Virtualization has significantly improved hardware uti-
lization, thus, allowing IT services providers to offer a
wide range of application, platform and infrastructure so-
lutions through low-cost, commoditized hardware (e.g.,
Cloud [1, 5, 11]). However, virtualization is a double-
edged sword. Along with many benefits it brings, vir-
tualized systems are also more complex, and thus, more
difficult to understand, measure, and manage. This is
often caused by layers of abstraction that virtualization
introduces. One particular type of abstraction, which
we use often in our virtualized environment but have not
yet fully understood, is the nesting of file systems in the
guest and host systems.

In a typical virtualized environment, a host maps reg-
ular files as virtual block devices to virtual machines

Figure 1: Scenario of nesting of file systems.

(VMs). Completely unaware of this, a VM would for-
mat the block device with a file system that it thinks is
the most suitable for its particular workload. Now, we
have two file systems – a host file system and a guest
file system – both of which are completely unaware of
the existence of the other layer. Figure 1 illustrates such
a scenario. The fact that there is one file system be-
low another complicates an already delicate situation,
where file systems make certain assumptions, based on
which, optimizations are made. When some of these as-
sumptions are no longer true, these optimizations will no
longer improve performance, and sometimes, will even
hurt performance. For example, in the guest file sys-
tem, optimizations such as placing frequently used files
on outer disk cylinders for higher I/O throughput (e.g.,
NTFS), de-fragmenting files (e.g., QCoW [7]), and en-
suring meta-data and data locality, can cause some unex-
pected effects when the real block allocation and place-
ment decisions are done at a lower level (i.e., in the host).
An alternative to using files as virtual block devices

is to give VMs direct access to physical disks or logi-
cal volumes. However, there are several benefits in map-
ping virtual block devices as files in host systems. First,
using files allows storage space overcommit when they
are thinly provisioned. Second, snapshotting a VM im-
age using copy-on-write (e.g., using QCoW) is simpler
at the file level than at the block level. Third, manag-
ing and maintaining VM images and snapshots as files is

1

88 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

also easier and more intuitive as we can leverage many
existing file-based storage management tools. Moreover,
the use of nested virtualization [6, 15], where VMs can
act as hypervisors to create their own VMs, has recently
been demonstrated to be practical in multiple types of hy-
pervisors. As this technique encourages more layers of
file systems stacking on top of one another, it would be
even more important to better understand the interactions
across layers and their performance implications.
In most cases, a file system is chosen over other

file systems primarily based on the expected workload.
However, we believe, in a virtualized environment, the
guest file system should be chosen based on not only
the workload but also the underlying host file system.
To validate this, we conduct an extensive set of experi-
ments using various combinations of guest and host file
systems including Ext2, Ext3, Ext4, ReiserFS, XFS, and
JFS. It is well understood that file systems have different
performance characteristics under different workloads.
Therefore, instead of comparing different file systems,
we compare the same guest file system among different
host file systems, and vice versa. From our experiments,
we observe significant I/O performance differences. An
improper combination of guest and host file systems can
be disastrous to performance; but with an appropriate
combination, the overhead can be negligible.

The main contributions of this paper are summarized
as follows.

• A quantitative study of the interactions between
guest and host file systems. We demonstrate that the
virtualization abstraction at the file system level can
be more detrimental to the I/O performance than it
is generally believed.

• A detailed block-level analysis of different combi-
nations of guest/host file systems. We uncover the
reasons behind I/O performance variations in dif-
ferent file system combinations and suggest various
tuning techniques to enable more efficient interac-
tions between guest and host file systems to achieve
better I/O performance.

From our experiments, we have made the follow-
ing interesting observations: (1) for write-dominated
workloads, journaling in the host file system could
cause significant performance degradations, (2) for read-
dominated workloads, nested file systems could even im-
prove performance, and (3) nested file systems are not
suitable for workloads that are sensitive to I/O latency.
We believe that more work is needed to study perfor-
mance implications of file systems in virtualized envi-
ronments. Our work takes a first step in this direction,
and we hope that these findings can help file system de-
signers to build more adaptive file systems for virtualized
environments.

The remainder of the paper is structured as follows.
Section 2 surveys related works. Section 3 presents
macro-benchmarks to understand the performance im-
plications of nesting file systems under different types
of workloads. Section 4 uses micro-benchmarks to dis-
sect the interactions between guest and host file systems
and their performance implications. Section 5 discusses
significant consequences of nested file systems with pro-
posed techniques to improve I/O performance. Finally,
Section 6 concludes the paper.

2 Related Work

Virtualizing I/O, especially storage, has been proven to
be much more difficult than virtualizing CPU and mem-
ory. Achieving bare-metal performance from virtual-
ized storage devices has been the goal of many past
works. One approach is to use para-virtualized I/O de-
vice drivers [26], in which, a guest OS is aware of
running inside of a virtualized environment, and thus,
uses a special device driver that explicitly cooperates
with the hypervisor to improve I/O performance. Ex-
amples include KVM’s VirtIO driver [26], Xen’s para-
virtualized driver [13], and VMware’s guest tools [9].
Additionally, Jujjuri et al. [22] proposed to move the
para-virtualization interface up the stack to the file sys-
tem level.
The use of para-virtualized I/O device drivers is almost

a de-facto standard to achieve any reasonable I/O perfor-
mance, however, Yassour et al. [32] explored an alter-
native solution that gives guest direct access to physical
devices to achieve near-native hardware performance. In
this paper, we instead focus on the scenario where vir-
tual disks are mapped to files rather than physical disks
or volumes. As we will show, when configured correctly,
the additional layers of abstraction introduce only limited
overhead. On the other hand, having these abstractions
can greatly ease the management of VM images.
Similar to nesting of file systems, I/O schedulers are

also often used in a nested fashion, which can result
in suboptimal I/O scheduling decisions. Boutcher and
Chandra [17] explored different combinations of I/O
schedulers in guest and host systems. They demon-
strated that the worst case combination provides only
40% throughput of the best case. In our experiments, we
use the best combination of I/O schedulers found in their
paper but try different file system combinations, with the
focus on performance variations caused only by file sys-
tem artifacts. Whereas, for performance purposes, there
is no benefit to performing additional I/O scheduling in
the host, it has a significant impact on inter-application
I/O isolation and fairness as shown in [23]. Many other
works [18, 19, 25, 27] have also studied the impact of
nested I/O schedulers on performance, fairness, and iso-

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 89

Figure 2: Setup for macro-level experimentation

lation, and these are orthogonal to our work in the file
system space.
When a virtual disk is mapped to an image file, the

data layout of the image file can significantly affect its
performance. QCOW2 [7], VirtualBox VDI [8], and
VMware VMDK [10] are some popular image formats.
However, as Tang [31] pointed out, these formats unnec-
essarily mix the function of storage space allocation with
the function of tracking dirty blocks. Tang presented
an FVD image format to address this issue and demon-
strated significant performance improvements for certain
workloads. Various techniques [16, 20, 30] to dynam-
ically change the data layout of image files, depending
on the usage patterns, have also been proposed. Suzuki
et al. [30] demonstrated that by co-locating data blocked
used at boot time, a virtual machine can boot much faster.
Bhadkamkar et al. [16] and Huang et al. [20] exploited
data replication techniques to decrease the distance be-
tween temporally related data blocks to improve I/O per-
formance. Sivathanu et al. [29] studied the performance
effect of the image file placed at different locations of a
disk.
I/O performance in storage virtualization can be im-

pacted by many factors, such as device driver, I/O sched-
uler, and image format. To the best of our knowledge,
this is the first work that studies the impact of the choice
of file systems in guest and host systems in a virtualiza-
tion environment.

3 Macro-benchmark Results

To better understand the performance implications
caused by guest / host file system interactions, we take
a systematic approach in our experimental evaluation.
First, we exercise macro-benchmarks to understand the
potential performance impact of nested file systems on
realistic workloads, from which, we were able to ob-
serve significant performance impact. In Section 4, we
use micro-benchmarks coupled with low-level I/O trac-
ing mechanisms to investigate the underlying cause.

3.1 Experimental Setup
As there is no single “most common” or “best” file sys-
tem to use in the hypervisor or guest VMs, we conduct

Hardware Software
Pentium D 3.4GHz, 2GB RAM Ubuntu 10.04 (2.6.32-33)

Host 80GB WD 7200 RPM SATA (sda) qemu-kvm 0.12.3
1TB WD 7200 RPM SATA (sdb) libvirt 0.9.0

Guest Qemu 0.9, 512MB RAM Ubuntu 10.04 (2.6.32-33)

Table 1: Testbed setup

our experiments using all possible combinations of pop-
ular file systems on Linux (i.e., Ext2, Ext3, Ext4, Reis-
erFS, XFS, and JFS) in both the hypervisor and guest
VMs, as shown in Figure 2. A single x86 64-bit machine
is used to run KVM [24] at the hypervisor level, and
QEMU [14] is used to run guest VMs 1. To reflect typi-
cal enterprise setting, each guest VM is allocated a single
dedicated processor core. More hardware and software
configuration settings are listed in Table 1.
The entire host OS is installed on a single disk (sda)

while another single disk (sdb) is used for experiments.
We create multiple equal-sized partitions from sdb, each
corresponding to a different host file system. Each parti-
tion is then formatted using the default parameters of the
host file system’s mkfs* command and is mounted using
the default parameters of mount. In the newly created
host file system, we create a flat file and expose this flat
file as the logical block device to the guest VM, which in
turn, further partitions the block device, having each cor-
responding to a different guest file system. By default,
virtio [26] is used as the block device driver for the guest
VM and we consider write-through as a caching mode
for all backend storages. The end result is the guest VM
having access to all combinations of guest and host file
systems. Table 2 shows an example of our setup: a file
created on /dev/sdb3, which is formatted as Ext3, is
exposed as a logical block device vdc to the guest VM,
which further partitions vdc into vdc2, vdc3, vdc4, etc.
for different guest file systems. Note that all disk parti-
tions of the hypervisor (sdb*) and the guest (vdc*) are
properly aligned using fdisk to avoid most of the block
layer interference caused by misalignment problems.
In addition to the six host file systems, we also create

a raw disk partition that is directly exposed to the guest
VM and is labeled as Block Device (BD) in Table 2. This
allows a guest file system to sit directly on top of a physi-
cal disk partition without the extra host file system layer.
This special case is used as our baseline to demonstrate
how large (or how small) of an overhead the host file sys-
tem layer induces. However, there are some side effects
to this particular setup, and namely, the file systems be-
ing created on outer disk cylinders will have higher I/O
throughput than those created on inner cylinders. For-

1Similar performance variations are observed in the experiments
with other hypervisors including Xen and VMWare, which are shown
in Appendix.

3

90 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Host file system
Devices #Blocks (x106) Speed(MB/s) Type

sdb2 60.00 127.64 Ext2
sdb3 60.00 127.71 Ext3
sdb4 60.00 126.16 Ext4
sdb5 60.00 125.86 ReiserFS
sdb6 60.00 123.47 XFS
sdb7 60.00 122.23 JFS
sdb8 60.00 121.35 Block Device

�
�
��

Guest file system
Device #Blocks x106 Type
vdc2 9.27 Ext2
vdc3 9.26 Ext3
vdc4 9.27 Ext4
vdc5 9.28 ReiserFS
vdc6 9.27 XFS
vdc7 9.08 JFS

Table 2: Physical and logical disk partitions

Services # Files # Threads File size I/O size

File server 50,000 50 128KB 16KB-1MB
Web server 50,000 100 16KB 512KB
Mail server 50,000 16 8-16KB 16KB
DB server 8 200 1GB 2KB

Table 3: Parameters for Filebench workloads

tunately, as each disk partition created at the hypervisor
level is 60GB, only a portion of the entire disk is utilized
and thus limits this effect. Table 2 also shows the results
of running hdparm on each disk partition. The largest
throughput difference between any two partitions is only
about 5%, which is fairly negligible.
The choice of I/O scheduler at host and guest levels

can significantly impact performance [17, 21, 27, 28]. As
file system is the primary focus of this paper, we used
CFQ scheduler in the host and Deadline scheduler in
the guest as these schedulers were shown to be the top
performers in their respective domains by Boutcher and
Chandra [17].

3.2 Benchmarks
We use Filebench [3] to generate macro-benchmarks
of different I/O transaction characteristics controlled by
predefined parameters, such as the number of files to
be used, average file size, and I/O buffer size. Since
Filebench supports a synchronization between threads
to simulate concurrent and sequential I/Os, we use this
tool to create four server workloads: a file server, a web
server, a mail server, and a database server. The specific
parameters of each workload are listed in Table 3, show-
ing that the experimental working set size is configured
to be much larger than the size of the page cache in the
VM. The detailed description of these workloads is as
follows.

• File server: Emulates a NFS file service. File op-
erations are a mixture of create, delete, append,

read, write, and attribute on files of various
sizes.

• Web server: Emulates a web service. File oper-
ations are dominated by reads: open, read, and
close. Writing to the web log file is emulated by
having one append operation per open.

• Mail server: Emulates an e-mail service. File
operations are within a single directory consist-
ing of I/O sequences such as open/read/close,
open/append/close, and delete.

• Database server: Emulates the I/O characteristic
of Oracle 9i. File operations are mostly read and
write on small files. To simulate database logging,
a stream of synchronous writes is used.

3.3 Macro-benchmark Results
Our main objective is to understand how much of a per-
formance impact nested file systems have on different
types of workloads, and whether or not the impact can
be lessened or avoided. As mentioned before, we use
all combinations of six popular file systems in both the
hypervisor and guest VMs. For comparison purpose, we
also include one additional combination, in which the hy-
pervisor exposes a physical partition to guest VMs as a
virtual block device. This results in 42 (6× 7) different
combinations of storage / file system configurations.
The performance results are shown in Figures 3 and 6,

in terms of I/O throughput and I/O latency, respectively.
Each sub-figure consists of a left and a right side. The
left side shows the performance results when the guest
file systems are provisioned directly on top of raw disk
partitions in the hypervisor. These are expressed in abso-
lute numbers (i.e., MB per second for throughput or mil-
lisecond for latency) and are used as our baseline. The
right side shows the relative performance (to the baseline
numbers) of the guest file systems when they are provi-
sioned as files in the host file system. In these figures,
each column group represents a different storage option

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 91

 0

 1

 2

 3

 4

 5

 6

 7

 8

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 1

 2

 3

 4

 5

 6

 7

 8

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

P
e
rc

e
n

ta
g

e
 (

%
)

 0

 5

 10

 15

 20

 25

 30

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 5

 10

 15

 20

 25

 30

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

P
e
rc

e
n

ta
g

e
 (

%
)

(A) File server (B) Web server

 0

 0.5

 1

 1.5

 2

 2.5

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 0.5

 1

 1.5

 2

 2.5

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 10

 20

 30

 40

 50

 60

 70

 80

P
e
rc

e
n

ta
g

e
 (

%
)

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

P
e
rc

e
n

ta
g

e
 (

%
)

(C) Mail server (D) Database server

Figure 3: I/O throughput for Filebench workloads (higher is better)

in the hypervisor, and each column within the group rep-
resents a different storage option in the guest VM.

3.3.1 Throughput

The baseline numbers (leftmost column group) show the
intrinsic characteristics of various file systems under dif-
ferent types of workloads. These characteristics indicate
that some file systems are more efficient on large files
than small files, while some file systems are more ef-
ficient at reading than writing. As an example, when
ReiserFS runs on top of BD, its throughput under the
web server workload (27.2 MB/s) is much higher than
that under the mail server workload (1.4MB/s). These
properties of file systems are well understood, and how
one would choose which file system to use is a straight-
forward function of the expected I/O workload. How-
ever, in a virtualized environment where nested file sys-
tems are often used, the decision becomes more difficult.
Based on the experimental results, we make the follow-
ing observations:
(1) A guest file system’s performance varies signif-

icantly under different host file systems. Figure 3(B)
shows an example of the database workload. When Reis-
erFS runs on top of Ext2, its throughput is reduced by
67% compared to its baseline number. However, when it
runs on top of JFS, its I/O performance is not impacted at
all. We use coefficient of variance to quantify how differ-
ently a guest file system’ performance is affected by dif-
ferent host file systems, which is shown in Figure 4. For

 0

 10

 20

 30

 40

 50

Fileserver Webserver Mailserver Database

C
o

e
ff

ic
ie

n
t

o
f

v
a
ri

a
n

c
e
 (

%
)

Figure 4: Coefficient of variance of guest file systems’
throughput under Filebench workloads across different
host file systems.

Figure 5: Total I/O transaction size of Filebench work-
loads

5

92 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

BD

L
a

te
n

c
y

 (
m

s
e

c
)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

BD

L
a

te
n

c
y

 (
m

s
e

c
)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 50

 100

 150

 200

 250

P
e

rc
e

n
ta

g
e

 (
%

)

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 50

 100

 150

 200

 250

 300

 350

P
e

rc
e

n
ta

g
e

 (
%

)

(A) File server (B) Web server

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 50

 100

 150

 200

 250

 300

P
e

rc
e

n
ta

g
e

 (
%

)

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

P
e

rc
e

n
ta

g
e

 (
%

)

(C) Mail server (D) Database server

Figure 6: I/O latency of guest file systems under different workloads (lower is better)

each workload, a variance number is calculated based on
relative performance values of a guest file system when
it runs on top of different host file systems. Our results
show that the throughput of ReiserFS experiences a large
variation (45%) under the database workload, while that
of Ext4 varies insignificantly (4%) under the web server
workload. The large variance numbers indicate that hav-
ing the right guest/host file system combination is critical
to performance, and having a wrong combination can re-
sult in serious performance degradation. For instance,
under the database workload, ReiserFS/Ext2 is a right
combination, but ReiserFS/JFS is a wrong combination.
(2) A host file system impacts different guest file

systems’ performance differently. Similar to the pre-
vious observation, a host file system can have a different
impact on different guest file systems’ performance. Fig-
ure 3(A) shows an example of the file server workload.
When Ext2 runs on top of Ext3, its throughput is slightly
degraded by about 10%. However, when Ext3 runs on
top of Ext3, the throughput is reduced by 40%. Based
on results of coefficient of variance of guest file systems’
throughputs shown in Figure 4, we observe that this bi-
directional dependency between guest and host file sys-
tems again stresses the importance of choosing the right
guest/host file system combination.
(3) A right guest file system/host file system com-

bination can produce minimal performance degrada-
tion. Also based on results shown in Figure 4, one can
also observe how badly performance can be impacted

when a wrong combination of guest/host file system is
chosen. However, it is possible to find a guest file sys-
tem whose performance loss is the lowest. For example,
the results of the mail server workload show that once
Ext2 runs on top of Ext2, its throughput degradation is
the lowest (by 46%).
(4) The performance of nested file systems is af-

fected much more by write than read operations. As
one can see in Figure 3, all the combinations of nested
file systems perform poorly for the mail server workload,
unlike the other three workloads. We study the detailed
disk traces from these workloads by examining request
queuing time, request merging, request size, etc., and
find that the mail server workload is only significantly
different from the others in having a much higher pro-
portion of writes than reads, as shown in Figure 5. We
will use micro-benchmarks in Section 4 to describe the
reasons behind this behavior.

3.3.2 Latency
The latency results are illustrated in Figure 6. Simi-
lar to I/O throughput, latency is also deteriorated when
guest file systems are provisioned on top of host file sys-
tems rather than raw partitions. Whereas the impact to
throughput can be minimized (for some workloads) by
choosing the right combinations of guest/host file sys-
tem, latency is much more sensitive to nesting of file
systems. In comparison to the baseline, the latency of
each guest file system varies in a certain range when it

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 93

Description Parameters
Total I/O size 5 GB
I/O parallelism 255
Block size 8 KB
I/O pattern Random/Sequential
I/O mode Native asynchronous I/O

Table 4: FIO benchmark parameters

runs on top of different host file systems. Even for the
lowest cases, latency is increased by 5-15% across the
board (e.g., Ext2 guest file system under the web server
workload). Coefficient of variance for latency is similar
to that of throughput shown in Figure 4. However, for
latency sensitive workloads, like the database workload,
such a significant increase in I/O response time could be
unacceptable.

4 Micro-benchmarks Results
We first study nested file systems using a micro-level
benchmark FIO [4]. Based on the experimental results,
we further conduct an analysis at the block layer on the
guest VM and the hypervisor, respectively, using an I/O
tracing mechanism [2].

4.1 Benchmark
We use FIO as a micro-level benchmark to examine disk
I/O workloads. As a highly configurable benchmark,
FIO defines a test case based on different I/O transaction
characteristics, such as total I/O size, block size, num-
ber of I/O parallelism, and I/O mode. Here our focus
is on the performance variation of primitive I/O opera-
tions, such as read and write. With the combination of
these I/O operations and two I/O pattens, random and se-
quential, we design four test cases: random read, random
write, sequential read, and sequential write. The specific
I/O characteristics of these test cases are listed in Table 4.

4.2 Experimental Results
On the same testbed, the experiments are conducted with
many small files, which create a 5GB of total data foot-
print for each workload. Figures 7 and 8 show the per-
formance in both sequential and random I/Os. Based on
the experimental results, we make two observations:

• The performance of those workloads that are
dominated by read operations is largely unaf-
fected by nested file systems. The performance
impact is weakly dependent on guest/host file sys-
tems. More interestingly, for sequential reads, in a
few scenarios, a nested file system can even improve
I/O performance (e.g., by 34% for Ext3/JFS).

• The performance of those workloads that are
dominated by write operations is heavily affected
by nested file systems. The performance impact
varies in both random and sequential writes, with
higher variations in sequential writes. In particu-
lar, a host file system like XFS can degrade the per-
formance by 40% for both random and sequential
writes. As a result, it is important to understand the
root cause of this performance impact, especially on
the sequential write dominated workload.

To interpret these observations, our analysis will focus
on sequential workloads and the performance implica-
tion across certain guest/host file system combinations.
For this set of experiments with micro-benchmark, due
to space constraints, we only concentrate on decipher-
ing the I/O behavior of these representative file system
combinations. Although only a few combinations are
considered, principles used here are applicable to other
combinations as well.
For sequential read workloads, we attempt to uncover

the reasons behind the significant performance improve-
ment on the right guest/host file system combinations.
We select the combinations of Ext3/JFS and Ext3/BD
for analysis. For sequential write workloads, we try to
understand the root cause of the significant performance
variations in the scenarios of (1) different guest file sys-
tems running on the same host file system and (2) the
same guest file system operating on different host file
systems. We analyze three guest file system/host file
system combinations: Ext3/ReiserFS, JFS/ReiserFS,
and JFS/XFS. Here Ext3/ReiserFS and JFS/ReiserFS are
used to examine how different guest file systems can af-
fect performance differently on the same host file system,
while JFS/ReiserFS and JFS/XFS are used to examine
how different host file systems can affect performance
differently on the same guest file system.

4.3 I/O Analysis
To understand the underlying cause of the performance
impact due to nesting of file systems, we use blktrace
to record I/O activities at both the guest and hypervisor
levels. The resulting trace files are stored on another de-
vice, thus increasing only 3-4% CPU utilization. There-
fore, the interference with our benchmarks from such an
I/O recoding is negligible. Blktrace keeps detailed ac-
count of each I/O request from start to finish as it goes
through various I/O states (e.g., put the request onto an
I/O queue, merge with an existing request, and wait on
the I/O queue). The I/O states that are of interest to us in
this study are described as follows.

• Q: a new I/O request is queued by an application.

7

94 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.4

 0.8

 1.2

 1.6

 2

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 0.4

 0.8

 1.2

 1.6

 2

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

 160

P
e

rc
e

n
ta

g
e

 (
%

)

 0

 20

 40

 60

 80

 100

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 20

 40

 60

 80

 100

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

 160

P
e

rc
e

n
ta

g
e

 (
%

)

A B

Figure 7: I/O throughput of guest file systems in reading files. (A): random and (B) sequential

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

 160

P
e

rc
e

n
ta

g
e

 (
%

)

 0

 20

 40

 60

 80

 100

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 20

 40

 60

 80

 100

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

 160

P
e

rc
e

n
ta

g
e

 (
%

)

A B

Figure 8: I/O throughput of guest file systems in writing files. (A): random and (B) sequential

• I: the I/O request is inserted into an I/O scheduler
queue.

• D: the I/O request is being served by the device.

• C: the I/O request has completed by the device.

Blktrace records the timestamp when an I/O request
enters a new state, so it is trivial to calculate the amount
of time the request spends in each state (i.e., Q2I, I2D,
and D2C). Here Q2I is the time it takes to insert/merge
a request onto a request queue. I2D is the time it takes
to idle on the request queue waiting for merging oppor-
tunities. D2C is the time it takes for the device to serve
the request. The sum of Q2I, I2D, and D2C is the total
processing time of an I/O request, which we denote as
Q2C.

4.3.1 Sequential Read Workload

As mentioned in the experimental setup, the logical
block device of the guest VM can be represented as ei-
ther a flat file or a physical raw disk partition at the hy-
pervisor level. However, the different representation of
the guest VM’s block device directly affects the num-
ber of I/O requests served at the hypervisor level. For
the selected combinations of Ext3/JFS and Ext3/BD, as

Figure 9 shows, the number of I/O requests served at the
hypervisor’s block layer is significantly lower than that at
the guest’s block layer. More specifically, if JFS is used
as a host file system, it greatly reduces the number of
queued I/O requests sent from the guest level, resulting
in much fewer I/O requests served at the hypervisor level
than those at the guest level. If a raw disk partition is
used instead, although there is no reduction on the num-
ber of queued I/O requests, the hypervisor level’s block
layer also lowers the number of served I/O requests by
merging queued I/O requests.
There are two root causes for these I/O behaviors:

(1) the file prefetching technique at the hypervisor level,
known as readahead, and (2) the merging activities at the
hypervisor level introduced by the I/O scheduler. The de-
tailed descriptions of these root causes are given below.
First, there are frequent accesses to both files’ con-

tent and metadata in a sequential read dominated work-
load. To expedite this process, readahead I/O requests
are issued at the kernel level of both the guest and the hy-
pervisor. Basically, readahead I/O requests populate the
page cache with data already read from the block device,
so that subsequent reads from the accessed files do not
block on other I/O requests. As a result, it decreases the
number of accesses to the block device. In particular, at
the hypervisor level, a host file system issues readahead

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 95

Figure 9: Disk I/Os under sequential read workload

Figure 10: Cache hit ratio under sequential read work-
load.

requests and attempts to minimize the frequent accesses
on the flat file by caching the subsequently accessed con-
tents and metadata in the physical memory. Therefore,
the I/Os served at the hypervisor level are much fewer
than those at the guest level.
However, when accessing a raw disk partition, there

is no readahead. Thus, for sequential workloads, a host
file system outperforms a raw disk partition due to more
effective caching. This discrepancy of data caching at the
hypervisor level is clearly shown in Figure 10.
Second, to optimize I/O requests being served on the

block device, the hypervisor’s block layer attempts to
reduce the number of accesses into the block device
by sorting and merging queued I/O requests. However,
when many I/O requests are sorted and merged, they
need to stay longer in the queue than normal. For JFS
(host file system), as shown in Figure 9, due to the ef-
fective caching, much fewer I/O requests are sent to the
disk, and thus much fewer sorting/merging activities oc-
cur at the I/O queue. However, when a raw partition is
used, much more I/O requests need to be sorted/merged.
The sorting/merging activities cause a higher idle time
(I2D) for I/O requests being served on the block device
than those on the JFS (host file system). This behavior is
depicted in Figure 11 (hypervisor level).

Remark: When a flat file is used as a guest VM’s log-
ical block device, sequential read dominated workloads

Figure 11: I/O times under sequential read workload.

can take advantage of the readahead at the hypervisor,
achieving effective data caching. In contrast, when a disk
partition is used, there is no readahead and data caching.
Therefore, for all file systems, to gain high I/O perfor-
mance, we recommend cloud administrators to select a
flat file over raw partitions for services dominated by se-
quential reads.

4.3.2 Sequential Write Workload

Our investigation uncovers the root causes of the nested
file systems’ performance dependency under a sequential
write workload in two cases: (A) two file system combi-
nations hold the same host file system, and (B) two com-
binations hold the same guest file system. The analysis
detailed below focuses on two principal factors: sensitiv-
ity of an I/O scheduler and effectiveness of block alloca-
tion mechanisms.

A. Different guests (Ext3, JFS) on the same host
(ReiserFS) As shown in Figure 8 (B), we can see that
the I/O performance of Ext3/ReiserFS is much worse
than that of Ext3/BD, while the I/O performance of
JFS/ReiserFS is much better than JFS/BD. At the guest
level, we analyze the performance dependency of Ext3
and JFS based on the comparison of their I/O character-
istics. The details of this comparison are shown in Fig-
ure 13.
Figure 13 (A) shows that most I/Os issued from Ext3

and sent to the block layer are well merged at the guest
level’s I/O scheduler. The effective merging of I/Os sig-
nificantly reduces the number of I/Os to be served on
Ext3 (guest). Meanwhile, Figure 13 (B) shows that 99%
I/Os of Ext3 are in small size (8K) and those of JFS is
68%. Apparently, merging multiple small size I/Os in-
curs additional overhead. This is because the small re-
quests have to be waited longer in the queue in order to
be merged, thus, increasing their idle times. This behav-
ior is illustrated in Figure 13 (C).

To understand the root cause of merging happened on
Ext3 and JFS (guest), we perform a deep analysis by
monitoring every issued I/O activities at the guest level.

9

96 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 256 512 768 1024

C
D

F
 o

f
d

is
k

 I
/O

s

Request size (4K-block)

Ext3
JFS

A B C

Figure 13: I/O characteristics at guest level: (A) disk I/Os, (B) I/O size, and (C) average I/O time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
d

is
k

 I
/O

s

Normalized seek distance

ReiserFS
XFS

A B C

Figure 14: I/O characteristics at hypervisor level: (A) disk I/Os, (B) average I/O time, and (C) disk seeks.

Figure 12: Extra I/O for journal log andmetadata updates
under sequential write workload.

What we found is that the block allocation mechanism
causes this performance variation. To minimize disk
seeks, Ext3 issues I/Os to allocate blocks of data on disk
close to each other. The data includes regular data file, its
metadata, and journal logs of metadata. This allocation
scheme makes most I/Os be back merged. A back merge
behavior denotes that a new request sequentially falls be-
hind an exiting request on an order of the start sector, as
they are logically adjacent. Note that two I/Os are logi-
cally adjacent when the end sector of one I/O is logically
located next to the begin sector of the other I/O. As we
can see, clustering adjacent I/Os facilitates the data ac-
cess. However, it requires the issued I/Os to be waited
longer in the queue for being processed.
JFS is more efficient than Ext3 in journaling. For reg-

ular data file written into disk, both Ext3 and JFS effec-
tively coalescence multiple write operations to reduce the
number of I/O committed into disk. However, for meta-
data and journal logs, instead of independently commit-
ting every single concurrent log entry as Ext3, JFS re-

quires multiple concurrent log entries to be coalesced as
one commit. For this reason, as shown in Figure 12, JFS
has less I/Os spent for journaling, resulting in less per-
formance degradation.

Remarks: The efficiency provided by the I/O sched-
uler’s optimization is no longer valid for all nested file
systems. Since file systems allocate blocks on disk dif-
ferently, nested file systems have different impacts on
performance when one particular I/O scheduler is used.
Therefore, a nested file system should be chosen based
on the effectiveness of underlying I/O scheduler’s opera-
tions on its block allocation scheme.

B. Same guest (JFS) on different hosts (ReiserFS,
XFS) Based on results of sequential writes shown in
Figure 8 (B), JFS (guest) performs better on ReiserFS
than on XFS. We analyze I/O activities of these host file
systems to uncover differences of their block allocation
mechanisms. The detailed analysis is given below.
The analysis of I/O activities reveals that the I/O

scheduler processes ReiserFS’ I/Os similarly to those of
XFS. As shown in Figure 14 (A), the number of host file
systems’ I/Os to be queued and served are fairly simi-
lar in ReiserFS and XFS. However, Figure 14 (B) de-
notes that XFS’ I/Os are executed slower than those of
ReiserFS. A further analysis is needed to explain this be-
havior. In general, file systems allocate blocks on disk
differently, thus, resulting in a different execution time
for I/Os. For this reason, we perform an analysis on the
disk seeks. Based on the results shown in Figure 14 (C),
we find that long distance disk seeks on XFS cause high
overhead and reduce its I/O performance. Note that in

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 97

Figure 15: Extra data written into disk under the same
workload from JFS (guest).

Figure 14 (C), the x-axis is represented as a normalized
seek distance and 1 denotes the longest seek distance of
the disk head, from one end to the other end of the parti-
tion.
With respect to the case of one host file system allo-

cates disk blocks more effectively than another under the
same workload, we analyze the mechanisms to allocate
disk blocks of ReiserFS and XFS and find that XFS in-
duces an overhead because of a multiple journal logging.
The detailed explanations are as follows:

A multiple logging mechanism of metadata also incurs
an overhead on XFS. Basically, XFS is able to record
multiple separate changes occurred on the metadata of a
single file and store them into journal logs. This tech-
nique effectively avoids such changes to be flushed into
disk before another new change will be logged. How-
ever, every change of metadata can be range from 256
Bytes to 2 KB in size, while the default size of the log
buffer is only 32 KB. Under an intensive write dominated
workload, this small log buffer causes multiple changes
of the file metadata to be frequently logged. As shown
in Figure 15, this repeatedly logging produces extra data
written into disk, thus, resulting in a performance loss.

Remarks: (1) An effective block allocation of one
particular file system no longer guarantees a high per-
formance when it runs on top of another file system. (2)
Under an intensive write dominated workload, an update
of journal logs on disk should be carefully considered to
avoid performance degradation. Especially for XFS, the
majority of its performance loss is attributed to not only a
placement of journal logs, but also a technique to handle
updates of these logs.

5 Discussion
Despite various practical benefits in using nested file sys-
tems in a virtualized environment, our experiments have
shown the associated performance overhead to be signifi-
cant if not configured properly. Here we offer five advice
on choosing the right guest/host file system configura-
tions to minimize performance degradation, or in some
cases, even improve performance.

Figure 16: (hypervisor level) Extra data written into disk
under a write-dominated workload from guest VM.

Advice 1 For workloads that are read-dominated (both
sequential and random), using nested file systems has
minimal impact on I/O throughput, independent of guest
and host file systems. For workloads that have a signifi-
cant amount of sequential reads, nested file systems can
even improve throughput due to the readahead mecha-
nism at the host level.

Advice 2 On the other hand, for workloads that are
write-dominated, one should avoid using nested file sys-
tems in general due to i) one more layer to pass through
and ii) additional metadata update operations. If one
must use nested file systems, journaled file systems in the
host should be avoided. Journaling of both metadata and
data can cause significant performance degradation, and
therefore, is not practical to use for most workloads, and
if only metadata is journaled, a crash can corrupt a VM
image file easily, thus, giving no benefit to metadata-only
journaling mode in the host. As shown in Figure 16, the
additional metadata writes to the journal log can result in
significantly more I/O traffic. Performance is even more
impacted if the location of the log is placed far away from
either the metadata or the data locations.

Advice 3 For workloads that are sensitive to I/O la-
tency, one should also avoid using nested file systems.
As shown in Figure 6, even in the best case scenarios,
nested file systems could increase I/O latency by 10-30%
due to having an additional layer of file system to traverse
and one more I/O queue to wait for.

Advice 4 In a nested file system, data and metadata
placement decisions are made twice, first in the guest file
system and then in the host file system. Guest file system
uses various temporal and spatial heuristics to place re-
lated metadata and data blocks close to each other. How-
ever, when these placement decisions reach the host file
system, it can no longer differentiate between data and
metadata and treats everything as data. As a result, the
secondary data placement decisions made by a host file
system are both unnecessary and less efficient than those
made by a guest file system. Ideally, the host file sys-
tem should simply act as a pass-through layer such as
VirtFS [22].

11

98 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Advice 5 In our experiments, we used the default set of
formatting and mounting parameters in all the file sys-
tems. However, just like in a non-virtualized environ-
ment, these parameters can be tuned to improve perfor-
mance. There are more benefits in tuning the host file
system’s parameters than guest’s as it is ultimately the
layer that communicates with the storage device.

One should tune its parameters in such a way that the
host file system most resembles a “dumb” disk. For ex-
ample, when a disk is instructed to read a small disk
block, it will actually read the entire track or cylinder
and keep them in its internal cache to minimize mechan-
ical movement for future I/O requests. A host file system
can emulate this behavior by using larger block sizes.
Metadata operations at host file system is another

source of overhead. When a VM image file is accessed
or modified, its metadata often has to be modified, thus,
causing additional I/O load. Parameters such as noat-
ime and nodiratime can be used to avoid updating the
last access time without losing any useful information.
However, when the image file is modified, there is no
option to avoid updating the metadata. As the image file
will stay constant in size and ownership, the only field in
the metadata that needs to be updated is the last modi-
fied time, which for an image file is just pure overhead.
Perhaps this can be implemented as a file system mount
option. Note that journaling, as mentioned previously, in
the metadata-only mode has very little usage in the host
level.
Lastly, using more advanced file system features to

configure block groups and B+ trees to perform intelli-
gent data allocation and balancing tasks will most likely
be counter-productive. This is because these features will
cause guest file system’s view of disk layout to deviate
further from the reality.

6 Conclusion

Our main objective is to better understand performance
implications when file systems are nested in a virtual-
ized environment. The major finding is that the choice
of nested file systems on both hypervisor and guest lev-
els has a significant performance impact on I/O perfor-
mance. Traditionally, a guest file system is chosen based
on the anticipated workload, regardless of the host file
system. By examining a large set of different combina-
tions of host and guest file systems under various work-
loads, we have demonstrated the significant dependency
of the two layers on performance, and hence, system ad-
ministrators must be careful in choosing both file systems
in order to reap the greatest benefit from virtualization.
In particular, if workloads are sensitive to I/O latency,
nested file systems should be avoided or host file sys-
tems should simply perform as a pass-through layer in

certain cases.
The intricate interactions between host and guest file

systems represent an exciting and challenging optimiza-
tion space for improving I/O performance in virtualized
environments. Our preliminary investigation on nested
file systems will help researchers to better understand
critical performance issues in this area, and shed light on
finding more efficient methods in utilizing virtual stor-
age. We hope that our work will motivate system design-
ers to more carefully analyze the performance gap at the
real and virtual boundaries.

Acknowledgements

We are grateful to the anonymous referees and our shep-
herd, Andrea Arpaci-Dusseau, for their detailed feed-
back and guidance. This work was partially supported
by NSF grant 0901537 and ARO grant W911NF-11-1-
0149.

References

[1] Amazon Elastic Compute Cloud - EC2. http://aws.
amazon.com/ec2/ [Accessed: Sep 2011].

[2] blktrace - generate traces of the I/O traffic on block
devices. git://git.kernel.org/pub/scm/
linux/kernel/git/axboe/blktrace.gitbt
[Accessed: Sep 2011].

[3] Filebench. www.solarisinternals.com/wiki/
index.php/FileBench [Accessed: Sep 2011].

[4] FIO - Flexible I/O Tester. http://freshmeat.
net/projects/fio [Accessed: Sep 2011].

[5] IBM Ccloud Computing. http://www.ibm.com/
ibm/cloud/ [Accessed: Sep 2011].

[6] Nested svm virtualization for kvm. http:
//avikivity.blogspot.com/2008/09/
nested-svm-virtualization-for-kvm.
html [Accessed: Sep 2011].

[7] The QCOW2 Image Format. http://people.
gnome.org/˜markmc/qcow-image-format.
html [Accessed: Sep 2011].

[8] VirtualBox VDI. http://forums.virtualbox.
org/viewtopic.php?t=8046 [Accessed: Sep
2011].

[9] VMware Tools for Linux Guests. http:
//www.vmware.com/support/ws5/doc/
ws_newguest_tools_linux.html [Accessed:
Sep 2011].

[10] VMWare Virtual Disk Format 1.1. http:
//www.vmware.com/technical-resources/
interfaces/vmdk.html [Accessed: Sep 2011].

[11] Window Azure - Microsoft’s Cloud Services
Platform. http://www.microsoft.com/
windowsazure/ [Accessed: Sep 2011].

[12] Xen Hypervisor Source. http://xen.org/
products/xen_archives.html [Accessed: Sep
2011].

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 99

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

P
e

rc
e

n
ta

g
e

 (
%

)

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

P
e

rc
e

n
ta

g
e

 (
%

)

XEN hypervisor VMWare hypervisor

Figure 17: Other hypervisors show variation of relative I/O throughput of guest file systems under database workload
(higher is better)

[13] Xen source - progressive paravirtulization.
http://xen.org/files/summit_3/
xen-pv-drivers.pdf [Accessed: Sep 2011].

[14] F. Bellard. QEMU, a fast and portable dynamic transla-
tor. In USENIX ATC’05, April 2005.

[15] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B.-A. Yassour. The Turtles Project: Design and Imple-
mentation of Nested Virtualization. InUSENIX OSDI’10,
October 2010.

[16] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Lip-
tak, R. Rangaswami, and V. Hristidis. BORG: Block-
reORGanization for Self-optimizing Storage Systems. In
USENIX FAST’09, February 2009.

[17] D. Boutcher and A. Chandra. Does virtualization make
disk scheduling passé? In USENIX HotStorage’09, Oc-
tober 2009.

[18] L. Cherkasova, D. Gupta, and A. Vahdat. When virtual
is harder than real: Resource allocation challenges in vir-
tual machine based IT environments, Feburary 2007.

[19] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time
(bvt) scheduling: supporting latency-sensitive threads in
a general-purpose scheduler. In Proceedings of the seven-
teenth ACM symposium on Operating systems principles,
SOSP ’99, Charleston, SC, USA, 1999.

[20] H. Huang, W. Hung, and K. G. Shin. FS2: dynamic data
replication in free disk space for improving disk perfor-
mance and energy consumption. In Proceedings of the
twentieth ACM symposium on Operating systems princi-
ples, SOSP ’05, Brighton, United Kingdom, 2005.

[21] K. Huynh and S. Hajnoczi. KVM/QEMU Storage Stack
Performance Discussion. In Proposals of Linux Plumbers
Conference, Cambridge, MA, USA, November 2010.

[22] V. Jujjuri, E. V. Hensbergen, and A. Liguori. VirtFS - A
virtualization aware File System pass-through. In Pro-
ceedings of the Ottawa Linux Symposium, 2010.

[23] M. Kesavan, A. Gavrilovska, and K. Schwan. On
Disk I/O Scheduling in Virtual Machines. In USENIX
WIOV’10, Pittsburgh, PA, USA, March 2010.

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm: the linux virtual machine monitor. In Proceedings
of the Linux Symposium, 2007.

[25] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling I/O
in virtual machine monitors. In Proceedings of the
fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, VEE ’08, Seattle,
WA, USA, 2008.

[26] R. Russell. virtio: towards a de-facto standard for vir-
tual I/O devices. SIGOPS Oper. Syst. Rev., 42(5):95–103,
2008.

[27] S. R. Seelam and P. J. Teller. Virtual I/O scheduler: a
scheduler of schedulers for performance virtualization.
In ACM VEE’07, June 2007.

[28] P. J. Shenoy and H. M. Vin. Cello: A Disk Scheduling
Framework for Next Generation Operating Systems. In
Proceedings of ACM SIGMETRICS Conference, 1997.

[29] S. Sivathanu, L. Liu, M. Yiduo, and X. Pu. Storage Man-
agement in Virtualized Cloud Environment. IEEE Cloud
Computing’10, 2010.

[30] K. Suzaki, T. Yagi, K. Iijima, N. A. Quynh, and Y.Watan-
abe. Effect of readahead and file system block realloca-
tion for lbcas. In Proceedings of the Linux Symposium,
July 2009.

[31] C. Tang. Fvd: a high-performance virtual machine
image format for cloud. In Proceedings of the 2011
USENIX conference on USENIX annual technical con-
ference, Portland, OR, 2011.

[32] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman. On
the DMA mapping problem in direct device assignment.
In SYSTOR’10: The 3rd Annual Haifa Experimental Sys-
tems Conference, Haifa, Israel, May 2010.

Appendix

We have conducted experiments with the database work-
load to verify if the I/O performance of nested file sys-
tems is hypervisor-dependent. The chosen hypervisors
are architecturally akin to KVM, such as VMware Player
3.1.4 with guest tools [9], and Xen 4.0 with Xen para-
virtualized device drivers [12]. Figure 17 shows that the
I/O performance variations of guest file systems on Xen
and VMware are fairly similar to those on KVM.

13

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 101

Consistency Without Ordering

Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Computer Sciences Department, University of Wisconsin, Madison

Abstract
Modern file systems use ordering points to maintain con-

sistency in the face of system crashes. However, such

ordering leads to lower performance, higher complexity,

and a strong and perhaps naive dependence on lower lay-

ers to correctly enforce the ordering of writes. In this

paper, we introduce the No-Order File System (NoFS),

a simple, lightweight file system that employs a novel

technique called backpointer-based consistency to pro-

vide crash consistency without ordering writes as they go

to disk. We utilize a formal model to prove that NoFS

provides data consistency in the event of system crashes;

we show through experiments that NoFS is robust to such

crashes, and delivers excellent performance across a range

of workloads. Backpointer-based consistency thus allows

NoFS to provide crash consistency without resorting to

the heavyweight machinery of traditional approaches.

1 Introduction
One of the core problems in file systems research over the

years has been the challenge of providing consistency in

the presence of system crashes. There have been a num-

ber of solutions to tackle this problem: from the simple

file-system check [20] of the Fast File System [18] to the

complicated copy-on-write mechanism of ZFS [3]. Each

approach has a different core technique: write-ahead log-

ging [12], copy-on-write [15] or tracking dependencies

among writes to disk [10].

Although these approaches all differ vastly in their de-

tails, they share one common trait: each uses a careful

ordering of writes to implement its update protocol. Jour-

naling file systems require that metadata and data are per-

sisted before the commit record is written [2, 31, 41, 45].

Copy-on-write file systems require that the root block be

updated only after the rest of the update is safely on disk

[15, 32, 40, 48]. Soft updates is built entirely around the

careful ordering of disk writes [10].

In the event of a crash, ordering points allow the file

system to reason about which writes reached the disk and

which did not, enabling the file system to take correc-

tive measures, such as replaying the writes, to recover.

Unfortunately, ordering points are not without their own

set of problems. By their very nature, ordering points

introduce waiting into the file-system code, thus poten-

tially lowering performance. They constrain the schedul-

ing of disk writes, both at the operating system level and

at the disk driver level. They introduce complexity into

the file-system code, which leads to bugs and lower re-

liability [25, 26, 49, 50]. The use of ordering points also

forces file systems to ignore the end-to-end argument [34],

as the support of lower-level systems and disk firmware

is required to implement imperatives such as the disk

cache flush. When such imperatives are not properly im-

plemented [36], file-system consistency is compromised

[29]. In today’s cloud computing environment [1], the

operating system runs on top of a tall stack of virtual de-

vices, and only one of them needs to neglect to enforce

write ordering [47] for file-system consistency to fail.

We can thus summarize the current state of the art in

file-system crash consistency as follows. At one extreme

is a lazy, optimistic approach that writes blocks to disks in

any order (e.g., ext2 [4]); this technique does not add over-

head or induce extra delays at run-time, but requires an ex-

pensive (and often prohibitive) disk scan after a crash. At

the other extreme are eager, pessimistic approaches that

carefully order disk writes (e.g., ZFS or ext3); these tech-

niques pay a perpetual performance penalty in return for

consistency guarantees and quick recovery. We seek to

obtain the best of both worlds: the simplicity and perfor-

mance benefits of the lazy approach with the strong con-

sistency and availability of eager file systems.

We present the No-Order file system (NoFS), a simple,

optimistic, lightweight file system which maintains con-

sistency without resorting to the use of ordering. NoFS

employs a new approach to providing consistency called

backpointer-based consistency, which is built upon refer-

ences in each file-system object to the files or directories

that own it. We extend a logical framework for file sys-

tems [38] to prove that the incorporation of backpointer-

based consistency in an order-less file system guarantees a

certain level of consistency. We simplify the update proto-

col through non-persistent allocation structures, reducing

the number of blocks that need to reach disk to success-

fully complete an operation.

Through reliability experiments, we demonstrate that

NoFS is able to detect and handle a wide range of incon-

sistencies. We compare the performance of NoFS with

ext2, an order-less file system with no consistency guar-

antees, and ext3, a journaling file system with metadata

consistency. We show that NoFS has excellent perfor-

mance overall, matching or exceeding the performance of

ext2 and ext3 on various workloads. We also discuss the

limitations of our approach.

102 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

2 Background
File systems use a number of data structures to keep track

of the data on disk. These include allocation structures

such as bitmaps, and metadata such as inodes. In order to

do a single operation such as file creation, multiple data

structures have to be updated on disk. For example, in the

ext2 file system [4], in order to create an empty file, the

inode bitmap, the parent inode, the parent directory, and

the child inode all need to be updated and written to disk.

The problem of file-system consistency arises because

the system may crash at any time, resulting in some of

the updates persisting, and other updates being lost. File-

system inconsistency manifests in different ways: a miss-

ing file, a file with garbage data, or in some cases, an un-

mountable file system. File systems have different solu-

tions to this problem, with varying levels of consistency.

We first examine the different levels of consistency pro-

vided by file systems, describing the guarantees provided

by each level. We then examine the techniques used in file

systems to provide consistency and show that all of them

(except the file-system check) have at least one ordering

point in their update protocols. We discuss the disadvan-

tages of having ordering points and motivate the design of

our order-less file system.

2.1 File-system consistency
There are many levels of consistency in file systems, dif-

fering in terms of guarantees provided for data and meta-

data blocks. An inconsistency could be caused by many

things: a hardware error, memory corruption, or a system

crash. In this work, we are only concerned with inconsis-

tencies occurring due to a system crash.

Metadata consistency: The metadata structures of the

file system are entirely consistent with each other. There

are no dangling files and no duplicate pointers. The coun-

ters and bitmaps of the file system, which keep track of

resource usage, match with the actual usage of resources

on the disk. Therefore a resource is in use if and only

if the bitmaps say that it is in use. Metadata consistency

does not provide any guarantees about data.

Data consistency: Data consistency is a stronger form

of metadata consistency. Along with the guarantee about

metadata, there is the additional guarantee that all data

that is read by a file belongs to that file. In other words, a

read of file A may not return garbage data, or data belong-

ing to some file B. It is possible that the read may return

an older version of the data of file A.

Version consistency: Version consistency is a stronger

form of data consistency with the additional guarantee

that the metadata version matches the version of the re-

ferred data. For example, consider a file with a single data

block. The data block is overwritten, and a new block is

added, thereby changing the file version: the old version

had one block, and the new version has two blocks. Ver-

sion consistency guarantees that a read of the file does not

return old data from the first block and new data from the

second block (since the read would return the old version

of the data block and the new version of the file metadata).

2.2 Techniques for providing consistency
In this section, we review different approaches to provid-

ing consistency in file systems. We point out where order-

ing points are needed in each of the techniques, except for

file-system checks. An ordering point signifies that some

blocks need to be persistent on disk before other blocks.

For example, an update protocol might require that all the

file-system metadata reach the disk before all the data.

2.2.1 File-system check

The file-system check is the simplest solution to the con-

sistency problem: let the system crash and become in-

consistent, and upon reboot, fix the inconsistencies. This

technique was used in the Fast File System [18, 20] and

the ext2 file system [4]. No extra actions are required dur-

ing runtime, allowing the file system to execute without

any performance degradation. The simplicity comes with

a high cost: the entire disk needs to be scanned before in-

consistencies can be fixed in the file system. While this

was acceptable for early file systems that were megabytes

in size, scanning an entire disk (or worse, a large RAID

volume [23]) would require hours in modern systems.

Though several optimizations were developed to reduce

the running time of the file-system check [13, 19, 24], it is

still too expensive for large volumes, prompting the file-

system community to turn to other solutions.

File systems that depend upon on the file-system check

alone for consistency cannot provide data consistency,

since there is no way for the file system to differentiate

between valid data and garbage in a data block. Therefore

file reads may return garbage after a crash. The state of

every metadata structure is known after the disk scan, and

hence duplicate resource allocation and orphan resources

can be handled, ensuring metadata consistency.

2.2.2 Journaling

Journaling uses the idea of write-ahead logging [12] to

solve the consistency problem: metadata (and sometimes

data) is first logged to a separate location on disk, and

when all writes have safely reached the disk, the infor-

mation is written into its original place in the file system.

Over the years, this technique has been incorporated into

a number of file systems such as NTFS [21], JFS [2], XFS

[41], ReiserFS [31], and ext3 [45, 46].

Journaling file systems offer data or metadata consis-

tency based on whether data is journaled or not. Both

journaling modes use at least one ordering point in their

update protocols, where they wait for the journal writes

to be persisted on disk before writing the commit block.

Journaling file systems often perform worse than their

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 103

order-less peers, since information needs to be first writ-

ten to the log and then later to the correct location on disk.

Recovery of the journal is needed after a crash, but it is

usually much faster than the file-system check.

2.2.3 Soft updates

Soft updates involves tracking dependencies among in-

memory copies of metadata blocks, and carefully order-

ing the writes to disk such that the disk always sees con-

tent that is consistent with the other disk metadata. In

order to do this, it may sometimes be necessary to roll

back updates to a block at the time of write, and roll-

forward the update later. Soft updates was implemented

for FFS, and enabled FFS to achieve performance close

to that of a memory-based file system [10] . However,

it was extremely tricky to implement the ordering rules

correctly, leading to numerous bugs. Though the Feather-

stitch project [9] reduces the complexity of soft updates,

the idea has not spread beyond the BSD distributions.

Soft updates provide metadata and data consistency at

low cost. FFS with soft updates cannot tell the differ-

ence between different versions of data, and hence does

not provide version consistency. Soft updates also pro-

vide high availability since a blocking file-system check

is not required; instead, upon reboot after a crash, a snap-

shot of the file-system state is taken, and the file-system

check is run on the snapshot in the background [19].

2.2.4 Copy-on-write

The copy-on-write technique, as the name suggests, di-

rects a write to a metadata or data block to a new copy of

the block, never overwriting the block in place. Once the

write is persisted on disk, the new information is added

to the file-system tree. The ordering point is in-between

these two steps, where the file system atomically changes

between the old view of the metadata to one which in-

cludes the new information. Copy-on-write has been used

in a number of file systems [15, 32], with the most recent

being ZFS [3] and btrfs [48].

Copy-on-write file systems provide metadata, data, and

version consistency due to the use of logging and trans-

actions. Modern copy-on-write file systems like ZFS

achieve good performance, though at the cost of very high

complexity. The large size of these file systems (tens of

thousands of lines of code [35]) is partly due to the copy-

on-write technique, and partly due to advanced features

such as storage pools and snapshots.

2.3 Summary
Table 1 compares consistency techniques on complexity,

performance, availability, and consistency guarantees pro-

vided. Observe that every technique that provides consis-

tency and availability in file systems uses ordering points

in its update protocol. Ordering points lead to complexity

in the file-system code, paving the way for bugs and de-

creased reliability. File systems which use ordering points

Consistency

Technique M
et
a
d
a
ta

D
a
ta

V
er
si
o
n

C
o
m
p
le
x
it
y

P
er
fo
rm
a
n
ce

A
v
a
il
a
b
il
it
y

File-system check
√

× × L H L

Metadata journaling
√

× × MM H

Data journaling
√ √ √

MM H

Soft Updates
√ √

× H H H

Copy-on-write
√ √ √

H H H

BBC
√ √

× L H H

Table 1: Consistency techniques. The table compares var-
ious approaches to providing consistency in file systems. Leg-

end: L – Low, M – Medium, H – High. We observe that only

backpointer-based consistency (BBC) provides data consistency

with low complexity, high performance, and high availability.

perform worse than order-less file systems on some work-

loads. The use of ordering points is built upon lower-

level functionality such as the SATA flush command [43];

when disks do not reliably flush their cache [36], ordering

points fail to enforce consistency and more complicated

measures have to be taken [29]. Thus there is a need for a

technique which provides consistency without sacrificing

simplicity, availability, or performance. We believe that

backpointer-based consistency fulfills this need.

3 Design
We present the design of the No-Order file system (NoFS),

a lightweight, consistent file system with no ordering

points in its update protocol. NoFS provides access to

files immediately upon mounting, with no need for a file-

system check or journal recovery.

In this section, we introduce backpointer-based consis-

tency (BBC), the technique used in NoFS for maintaining

consistency. We use a logical framework to prove that

BBC provides data consistency in NoFS. We discuss how

BBC can be used to detect and recover from inconsisten-

cies, and elaborate on why allocation structures are not

persisted to disk in NoFS.

3.1 Overview
The main challenge in NoFS is maintaining consistency

without ordering points. Consistency is closely tied to

logical identity in file systems. Inconsistencies arise due

to confusion about an object’s identity; for example, two

files may each claim to own a data block. If the block’s

true owner is known, such inconsistencies could be re-

solved. Associating each object with its logical identity is

the crux of the backpointer-based consistency technique.

Employing backpointer-based consistency allows

NoFS to detect inconsistencies on-the-fly, upon user

access to corrupt files and directories. The presence of

a corrupt file does not affect access to other files in any

way. This property enables immediate access to files

upon mounting, avoiding the downtime of a file-system

104 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

check or journal recovery. A read is guaranteed to never

return garbage data, though stale data may be returned.

We intentionally avoided using complex rules and de-

pendencies in NoFS. We simplified the update protocols,

not persisting allocation structures to disk. We maintain

in-memory versions of allocation structures and discover

data and metadata allocation information in the back-

ground while the file system is running.

3.2 Backpointer-based consistency
Backpointer-based consistency is built around the logical

identity of file-system objects. The logical identity of a

data block is the file it belongs to, along with its position

inside the file. The logical identity of a file is the list of

directories that it is linked to. This information is em-

bedded inside each object in the form of a backpointer.

Upon examining the backpointer of an object, the parent

file or directory can be determined instantly. Blocks have

only one owner, while files are allowed to have multiple

parents. Figure 1 illustrates how backpointers link file-

system objects in NoFS. As each object in the file system

is examined, a consistent view of the file-system state can

be incrementally built up.

Though conceptually simple, backpointers allow detec-

tion of a wide range of inconsistencies. Consider a block

that is deleted from a file, and then assigned to another

file and overwritten. If a crash happens at any point dur-

ing these operations, some subset of the data structures on

disk may not be updated, and both files may contain point-

ers to the block. However, by examining the backpointer

of the block, the true owner of the block can be identified.

In designing NoFS, we assume that the write of a block

along with its backpointer is atomic. This assumption is

key to our design, as we infer the owner of the data block

by examining the backpointer. Current SCSI drives allow

a 520-byte atomic write to enable checksums along with

each 512-byte sector [42]; we envision that future drives

with 4-KB blocks will provide similar functionality.

Backpointers are similar to checksums in that they ver-

ify that the block pointed to by the inode actually belongs

to the inode. However, a checksum does not identify the

owner of a data block; it can only confirm that the cor-

rect block is being pointed to. Consistency and recovery

require identification of the owner.

3.2.1 Intuition

We briefly provide some intuition about the correctness of

using the backpointer-based consistency technique to en-

sure data consistency. We first consider what data consis-

tency and version consistency mean, and the file-system

structures required to ensure each level of consistency.

Data consistency provides the guarantee that all the

data accessed by a file belongs to that file; it may not

be garbage data or belong to another file. This guarantee

is obtained when a backpointer is added to a data block.

Figure 1: Backpointers. The figure shows a conceptual view
of the backpointers present in NoFS. The file has a backpointer

to the directory that it belongs to. The data block has a back-

pointer to the file it belong to. Files and directories have many

backpointers while data blocks have a single backpointer.

Consider a file pointing to a data block. Upon reading

the data block, the backpointer is examined. If the back-

pointer matches the file, then the data block must have

belonged to the file, since the backpointer and the data

inside the block were written together. If the data block

was reallocated to another file and written, it would be re-

flected in the backpointer. Hence, no ordering is required

between writes to data and metadata since the data block’s

backpointer would disagree in the event of a crash. Note

that the data block could have belonged to the file at some

point in the past; the backpointer does not provide any in-

formation about when the data block belonged to the file.

Thus, the file might be pointing to an old version of the

data block, which is allowed under data consistency.

Version consistency is a stricter form of data consis-

tency which requires that in addition to belonging to the

correct file, all accessed data must be the correct version.

Stale data is not allowed in this model. Backpointers

are not sufficient to enforce version consistency, as they

contain no information about the version of a data block.

Hence more information needs to be added to the file sys-

tem. Each data block has a timestamp indicating when it

was last updated. This timestamp is also stored in the in-

ode containing the data block. When a block is accessed,

the timestamp in the inode and data block must match.

Since timestamps are a way to track versions, the versions

in the inode and data block can be verified to be the same,

thereby providing version consistency.

We decided against including timestamps in NoFS

backpointers because updating timestamps in backpoint-

ers and metadata reduces performance and induces a con-

siderable amount of storage overhead. Timestamps need

to be stored with every object and its parent. Every up-

date to an object involves an update to the parent object,

the parent’s parent, and so on all the way up to the root.

Furthermore, doing so works against our goal of keeping

the file system simple and lightweight; hence, NoFS pro-

vides data consistency, but not version consistency.

The full proof involves extending the logical framework

of Sivathanu et al. [38] to prove that an order-less file sys-

tem employing the backpointer-based consistency tech-

nique provides data consistency. We further prove that

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 105

if the backpointer contains an update timestamp, the file

system provides version consistency. The full proof can

be found in the technical report [5].

3.2.2 Detection and Recovery

In NoFS, detection of an inconsistency happens upon ac-

cess to corrupt files or data. When a data or metadata

block is accessed, the backpointer is checked to verify that

the parent metadata block has the same information. If a

file is not accessed, its backpointer is not checked, which

is why the presence of corrupt files does not affect access

to other files: checking is performed on-demand.

This checking happens both at the file level and the data

block level. When a file is accessed, it is checked to see

whether it has a backpointer to its parent directory. This

check allows identification of deleted files where the di-

rectory did not get updated, and files which have not been

properly updated on disk.

NoFS is able to recover from inconsistencies by treating

the backpointer as the true source of information. When

a directory and a file disagree on whether the file belongs

to the directory or not, the backpointer in the file is exam-

ined. If the backpointer to the directory is not found, the

file is deleted from the directory. Issues involving blocks

belonging to files are similarly handled.

3.3 Non-persistent allocation structures
In an order-less file system, allocation structures like

bitmaps cannot be trusted after a crash, as it is not known

which updates were applied to the allocation structures on

disk at the time of the crash. Any allocation structure will

need to be verified before it can be used. In the case of

global allocation structures, all of the data and metadata

referenced by the structure will need to be examined to

verify the allocation structure.

Due to these complexities, we have simplified the up-

date protocols in NoFS, making the allocation structures

non-persistent. The allocation structures are kept entirely

in-memory. NoFS starts out with empty allocation struc-

tures and allocation information is discovered in the back-

ground, while the file system is online. NoFS can verify

whether a block is in use by checking the file that it has a

backpointer to; if the file refers to the data block, the data

block is considered to be in use. Similarly, NoFS can ver-

ify whether a file exists or not by checking the directories

in its backpointers. Thus NoFS can incrementally learn

allocation information about files and blocks.

4 Implementation
We now present the implementation of NoFS. We first de-

scribe the operating system environment, and then discuss

the implementation of the two main components of NoFS:

backpointers and non-persistent allocation structures. We

describe the backpointer operations that NoFS performs

for each file-system operation.

Action Backpointer operations

Create Write backlink into new inode

Read Translate offset

Verify block backpointer in data block

Write Translate offset

Verify block backpointer in data block

Append Translate offset

Write block backpointer into data block

Truncate No backpointer operations

Delete No backpointer operations

Link Write backlink into inode

Unlink Remove backlink from inode

mkdir Write directory entry backpointer into

directory block

rmdir No backpointer operations

Table 2: NoFS backpointer operations. The table lists
the operations on backpointers caused by common file system

operations. Note that all checks are done in memory.

4.1 Operating system environment
NoFS is implemented as a loadable kernel module in-

side Linux 2.6.27.55. We developed NoFS based on ext2

file-system code. Since NoFS involves changes to the

file-system layout, we modified the e2fsprogs tools

1.41.14 [44] used for creating the file system.

Linux file systems cache user data in a unified page

cache [6]. File reads (except direct I/O) are always sat-

isfied from the page cache. If the page is not up-to-date at

the time of read, the page is first filled with data from the

disk and then returned to the user. File writes cause pages

to become dirty, and an I/O daemon called pdflush pe-

riodically flushes dirty pages to disk. Due to this tight

integration between the page cache and the file system,

NoFS involves modifications to the Linux page cache.

4.2 Backpointers
NoFS contains three types of backpointers. We describe

each of them in turn, pointing out the objects they con-

ceptually link, and how they are implemented in NoFS.

Figure 2 illustrates how various objects are linked by dif-

ferent backpointers. Every file-system operation that in-

volves the creation or access of a file, directory, or data

block involves an operation on backpointers. These oper-

ations are listed in Table 2.

4.2.1 Block backpointers

Block backpointers are {inode number, block offset} pairs,

embedded inside each data block in the file system. The

first 8 bytes of every data block are reserved for the back-

pointer. Note that we need to embed the backpointer in-

side the data block since disks currently do not provide

the ability to store extra data along with each 4K block

atomically. The first 4 bytes denote the inode number of

the file to which the data block belongs. The second 4

bytes represent the logical block offset of the data block

106 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Figure 2: Implementation of backpointers. The figure
shows the different kinds of backpointers present in NoFS. foo is

a child of the root inode /. This link is represented by a backlink

from foo to /. Similarly, the data block is a part of foo, and

hence has a backpointer to foo. Directory blocks also contain

backpointers, in the form of dot entries to their owner’s inode.

within the file. Given this information, it is easy to check

whether the file contains a pointer to the data block at the

specified offset. Indirect blocks contain backpointers too,

since they belong to a particular file. However, since the

indirect block data is not logically part of a file, they are

marked with a negative number for the offset.

Our implementation depends on the read and write

system calls being used; data is modified as it is passed

from the page cache to the user buffer and back during

these calls. When these calls are by-passed (via mmap)

or the page cache itself is by-passed (via direct IO mode),

verifying each access becomes challenging and expensive.

We do not support mmap or direct IO mode in NoFS.

Insertion: The data from a write system call goes

through the page cache before being written to disk. We

modified the page cache so that when a page is requested

for a disk write, the backpointer is written into the page

first and then returned for writing. The block offset trans-

lation was modified to take the backpointer into account

when translating a logical offset into a block number.

Verification: Once a page is populated with data from

the disk, the page is checked for the correct backpointer.

If the check fails, an I/O error is returned. If this is the first

time that the data block is accessed, the inode’s attributes

(size and number of blocks) are updated. Note that the

page is not checked on every access, but only the first time

that it is read from disk. Assuming memory corruption

does not occur [51], this level of checking is sufficient.

4.2.2 Directory backpointers

The dot directory entry serves as the backpointer for di-

rectory blocks, as it points to the inode which owns the

block. However, the dot entry is only present in the first

directory block. We modified ext2 to embed the dot entry

in every directory block, thus allowing the owner of any

directory block to be identified using the dot entry.

Though the block backpointer could have been used in

directory blocks as well, we did not do so for two reasons.

First, the structured content of the directory block enables

the use of the dot entry as the backpointer, simplifying our

implementation. Second, the offset part of the block back-

pointer is unnecessary for directory blocks since directory

blocks are unordered and appending a directory block at

the end suffices for recovery.

Insertion: When a new directory entry is being added

to the inode, it is determined whether a new directory

block will be needed. If so, the dot entry in added in the

new block, followed by the original directory entry.

Verification: Whenever the directory block is ac-

cessed, such as in readdir, the dot entry is cross-

checked with the inode. If the check fails, an I/O error

is returned and the directory inode’s attributes (size and

block count) are updated.

4.2.3 Backlinks

An inode’s backlinks contain the inode numbers of all its

parent directories. Every valid inode must have at least

one parent. Hard linked inodesmay havemultiple parents.

We modified the file-system layout to add space for

backlinks inside each inode. The inode size is increased

from the default 128 bytes to 256 bytes, enabling the

addition of 32 backlinks, each of size 4 bytes. The

mke2fs tool was modified to create a backlink between

the lost+found directory and the root directory when

the file system is created.

Insertion: When a child inode is linked to a parent di-

rectory during system calls such as create or link, a

backlink to the parent is added in the child inode.

Verification: At each step of the iterative inode lookup

process, we check that the child inode contains a backlink

to the parent. A failed check stops the lookup process and

returns an I/O error. If this is the first time the inode is

accessed via this particular path, the number of links for

the inode is updated.

4.2.4 Detection

Every data block is checked for a valid backpointer when

it is read from the disk into the page cache. We as-

sume that neither memory nor on-disk corruption hap-

pens; hence, it is safe to limit checking to when a data

block is first brought into main memory. It is this property

that leads to the high performance of NoFS; because disk

I/O is several orders of magnitude slower than in-memory

operations, the backpointer check can be performed on

disk blocks with very low overhead.

Inode backlink checking occurs during directory path

resolution. The child inode’s backlink to the parent in-

ode is checked. Since both inodes are typically in mem-

ory during directory path resolution, the backlink check

is a quick in-memory check, and does not degrade perfor-

mance significantly, since a disk read is not performed to

obtain the parent or child inode.

Note that the detection of inconsistency happens at the

level of a single resource, such as an inode or a data

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 107

Figure 3: Handling crashes with backpointers. The figure presents three failure scenarios during the rename of a file, and
the creation of a file with 1 byte of data. In each scenario, employing backpointers allows us to detect inconsistencies such as both

the old and new parents claiming the child, and the child pointing to a data block that hasn’t been updated.

block. Verifying that a data block belongs to an inode

can be done without considering any other object in the

file system. The presence of corrupt files or blocks does

not affect the reads or writes to other non-corrupt files.

As long as corrupt blocks are not accessed, their presence

can be safely ignored by the rest of the system. This fea-

ture contributes to the high availability of NoFS: a file-

system check or recovery protocol is not needed upon

mount. Files can be immediately accessed, and any ac-

cess of a corrupt file or block will return an error. This

feature also allows NoFS to handle concurrent writes and

deletes. Even if many writes and deletes were going on at

the time of a crash, NoFS can still detect inconsistencies

by considering each inode and data block pair in isolation.

Let us illustrate this with an example. Upon mount, we

run the command cat /dir1/file1, which involves

several checks in the file system. First, the directory block

for dir1 is fetched, and checked whether it has a direc-

tory backpointer to the root directory. Similarly, when the

file1 inode is retrieved from disk, it is checked to see if

it has a backlink to dir1. When the data block of file1

is retrieved, it is checked to verify that the data block has

a block backpointer to file1. If any of these checks fail,

an error is returned to the user.

Figure 3 illustrates the detection of inconsistencies dur-

ing different crash scenarios for two operations: renam-

ing a file and creating a single byte file. The state of data

structures in memory before and after the update is first

shown. In each crash scenario, a different subset of the

in-memory updates is successfully written to disk. The

state of various pointers on disk after the crash is shown,

followed by the consistent logical view that NoFS obtains

after verification using back pointers. For example, dur-

ing the rename, a crash may lead to the file being listed

in both the old and new directories. However, the logical

status shows that upon backpointer verification, the true

owner of the child inode is found using the backlink.

4.2.5 Recovery

Having backlinks and backpointers allows recovery of lost

files and blocks. Files can be lost due to a number of rea-

sons. A rename operation consists of a unlink and a link

operation. An inopportune crash could leave the inode not

linked to any directory. A crash during the create opera-

tion could also lead to a lost file. Such a lost file can be

recovered in NoFS, due to the backlinks inside each in-

ode. Each such inode is first checked for access to all its

data blocks. If all the data blocks are valid, it is a valid

subtree in the file system and can be inserted back into

the directory hierarchy (using the backlinks information)

without compromising the consistency of the file system.

When adding a directory entry for the recovered inode, it

is correct to append the directory entry at the end of the

directory, since directory entries are an unordered collec-

tion; there is no meaning attached to the exact offset inside

a directory block where a directory entry is added.

In a similar fashion, it it possible to recover data blocks

lost due to a crash before the inode is updated. A data

108 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

block, once it has been determined to belong to an inode,

cannot be embedded at an arbitrary point in the inode data.

It is for this reason that the offset of a data block is embed-

ded in the data block, along with the inode number. The

offset allows a data block to be placed exactly where it

belongs inside a file. Indirect blocks of a file do not have

the offset embedded, as they do not have a logical offset

within the file. Indirect blocks are not required to recon-

struct a file; only data blocks and their offsets are needed.

Using reconstruction of files from their blocks on disk,

files can be potentially “undeleted”, provided that the

blocks have not been reused for another file. We have not

implemented undelete in NoFS. Block allocation would

need to be tweaked to not reuse blocks for a certain

amount of time, or until a certain free-space threshold is

reached. Undelete might turn up stale data because NoFS

does not support version consistency; the data blockmight

have been part of an older version of the inode.

4.3 Non-persistent allocation structures
The allocation structures in ext2 are bitmaps and group

descriptors. These structures are not persisted to disk in

NoFS. In-memory versions of these data structures are

built using themetadata scanner and data scanner. Statis-

tics usually maintained in the group descriptors, such as

the number of free blocks and inodes, are also maintained

in their in-memory versions.

Upon file-system mount, in-memory inode and block

bitmaps are initialized to zero, signifying that every inode

and data block is free. Since every block and inode has a

backpointer, it can be determined to be in use by examin-

ing its backlink or backpointer, and cross-checking with

the inode mentioned in the backpointer. As every object

is examined, consistent file-system state is built up and

eventually complete knowledge of the system is achieved.

In the file system, a block or inode that is marked free

could mean two things: it is free, or it has not been ex-

amined yet. Since all blocks and inodes are marked free

at mount time, inodes need to be examined to check that

they are indeed free; hence blocks or inodes that have not

been examined yet cannot be allocated. In order to mark

which inodes or blocks have been examined, we added a

new bitmap each for inodes and data blocks called the va-

lidity bitmap. If a block or inode has been examined and

marked as free, it is safe to use it. Blocks not marked as

valid could actually be used blocks, and hence must not

be used for allocation. The examination of inodes and

blocks are carried out by two background threads called

the metadata scanner and data scanner. The two threads

work closely together in order to efficiently find all the

used inodes and blocks on disk.

4.3.1 Metadata Scan

Each inode needs to be examined in order to find out if it

is in use or not. The backlinks in the inode are found, and

the directory blocks of the referred inodes are searched

for a directory entry to this inode. Note that the directory

hierarchy is not used for for the scan. The disk order of

inodes is used instead, as this allows for fast sequential

reads of the inode blocks.

Once an inode is determined to be in use, its data blocks

have to verified. This information is communicated to the

data scanner by adding the data blocks of the inode to a

list of data blocks to be scanned. The inode information is

also attached to the list so that the data scanner can sim-

ply compare the backpointer value to the attached value

to determine whether the block is used. However, if the

inode has indirect blocks, the inode data blocks are ex-

plored and verified immediately. An inode with indirect

blocksmay contain thousands of data blocks, and it would

be cumbersome to add all those data blocks to the list and

process them later; hence inode data is verified immedi-

ately by the metadata scanner. Each inode is marked valid

after it has been scanned, allowing inode allocation to oc-

cur concurrently with the metadata scan.

4.3.2 Data Scan

Observe that a data block is in use only if it is pointed to by

a valid inode which is in use; hence only data blocks that

belong to a valid inode need to be checked, which reduces

the number of blocks that need to be checked drastically.

The data block scanner works off a list of data blocks

that the metadata scanner provides. Each list item also

includes information about the inode that contained the

data block. Therefore, the data scanner simply needs to

read the inode off the disk and compare the backpointer

inode to the inode information in the list item. The data

block is marked valid after the examination is complete.

Since the data scanner only looks at blocks referred

to by inodes, there may be plenty of unexamined blocks

which are not referred and potentially free. These blocks

cannot be marked as valid and free until the end of the data

scan, when all valid inodes have been examined. While

the scan is running, the file system may indicate that there

are no free blocks available, even if there are many free

blocks in the system. In order to fix this, we implemented

another scanner called the sequential block scanner which

reads data blocks in disk order and verifies them one by

one. This thread is only started if no free blocks are found,

and the data scanner is still running.

4.4 Limitations
The design of NoFS involves a number of trade-offs. We

describe the limitations that arise from our design choices.

Recovery: NoFS was designed to be as lightweight as

possible, avoiding heavy machinery for logging or copy-

on-write. As a result, file-system recovery is limited. For

example, consider a file that is truncated, and later writ-

ten with new data. After a crash in the middle of these

updates, the file may point to a block that it does not

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 109

own. This inconsistency is detected upon access to the

data block. However, the version of the file which pointed

to its old data cannot be recovered easily. By utilizing

logging, a file system like ext3 provides the ability to pre-

serve data in the event of a crash.

Transactions: NoFS does not provide atomic transac-

tions. Operations can be partially applied to different data

structures. For example, if the file system crashes in the

middle of a rename, it is possible that the file appears both

in the old and new directories, as we do not validate direc-

tory entries during a readdir. Though the user will be

able to access the file via only one directory, the ‘old-or-

new’ aspect of transactions is not provided.

Accessing unverified objects: For large disks, it is

possible that an object is accessed before the scan has

verified it. Accessing such unverified objects involves a

performance cost. The performance cost is felt during dif-

ferent system calls for inodes and data blocks.

Running the stat system call on an unverified inode

may result in invalid information, as the number of blocks

recorded in the inode may not match the actual number

of blocks that belong to the inode on disk. In order to

handle this, NoFS checks the inode status upon a stat

call, and verifies the inode immediately if required, and

then allows the system call to proceed. Since verification

involves checking every data block referred to by the in-

ode, the verification can take a lot of time. Running ls

-l on a large directory of unverified files involves a large

performance penalty arising from reading every file. For

verified inodes, the stat will always return valid data,

as the inode’s attributes are updated whenever an error is

encountered on block access. Note that NoFS does not

check directory entries for correctness.

In the case of an unverified data block, no additional I/O

is incurred during reads and partial writes since both in-

volve reading the block off the disk anyway. However, in

the case of a block overwrite, the block has to be read first

to verify that it belongs to the inode before overwriting it.

As a result, a write in ext2 is converted into a read-modify-

write in NoFS, effectively cutting throughput in half. It

should be noted that this happens only on the first over-

write of each unverified block. After the first overwrite,

the block has been verified, and hence the backpointer no

longer needs to be checked.

Thus it can be seen that accessing unverified objects

involves a large performance hit. However, these costs

are only incurred during the window between file-system

mount and scan completion.

5 Evaluation

We now evaluate NoFS in two categories: reliability and

performance. For reliability testing, we artificially prevent

writes to certain sectors from reaching the disk, and then

observe how NoFS handles the resulting inconsistency.

ext2 NoFS

System call Blocks dropped Error D
et
ec
te
d
?

A
ct
io
n
?

D
et
ec
te
d
?

A
ct
io
n
?

mkdir Cinode PBD , COB × –
√
R , CEI

mkdir Cdir CBD
√
CED

√
CED

mkdir Pdir COI , COB × –
√

R

mkdir Cinode , Cdir PBD , CBD × –
√
CEI

mkdir Cinode , Pdir COB × –
√

R

mkdir Cdir , Pdir COI × –
√

R

link Cinode CHL × –
√
CEN

link Pdir COI × –
√

R

unlink Cinode CHL × –
√
CEO

unlink Odir PBD × –
√
CEI

rename Ndir OBD × –
√
CEI

rename Odir COI × –
√

R

write Cdata CGD × –
√
CEB

write Cind CGD × –
√
CEB

write Cinode , Cdata COB × –
√

R

write Cinode , Cind COB × –
√

R

write Cdata , Cind CGD × –
√
CEB

delete-create Odir OBD × –
√
CEO

truncate-write Oinode OTP × –
√
OEB

unlink-link Odir OBD × –
√
CEO

General Key

C Child inode File inode

P Parent dir Directory block

O Old file/parent data Data block

N New file/parent ind Indirect block

Key for Error Key for Action

BD Bad dir entry R Block/inode reclaimed on scan

OB Orphan block EI Error on inode access

OI Orphan inode ED Error on data access

HL Wrong hard link count EN Error on access via new path

GD Garbage data EO Error on access via old path

TP 2 inodes refer to 1 block EB Error on block access

Table 3: Reliability testing. The table shows how NoFS

reacts to various inconsistencies that occur due to updates not

reaching the disk. The behavior of ext2 is also shown. NoFS

detects all inconsistencies and reports an error, while ext2 lets

most of the errors pass by undetected.

For performance testing, we evaluate the performance

of NoFS on a number of micro and macro-benchmarks.

We compare the performance of NoFS to ext2, an order-

less file system with no consistency, and ext3 (in ordered

mode), a journaling file systemwith metadata consistency.

5.1 Reliability

We test whether NoFS can handle inconsistencies caused

by a file-system crash. When a crash happens, any sub-

set of updates involved in a file-system operation could

be lost. We emulate different system-crash scenarios by

artificially restricting blocks from reaching the disk, and

restarting the file-system module. The restarted module

will see the results of a partially completed update on disk.

We use a pseudo-device driver to prevent writes on tar-

get blocks and inodes from reaching the disk drive. We

interpose the pseudo-device driver in-between the file sys-

tem and the physical device driver, and all writes to the

disk drive go via the pseudo-device driver. The file sys-

tem and the device driver communicate through a list of

sectors. In the file system, we calculate the on-disk sec-

110 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

tors of target blocks and inodes and add them to the black

list of sectors. All writes to these sectors are ignored by

the device driver. Thus, we are able to target inodes and

blocks in a fine grained manner.

Table 3 lists the behavior of ext2 and NoFS when 20

different inconsistencies are caused by dropping some of

the blocks involved in each file-system operation. For ex-

ample, consider the mkdir operation. It involves adding a

directory entry to the parent directory, updating the new

child inode, and creating a new directory block for the

child inode. We do not consider updates to the access

time of the parent inode. In the reliability test, we would

drop writes to different combinations of these blocks, and

observe the actions taken by the file system. For instance,

if the write to the new child inode is dropped, it creates

a bad directory entry in the parent directory, and orphans

the directory block of the new child inode. We observe

whether the file system detects this corrupt directory en-

try, and whether the orphan block is reclaimed. Both these

actions are performed successfully in NoFS, whereas ext2

allows the user to access a garbage inode, and the block

remains an orphan until the next file-system check.

The table entries which have two system calls denote

the second system call happening after the first system

call. These particular combinations were selected because

they share a common resource. For example, truncate-

write explores the case when a data block is deleted from

a file and reassigned to another file. If the write to the

truncated file inode fails, both files now point to the same

data block, leading to an inconsistency. Similarly unlink-

link and delete-create may share the same inode.

Some inconsistencies, like a corrupt directory block,

are detected by ext2. Many other inconsistencies, such as

reading garbage data, are not detected by ext2. All incon-

sistencies are detected by NoFS, and an error is returned

to the user. When blocks and inodes are orphaned due to a

crash, they are reclaimed by NoFS when the file system is

scanned for allocation information upon reboot. Some of

the inconsistencies could lead to potential security holes:

for example, linking a sensitive file for temporary access,

and removing the link later. If the directory block is not

written to disk, the file could still be accessed, providing

a way to read sensitive information. These security holes

are detected upon access in NoFS, and any operation on

them leads to an error.

5.2 Performance
To evaluate the performance of NoFS, we run a series of

micro-benchmark and macro-benchmark workloads. We

also observe the performance of NoFS at mount time,

when the scan threads are still active. We show that NoFS

has comparable performance to ext2 in most workloads,

and that the performance of NoFS is reasonable when the

scan threads are running in the background. We also mea-

sure the scan running time when the file system is popu-

ext2 NoFS ext3

M
B

/s

0

10

20

30

40

50

60

70

80

90

Sequential read bandwidth

 74.5 74.3 74.4

ext2 NoFS ext3

M
B

/s

0

10

20

30

40

50

60

70

80

90

Sequential write bandwidth

 69.6 70.7
 60.0

ext2 NoFS ext3

IO
P

S

0

20

40

60

80

100

120

140

160

Random read throughput

 120.5 121.4 119.7

ext2 NoFS ext3

IO
P

S

0

10

20

30

40

50

60

70

80

90

Random write throughput

 70.9 71.5 69.0

ext2 NoFS ext3

O
p
/s

0

100

200

300

400

500

600

700

File creation throughput

 493.8 516.9

 223.7

ext2 NoFS ext3

O
p
/s

0

100

200

300

400

500

600

700

800

900

File deletion throughput

 731.4 695.6

 399.4

Figure 4: Micro-benchmark performance. This

figure compares file-system performance on various micro-

benchmarks. The sequential benchmarks involve reading and

writing a 1 GB file. The random benchmarks involve 10K ran-

dom reads and writes in units of 4088 bytes (4096 bytes - 8 byte

backpointer) across a 1 GB file, with a fsync after 1000 writes.

The creation and deletion benchmarks involve 100K files spread

over 100 directories, with a fsync after every create or delete.

lated with data, the rate at which NoFS scans data blocks

to find free space, and the performance cost incurredwhen

the stat system call is run on unverified inodes.

Our experiments were performed on a machine with a

AMD 1Ghz Opteron processor, and 1 GB of memory run-

ning Linux 2.6.27.55. The disk drive used in the experi-

ment was a Seagate Barracuda 160 GB, which provides 75

MB/s read throughput and 70 MB/s write throughput. All

experiments were performed on a cold file-system cache.

The experimentswere stable and repeatable. The numbers

reported are the average over 10 runs.

5.2.1 Micro-benchmarks

We run a number of micro-benchmarks, focusing on dif-

ferent operations like sequential write and random read.

Figure 4 illustrates the performance of NoFS on these

workloads. We observe that NoFS has minimal overhead

on the read and write workloads. For the sequential write

workload, the performance of ext3 is worse than ext2 and

NoFS due to the journal writes that ext3 performs.

The creation and deletion workloads involve doing a

large number of creates/deletes of small files followed by

fsync. This workload clearly brings out the performance

penalty due to ordering points. The throughput of NoFS

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 111

ext2 NoFS ext3

M
B

/s

0

1

2

3

4

5

6

7

Sort throughput

 5.9 5.9 5.8

ext2 NoFS ext3

IO
P

S

0

200

400

600

800

1000

1200

1400

1600

1800

Filebench varmail throughput

 1458 1443

 1215

ext2 NoFS ext3

IO
P

S

0

200

400

600

800

1000

1200

1400

1600

1800

Filebench fileserver throughput

 1349 1344 1265

ext2 NoFS ext3

IO
P

S

0

1000

2000

3000

4000

5000

Filebench webserver throughput

 4648 4649 4460

Figure 5: Macro-benchmark performance. The figure shows the throughput achieved on various application workloads.
The sort benchmark is run on 500 MB of data. The varmail benchmark was run with parameters 1000 files, 100K mean dir width,

16K mean file size, 16 threads, 16K I/O size and 16K mean append size. The file and webserver benchmarks were run with the

parameters 1000 files, 20 dir width, 1 MB I/O size and 16K mean append size. The mean file size was 128K for the fileserver

benchmark and 16K for the webserver benchmark. Fileserver benchmark used 50 threads while webserver used 100 threads.

is twice that of ext3 on the file creation micro-benchmark,

and 70% higher than ext3 on the file deletion benchmark.

5.2.2 Macro-benchmarks

We run the sort and Filebench [8] macro-benchmarks to

assess the performance of NoFS on application work-

loads. Figure 5 illustrates the performance of the three

file systems on this macro-benchmark. We selected the

sort benchmark because it is CPU intensive. It sorts a

500 MB file generated by the gensort tool [22], using the

command-line sort utility. The performance of NoFS is

similar to that of ext2 and ext3, demonstrating that NoFS

has minimal CPU overhead.

We run three workloads on Filebench: fileserver, web-

server, and varmail. The fileserver workload emulates

file-server activity, performing a sequence of creates,

deletes, appends, reads, and writes. The webserver work-

load emulates a multi-threaded web host server, perform-

ing sequences of open-read-close on multiple files plus a

log file append, with 100 threads. The varmail workload

emulates a multi-threaded mail server, performing a se-

quence of create-append-sync, read-append-sync, reads,

and deletes in a single directory.

We believe these benchmarks are representative of the

different kind of I/O workloads performed on file sys-

tems. The performance of NoFS matches ext2 and ext3 on

all three workloads. NoFS outperforms ext3 by 18% on

the varmail benchmark, demonstrating the performance

degradation in ext3 due to ordering points.

5.2.3 Scan performance

We evaluate the performance of NoFS at mount time,

when the scanner is still scanning the disk for free re-

sources. The scanner is configured to run every 60 sec-

onds, and each run lasts approximately 16 seconds. In or-

der to understand the performance impact due to scanning,

we do two experiments involving 10 sequential writes of

200 MB each. The writes are spaced 30 seconds apart.

In the first experiment, we start the writes at mount

time. The scanning of the disk and the sequential write

is interleaved at 0s, 60s, 120s, and so on, leading to the

write bandwidth dropping to half. When the sequential

writes are run at 30s, 90s, 150s, and so on, the writes

achieve peak bandwidth. In the second experiment, the

writes were once again spaced 30s apart, but were started

at 20s, after the end of the first scan run. In this experi-

ment, the writes are never interleaved with the scan reads,

and hence suffer no performance degradation. Graph (a)

in Figure 6 illustrates these results.

Once the scan finishes, writes will once again achieve

peak bandwidth. Running the scan runs without a break

causes the scan to finish in around 90 seconds on an empty

file system. Of course, one can configure this trade-off as

need be; the larger the interval between scans, the smaller

the performance impact during this phase, but the longer

it takes to fully discover the free blocks of the system.

Graph (b) in Figure 6 depicts the time taken to finish

the scan (both metadata and data) when the file system

is increasingly populated with data. In this experiment,

the scan is run without a break upon file-system mount.

All the data in the file system are in units of 1 MB files.

The running time of the scan increases slowly when the

amount of data in the file system is increased, reaching

about 140s for 1 GB of data. We also performed an exper-

iment where we created a variable number of empty files

in the file systems and measured the time for the scan to

run. We found that the time taken to finish the scan re-

mained the same irrespective of the number of empty files

in the system. Since every inode in the system is read and

verified, irrespective of whether it is actively used in the

file system or not, the scan time remains constant.

During a file write, if there are no free blocks, the se-

quential block scanner is invoked in order to scan data

blocks and find free space. The write will block until free

space is found. Graph (c) illustrates the performance of

the sequential block scanner. The latency to scan 100 MB

is around 3 seconds, and 1 GB of data is scanned in around

30 seconds. The throughput is currently around 30 MB/s,

so there is opportunity for optimizing its performance.

As mentioned in Section 4.4, when stat is run on an

unverified inode, NoFS first verifies the inode by check-

ing all its data blocks. We ran an experiment to estimate

the cost of such verification. We created four identical di-

rectories, each filled with a number of 1 MB files. Every

140 seconds, ls -li was run on one directory, leading

112 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Effect of background scan on write bandwidth over time

Time(s)

(a)

0 30 60 90 120 150 180 210 240 270 300

M
B

/s

0

10

20

30

40

50

60

70

80

Writes every 30s, start at 0s

Writes every 30s, start at 20s

Effect of file−system data on scan running time

Total data(MB)

 (b)

1 2 4 8 16 32 64 128 256 512 1024

R
u

n
n

in
g

 t
im

e
(s

)

0

20

40

60

80

100

120

140

160

Time taken to scan data blocks

Total data scanned(MB)

 (c)

1 10 100 1000

R
u

n
n

in
g

 t
im

e
(s

)

0.001

0.01

0.1

1

10

100

Performance cost of stat on unverified inodes

Time(s)

(d)

0 70 140 210 280 350 420

ls
 t
im

e
(s

)
0

10

20

30

40

50

S
c
a
n
 c

o
m

p
le

ti
o
n

250

128 MB

256 MB

512 MB

Figure 6: Scan performance. Figure (a) depicts the reduction in write bandwidth when sequential writes interleave with the
background scan. Figure (b) shows that the running of the scan increases slowly with the amount of data in the file system. Figure

(c) illustrates the rate at which data blocks are scanned. Figure (d) demonstrates the performance cost incurred when the stat

system call is run on unverified inodes.

to a stat on each inode in the directory. The background

scan started at file-system mount and finished at approxi-

mately 250 seconds. We varied the number of files from

128 to 512 and measured the time taken for ls -li in

each experiment. Graph (d) illustrates the results. As ex-

pected, the time taken for ls to complete increases with

the total data in the directory. After the scan completion

at 250 seconds, all the inodes are verified, and hence ls

finishes almost instantly.

6 Discussion

We have demonstrated that NoFS has better performance

than journaling file systems such as ext3, while provid-

ing better consistency guarantees. However, it should be

noted that NoFS differs from ext3 in two important as-

pects. First, it does not provide atomic transactions. Sec-

ond, NoFS has no redundancy anywhere in the system.

Part of the reason ext3 performsworse than NoFS is its ex-

tra log writes. By writing transaction updates to a log first,

ext3 provides both metadata consistency, and the ability

to preserve old data if the transaction fails before commit.

NoFS only provides the former.

Given its current design, we feel an excellent use-case

for NoFS would be as the local file system of a distributed

file system such as the Google File System [11] or the

Hadoop File System [37]. In such a distributed file sys-

tem, reliable detection of corruption is all that is required,

since redundant copies of data would be stored across the

system. If the master controller is notified that a particular

block has been corrupted in the local file system of a par-

ticular node, it can make additional copies of the data in

order to counter the corruption of the block. Furthermore,

such distributed file systems typically have large chunk

sizes. As shown in section 5, NoFS provides very good

performance on large sequential reads and writes, and is

well suited for such workloads.

It should be noted that backpointer-based consistency

could also be used to help ensure integrity in a conven-

tional file system against bugs or data corruption. The

simplicity and low overhead of backpointers makes such

an addition to an existing file system feasible.

By eliminating ordering, backpointer-based consis-

tency allows the file system to maintain consistency with-

out depending upon lower-layer primitives such as the

disk cache flush. Previous research has shown that SATA

drives do not always obey the flush command [29, 36],

which is essential for file systems to implement ordering.

IDE drives have also been known to disobey flush com-

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 113

mands [28, 39]. Using backpointer-based consistency al-

lows a file system to run on top of such misbehaving disks

and yet maintain consistency.

Potential users of NoFS should note two things. One,

any application which requires strict ordering among file

creates and writes should not use NoFS. Two, if there are

corrupt files in the system, NoFS will only detect them

upon access and not upon file-system mount. Some users

may prefer to find out about corruption at mount time

rather than when the file system is running. Such a use

case aligns better with a file system such as ext3.

7 Related Work

The idea of using information inside or near the block to

detect errors is not new. Cambridge File Server [7] used

certain bits in each cylinder (cylinder map) to store the

allocation status of blocks in that cylinder. Cedar File

System [12] used ‘labels’ inside pages to check their al-

location status. Embedding logical identity of blocks (in-

ode number + offset) has been done in RAID to recover

from lost and misdirected writes [16]. Transactional flash

[27] embeds commit records inside every page to pro-

vide transactions and recovery. However, NoFS is the first

work that we know of that clearly defines the level of con-

sistency that such information provides and uses such in-

formation alone to provide consistency.

The design of the Pilot file system [30] is very simi-

lar to that of NoFS. Pilot employs self identifying pages

and uses a scavenger to reconstruct the file system meta-

data upon crash. However, like the file-system check, the

scavenger needs to finish running before the file system

can be accessed. In NoFS, the file system is made avail-

able upon mount, and can be accessed while the scan is

running in the background.

Pangaea [33] uses backpointers for consistency in a dis-

tributed wide area file system. However, its use of back-

pointers is limited to directory entry backpointers that are

used to resolve conflicting updates on directories. Simi-

lar to NoFS, Pangaea also uses the backpointer as the true

source of information, letting the backpointers of child in-

odes dictate whether they belong to a directory or not.

btrfs [48] supports back references that allow it to ob-

tain the list of the extents that refer to a particular ex-

tent. Although back references are conceptually similar

to NoFS backpointers, the main purpose of btrfs back ref-

erences is supporting efficient data migration, rather than

providing consistency. Other mechanisms such as check-

sums are used to ensure that the data is not corrupt in btrfs.

Another key difference is that btrfs does not always store

the back reference inside the allocated extent: sometimes

the back references are stored as separate items close to

the extent allocation records.

Backlog [17] also uses explicit back references in or-

der to manage migration of data in write anywhere file

systems. The back references in Backlog are stored in a

separate database, and are designed for efficient querying

of usage information rather than consistency. Backlog’s

back references are not used for incremental file-system

checking or resolving ownership disputes.

While NoFS makes an order-less file system more

available by eliminating the need for the file-system

check, there have been other approaches to increasing

availability such as doing the file-system check while the

system is online. McKusick’s background fsck [19] could

repair simple inconsistencies such as lost resources by

running fsck on snapshots of a running system. Chunkfs

[14] is similar to our work, providing incremental, online

file-system checking. Chunkfs differs from NoFS in that

the minimal unit of checking is a chunk whereas it is a sin-

gle file or block in NoFS. Chunkfs does not offer online

repair of the file system, while it is possible in NoFS, due

to backpointers and non-persistent allocation structures.

8 Conclusion
Every modern file system uses ordering points to ensure

consistency. However, ordering points have many disad-

vantages including lower performance, higher complexity

in file-system code, and dependence on lower layers of the

storage stack to enforce ordering of writes.

In this paper, we demonstrate that it is possible to build

an order-less file system, NoFS, that provides consistency

without sacrificing simplicity, availability or performance.

NoFS allows immediate data access uponmounting, with-

out file-system checks. We show that NoFS has excellent

performance on many workloads, outperforming ext3 on

workloads that frequently flush data to disk explicitly.

Although potentially useful for the desktop, we believe

NoFS may be of special significance in cloud computing

platforms, where many virtual machines are multiplexed

onto a physical device. In such cases, the underlying host

operating system may try to batch writes together for per-

formance, potentially ignoring ordering requests from vir-

tual machines. NoFS allows virtual machines to maintain

consistency without depending on the numerous lower

layers of software and hardware. Removing such trust is

key to building more robust and reliable storage systems.

Acknowledgments
We thank Benjamin Reed (our shepherd), S. Subrama-

nian, S. Sundaraman, I. Ahuja, L. Lu, Y. Zhang, M. Sax-

ena, S. Panneerselvam, A. Kumar, T. Harter, A. Anand,

T. Do, and the anonymous reviewers for their feedback.

This material is based upon work supported by the NSF

under CCF-0811657 and CNS-0834392 as well as dona-

tions from Google, NetApp, and Samsung. Any opinions,

findings, and conclusions, or recommendations expressed

herein are those of the authors and do not necessarily re-

flect the views of the NSF or other institutions.

114 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Michael Armbrust, Armando Fox, Rean Griffith,

Anthony D. Joseph, Randy H. Katz, Andrew

Konwinski, Gunho Lee, David A. Patterson, Ariel

Rabkin, Ion Stoica, and Matei Zaharia. Above the

Clouds: A Berkeley View of Cloud Computing.

www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-

2009-28.pdf.

[2] Steve Best. JFS Overview. www.ibm.com/

developerworks/library/l-jfs.html,

2000.

[3] Jeff Bonwick and Bill Moore. ZFS: The Last Word

in File Systems. http://opensolaris.org/

os/community/zfs/docs/zfs last.pdf,

2007.

[4] Remy Card, Theodore Ts’o, and Stephen Tweedie.

Design and Implementation of the Second Extended

Filesystem. In Proceedings of the First Dutch Inter-

national Symposium on Linux, 1994.

[5] Vijay Chidambaram, Tushar Sharma, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Consistency Without Ordering. Technical Report

1709, University of Wisconsin-Madison Computer

Sciences, January 2012.

[6] Charles D. Cranor and Gurudatta M. Parulkar. The

UVM Virtual Memory System. In Proceedings of

the USENIX Annual Technical Conference (USENIX

’99), Monterey, California, June 1999.

[7] Jeremy Dion. The Cambridge File Server. SIGOPS

Operating Systems Review, 14:26–35, October

1980.

[8] Stony Brook University File system Stor-

age Lab (FSL). Filebench Benchmark.

http://sourceforge.net/apps/

mediawiki/filebench/index.php?

title=Filebench, 2011.

[9] Christopher Frost, Mike Mammarella, Eddie Kohler,

Andrew de los Reyes, Shant Hovsepian, Andrew

Matsuoka, and Lei Zhang. Generalized File Sys-

tem Dependencies. In Proceedings of the 21st ACM

Symposium on Operating Systems Principles (SOSP

’07), Stevenson, Washington, October 2007.

[10] Gregory R. Ganger and Yale N. Patt. Metadata Up-

date Performance in File Systems. In Proceedings

of the 1st Symposium on Operating Systems Design

and Implementation (OSDI ’94), pages 49–60, Mon-

terey, California, November 1994.

[11] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. The Google File System. In Proceedings

of the 19th ACM Symposium on Operating Systems

Principles (SOSP ’03), pages 29–43, Bolton Land-

ing, New York, October 2003.

[12] Robert Hagmann. Reimplementing the Cedar File

System Using Logging and Group Commit. In Pro-

ceedings of the 11th ACM Symposium on Operat-

ing Systems Principles (SOSP ’87), Austin, Texas,

November 1987.

[13] Val Henson, Zach Brown, Theodore Ts’o, and Ar-

jan van de Ven. Reducing Fsck Time For Ext2 File

Systems. In Ottawa Linux Symposium (OLS ’06),

Ottawa, Canada, July 2006.

[14] Val Henson, Arjan van de Ven, Amit Gud, and Zach

Brown. Chunkfs: Using Divide-And-Conquer to

Improve File System Reliability and Repair. In IEEE

2nd Workshop on Hot Topics in System Dependabil-

ity (HotDep ’06), Seattle, Washington, November

2006.

[15] Dave Hitz, James Lau, and Michael Malcolm. File

System Design for an NFS File Server Appliance. In

Proceedings of the USENIX Winter Technical Con-

ference (USENIX Winter ’94), San Francisco, Cali-

fornia, January 1994.

[16] Andrew Krioukov, Lakshmi N. Bairavasundaram,

Garth R. Goodson, Kiran Srinivasan, Randy Thelen,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Parity Lost and Parity Regained. In Pro-

ceedings of the 6th USENIX Conference on File and

Storage Technologies (FAST ’08), San Jose, Califor-

nia, February 2008.

[17] Peter Macko, Margo Seltzer, and Keith A. Smith.

Tracking Back References in aWrite-Anywhere File

System. In Proceedings of the 8th USENIX con-

ference on File and storage technologies, San Jose,

California, February 2010.

[18] Marshall K. McKusick, William N. Joy, Sam J. Lef-

fler, and Robert S. Fabry. A Fast File System for

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 115

UNIX. ACM Transactions on Computer Systems,

2(3):181–197, August 1984.

[19] Marshall Kirk McKusick. Running ’fsck’ in the

Background. In Proceedings of BSDCon 2002 (BS-

DCon ’02), San Fransisco, CA, February 2002.

[20] Marshall Kirk McKusick, Willian N. Joy, Samuel J.

Leffler, and Robert S. Fabry. Fsck - The UNIX File

System Check Program. Unix System Manager’s

Manual - 4.3 BSD Virtual VAX-11 Version, April

1986.

[21] Rajeev Nagar. Windows NT File System Internals:

A Developer’s Guide. O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, 1997.

[22] Chris Nyberg. gensort Data Generator. http://

www.ordinal.com/gensort.html, 2009.

[23] David Patterson, Garth Gibson, and Randy Katz.

A Case for Redundant Arrays of Inexpensive Disks

(RAID). In Proceedings of the 1988 ACM SIGMOD

Conference on the Management of Data (SIGMOD

’88), pages 109–116, Chicago, Illinois, June 1988.

[24] J. Kent Peacock, Ashvin Kamaraju, and Sanjay

Agrawal. Fast Consistency Checking for the Solaris

File System. In Proceedings of the USENIX Annual

Technical Conference (USENIX ’98), pages 77–89,

New Orleans, Louisiana, June 1998.

[25] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. Analysis and Evo-

lution of Journaling File Systems. In Proceedings of

the USENIX Annual Technical Conference (USENIX

’05), pages 105–120, Anaheim, California, April

2005.

[26] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,

Nitin Agrawal, Haryadi S. Gunawi, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

IRON File Systems. In Proceedings of the 20th

ACM Symposium on Operating Systems Principles

(SOSP ’05), pages 206–220, Brighton, United King-

dom, October 2005.

[27] Vijayan Prabhakaran, Thomas L. Rodeheffer, and

Lidong Zhou. Transactional Flash. In Proceedings

of the 8th Symposium on Operating Systems Design

and Implementation (OSDI ’08), San Diego, Cali-

fornia, December 2008.

[28] R1Soft. Disk Safe Best Practices. http:

//wiki.r1soft.com/display/CDP3/

Disk+Safe+Best+Practices, December

2011.

[29] Abhishek Rajimwale, Vijay Chidambaram, Deepak

Ramamurthi, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. Coerced Cache Eviction

and Discreet-Mode Journaling: Dealing with Mis-

behaving Disks. In Proceedings of the International

Conference on Dependable Systems and Networks

(DSN’11), Hong Kong, China, June 2011.

[30] David D. Redell, Yogen K. Dalal, Thomas R. Hors-

ley, Hugh C. Lauer, William C. Lynch, Paul R.

McJones, Hal G. Murray, and Stephen C.Purcell. Pi-

lot: An Operating System for a Personal Computer.

Communications of the ACM, 23(2):81–92, Febru-

ary 1980.

[31] Hans Reiser. ReiserFS. www.namesys.com,

2004.

[32] Mendel Rosenblum and John Ousterhout. The De-

sign and Implementation of a Log-Structured File

System. ACM Transactions on Computer Systems,

10(1):26–52, February 1992.

[33] Yasushi Saito, Christos Karamanolis, Magnus Karls-

son, and Mallik Mahalingam. Taming Aggressive

Replication in the Pangaea Wide-Area File System.

In Proceedings of the 5th Symposium on Operat-

ing Systems Design and Implementation (OSDI ’02),

Boston, Massachusetts, December 2002.

[34] Jerome H. Saltzer, David P. Reed, and David D.

Clark. End-To-End Arguments in System Design.

ACM Transactions on Computer Systems, 2(4):277–

288, November 1984.

[35] Eric Schrock. UFS/SVM vs. ZFS: Code Complex-

ity. http://blogs.sun.com/eschrock/,

November 2005.

[36] Seagate Forums. ST3250823AS (7200.8) ignores

FLUSH CACHE in AHCI mode. http://bit.

ly/xcSAUV, September 2011.

[37] Konstantin Shvachko, Hairong Kuang, Sanjay Ra-

dia, and Robert Chansler. The Hadoop Distributed

File System. In MSST ’10, Incline Village, Nevada,

May.

116 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[38] Muthian Sivathanu, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau, and Somesh Jha. A

Logic of File Systems. In Proceedings of the 4th

USENIX Symposium on File and Storage Technolo-

gies (FAST ’05), pages 1–15, San Francisco, Califor-

nia, December 2005.

[39] SQLite. How To Corrupt Your Database Files.

http://www.sqlite.org/lockingv3.

html.

[40] Sun Microsystems. ZFS: The last word in file sys-

tems. www.sun.com/2004-0914/feature/,

2006.

[41] Adan Sweeney, Doug Doucette, Wei Hu, Curtis An-

derson, Mike Nishimoto, and Geoff Peck. Scala-

bility in the XFS File System. In Proceedings of

the USENIX Annual Technical Conference (USENIX

’96), San Diego, California, January 1996.

[42] Technical Committee T10. T10 Data Integrity Field

standard. http://www.t10.org/, 2009.

[43] The Serial ATA International Organiza-

tion. Serial ATA Revision 3.0 Specification.

http://www.sata-io.org/technology/

6Gbdetails.asp, June 2009.

[44] Theodore Ts’o. http://e2fsprogs.

sourceforge.net, June 2001.

[45] Stephen C. Tweedie. Journaling the Linux ext2fs

File System. In The Fourth Annual Linux Expo,

Durham, North Carolina, May 1998.

[46] Stephen C. Tweedie. EXT3, Journaling File System.

olstrans.sourceforge.net/release/

OLS2000-ext3/OLS2000-ext3.html, July

2000.

[47] VirtualBoxManual. Responding to guest IDE/SATA

flush requests. http://www.virtualbox.

org/manual/ch12.html.

[48] Wikipedia. Btrfs. en.wikipedia.org/wiki/

Btrfs, 2009.

[49] Junfeng Yang, Can Sar, and Dawson Engler. EX-

PLODE: A Lightweight, General System for Find-

ing Serious Storage System Errors. In Proceedings

of the 7th Symposium on Operating Systems Design

and Implementation (OSDI ’06), Seattle, Washing-

ton, November 2006.

[50] Junfeng Yang, Paul Twohey, Dawson Engler, and

Madanlal Musuvathi. Using Model Checking to

Find Serious File System Errors. In Proceedings

of the 6th Symposium on Operating Systems De-

sign and Implementation (OSDI ’04), San Francisco,

California, December 2004.

[51] Yupu Zhang, Abhishek Rajimwale, Andrea C.

Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. End-

to-end Data Integrity for File Systems: A ZFS Case

Study. In Proceedings of the 8th USENIX Sympo-

sium on File and Storage Technologies (FAST ’10),

San Jose, California, February 2010.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 117

Reducing SSD Read Latency via NAND Flash
Program and Erase Suspension

Guanying Wu and Xubin He
Department of Electrical and Computer Engineering

Virginia Commonwealth University, Richmond, VA 23284

Abstract

In NAND flash memory, once a page program or block
erase (P/E) command is issued to a NAND flash chip,
the subsequent read requests have to wait until the time-
consuming P/E operation to complete. Preliminary re-
sults show that the lengthy P/E operations may increase
the read latency by 2x on average. As NAND flash-
based SSDs enter the enterprise server storage, this in-
creased read latency caused by the contention may sig-
nificantly degrade the overall system performance. In-
spired by the internal mechanism of NAND flash P/E al-
gorithms, we propose in this paper a low-overhead P/E
suspension scheme, which suspends the on-going P/E to
service pending reads and resumes the suspended P/E
afterwards. In our experiments, we simulate a realistic
SSD model that adopts multi-chip/channel and evaluate
both SLC and MLC NAND flash as storage materials of
diverse performance. Our experimental results show that
the proposed technique achieves a near-optimal perfor-
mance gain on servicing read requests. Specifically, the
read latency is reduced on average by 50.5% compared
to RPS and 75.4% compared to FIFO at cost of less than
4% overhead on write requests.

1 Introduction

NAND flash-based SSDs have better random access per-
formance over hard drives and have potential in high per-
formance computing system market. However, NAND
flash has performance and cost problems which limit its
application [11]. The problem addressed in this paper
is the read vs. program/erase (P/E) contention. Due to
slow P/E speed of NAND flash, once P/E is committed
to the flash chip, pending or subsequent read requests
suffer from the prolonged service latency caused by the
waiting time. As disk read requests are resulted from
upper level cache misses, the compromised read latency
of the disk causes degraded application performance. To
reduce read latency, on-disk write buffers may avoid or
postpone the write commitments to the flash [9, 6, 7]. Ex-
ecuting the garbage collection processes during the idle
time of the drive may also alleviate the contention be-
tween read and P/E [1, 10]. Furthermore, the read re-

quests can be prioritized in a pending list to reduce the
queuing time caused by the P/E. However, none of these
approaches preempt the committed P/E for read requests.

To address this read vs. P/E contention problem, we
propose a P/E Suspension scheme for NAND flash that
allows the execution of the P/E operations to be sus-
pended so as to service the pending reads and then the
suspended P/E is resumed. The internal process of the
program operation is done in a “step-by-step” fashion
(Incremental Step Pulse Programming, or ISPP [2]), and
thus the program can be suspended at the interval of two
consecutive steps, or the on-going step could be canceled
and re-executed upon resumption. The erase process re-
quires the duration of erase-voltage pulse to be satisfied,
and thus the erase can also be suspended and resumed as
long as we ensure the required timing.

The implementation of P/E suspension for NAND
flash involves minimal modifications to the flash inter-
face, i.e., merely the “program suspend/resume” and
“erase suspend/resume” commands need to be added in
the command set of the flash interface [12]. To support
P/E suspension, the control logic inside the flash chip is
required to determine the appropriate time to suspend
the P/E (suspension point) and to maintain or retrieve
the previous state of the suspended P/E so as to resume
it. Noting that the implementation feasibility of the pro-
posed schemes is based on the fundamental/typical cir-
cuitry of flash memories [3].

This paper makes the following contributions. First,
we analyze the impact of the long P/E latency on read
performance, showing that even with the read prioritiza-
tion scheduling, the read latency is still severely compro-
mised. Second, by exploiting the internal mechanism of
the P/E algorithms in NAND flash memory, we propose
a low-overhead P/E suspension scheme which suspends
the on-going P/E operations for servicing the pending
read requests. In particular, two strategies for suspend-
ing the program operation, Inter Phase Suspension (IPS)
and Intra Phase Cancelation(IPC) are proposed. Third,
based on simulation experiments under various work-
loads, we demonstrate that compared to FIFO, the pro-
posed design can significantly reduce the SSD read la-
tency for both SLC and MLC NAND flash.

118 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

The rest of this paper is organized as follows: In Sec-
tion 2 we give an overview of the internal mechanism for
P/E on NAND flash and briefly discuss related work. In
Section 3, we conduct simulations to show how the read
latency is increased by chip contention. We describe our
detailed P/E suspension scheme in Section 4 and evalu-
ate our approach via simulation experiments in Section 5.
Finally we conclude our paper in Section 6.

2 Background and Related Work

2.1 NAND Flash Program/Erase Algorithm

Incremental Step Pulse Programming (ISPP) is typically
used for precisely programming or erasing the NAND
flash [3]. It is made of a series of program and verify
iterations. The execution of ISPP and the erase process
is implemented in the flash chip with an analog block
and a control logic block. The analog block is responsi-
ble for regulating and pumping the voltage for program
or erase operations. The control logic block is responsi-
ble for interpreting the interface commands, generating
the control signals for the flash cell array and the analog
block, and executing the program and erase algorithms.
As shown in the following diagram [3], the write state
machine consists of three components: an algorithm con-
troller to execute the algorithms for the two types of op-
erations, several counters to keep track of the number of
ISPP iterations, and a status register to record the results
from the verify operation.

2.2 Related Work

The idea of preempting low priority operations for high
priority ones via breaking down an operation to small
phases has been embodied in [4], [13], etc. Dimitrijevic
et al. proposed Semi-preemptible IO [4] to divide HDD
I/O requests to small disk commands to enable preemp-
tion for high priority requests. Similar to NAND flash,
Phase Change Memory (PCM) has much larger write la-
tency than read latency. Qureshi et al. proposed in [13]
a few techniques to preempt the on-going writes of PCM
for reads: write cancelation and a threshold-based over-
head control method to reduce the overhead are proposed
to cancel entire write operations; PCM, like NAND flash,
adopts the iterative-write algorithm. Our work differs

from [13] as follows: PCM has the in-place update capa-
bility, while NAND flash requires erase before program.
In our work, the suspension of erase operation is pro-
posed. Write Cancelation for the entire write process of
NAND flash is not viable. NAND flash’s iterative write
process differs from PCM in that, each iteration has two
phases (program and verify). Thus, for each iteration,
we may have two suspension points. Furthermore, we
propose the shadow buffer to overcome the overhead of
re-transferring the write data upon resumption, which is
not discussed in [13].

3 Motivation

In this section, we demonstrate how the read vs. P/E con-
tention increases the read latency under various work-
loads. We have modified MS-add-on simulator [1] based
on Disksim 4.0. Specifically, under the workloads of a
variety of popular disk traces, we compare the read la-
tency of two scheduling policies, FIFO and read priority
scheduling (RPS), to show the limitation of RPS. Fur-
thermore, with RPS, we set the latency of program and
erase operation to be equal to that of read and zero to
justify the impact of P/E on the read latency.

3.1 Configurations and Workloads

The simulated SSD is configured as follows: there are 16
flash chips, each of which owns a dedicated channel to
the flash controller. Each chip has four planes that are
organized in a RAID-0 fashion; the size of one plane is
512 MB or 1 GB assuming the flash is used as SLC or 2-
bit MLC, respectively (the page size is 2 KB for SLC or
4 KB for MLC). To maximize the concurrency, each indi-
vidual plane has its own allocation pool [1]. The garbage
collection processes are executed in the background so
as to minimize the interference with the foreground re-
quests. In addition, the percentage of flash space over-
provisioning is set as 30%, which doubles the value sug-
gested in [1]. Considering the limited working-set size of
the workloads used in this paper (described in next sub-
section), 30% over-provisioning is believed to be suffi-
cient to avoid frequent execution of garbage collection
processes. The write buffer size is 64 MB. The SSD is
connected to the host via a PCI-E of 2.0 GB/s. The phys-
ical operating parameters of the flash memory is summa-
rized in Table 1.

We choose 6 disk I/O traces for our experiments: Fi-
nancial 1 and 2 (F1, F2) [14]; Display Ads Platform
and payload servers (DAP) and MSN storage meta-
data (MSN) traces [8]; Cello99 [5] traces (C3, C8). Not-
ing that those traces were originally collected on HDDs,
to produce more stressful workloads for SSDs, we com-
press all these traces so that the system idle time is re-
duced from 98% to around 70% for each workload.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 119

Symbols Description Value
SLC MLC

Tbus
The bus latency of transferring 20 µs 40 µs
one page from/to the chip

Tr_phy
The latency of sensing/reading 10 µs 25 µs
data from the flash

Tw_total
The total latency of ISPP 140 µs 660 µs
in flash page program

Nw_cycle The number of ISPP iterations 5 15

Tw_cycle
The time of one ISPP iteration 28 µs 44 µs
(Tw_total /Nw_cycle)

Tw_program
The duration of program phase 20 µs 20 µs
of one ISPP iteration

Tveri f y The duration of the verify phase 8 µs 24 µs
Terase The duration of erase pulse 1.5 ms 3.3 ms

Tvoltage_reset
The time to reset operating 4 µs
voltages of on-going operations

Tbu f f er
The time taken to load the page 3 µs
buffer with data

Table 1: Flash Parameters

Trace SLC MLC
Read Write Read Write

F1 0.37 0.87 0.44 1.58
F2 0.24 0.57 0.27 1.03

DAP 1.92 6.85 5.74 11.74
MSN 4.13 4.58 8.47 25.21

C3 0.25 2.85 0.52 6.30
C8 0.44 2.33 0.56 4.54

Table 2: Numerical Latency Values of FIFO (in ms)

3.2 Experimental Results

In this subsection, we compare the read latency perfor-
mance under four scenarios: FIFO; RPS; PER (the la-
tency of program and erase is set equal to that of read);
and PE0 (the latency of program and erase is set to zero).
Note that both PER and PE0 are applied upon RPS in
order to study the chip contention and the limitation of
RPS. Due to the large range of the numerical values of
the experimental results, we normalize them to the corre-
sponding results of FIFO, which are listed in Table 2 for
reference. The normalized results are plotted in Fig. 1,
where the left part shows the results of SLC and the right
part is for MLC. Compared to FIFO, RPS achieves im-
pressive performance gain, e.g., the gain maximizes at an
effective read latency (“effective” refers to the actual la-
tency taking the queuing delay into account) reduction of
44.6% (SLC) and 48.3% (MLC) on average. However, if
the latency of P/E is the same as read latency or zero, i.e.,
in the case of PER and PE0, the effective read latency
can be further reduced. For example, with PE0, the read
latency reduction is 71.7% (SLC) and 75.6% (MLC) on
average. Thus, even with RPS policy, the chip contention
still increases the read latency by about 2x on average.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8

N
or

m
al

ize
d

Re
ad

 L
at

en
cy

FIFO RPS PER PE0
SC MC

Figure 1: Read Latency Performance Comparison:
FIFO, RPS, PER, and PE0. Results normalized to FIFO.

4 Design of P/E Suspension Scheme

4.1 Erase Suspension and Resumption

In NAND flash, the erase process consists of two phases:
first, an erase pulse lasting for Terase is applied on the
target block; second, a verify operation that takes Tveri f y
is performed to check if the preceding erase pulse has
successfully erased all bits in the block. Otherwise, the
above process is repeated until success, or if the number
of iterations reaches the predefined limit, an operation
failure is reported. Typically, for NAND flash, since the
over-erasure is not a concern [3], the erase operation can
be done with a single erase pulse.

How to suspend an erase operation: suspending ei-
ther the erase pulse or verify operation requires resetting
the status of the corresponding wires that connect the
flash cells with the analog block. Specifically, due to the
fact that the flash memory works at different voltage bias
for different operations, the current voltage bias applied
on the wires (and thus on the cell) needs to be reset for
the pending read request. This process (Opvoltage_reset for
short) takes a period of Tvoltage_reset . Noting that either
the erase pulse or verify operation always has to conduct
Opvoltage_reset at the end (as shown in the following dia-
gram of erase operation timeline).

Erase Pulse Verify

Tvoltage_reset Tvoltage_resetImmediate Suspension Range Immediate Suspension Range

Terase Tverify

Thus, if the suspension command arrives dur-
ing Opvoltage_reset , the suspension will succeed once
Opvoltage_reset is finished (as illustrated in the following
diagram of erase suspension timeline).

Erase Pulse

Tvoltage_resetImmediate Suspension Range

Read Arrival Suspension Point

Read

120 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Otherwise, an Opvoltage_reset is executed immediately
and then the read request is serviced by the chip (as illus-
trated in the following diagram).

Erase Pulse

Tvoltage_reset

Read Arrival

Opvoltage_switch Read

Suspension Point

How to resume an erase operation: the resump-
tion means the control logic of NAND flash resumes
the suspended erase operation. Therefore, the control
logic should keep track of the progress, i.e., whether the
suspension happens during the verify phase or the erase
pulse. For the first scenario, the verify operation has to
be re-done all over again. For the second scenario, the
erase pulse time left (Terase minus the progress), for ex-
ample, 1 ms will be done in the resumption if no more
suspension happens. Actually, the task of progress track-
ing can be easily supported by the existing facilities in
the control logic of NAND flash: the pulse width gener-
ator is implemented using a counter-like logic [3], which
keeps track of the progress of the current pulse.

The overhead on the effective erase latency: resum-
ing the erase pulse requires extra time to set the wires
to the corresponding voltage bias, which takes approx-
imately the same amount of time as Tvoltage_reset . Sus-
pending during the verify phase causes a re-do in the re-
sumption, and thus the overhead is the time of the sus-
pended/cancelled verify operation. In addition, the read
service time is included in the effective erase latency.

4.2 Program Suspension and Resumption

The process of servicing a program request is: first, the
data to be written is transferred through the controller-
chip bus and loaded in the page buffer; then the ISPP is
executed, in which a total number of Nw_cycle iterations
consisting of a program phase followed by a verify phase
are conducted on the target flash page. In each ISPP iter-
ation, the program phase is responsible for applying the
required program voltage bias on the cells so as to charge
them. In the verify phase, the content of the cells is read
to verify if the desired amount of charge is stored in each
cell: if so, the cell is considered program-completion;
otherwise, one more ISPP iteration will be conducted on
the cell. Due to the fact that all cells in the target flash
page are programmed simultaneously, the overall time
taken to program the page is actually determined by the
cell that needs the most number of ISPP iterations. A ma-
jor factor that determines the number of ISPP iterations
needed is the amount of charge to be stored in the cell,
which is in turn determined by the data to be written. For
example, for the 2-bit MLC flash, programming a “0” in
a cell needs the most number of ISPP iterations, while

for “3” (the erased state), no ISPP iteration is needed.
Since all flash cells in the page are programmed simul-
taneously, Nw_cycle is determined by the smallest data (2-
bit) to be written; nonetheless, we make a rational as-
sumption in our simulation experiments that Nw_cycle is
constant and equal to the maximum value. The program
process is illustrated in the following diagram.

Program Verify

Tw_cycle

Program Verify

Tw_program Tverify
Program Verify

Nw_cycle

Bus

How to retain the page buffer content: before we
move on to suspension, this critical problem has to be
solved. For program, the page buffer contains the data
to be written. For read, it contains the retrieved data to
be transferred to the flash controller. If a write is pre-
empted by a read, the content of the page buffer is cer-
tainly replaced. Thus, the resumption of the write de-
mands the page buffer re-stored. Intuitively, the flash
controller that is responsible for issuing the suspension
and resumption commands may keep a copy of the write
page data until the program is finished and upon resump-
tion, the controller re-sends the data to the chip through
the controller-chip bus. However, the page transfer con-
sumes a significant amount of time: unlike the NOR flash
which does byte programming, NAND flash does page
programming, and the page size is of a few kilobytes.
For instance, assuming a 100 MHz bus and 4 KB page
size, the bus time Tbus is about 40 µs.

To overcome this overhead, we propose a Shadow
Buffer in the flash. The shadow buffer serves like a
replica of the page buffer and it automatically loads it-
self with the content of the page buffer upon the arrival
of the write request and re-stores the page buffer while
resumption. The load and store operation takes the time
Tbu f f er. The shadow buffer has parallel connection with
the page buffer, and thus the data transfer between them
can be done on the fly. Tbu f f er is normally smaller than
Tbus by one order of magnitude.

How to suspend a program operation: compared to
the long width of the erase pulse (Terase), the program and
verify phase of the program process is normally two or-
ders of magnitude shorter. Intuitively, the program pro-
cess can be suspended at the end of the program phase
of any ISPP iteration as well as the end of the verify
phase. We refer to this strategy as “Inter Phase Suspen-
sion” (IPS). IPS has in total Nw_cycle ∗2 potential suspen-
sion points as illustrated in the following diagram.

Program Verify Program Verify Program VerifyBus

Read Arrival Suspension Point

Read Arrival

Suspension Point

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 121

Due to the fact that at the end of the program or
verify phase, the status of the wires has already re-
set (Opvoltage_reset), IPS does not introduce any extra
overhead, except for the service time of the read or
reads that preempt the program. However, the effec-
tive read latency should include the time from the ar-
rival of read to the end of the corresponding phase.
For simplicity, assuming the arrival time of reads fol-
lows the uniform distribution, the probability of en-
countering the program phase and the verify phase
is Tw_program/(Tveri f y +Tw_program) and Tveri f y/(Tveri f y +
Tw_program), respectively. Thus, the average extra latency
for the read can be calculated as:

Tread_extra =
Tw_program

(Tveri f y+Tw_program)
∗ Tw_program

2

+
Tveri f y

(Tveri f y+Tw_program)
∗ Tveri f y

2

(1)

Substituting the numerical values in Table 1, we get
8.29 µs (SLC) and 11.09 µs (MLC) for Tread_extra,
which is comparable to the physical access time of the
read (Tr_phy). To further improve the effective read la-
tency, we propose “Intra Phase Cancelation” (IPC). Sim-
ilar to canceling the verify phase for the erase suspen-
sion, IPC cancels an on-going program or verify phase
upon suspension. The reason of canceling instead of
pausing the program phase is that the duration of the pro-
gram phase, Tw_program, is short and normally considered
atomic (cancelable but not pause-able).

Again, for IPC, if the read arrives when the program or
verify phase is conducting Opvoltage_reset , the suspension
happens actually at the end of the phase, which is the
same as IPS; otherwise, Opvoltage_reset is started immedi-
ately and the read is then serviced. Thus, IPC achieves a
Tread_extra no larger than Tvoltage_reset .

How to resume from IPS: first of all, the page buffer
is re-loaded with the content of the shadow buffer. Then,
the control logic examines the last ISPP iteration number
and the previous phase. If IPS happens at the end of the
verify phase, which implies that the information of the
status of cells has already been obtained, we may con-
tinue with the next ISPP if needed; on the other hand, if
the last phase is the program phase, naturally we need to
finish the verify operation before moving on to the next
ISPP iteration. The resumption process is illustrated in
the following diagram.

Read Buffer

Tbuffer

Program/Verify Verify/Program

Resumption Point

How to resume from IPC: compared to IPS, the re-
sumption from IPC is more complex. Different from the
verify operation, which does not change the charge status
of the cell, the program operation puts charge in the cell
and thus changes the threshold voltage (Vth) of the cell.

Therefore, we need to determine whether the canceled
program phase has already achieved the desired Vth (i.e.,
whether the data could be considered written in the cell),
by a verify operation. If so, no more ISPP iteration is
needed on this cell; otherwise, the previous program op-
eration is executed on the cell again. The later case is
illustrated in the following diagram.

Read BufferProgram Verify

Resumption Point

Re-do PROG Verify

Re-doing the program operation would have some af-
fect on the tightness of Vth, but with the aid of ECC
and a fine-grained ISPP, i.e., small incremental voltage
∆Vpp, the IPC has little impact on the data reliability of
the NAND flash. The relationship between ∆Vpp and the
tightness of Vth is modeled in [15].

The overhead on the effective write latency: IPS re-
quires re-loading the page buffer, which takes Tbu f f er.
For IPC, if the verify phase is canceled, the overhead is
the time elapsed of the canceled verify phase plus the
read service time and Tbu f f er. In case of program phase,
there are two scenarios: if the verify operation reports
that the desired Vth is achieved, the overhead is the read
service time plus Tbu f f er; otherwise, the overhead is the
time elapsed of the canceled program phase plus an ex-
tra verify phase, in addition to the overhead of the above
scenario. Clearly, IPS achieves smaller overhead on the
write than IPC but relatively lower read performance.

5 Performance Evaluation

In this section, we evaluate our proposed design under
different workloads described in Section 3.1.

5.1 Read Performance Gain

First, we compare the average read latency of P/E sus-
pension with RPS, PER and PE0 in Fig. 2, where the
results are normalized to that of RPS. For P/E sus-
pension, the IPC (Intra Phase Cancelation), denoted as
“PES_IPC”, is adopted in Fig. 2. PE0, with which the
physical latency values of program and erase are set to
zero, serves as an optimistic situation where the con-
tention between reads and P/E’s is completely elimi-
nated. Fig. 2 demonstrates that, compared to RPS, the
proposed P/E suspension achieves a significant read per-
formance gain, which is almost equivalent to the optimal
case, PE0 (with less than 1% difference). Specifically, on
the average of the 6 traces, PES_IPC reduces the read la-
tency by 48.9% for SLC and 50.5% for MLC compared
to RPS, and 71.6% for SLC and 75.4% for MLC com-
pared to FIFO. For conciseness, the results of SLC and

122 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

(then) MLC are listed without explicit specification in the
following text.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8

N
or

m
al

ize
d

Re
ad

 L
at

en
cy

RPS PER PE0 PES_IPC
SC MC

Figure 2: Read Latency Performance Comparison: RPS,
PER, PE0, and PES_IPC (P/E Suspension using IPC).
Normalized to RPS.

As stated in Section 4, IPC can achieve better read per-
formance but cause higher write overhead compared to
IPS. We compare the read performance of IPC and IPS
in Fig. 3. The read latency of IPS is 8.0% and 2.7% on
average and at-most 13.2% and 6.7% (under F1) higher
than that of IPC. The difference is resulted from the fact
that IPS has extra read latency, which is mostly the time
between read request arrivals and the suspension points
at the end of the program or verify phase. We notice that
the latency performance of IPS using SLC is poorer than
MLC under all traces, which is because of the higher sen-
sitivity of SLC’s read latency to the overhead caused by
the extra latency.

0.9

0.95

1

1.05

1.1

1.15

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8

N
or

m
al

ize
d

Re
ad

 L
at

en
cy

PES_IPC PES_IPS
SC MC

Figure 3: Read Latency Performance Comparison:
PES_IPC vs. PES_IPS. Normalized to PES_IPC.

5.2 Write Overhead

Since both RPS and P/E suspension introduce mini-
mal extra chip bandwidth usage, the write throughput
is barely compromised. We use the latency as a metric
for the overhead evaluation. First, we compare the aver-
age write latency of FIFO, RPS, PES_IPS, and PES_IPC
in Fig. 4. Obviously, the write overhead in terms of la-
tency is trivial compared to the read performance gain we

achieve with P/E suspension. Specifically, RPS increases
the write latency by 2.3% and 1.2% on average and at-
most 6.7% (SLC, MSN) and 3.8% (MLC, DAP), com-
pared to FIFO. PES_IPC increases write latency by 3.6%
and 1.9% on average and at-most 6.9% (SLC, MSN) and
4.3%(MLC, DAP), respectively. PES_IPC increases the
write latency by 3.6% and 2.0% on average and at-most
6.9% (SLC, MSN) and 4.3%(MLC, DAP).

0.8

0.85

0.9

0.95

1

1.05

1.1

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8
N

or
m

al
ize

d
W

rit
e

La
te

nc
y

FIFO RPS PES_IPS PES_IPC
SCMC

Figure 4: Write Latency Performance Comparison:
FIFO, RPS, PES_IPC, PES_IPS. Normalized to FIFO.

Two major factors determine the write latency over-
head: increased latency of each suspended P/E operation;
the percentage of P/E that are suspended. We compare
the original P/E latency reported by the device with la-
tency after suspension in Fig. 5. The average overhead of
suspended P/E is about 10.2% (SLC) and 7.8% (MLC).
The percentage of suspended P/E is presented in Fig. 6.
There is 4.9% (SLC) and 7.4% (MLC) of P/E’s that are
suspended on average. These two sets of results explain
the low write overhead our design achieves.

0

2

4

6

8

10

12

14

16

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8

La
te

nc
y

O
ve

rh
ea

d
on

Su

sp
en

de
d

W
rit

es

SCMC

Figure 5: Compare the original write latency with the
effective write latency resulted from P/E Suspension. Y
axis represents the percentage of increased latency caused
by P/E suspension.

5.3 Sensitivity Study on Write Queue Size

Finally, we study the sensitivity of write overhead to the
write queue size. In order to obtain an amplified write
overhead, we select F2, which has the highest percent-
age of read requests, and compress the simulation time

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 123

0

2

4

6

8

10

12

14

F1 F2 DAP MSN C3 C8 F1 F2 DAP MSN C3 C8

Pe
rc

en
ta

tg
e

of
 P

/E
 S

us
pe

ns
io

n SCMC

Figure 6: Percentage of suspended writes.

of F2 by 7 times to intensify the workload. In Fig-
ure 7 we present the write latency results of RPS and
PES_IPC (normalized to that of FIFO) by varying the
maximum write queue size from 16 to 512. Clearly, the
write overhead of both RPS and PES_IPC is sensitive
to the maximum write queue size, which suggests that
the flash controller should limit the write queue size to
control the write overhead. Noting that, relative to RPS,
the PES_IPC has a near-constant increase on the write
latency, which implies that the major contributor of over-
head is RPS when the queue size varies.

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

N
or

m
al

iz
ed

 W
rit

e
La

te
nc

y

RPS PES_IPC

0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

16 32 64 128 256 512

N
or

m
al

iz
ed

 W
rit

e
La

te
nc

y

Maximum Write Queue Size

RPS PES_IPC

Figure 7: The write latency performance of RPS and
PES_IPC while the maximum write queue size varies.
Normalized to FIFO.

6 Conclusion and Future Work

One performance problem of NAND flash is that its pro-
gram and erase latency is much higher than the read la-
tency. This problem causes the chip contention between
reads and P/Es due to the fact that with current NAND
flash interface, the on-going P/E cannot be suspended
and resumed. To alleviate the impact of the chip con-
tention on the read performance, in this paper we propose
a light-overhead P/E suspension scheme by exploiting
the internal mechanism of P/E algorithm in NAND flash.
The design is simulated/evaluated with precise timing
and realistic SSD modeling of multi-chip/channel. Ex-
perimental results show that the proposed P/E suspension
significantly reduces the read latency with trivial over-
head on write performance.

Our future work will apply the idea of P/E suspension
to further improve the performance of foreground pro-

cesses via suspending the background operations (e.g.,
the garbage collection operations) in SSDs.

Acknowledgments

We thank Tong Zhang for the preliminary discussion on
some physical parameters of NAND flash. We also thank
our shepherd Dushyanth Narayanan and anonymous re-
viewers for their feedback. This research is sponsored
in part by the U.S. National Science Foundation (NSF)
under grants CCF-1102605 and CCF-1102624.

References

[1] AGRAWAL, N., PRABHAKARAN, V., AND ET AL. Design Trade-
offs for SSD Performance. In USENIX ATC (Boston, Mas-
sachusetts, USA, 2008).

[2] ARASE, K. Semiconductor NAND Type Flash Memory with
Incremental Step Pulse Programming, Sept. 22 1998. U.S. Patent
5,812,457.

[3] BREWER, J., AND GILL, M. Nonvolatile Memory Technolo-
gies with Emphasis on Flash. IEEE Whiley-Interscience, Berlin
(2007).

[4] DIMITRIJEVIC, Z., RANGASWAMI, R., AND CHANG, E. De-
sign and Implementation of Semi-preemptible IO. In FAST
(2003), USENIX, pp. 145–158.

[5] HEWLETT-PACKARD LABORATORIES. Cello99 Traces. http:
//tesla.hpl.hp.com/opensource/.

[6] JO, H., KANG, J.-U., AND ET AL. FAB: Flash-Aware Buffer
Management Policy for Portable Media Players. IEEE Transac-
tions on Consumer Electronics 52, 2 (2006), 485–493.

[7] KANG, S., AND ET AL. Performance Trade-Offs in Using
NVRAM Write Buffer for Flash Memory-Based Storage De-
vices. IEEE Transactions on Computers 58, 6 (2009), 744–758.

[8] KAVALANEKAR, S., AND ET AL. Characterization of Storage
Workload Traces from Production Windows Servers. In IISWC
(2008).

[9] KIM, H., AND AHN, S. BPLRU: A Buffer Management Scheme
for Improving Random Writes in Flash Storage Abstract. In FAST
(2008).

[10] KIM, Y., ORAL, S., SHIPMAN, G., LEE, J., DILLOW, D., AND
WANG, F. Harmonia: A Globally Coordinated Garbage Collector
for Arrays of Solid-State Drives. In MSST (2011), IEEE, pp. 1–
12.

[11] NARAYANAN, D., THERESKA, E., DONNELLY, A., ELNIKETY,
S., AND ROWSTRON, A. Migrating server storage to SSDs:
Analysis of tradeoffs. In EuroSys (2009).

[12] ONFI WORKING GROUP. The Open NAND Flash Interface,
2011. http://onfi.org/.

[13] QURESHI, M., AND ET AL. Improving Read Performance of
Phase Change Memories via Write Cancellation and Write Paus-
ing. In HPCA (2010), IEEE, pp. 1–11.

[14] STORAGE PERFORMANCE COUNCIL. SPC Trace File Format
Specification. http://traces.cs.umass.edu/index.
php/Storage/Storage.

[15] WU, G., HE, X., XIE, N., AND ZHANG, T. DiffECC: Improv-
ing SSD Read Performance Using Differentiated Error Correc-
tion Coding Schemes. MASCOTS (2010), 57–66.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 125

Optimizing NAND Flash-Based SSDs via Retention Relaxation
Ren-Shuo Liu∗, Chia-Lin Yang∗, and Wei Wu†

∗National Taiwan University and †Intel Corporation
{renshuo@ntu.edu.tw, yangc@csie.ntu.edu.tw, wei.a.wu@intel.com}

Abstract
As NAND Flash technology continues to scale down and
more bits are stored in a cell, the raw reliability of NAND
Flash memories degrades inevitably. To meet the reten-
tion capability required for a reliable storage system, we
see a trend of longer write latency and more complex
ECCs employed in an SSD storage system. These greatly
impact the performance of future SSDs. In this paper, we
present the first work to improve SSD performance via
retention relaxation. NAND Flash is typically required
to retain data for 1 to 10 years according to industrial
standards. However, we observe that many data are over-
written in hours or days in several popular workloads in
datacenters. The gap between the specification guarantee
and actual programs’ needs can be exploited to improve
write speed or ECCs’ cost and performance. To exploit
this opportunity, we propose a system design that allows
data to be written in various latencies or protected by dif-
ferent ECC codes without hampering reliability. Simula-
tion results show that via write speed optimization, we
can achieve 1.8–5.7× write response time speedup. We
also show that for future SSDs, retention relaxation can
bring both performance and cost benefits to the ECC ar-
chitecture.

1 Introduction
For the past few years, NAND Flash memories have been
widely used in portable devices such as media players
and mobile phones. Due to their high density, low power
and high I/O performance, in recent years, NAND Flash
memories begun to make the transition from portable de-
vices to laptops, PCs and datacenters [6, 35]. As the
semiconductor industry continues scaling memory tech-
nology and lowering per-bit cost, NAND Flash is ex-
pected to replace the role of hard disk drives and funda-
mentally change the storage hierarchy in future computer
systems [14, 16].

A reliable storage system needs to provide a retention
guarantee. Therefore, Flash memories have to meet the
retention specification in industrial standards. For exam-
ple, according to the JEDEC standard JESD47G.01 [19],
NAND Flash blocks cycled to 10% of the maximum
specified endurance must retain data for 10 years, and
blocks cycled to 100% of the maximum specified en-

durance have to retain data for 1 year. As NAND Flash
technology continues to scale down and more bits are
stored in a cell, the raw reliability of NAND Flash de-
creases substantially. To meet the retention specifica-
tion for a reliable storage system, we see a trend of
longer write latency and more complex ECCs required in
SSDs. For example, comparing recent 2-bit MLC NAND
Flash memories with previous SLC ones, page write la-
tency increased from 200 µs [34] to 1800 µs [39], and
the required strength of ECCs went from single-error-
correcting Hamming codes [34] to 24-error-correcting
Bose-Chaudhuri-Hocquenghem (BCH) codes [8,18,28].
In the near future, more complex ECC codes such as low-
density parity-check (LDPC) [15] codes will be required
to reliably operate NAND Flash memories [13, 28, 41].

To overcome the design challenge for future SSDs, in
this paper, we present retention relaxation, the first work
on optimizing SSDs via relaxing NAND Flash’s reten-
tion capability. We observe that in typical datacenter
workloads, e.g., proxy and MapReduce, many data writ-
ten into storage are updated quite soon, thereby, requir-
ing only days or even hours of data retention, which is
much shorter than the retention time typically specified
for NAND Flash. In this paper, we exploit the gap be-
tween the specification guarantee and actual programs’
needs for SSD optimization. We make the following con-
tributions:

• We propose a NAND Flash model that captures the
relationship between raw bit error rates and reten-
tion time based on empirical measurement data. This
model allows us to explore the interplay between re-
tention capability and other NAND Flash parameters
such as the program step voltage for write operations.

• A set of datacenter workloads are characterized for
their retention time requirements. Since I/O traces are
usually gathered in days or weeks, to analyze reten-
tion time requirements in a time span beyond the trace
period, we present a retention time projection method
based on two characteristics obtained from the traces,
the write amount and the write working set size. Char-
acterization results show that for 15 of the 16 traces
analyzed, 49–99% of writes require less than 1-week
retention time.

• We explore the benefits of retention relaxation for

126 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Increment =
ΔVP_large

Vth

Precision =
ΔVP_large

10's Verify
Level

Erase
State

00's Verify
Level

01's Verify
Level

Vth

11 10 00 01

11 10 00 01

Target
Level

(a) ISPP with large ∆VP

Increment =
ΔVP_small

Vth

Precision =
ΔVP_small

10's Verify
Level

Erase
State

00's Verify
Level

01's Verify
Level

Vth

11 10 00 01

11 10 00 01

Target
Level

(b) ISPP with small ∆VP

Figure 1: Incremental step pulse programming (ISPP) for programming NAND Flash

speeding up write operations. We increase the pro-
gram step voltage so that NAND Flash memories are
programmed faster but with shorter retention guaran-
tees. Experimental results show that 1.8–5.7× SSD
write response time speedup is achievable.

• We show how retention relaxation can benefit ECC
designs for future SSDs which require concatenated
BCH-LDPC codes. We propose an ECC architecture
where data are encoded by variable ECC codes based
on their retention requirements. In our ECC architec-
ture, time-consuming LDPC is removed from the crit-
ical performance path. Therefore, retention relaxation
can bring both performance and cost benefits to the
ECC architecture.

The rest of the paper is organized as follows. Sec-
tion 2 provides background about NAND Flash. Sec-
tion 3 presents our NAND Flash model and the benefits
of retention relaxation. Section 4 analyzes data reten-
tion requirements in real-world workloads. Section 5 de-
scribes the proposed system designs. Section 6 presents
evaluation results regarding the designs in the previous
section. Section 7 describes related work, and Section 8
concludes the paper.

2 Background
NAND Flash memories comprise an array of floating
gate transistors. The threshold voltage (Vth) of the tran-
sistors can be programmed to different levels by injecting
different amounts of charge on the floating gates. Differ-
ent Vth levels represent different data. For example, to
store N bits data in a cell, its Vth is programmed to one of
its 2N different Vth levels.

To program Vth to the desired level, the incremen-
tal step pulse programming (ISPP) scheme is commonly
used [26, 37]. As shown in Figure 1, ISPP increases the
Vth of NAND Flash cells step-by-step by a certain volt-

age increment (i.e., ∆VP) and stops once Vth is greater
than the desired threshold voltage. Because NAND Flash
cells have different starting Vth, the resulting Vth spreads
across a range, which determines the precision of cells’
Vth distributions. The smaller ∆VP is, the more precise the
resulting Vth is. On the other hand, smaller ∆VP means
more steps are required to reach the target Vth, thereby,
resulting in longer write latency [26].

NAND Flash memories are prone to errors. That is,
the Vth level of a cell may be different from the intended
one. The fraction of bits which contain incorrect data is
referred to as the raw bit error rate (RBER). Figure 2(a)
shows measured RBER of 63–72nm 2-bit MLC NAND
Flash memories under room temperature following 10K
program/erase (P/E) cycles [27]. The RBER at reten-
tion time = 0 is attributed to write errors. Write errors
have been shown mostly caused by cells with higher Vth
than intended because the causes of write errors, such
as program disturb and random telegraph noise, tend to
over-program Vth. The increment of RBER after writing
data (retention time > 0) is attributed to retention errors.
Retention errors are caused by charge losses which de-
crease Vth. Therefore, retention errors are dominated by
cells with lower Vth than intended. Figure 2(b) illustrates
these two error sources: write errors mainly correspond
to the tail at the high-Vth side; retention errors correspond
to the tail at the low-Vth side. In Section 3.1, we model
NAND Flash considering these error characteristics.

A common approach to handle NAND Flash errors is
to adopt ECCs (error correction codes). ECCs supple-
ment user data with redundant parity bits to form code-
words. With ECC protection, a codeword with a certain
amount of bits corrupted can be reconstructed. There-
fore, ECCs can greatly reduce the bit error rate. We refer
to the bit error rate after applying ECCs as the uncor-
rectable bit error rate (UBER). The following equation
gives the relationship between UBER and RBER [27]:

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 127

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

0 100 200 300 400 500

Ra
w

 B
it

Er
ro

r R
at

e

Retention Time (Days)

Measured (Manufacturer-1)
Measured (Manufacturer-2)
Measured (Manufacturer-3)
Fitting (m=1.08)
Fitting (m=1.33)
Fitting (m=1.25)

fit y = a + bxm

(a) Measured RBER(t) and fitting to power-law trends for
63–72 nm 2-bit MLC NAND Flash. Data are aligned to t = 0.

Higher
Level

Lower
Level

Intended
Level

Higher
Level

Lower
Level

Intended
Level

Vth

Vth

P(v)

P(v)

Retention errors

Write errors

(b) Write errors and retention errors

Figure 2: Bit error rate in NAND Flash memories

UBER =

NCW
∑

n=t+1

(NCW
n

)
·RBERn · (1−RBER)(NCW−n)

NUser
(1)

Here, NCW is the number of bits per codeword, NUser is
the number of user data bits per codeword, and t is the
maximum number of error bits the ECC code can correct
per codeword.

UBER is an important reliability metric for storage
systems and is typically required to be under 10−13 to
10−16 [27]. As mentioned earlier, NAND Flash’s RBER
increases with time due to retention errors. Therefore, to
satisfy both the retention and reliability specifications in
storage systems, ECCs must be strong enough to tolerate
not only write errors presenting in the beginning but also
retention errors accumulating over time.

3 Retention Relaxation for NAND Flash
The key observation we make in this paper is that since
retention errors increase over time, if we could relax the
retention capability of NAND Flash memories, fewer re-
tention errors need to be tolerated. These error mar-
gins can then be utilized to improve other performance
metrics. In this section, we first present a Vth distribu-
tion modeling methodology which captures the RBER of
NAND Flash. Based on the model, we elaborate on the
strategies to exploit the benefits of retention relaxation in
detail.

3.1 Modeling Methodology
We first present the base Vth distribution model for
NAND Flash. Then we present how we extend the model
to capture the characteristics of different error causes.
Last, we determine the parameters of the model by fitting
the model to the error-rate behavior of NAND Flash.

3.1.1 Base Vth Distribution Model

The Vth distribution is critical to NAND Flash. It de-
scribes the probability density function (PDF) of Vth for
each data state. Given a Vth distribution, one can evaluate
the corresponding RBER by calculating the probability
that a cell contains incorrect Vth, i.e., Vth higher or lower
than the intended level.

Vth distributions have been modeled using bell-shape
functions in previous studies [23, 42]. For MLC NAND
Flash memories with q states per cell, q bell-shape func-
tions, Pk(v) where 0 ≤ k ≤ (q− 1), are employed in the
model as follows.

First, the Vth distribution of the erased state is modeled
as a Gaussian function, P0(v):

P0(v) = α0 · e
− (v−µ0)

2

2σ0
2 (2)

Here, σ0 is the standard deviation of the distribution and
µ0 is the mean. Because data are assumed to be in one of
the q states with equal probability, a normalization coef-
ficient, α0, is employed so that

∫
v P0(v) = 1

q .
Furthermore, the Vth distribution of each non-erased

state (i.e., 1 ≤ k ≤ (q−1)) is modeled as a combination
of a uniform distribution with width equal to ∆VP in the
middle and two identical Gaussian tails on both sides:

Pk(v) =

α · e−
(v−µk+0.5∆VP)2

2σ2 , v < µk − ∆VP
2

α · e−
(v−µk−0.5∆VP)2

2σ2 , v > µk +
∆VP

2
α, otherwise

(3)

Here, ∆VP is the voltage increment in ISPP, µk is the
mean of each state, σ is the standard deviation of the
two Gaussian tails, and α is again the normalization co-
efficient to satisfy the condition that

∫
v Pk(v) = 1

q for the
k−1 states.

128 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Given the Vth distribution, the RBER can be evaluated
by calculating the probability that a cell contains incor-
rect Vth, i.e., Vth higher or lower than the intended read
voltage levels, using the following equation:

RBER =
q−1

∑
k=0

(∫ VR,k

−∞

Pk(v)dv
︸ ︷︷ ︸

Vth lower than intended

+
∫

∞

VR,(k+1)

Pk(v)dv

︸ ︷︷ ︸
Vthhigher than intended

)
(4)

Here, VR,k is the lower bound of the correct read voltage
for the kth state and VR,k+1 is the upper bound as shown
in Figure 3.

ΔVP

Vth VR,4 VR,1 VR,2 VR,3 μ0

σ0

σlow (t) σhigh

State 0 State 1 State 2 State 3

VR,0 μ1 μ2 μ3

Figure 3: Illustration of model parameters

3.1.2 Model Extension

As mentioned in Section 2, the two tails of a Vth dis-
tribution are from different causes. The high-Vth tail of
a distribution is mainly caused by Vth over-programming
(i.e., write errors); the low-Vth tail is mainly due to charge
losses over time (i.e., retention errors) [27]. Therefore,
the two Gaussian tails may not be identical. To capture
this difference, we extend the base model by setting dif-
ferent standard deviations to the two tails as shown in
Figure 3.

The two standard deviations are set based on the ob-
servation in the previous study on Flash’s retention pro-
cess [7]. Under room temperature1, a small portion of
cells have a much larger charge-loss rate than others. As
such charge losses accumulate over time, the distribution
tends to form a wider tail at the low-Vth side. There-
fore, we extend the base model by setting the standard
deviation of the low-Vth tail to be a time-increasing func-
tion, σlow(t), but keeping σhigh time-independent. The
extended model is as follows:

Pk(v, t) =

α(t) · e
− (v−µk+0.5∆VP)2

2σlow(t)2 , v < µk − ∆VP
2

α(t) · e
− (v−µk−0.5∆VP)2

2σhigh
2

, v > µk +
∆VP

2
α(t), otherwise

(5)

Here, the normalization term becomes a function of time,
α(t), to keep

∫
v Pk(v, t) = 1

q .

1According to the previous study [32], in datacenters, HDDs’ av-
erage temperatures range between 18–51◦C and stay around 26–30◦C
most of the time. Since SSDs do not contain motors and actuators, we
expect SSDs should be in lower temperature than HDDs. Therefore,
we only consider room temperature in our current model.

We should note that keeping σhigh time-independent
does not imply that cells with high Vth are time-
independent and never leak charge. Since the integral
of PDF for each data state remains 1

q , the probability that
a cell belongs to the high-Vth tail drops as the low-Vth tail
widens over time. The same phenomenon happens to the
middle part, too.

Given the Vth distribution in the extended model,
RBER(t) can be evaluated using the following formula:

RBER(t) =
q−1

∑
k=0

(∫ VR,k

−∞

Pk(v, t)dv
︸ ︷︷ ︸

Vthlower than intended

+
∫

∞

VR,(k+1)

Pk(v, t)dv

︸ ︷︷ ︸
Vthhigher than intended

)
(6)

3.1.3 Model Parameter Fitting

In the proposed Vth distribution model, ∆VP, VR,k, µk,
and σ0 are set to the values shown in Figure 4 according
to [9]. The two new parameters in the extended model,
σhigh and σlow(t), are determined through parameter fit-
ting such that the resulting RBER(t) follows the error-
rate behavior of NAND Flash. Below we describe the
parameter fitting procedure.

We adopt the power-law model [20] to describe the
error-rate behavior of NAND Flash:

RBER(t) = RBERwrite +RBERretention × tm (7)

Here, t is time, m is a coefficient, 1 ≤ m ≤ 2, RBERwrite
corresponds to the error rate at t = 0 (i.e., write errors),
and RBERretention is the incremental error rate per unit of
time due to retention errors.

We determine m in the power-law model based on the
curve-fitting values shown in Figure 2(a). In the figure,
the power-law curves fit the empirical error-rate data very
well with m equal to 1.08, 1.25, and 1.33. We consider
1.25 as the typical case of m and consider the other two
values as the corner cases.

The other two coefficients in the power-law model,
RBERwrite and RBERretention, can be solved given RBER
at t = 0 and RBER at the maximum retention time, tmax.
According to the JEDEC standard JESD47G.01 [19],
NAND Flash blocks cycled to the maximum specified
endurance have to retain data for 1 year, so we set tmax to
1 year. Moreover, recent NAND Flash requires 24-bit er-
ror correction for 1080-byte data [4, 28]. Assuming that
the target UBER(tmax) requirement is 10−16, by Equa-
tion (1), we have:

RBER(tmax) = 4.5×10−4 (8)

As shown in Figure 2(a), RBER(0) is typically orders
of magnitude lower than RBER(tmax). Tanakamaru et
al. [41] also show that write errors are between 150×
to 450× fewer than retention errors. This is because re-
tention errors accumulate over time and eventually dom-
inate. Therefore, we set RBERwrite accordingly:

RBERwrite = RBER(0) =
RBER(tmax)

Cwrite
(9)

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 129

Parameter Value (V)
VR,0 -∞
VR,1 0
VR,2 1.2
VR,3 2.4
VR,4 6
ΔVP 0.2
μ0 -3
μ1 0.6
μ2 1.8
μ3 3
σ0 0.48
σhigh 0.1119
σlow(0) 0.1039

σ l
ow

(t
) (

V)

Time (Years)

Figure 4: Modeled 2-bit MLC NAND Flash

Threshold Voltage (V)

Pr
ob

ab
ili

ty

σlow(t=0) = 0.1039
σlow(t=1 year) = 0.1587

Figure 5: Modeling results

Here, Cwrite is the ratio of RBER(tmax) to RBER(0). We
set Cwrite to 150, 300, and 450, where 300 is considered
as the typical case and the other two are considered as
the corner cases.

We also have RBERretention as follows:

RBERretention =
(RBER(tmax)−RBER(0))

tmaxm (10)

We note that among write errors (i.e., RBERwrite), a
major fraction of them correspond to cells with higher
Vth than intended. This is because the root causes of
write errors tend to make Vth over-programmed. Mielke
et al. [27] show that this fraction is between 62% to about
100% for the NAND Flash devices in their experiments.
Therefore, we give the following equations:

RBERwrite high = RBERwrite ×Cwrite high (11)

RBERwrite low = RBERwrite × (1−Cwrite high) (12)

Here, RBERwrite high and RBERwrite low correspond to
cells with Vth higher and lower than intended levels, re-
spectively. Cwrite high stands for the ratio of total write
errors to write errors which are higher than the intended
levels. We set Cwrite high to 62%, 81%, and 99%, where
81% is considered as the typical case and the other two
are considered as the corner cases.

Now we have the error-rate behavior of NAND Flash.
σhigh and σlow(0) are first determined so that the error
rate for Vth being higher and lower than intended equals
RBERwrite high and RBERwrite low, respectively. Then,
σlow(t) is determined by matching the RBER(t) derived

from the Vth model with NAND Flash’s error-rate behav-
ior described in Equations (7) to (10) at a fine time step.

Figure 5 shows the modeling results of the Vth distri-
bution for the typical-case NAND Flash. In this figure,
the solid line stands for the Vth distribution at t = 0; the
dashed line stands for the Vth distribution at t = 1 year.
We can see that the 1-year distribution is flatter than the
distribution at t = 0. We can also see that as the low-Vth
tail widens over a year, the probability of both the middle
part and the high-Vth tail drops correspondingly.

3.2 Benefits of Retention Relaxation
In this section, we elaborate on the benefits of reten-
tion relaxation from two perspectives — improving write
speed and improving ECCs’ cost and performance. The
analysis is based on NAND Flash memories cycled to
the maximum specified endurance (i.e., 100% wear-out)
with data retention capability set to 1 year [19]. Since
NAND Flash’s reliability typically degrades monotoni-
cally in terms of P/E cycles, considering such an extreme
case is conservative for the following benefit evaluation.
In other words, NAND Flash in its early lifespan has
more head room for optimization.

3.2.1 Improving Write Speed

As presented earlier, NAND Flash memories use the
ISPP scheme to incrementally program memory cells.
The Vth step increment, ∆VP, directly affects write speed
and data retention. Write speed is proportional to ∆VP
because with larger ∆VP, less steps are required during
the ISPP procedure. On the other hand, data retention
decreases as ∆VP gets larger because large ∆VP widens
Vth distributions and reduces the margin for tolerating re-
tention errors.

Algorithm 1 shows the procedure to quantitatively
evaluate the write speedup if data retention time require-
ments are reduced. The analysis is based on the extended
NAND Flash model presented in Section 3.1. For all
the typical and corner cases we consider, we first enlarge
∆VP by various ratios between 1× to 3×, thereby, speed-
ing up NAND Flash writes proportionately. For each ra-
tio, we test RBER(t) at different retention time from 0 to
1 year to find the maximum t such that RBER(t) is within
the base ECC strength.

Figure 6 shows the write speedup vs. data reten-
tion. Both the typical case (black line) and the corner
cases (gray dashed lines) we consider in Section 3.1 are
shown. For the typical case, if data retention is relaxed
to 10 weeks, 1.86× speedup for NAND Flash page write
is achievable; if data retention is relaxed to 2 weeks, the
speedup is 2.33×. Furthermore, the speedup for the cor-
ner cases are close to the typical case. This means the
speedup numbers are not very sensitive to the values of
the parameters we obtain using parameter fitting.

130 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Data Retention (Year)

N
AN

D
Fl

as
h

W
rit

e
Sp

ee
du

p

Retention Speedup
1 year 1×

10 weeks 1.86×
2 weeks 2.33×

2 weeks 10 weeks

Typical case
Corner cases

Figure 6: NAND page write speedup vs. data reten-
tion

RBER at 1 Year

1-Year RBER Retention
4.5E-4 1 year
3.5E-3 10 weeks

2.2E-2 2 weeks

Typical case
Corner cases

2
w

ee
ks

10

 w
ee

ks

Da
ta

 R
et

en
tio

n
fo

r B
as

el
in

e
BC

H
(Y

ea
r)

Figure 7: Data retention capability of 24 error correc-
tion per 1080 bytes BCH codes

Algorithm 1 Write speedup vs. data retention
1: CBCH = 4.5×10−4

2: for all typical and corner cases do
3: for VoltageRatio = 1 to 3 step = 0.01 do
4: Enlarge ∆VP by VoltageRatio times
5: WriteSpeedUp = VoltageRatio
6: for Time t = 0 to 1 year step = δ do
7: Find RBER(t) according to σlow(t) and α(t)
8: end for
9: DataRetention = max{t:RBER(t) ≤ CBCH}

10: plot (DataRetention,WriteSpeedUp)
11: end for
12: end for

3.2.2 Improving ECCs’ Cost and Performance

ECC design is emerging as a critical issue in SSDs.
Nowadays, NAND Flash-based systems heavily rely on
BCH codes to tolerate RBER. Unfortunately, BCH de-
grades memory storage efficiency significantly once the
RBER of NAND Flash reaches 10−3 [22]. Recent
NAND Flash has RBER around 4.5×10−4. As the den-
sity of NAND Flash memories continues to increase,
RBER will exceed the BCH limitation inevitably. There-
fore, BCH codes will become inapplicable in the near
future.

LDPC codes are promising ECCs for future NAND
Flash memories [13, 28, 41]. The main advantage of
LDPC is that they can provide correction performance
very close to the theoretical limits. However, LDPC
incurs much higher encoding complexity than BCH
does [21, 25]. For example, an optimized LDPC en-
coder [44] consumes 3.9 M bits of memory and 11.4 k
FPGA Logic Elements to offer 45 MB/s throughput. To
sustain write throughput of high-performance SSDs, e.g.,
1 GB/s ones [1], high-throughput LDPC encoders are re-
quired, otherwise the LDPC encoders may become the
throughput bottleneck. This leads to high hardware cost

because hardware parallelization is one basic approach to
increase the throughput of LDPC encoders [24]. In this
paper, we exploit retention relaxation to alleviate such
cost and performance dilemma. That is, with retention
relaxation, fewer retention errors need to be tolerated;
therefore, BCH codes could be still strong enough to pro-
tect data even if NAND Flash’s 1-year RBER soars.

Algorithm 2 analyzes the achievable data retention
time of BCH codes with 24 bits per 1080 bytes
error-correction capability under different NAND Flash
RBER(1 year) values. Here we assume that RBER(t) fol-
lows the power-law trend described in Section 3.1.3. We
vary RBER(1 year) from 4.5×10−4 to 1×10−1, and de-
rive the corresponding write error rate (RBERwrite) and
retention error increment per unit of time (RBERretention).
The achievable data retention time of the BCH codes is
the time when RBER exceeds the capability of the BCH
codes (i.e., 4.5×10−4).

Algorithm 2 Data retention vs. maximum RBER for
BCH (24-bit per 1080 bytes)

1: tmax = 1 year
2: CBCH = 4.5×10−4

3: for all typical and corner cases do
4: for RBER(tmax) = 4.5×10−4 to 1×10−1 step = δ do
5: RBERwrite =

RBER(tmax)
Cwrite

6: RBERretention =
(RBER(tmax)−RBERwrite)

tmax
m

7: RetentionTime = (CBCH−RBERwrite
RBERretention

)
1
m

8: plot (RBER(tmax),RetentionTime)
9: end for

10: end for

Figure 7 shows the achievable data retention time of
the BCH code given different RBER(1 year) values. The
black line stands for the typical case and the gray dashed
lines stand for the corner cases. As can be seen, for the
typical case, the baseline BCH code can retain data for

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 131

Time (A.U.)

a b b a c a

0 1 2 3 4 5 6 7

3 1 ? 2 ?
Retention

requirement

LBA written

?

Figure 8: Data retention requirements in a write stream

10 weeks even if RBER(1 year) reach 3.5×10−3. Even
if RBER(1 year) reaches 2.2× 10−2, the baseline BCH
code can still retain data for 2 weeks. We can also see
similar trends for the corner cases.

4 Data Retention Requirements Analysis
In this section, we first analyze real-world traces from
enterprise datacenters to show that many writes into stor-
age require days or even shorter retention time. Since I/O
traces are usually gathered in days or weeks, to estimate
the percentage of writes with retention requirements be-
yond the trace period, we present a retention-time projec-
tion method based on two characteristics obtained from
the traces, the write amount and the write working set
size.

4.1 Real Workload Analysis
In this subsection, we analyze real disk traces to under-
stand the data retention requirements of real-world ap-
plications. The data retention requirement of a sector
written into a disk is defined as: the interval from the
time the sector is written to the time the sector is over-
written. Let’s take Figure 8 for example. The disk is
written by the address stream a, b, b, a, c, a, ... and
so on. The first write is to address a at time 0, and the
same address is overwritten at time 3; therefore, the data
retention requirement for the first write is (3− 0) = 3.
Usually disk traces only cover a limited period of time,
for those writes whose next write does not appear before
the observation ends, the retention requirements cannot
be determined. For example, for the write to address b at
time 2, the overwritten time is unknown. We denote its
retention requirement with ‘?’ as a conservative estima-
tion. It is important to note that we are focusing on data
retention requirements for data blocks in write streams
rather than that in the entire disk.

Table 1 shows the three sets of traces we analyze.
The first is from an enterprise datacenter in Microsoft
Research Cambridge (MSRC) [29]. This set covers 36
volumes from various servers and we select 12 of them
which have the largest write amounts. These traces span
1 week and 7 hours. We skip the first 7 hours which
do not form a complete day and use the remaining 1-
week part. The second set of traces is MapReduce which
has been shown to benefit from the increased bandwidth
and reduced latency of NAND Flash-based SSDs [11].
We use Hadoop [2] to run the MapReduce benchmark
on a cluster of two Core-i7 machines each of which has

Table 1: Workload summary

Category Name Description Span

MSRC

prn_0
proj_0, proj_2
prxy_0, prxy_1
src1_0, src1_2
src2_2
usr_1, usr_2

Print server
Project directories
Web proxy
Source control
Source control
User home directories

1 week

MapReduce hd1
hd2 WordCount benchmark 1 day

TPC-C tpcc1
tpcc2 OLTP benchmark 1 day

8 GB RAM and a SATA hard disk and runs 64-bit Linux
2.6.35 with the ext4 filesystem. We test two MapRe-
duce usage models. In the first model, we repeatedly re-
place 140 GB text data in the Hadoop cluster and invoke
word counting jobs. In the second model, we interleave
performing word counting jobs on two sets of 140 GB
text data which have been pre-loaded in the cluster. The
third workload is the TPC-C benchmark. We use Ham-
merora [3] to generate the TPC-C workload on a MySql
server which has a Core-i7 CPU, 12 GB RAM, and a
SATA SSD and runs 64-bit Linux 2.6.32 with the ext4
filesystem. We configure the benchmarks as having 40
and 80 warehouses. Each warehouse has 10 users with
keying and thinking time. Both MapReduce and TPC-C
workloads span 1 day.

For each trace, we analyze the data retention require-
ment of every sector written into the disk. Figure 9 shows
the cumulative percentage of data retention requirements
less than or equal to the following values — a second,
a minute, an hour, a day, and a week. As can be seen,
the data retention requirements of the workloads are usu-
ally low. For example, more than 95% of sectors written
into the disk for proj 0, prxy 1, tpcc1, and tpcc2 need
less than 1-hour data retention. Furthermore, for all the
traces except proj 2, 49–99.2% of sectors written into
the disk need less than 1-week data retention. For tpcc2,
up to 44% of writes require less than 1-second retention.
This is because MySql’s storage engine, InnoDB, writes
data to a fixed-size log, called the doublewrite buffer, be-
fore writing to the data file to guard against partial page
writes; therefore, all writes to the doublewrite buffer are
overwritten very quickly.

4.2 Retention Requirement Projection
The main challenge of retention time characterization for
real-world workloads is that I/O traces are usually gath-
ered in a short period of time, e.g., days or weeks. To
estimate the percentage of writes with retention require-
ments beyond the trace period, we derive a projection
method based on two characteristics obtained from the
traces, the write amount and the write working set size.

We denote the percentage of writes with retention time

132 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0%

25%

50%

75%

100%

sec. min. hour day week

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

Retention Time Requirement

prn_0

prn_1

proj_0

proj_2

prxy_0

prxy_1

src1_0

src1_1

src1_2

src2_2

usr_1

usr_2

(a) MSRC workloads

0%

25%

50%

75%

100%

sec. min. hour day week

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

Retention Time Requirement

hd1

hd2

tpcc1

tpcc2

(b) MapReduce and TPC-C workloads

Figure 9: Data retention requirement distribution

requirements less than X within a time period of Y as
SX ,Y %. We first formulate ST1,T1% in the write amount
and the write working set size, where T1 is the time span
of the trace. Let N be the amount of data sectors written
into the disk during T1 and W be the write working set
size (i.e., the number of distinct sector addresses being
written) during T1. We have the following formula (the
proof is similar to the pigeonhole principle):

ST1 ,T1 % =
N −W

N
= 1− W

N
(13)

With this formula, the first projection we make is the
percentage of writes that have retention time require-
ments less than T1 in an observation period of T2, where
T2 = k × T1, k ∈ N. The projection is based on the as-
sumption that for each T1 period, the write amount and
the write working set size remain N and W , respectively.
We derive the lower bound on ST1,T2% as follows:

ST1 ,T2 % =

k(N −W)+
k−1
∑

i=1
ui

kN
≥ ST1 ,T1 % (14)

where ui is the number of sectors whose lifetime is across
two periods and their retention time requirements are less
than T1. Equation (14) implies that we do not overesti-
mate the percentage of writes that have retention time
requirements less than T1 by characterizing a trace gath-
ered in a T1 period.

With the first projection, we can then derive the lower
bound on ST2,T2%. Clearly, ST2,T2%≥ ST1,T2%. Combined
with Equation (14), we have:

ST2 ,T2 % ≥ ST1 ,T2 % ≥ ST1 ,T1 % (15)

The lower bound on ST2,T2% also depends on disk ca-
pacity, A. During T2, the write amount is equal to k×N,
and the write working set size must be less than or equal
to the disk capacity, i.e, k ×W ≤ A. By with Equa-
tion (13), we have:

ST2 ,T2 % ≥ kN −A
kN

= 1− A
kN

(16)

Combining Equation (15) and (16), the lower bound
on ST2,T2% is given by:

ST2 ,T2 % ≥ max(1− A
kN

, ST1 ,T1 %) (17)

Table 2 shows the data retention requirements anal-
ysis using the above equations. First, we can see that
the ST1,T1% obtained from Equation (13) matches Fig-
ure 9. Let’s take hd2 for example. There are a total
of 726 GB of writes in 1 day whose write working set
size is 313 GB. According to Equation (13), 57% of the
writes whose retention time requirements are less than
1 day. This is the case shown in Figure 9. Furthermore,
if we can observe the hd 2 workload for 1 week, more
than 86% of writes whose retention time requirements
are expected to be less than 1 weeks. This again shows
the gap between the specification guarantee and actual
programs’ needs in terms of data retention.

5 System Design
5.1 Retention-Aware FTL (Flash Transla-

tion Layer)
In this section, we present the SSD design which lever-
ages retention relaxation for improving either write
speed or ECCs’ cost and performance. Specifically, in
the proposed SSD, data written into NAND Flash mem-
ories could occur in variable write latencies or be en-
coded by different ECC codes, which provide different
levels of retention guarantees. We refer to the data writ-
ten by these different methods as in different “modes”.
In our design, data in a physical NAND Flash block
are in the same mode. To correctly retrieve data from
NAND Flash, we need to record the mode of each phys-
ical block. Furthermore, to avoid data losses due to a

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 133

Table 2: Data retention requirements analysis

Volume
Name

Disk
Capacity (A)

Write
Amount (N)

Write
Working Set (W) S1d,1d S1w,1w S5w,5w

GB GB GB % % %

prn_0 66.3 44.2 12.1 72.6 ≧72.6
prn_1 385.2 28.8 11.1 61.6 ≧61.6
proj_0 16.2 143.8 1.6 98.9 ≧98.9
proj_2 816.2 168.4 155.1 7.9 ≧7.9
prxy_0 20.7 52.7 0.7 98.7 ≧98.7
prxy_1 67.8 695.3 12.5 98.2 ≧98.2
src1_0 273.5 808.6 114.1 85.9 ≧93.2
src1_1 273.5 29.6 4.2 85.9 ≧85.9
src1_2 8.0 43.4 0.7 98.5 ≧98.5
src2_2 169.6 39.3 20.0 49.2 ≧49.2
usr_1 820.3 54.8 24.5 55.2 ≧55.2
usr_2 530.4 25.6 10.0 61.1 ≧61.1
hd1 737.6 1564.9 410.1 73.8 ≧93.3 ≧98.7
hd2 737.6 726.3 313.3 56.9 ≧85.5 ≧97.1

tpcc1 149 310.3 3.1 99.0 ≧99.0 ≧99.0
tpcc2 149 692.8 6.0 99.1 ≧99.1 ≧99.4

1 The disk capacity of the MSRC traces are estimated using their max-
imum R/W address. The estimation results conform to the previous
study [30].
2 1d, 1w, and 5w stand for a day, a week, and 5 weeks, respectively.
3 GB stands for 230 bytes.

shortage of data retention capability, we have to monitor
the remaining retention capability of each NAND Flash
block. We implement the proposed retention-aware de-
sign in the Flash Translation Layer (FTL) in SSDs rather
than in OSes. FTL-based implementation requires mini-
mum OS/application modification, which we think is im-
portant for easy deployment and wide adoption of the
proposed scheme.

Figure 10 shows the block diagram of the proposed
FTL. The proposed FTL is based on the page-level
FTL [5] with two additional components, Mode Selec-
tor (MS) and Retention Tracker (RT). For writes, MS
sends different write commands to NAND Flash chips
or invokes different ECC encoders. As discussed in Sec-
tion 3.2.1, write speed could be improved by adopting
larger ∆VP. In current Flash chips, only one write com-
mand is supported. To support the proposed mechanism,
NAND Flash chips need to provide multiple write com-
mands with different ∆VP values. MS keeps the mode
of each NAND Flash block in memories so that during
reads, it can invoke the right ECC decoder to retrieve
data. RT is responsible for ensuring that every NAND
Flash block in the SSD does not run out of its retention
capability. RT uses one counter per NAND Flash block
to keep track of its remaining retention time. When the
first page of a block is written, the retention capability of
this write is stored in the counter. These retention coun-
ters are periodically updated. If a block is found to ap-
proach its data retention limit, RT schedules background
operations to move valid data in this block to another new
block and then invalidates the old one.

One main parameter in the proposed SSD design is
how many write modes we should employ in the SSD.
The optimal setting depends on retention time varia-

Mode
Selector

Retention
Tracker

Address
Translation

Background
Cleaning

NAND Flash Interface

Disk Interface

FTL

Blk.
Addr.

Logical
Addr.

I/O
Data

Logical Addr.,
I/O Command

Physical
Addr.

Background
I/O Data

Disk I/O
Request

Command

NAND Flash Memories

NAND RequestsNAND Requests

Logical Addr.,
I/O Command

Figure 10: Proposed retention-aware FTL

tion in workloads and the cost for supporting multiple
write modes. In this work, we present a coarse-grained
management method. There are two kinds of NAND
Flash writes in SSD systems: host writes and background
writes. Host writes correspond to write requests sent
from the host to the SSDs; background writes comprise
cleaning, wear-leveling, and data movement internal to
the SSDs. Performance is usually important to the host
writes. Moreover, host writes usually require short data
retention as shown in Section 4. In contrast, background
writes are less sensitive to performance and usually in-
volve data which have been stored in the storage for a
long time; therefore, their data are expected to remain
for a long time in the future (commonly referred to as
cold data). Based on this observation, we propose to em-
ploy two levels of retention guarantees for the two kinds
of writes. For host writes, retention-relaxed writes are
used to exploit their high probability of short retention
requirements and gain performance benefits; for back-
ground writes, normal writes are employed to preserve
the retention guarantee.

In the proposed two-level framework, to optimize
write performance, host writes occur in fast write speed
with reduced retention capability. If data are not over-
written within their retention guarantee, background
writes with normal write speed are issued. To optimize
ECCs’ cost and performance, a new ECC architecture
is proposed. As mentioned earlier, NAND Flash RBER
will soon exceed BCH’s limitation (i.e., RBER ≥ 10−3);
therefore, advanced ECC designs will be required for fu-
ture SSDs. Figure 11 shows such an advanced ECC de-
sign for future SSDs which employs multi-layer ECCs
with code concatenations: the inner code is BCH, and
the outer code is LDPC. Concatenating BCH and LDPC
exploits the advantages of both [43]: LDPC greatly im-
proves the maximum correcting capability, while BCH
complements LDPC for eliminating LDPC’s error floor.
The main issue with this design is since every write needs
to be encoded in LDPC, a high-throughput LDPC en-
coder is required to prevent the LDPC encoder from be-

134 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

Host Writes

LDPC Encoder

BCH Encoder Background
Writes

Figure 11: Baseline concatenated BCH-LDPC codes
in an SSD

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

Host Writes

BCH Encoder LDPC
Encoder

Background Writes

Y

N Already LDPC
Encoded?

Figure 12: Proposed ECC architecture leveraging re-
tention relaxation in an SSD

ing the bottleneck. In the proposed ECC architecture
shown in Figure 12, host writes are protected by BCH
only since they tend to have short retention requirements.
If data are not overwritten within the retention guaran-
tee provided by BCH, background writes are issued. All
background writes are protected by LDPC. In this way,
the LDPC encoder is kept out of the critical performance
path. Its benefits are two-fold. First, write performance
is improved since host writes do not go through time-
consuming LDPC encoding. Second, since BCH filters
out short-lifetime data and LDPC encoding can be amor-
tized in the background, the throughput requirements of
LDPC are less than the baseline design. Therefore, the
LDPC hardware cost can be reduced.

We present two specific implementation of retention
relaxation. The first one relaxes the retention capabil-
ity of host writes to 10 weeks and periodically checks
the remaining retention capability of each NAND Flash
block at the end of every 5 weeks. Therefore, FTL al-
ways has another 5 weeks at least to reprogram those
data which have not been overwritten in the past period
and can amortize the re-programming task in the back-
ground over the 5 weeks without causing burst writes.
We set the period of invoking the reprogramming tasks
to 100 ms. The second one is similar to the first one ex-
cept that the retention capability and checking period are
2 weeks and 1 week, respectively. These two designs are
referred to as RR-10week and RR-2week in this paper.

5.2 Overhead Analysis
Memory Overhead

The proposed mechanism requires extra memory re-
sources to store write modes and retention time infor-
mation for each block. Since we only have two write
modes, i.e., the normal mode and the retention-relaxed
one, each block requires only a 1-bit flag to record its
write mode. As for the size of the counter for keeping
track of the remaining retention time, both RR-2week
and RR-10week require only a 1-bit counter per block
because all retention-relaxed blocks written in the nth pe-
riod are reprogrammed during the (n+ 1)th period. For

0

10

20

30

40

50

60

pr
n_

0

pr
n_

1

pr
oj
_0

pr
oj
_2

pr
xy
_0

pr
xy
_1

sr
c1
_0

sr
c1
_1

sr
c1
_2

sr
c2
_2

us
r_
1

us
r_
2

hd
1

hd
2

tp
cc
1

tp
cc
2

An
nu

al
 A

ve
ra

ge
 E

xt
ra

 W
rit

e
#

Workload

RR-10week RR-2week

Figure 15: Wear-out overhead of retention relaxation

an SSD having 128 GB NAND Flash with 2 MB block
size, the memory overhead is 16 KB .

Reprogramming Overhead

In the proposed schemes, data that are not overwrit-
ten in the guaranteed retention time need to be repro-
grammed. These extra writes affect both the performance
and the life time of SSDs. To analyze its performance
impact, we estimate reprogramming amounts per unit of
time based on the projection method described in Sec-
tion 4.2. Here, we let T2 be the checking period in the
proposed schemes. For example, for RR-10week, T2
equals 5 weeks. Therefore, at the end of each period, the
total write amount is kN, the percentage of writes which
require reprogramming is at most (1−ST2,T2%), and the
reprogramming tasks can be amortized over the upcom-
ing period of T2. The reprogramming amounts per unit
of time are as follows:

(1−ST2 ,T2 %)× k×N
T2

(18)

The results show that the amount of reprogramming
tasks range between 1.13 kB/s to 1.25 MB/s for RR-
2week, and between 1.13 kB/s to 0.26 MB/s for RR-
10week. Since each NAND Flash plane can provide
6.2 MB/s write throughput (i.e., writing a 8 kB page in
1.3 ms), we anticipate that reprogramming does not lead
to high performance overhead. In Section 6, we evaluate
its actual performance impact.

To quantify the wear-out effect caused by reprogram-
ming, we show extra writes per cell per year assuming

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 135

0

1

2

3

4

5

6

pr
n_

0

pr
oj
_0

pr
oj
_2

pr
xy
_0

sr
c1

_0

sr
c1

_2

sr
c2

_2 hd
1

hd
2

tp
cc
1

tp
cc
2W

rit
e

Re
sp

on
se

 T
im

e
Sp

ee
du

p

Workload

Baseline RR-10week RR-2week

Figure 13: SSD write response time speedup

0

1

2

3

4

5

6

pr
n_

0

pr
oj
_0

pr
oj
_2

pr
xy
_0

sr
c1

_0

sr
c1

_2

sr
c2

_2 hd
1

hd
2

tp
cc
1

tp
cc
2O

ve
ra

ll
Re

sp
on

se
 T

im
e

Sp
ee

du
p

Workload

Baseline RR-10week RR-2week

Figure 14: SSD overall response time speedup

perfect wear-leveling. We first give the upper bound on
this metric. Let’s take RR-2week for example. In the ex-
treme case, RR-2week reprograms the entire disk every
week, which leads to 52.1 extra writes per cell per year.
Similarly, RR-10week causes 10.4 extra writes per cell
per year at most. These extra writes are not significant
compared to NAND Flash’s endurance which is usually
a few thousands P/E cycles. Therefore, even in the worst
case, the proposed mechanism does not cause significant
wear-out effect. For real workloads, the wear-out over-
head is usually smaller than the worst case as shown in
Figure 15. The wear-out overhead for each workload is
evaluated based on the disk capacity and the reprogram-
ming amounts per unit of time presented above.

6 System Evaluation
We conduct simulation-based experiments using
SSDsim [5] and Disksim-4.0 [10] to evaluate the RR-
10week and RR-2week designs. SSDs are configured to
have 16 channels. Detailed configurations and parame-
ters are listed in Table 3. Eleven of the 16 traces listed in
Table 2 are used and simulated for the whole trace. We
omit prxy 1 because the simulated SSD can not sustain
its load, and prn 1, src1 1, usr 1, usr 2 are also omitted
because they contain write amounts less than 15% of the
total raw NAND Flash capacity. SSD write speedup and
ECCs’ cost and performance improvement are evaluated
separately. The reprogramming overhead described in
Section 5.2 are considered in the experiments.

Figure 13 shows the speedup of write response time
for different workloads if we leverage retention relax-
ation to improve write speed. We can see that RR-
10week and RR-2week typically achieve 1.8–2.6× write
response time speedup. hd1 and hd2 show up to
3.9–5.7× speedup. These two workloads have high
queuing delay due to high I/O throughput. With reten-
tion relaxation, the queuing time is greatly reduced, be-
tween 3.7× to 6.1×. Moreover, for all workloads, RR-
2week gives about 20% extra performance gain over RR-
10week. Figure 14 shows the speedup in terms of overall
response time. The overall response time is mainly deter-

Table 3: NAND Flash and SSD configurations
Parameter Value

Over-provisioning 15%
Cleaning threshold 5%

Page size 8 KB
Pages per block 256
Blocks per plane 2000

Planes per die 2
Dies per channel 1~8

Number of channel 16
Mapping policy Full stripe

Parameter Value
Page read latency 75 μs
Page write latency 1.3 ms
Block erase latency 3.8 ms

NAND bus bandwidth 200 MB/s

Trace Name Dies per Disk Exported Capacity (GB)
prn_0, proj_0, prxy_0, src1_2 16 106

src2_2 32 212
src1_0 64 423

proj_2, hd1, hd2, tpcc1, tpcc2 128 847

mined by write requests due to the significant amount of
write requests in the tested workloads and the long write
latency. Therefore, we can see that the speedup trend is
similar to that of write response time.

To show how retention relaxation benefits ECC design
in future SSDs, we consider SSDs comprising NAND
Flash whose 1-year RBER approaches 2.2× 10−2. We
compare the proposed RR-2week design with the base-
line design which employs concatenated BCH-LDPC
codes. The LDPC encoder is modeled as a FIFO and its
throughput is chosen among 5, 10, 20, 40, 80, 160, 320,
and ∞ MB/s. Since the I/O queue of the simulated SSDs
could saturate if LDPC’s throughput is insufficient, we
first report the minimum required throughput configura-
tions without causing saturation in Figure 16. As can be
seen, for the baseline ECC architecture, throughput up
to 160 MB/s is required. In contrast, for RR-2week, the
lowest throughput configuration (i.e., 5MB/s) is enough
to sustain the write rates in all tested workloads. Fig-
ure 17 shows the response time of the baseline and RR-
2week under various LDPC throughput configurations.
The response time reported in this figure is the average
of the response time normalized to that with unlimited
LDPC throughput:

1
N

N

∑
i=1

(
ResponseTimei

IdealResponseTimei

)
(19)

136 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

1

10

100

pr
n_

0

pr
oj
_0

pr
oj
_2

pr
xy
_0

sr
c1

_0

sr
c1

_2

sr
c2

_2 hd
1

hd
2

tp
cc
1

tp
cc
2

Th
ro

ug
pu

t (
M

B/
s)

Workload

Baseline RR-2week

Figure 16: Minimum required LDPC throughput
configurations without causing I/O queue saturation

1

1.2

1.4

1.6

5 10 20 40 80 160 320 ∞

Av
er

ag
e

N
or

m
al

ize
d

Re
sp

on
se

 T
im

e

LDPC's Throughput (MB/s)

Baseline RR-2week

Figure 17: Average normalized response time given
various LDPC throughput configurations

where N is the number of workloads which do not in-
cur I/O queue saturation given specific LDPC through-
put. In the figure, the curve of the baseline presents
a zigzag appearance between 5 MB/s to 80 MB/s be-
cause several traces are excluded due to the saturation
in the I/O queue. This may inflate the performance of the
baseline. Even so, we see RR-2week outperforms the
baseline significantly with the same LDPC throughput
configuration. For example, with 10MB/s throughput,
RR-2week performs 43% better than the baseline. Only
when the LDPC throughput approaches infinite does RR-
2week perform a bit worse than the baseline due to re-
programming overhead. We can also see that with a
20 MB/s LDPC, RR-2week already approaches the per-
formance of unlimited LDPC throughput, while the base-
line requires 160 MB/s to achieve the similar level. Be-
cause hardware parallelization is one basic approach to
increase the throughput of a LDPC encoder [24], in this
point of view, retention relaxation can reduce the hard-
ware cost of LDPC encoders by 8×.

7 Related Work
Access frequencies are usually considered in storage op-
timization. Chiang et al. [12] propose to cluster data
with similar write frequencies together to increase SSDs’
cleaning efficiency. Pritchett and Thottethodi [33] ob-
serve the skewness of disk access frequencies in datacen-
ters and propose novel ensemble-level SSD-based disk
caches. In contrast, we focus on the time interval be-
tween two successive writes to the same address which
defines the data retention requirement.

Several device-aware optimizations for NAND Flash-
based SSDs were proposed recently. Grupp et al. [17]
exploit the variation in page write speed in MLC NAND
Flash to improve SSDs’ responsiveness. Tanakamaru et
al. [40] propose wear-out-aware ECC schemes to im-
prove the ECC capability. Xie et al. [42] improve write
speed through compressing user data and employing
stronger ECC codes. Pan et al. [31] improve write speed
and defect tolerance using wear-out-aware policies. Our

work considers the retention requirements of real work-
loads and relaxes NAND Flash’s data retention to op-
timize SSDs, which is orthogonal to the above device-
aware optimization.

Smullen et al. [36] and Sun et al. [38] improve energy
and latency of STTRAM-based CPU caches through re-
designing STTRAM cells with relaxed non-volatility. In
contrast, we focus on NAND Flash memories used in
storage systems.

8 Conclusions
We present the first work on optimizing SSDs via re-
laxing NAND Flash’s data retention capability. We de-
velop a NAND Flash model to evaluate the benefits if
NAND Flash’s original multi-year data retention can
be reduced. We also demonstrate that in real systems,
write requests usually require days or even shorter re-
tention times. To optimize the write speed and ECCs’
cost and performance, we design SSD systems which
handle host writes with shortened retention time while
handling background writes as usual and present corre-
sponding retention tracking schemes to guarantee that no
data loss happens due to a shortage of retention capa-
bility. Simulation results show that the proposed SSDs
achieve 1.8–5.7× write response time speedup. We also
show that for future SSDs, retention relaxation can bring
both performance and cost benefits to the ECC architec-
ture. We leave simultaneously optimizing write speed
and ECCs as our future work.

Acknowledgements
We would like to thank our program committee shep-
herd Bill Bolosky and the anonymous reviewers for
their insightful comments and constructive suggestions.
This research is supported in part by research grants
from ROC National Science Council 100-2219-E-002-
027, 100-2219-E-002-030, 100-2220-E-002-015; Excel-
lent Research Projects of National Taiwan University
10R80919-2; Macronix International Co., Ltd. 99-S-
C25; and Etron Technology Inc., 10R70152, 10R70156.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 137

References
[1] Fusion-IO ioDrive Duo.

http://www.fusionio.com/products/iodrive-duo/.

[2] Hadoop. http://hadoop.apache.org/.

[3] Hammerora. http://hammerora.sourceforge.net/.

[4] NAND Flash support table, July 2011.
http://www.linux-mtd.infradead.org/nand-
data/nanddata.html.

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.
Davis, M. Manasse, and R. Panigrahy. Design
tradeoffs for SSD performance. In Proc. 2008
USENIX Annual Technical Conference (USENIX
’08), June 2008.

[6] D. G. Andersen and S. Swanson. Rethinking Flash
in the data center. IEEE Micro, 30:52–54, July
2010.

[7] F. Arai, T. Maruyama, and R. Shirota. Extended
data retention process technology for highly reli-
able Flash EEPROMs of 106 to 107 W/E cycles. In
Proc. 1998 IEEE International Reliability Physics
Symposium (IRPS ’98), April 1998.

[8] R. C. Bose and D. K. R. Chaudhuri. On a class of
error correcting binary group codes. Information
and Control, 3(1):68–79, March 1960.

[9] J. Brewer and M. Gill. Nonvolatile Memory Tech-
nologies with Emphasis on Flash: A Compre-
hensive Guide to Understanding and Using Flash
Memory Devices. Wiley-IEEE Press, 2008.

[10] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R.
Ganger. The DiskSim simulation environment ver-
sion 4.0 reference manual reference manual (CMU-
PDL-08-101). Technical report, Parallel Data Lab-
oratory, 2008.

[11] A. M. Caulfield, L. M. Grupp, and S. Swanson.
Gordon: using Flash memory to build fast, power-
efficient clusters for data-intensive applications. In
Proc. 14th International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems (ASPLOS ’09), March 2009.

[12] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang.
Using data clustering to improve cleaning perfor-
mance for Flash memory. Softw. Pract. Exper.,
29:267–290, March 1999.

[13] G. Dong, N. Xie, and T. Zhang. On the use
of soft-decision error-correction codes in NAND
Flash memory. IEEE Trans. Circuits Syst. Regul.
Pap., 58(2):429 –439, February 2011.

[14] D. Floyer. Flash pricing trends disrupt storage.
Technical report, May 2010.

[15] R. Gallager. Low-density parity-check codes. IRE
Trans. Inf. Theory, 8(1):21 –28, January 1962.

[16] J. Gray. Tape is dead. Disk is tape. Flash is disk.
RAM locality is king. Presented at the CIDR Gong
Show, January 2007.

[17] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P. H. Siegel, and J. K. Wolf. Char-
acterizing Flash memory: anomalies, observations,
and applications. In Proc. 42nd IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO
’09), December 2009.

[18] A. Hocquenghem. Codes correcteurs d’Erreurs.
Chiffres (paris), 2:147–156, September 1959.

[19] JEDEC Solid State Technology Associa-
tion. Stress-Test-Driven Qualification of In-
tegrated Circuits, JESD47G.01, April 2010.
http://www.jedec.org/.

[20] JEDEC Solid State Technology Association.
Failure Mechanisms and Models for Semi-
conductor Devices, JEP122G, October 2011.
http://www.jedec.org/.

[21] S. Kopparthi and D. Gruenbacher. Implementa-
tion of a flexible encoder for structured low-density
parity-check codes. In Proc. 2007 IEEE Pacific Rim
Conference on Communications, Computers and
Signal Processing (PACRIM’07), Auguest 2007.

[22] S. Li and T. Zhang. Approaching the information
theoretical bound of multi-level NAND Flash mem-
ory storage efficiency. In Proc. 2009 IEEE Interna-
tional Memory Workshop (IMW ’09), May 2009.

[23] S. Li and T. Zhang. Improving multi-level NAND
Flash memory storage reliability using concate-
nated BCH-TCM coding. IEEE Trans. Very Large
Scale Integr. VLSI Syst., 18(10):1412 –1420, Octo-
ber 2010.

[24] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong. Ef-
ficient encoding of quasi-cyclic low-density parity-
check codes. IEEE Trans. Commun., 54(1):71 – 81,
January 2006.

[25] C.-Y. Lin, C.-C. Wei, and M.-K. Ku. Efficient en-
coding for dual-diagonal structured LDPC codes
based on parity bit prediction and correction. In
Proc. 2008 IEEE Asia Pacific Conference on Cir-
cuits and Systems (APCCAS ’08), December 2008.

138 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[26] R. Micheloni, L. Crippa, and A. Marelli. Inside
NAND Flash Memories. Springer, 2010.

[27] N. Mielke, T. Marquart, N. Wu, J. Kessenich,
H. Belgal, E. Schares, F. Trivedi, E. Goodness, and
L. Nevill. Bit error rate in NAND Flash memo-
ries. In Proc. 2008 IEEE International Reliability
Physics Symposium (IRPS ’08), May 2008.

[28] R. Motwani, Z. Kwok, and S. Nelson. Low den-
sity parity check (LDPC) codes and the need for
stronger ECC. Presented at the Flash Memory
Summit, August 2011.

[29] D. Narayanan, A. Donnelly, and A. Rowstron.
Write off-loading: Practical power management for
enterprise storage. Trans. Storage, 4:10:1–10:23,
November 2008.

[30] D. Narayanan, E. Thereska, A. Donnelly, S. El-
nikety, and A. Rowstron. Migrating server storage
to SSDs: analysis of tradeoffs. In Proc. 4th ACM
European Conference on Computer Systems (Eu-
roSys ’09), April 2009.

[31] Y. Pan, G. Dong, and T. Zhang. Exploiting mem-
ory device wear-out dynamics to improve NAND
Flash memory system performance. In Proc. 9th

USENIX Conference on File and Stroage Technolo-
gies (FAST ’11), February 2011.

[32] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Fail-
ure trends in a large disk drive population. In Proc.
5th USENIX Conference on File and Stroage Tech-
nologies (FAST ’07), February 2007.

[33] T. Pritchett and M. Thottethodi. SieveStore:
a highly-selective, ensemble-level disk cache for
cost-performance. In Proc. 37th annual Interna-
tional Symposium on Computer Architecture (ISCA
’10), June 2010.

[34] Samsung Electronics. K9F8G08UXM Flash mem-
ory datasheet, March 2007.

[35] J.-Y. Shin, Z.-L. Xia, N.-Y. Xu, R. Gao, X.-F. Cai,
S. Maeng, and F.-H. Hsu. FTL design exploration
in reconfigurable high-performance SSD for server
applications. In Proc. 23rd International Confer-
ence on Supercomputing (ICS ’09), 2009.

[36] C. Smullen, V. Mohan, A. Nigam, S. Gurumurthi,
and M. Stan. Relaxing non-volatility for fast and
energy-efficient STT-RAM caches. In Proc. 17th

IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA ’11), Febru-
ary 2011.

[37] K.-D. Suh, B.-H. Suh, Y.-H. Lim, J.-K. Kim, Y.-
J. Choi, Y.-N. Koh, S.-S. Lee, S.-C. Kwon, B.-S.
Choi, J.-S. Yum, J.-H. Choi, J.-R. Kim, and H.-K.
Lim. A 3.3 V 32 Mb NAND Flash memory with in-
cremental step pulse programming scheme. IEEE
J. Solid-State Circuits, 30(11):1149 –1156, Novem-
ber 1995.

[38] Z. Sun, X. Bi, H. L. nad Weng-Fai Wong, Z. liang
Ong, X. Zhu, and W. Wu. Multi retention level
STT-RAM cache designs with a dynamic refresh
scheme. In Proc. 44th IEEE/ACM International
Symposium on Microarchitecture (MICRO ’11),
December 2011.

[39] S. Swanson. Flash memory overview. cse240a:
Graduate Computer Architecture, University
of California, San Diego, November 2011.
http://cseweb.ucsd.edu/classes/fa11/cse240A-
a/Slides1/18-FlashOverview.pdf.

[40] S. Tanakamaru, A. Esumi, M. Ito, K. Li, and
K. Takeuchi. Post-manufacturing, 17-times accept-
able raw bit error rate enhancement, dynamic code-
word transition ECC scheme for highly reliable
solid-state drives, SSDs. In Proc. 2010 IEEE Inter-
national Memory Workshop (IMW ’10), May 2010.

[41] S. Tanakamaru, C. Hung, A. Esumi, M. Ito, K. Li,
and K. Takeuchi. 95%-lower-BER 43%-lower-
power intelligent solid-state drive (SSD) with
asymmetric coding and stripe pattern elimination
algorithm. In Proc. 2011 IEEE International Solid-
State Circuits Conference (ISSCC ’11), February
2011.

[42] N. Xie, G. Dong, and T. Zhang. Using lossless
data compression in data storage systems: Not for
saving space. IEEE Trans. Comput., 60:335–345,
2011.

[43] N. Xie, W. Xu, T. Zhang, E. Haratsch, and J. Moon.
Concatenated low-density parity-check and BCH
coding system for magnetic recording read chan-
nel with 4 kB sector format. IEEE Trans. Magn.,
44(12):4784 –4789, December 2008.

[44] H. Yasotharan and A. Carusone. A flexible hard-
ware encoder for systematic low-density parity-
check codes. In Proc. 52nd IEEE Interna-
tional Midwest Symposium on Circuits and Systems
(MWSCAS ’09), Auguest 2009.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 139

SFS: Random Write Considered Harmful in Solid State Drives
Changwoo Mina, Kangnyeon Kimb, Hyunjin Choc, Sang-Won Leed, Young Ik Eome

abdeSungkyunkwan University, Korea
acSamsung Electronics, Korea

{multics69a, kangnunib,wonleed,yieome}@ece.skku.ac.kr, hj1120.choc@samsung.com

Abstract

Over the last decade we have witnessed the relent-
less technological improvement in flash-based solid-
state drives (SSDs) and they have many advantages over
hard disk drives (HDDs) as a secondary storage such as
performance and power consumption. However, the ran-
dom write performance in SSDs still remains as a con-
cern. Even in modern SSDs, the disparity between ran-
dom and sequential write bandwidth is more than ten-
fold. Moreover, random writes can shorten the limited
lifespan of SSDs because they incur more NAND block
erases per write.

In order to overcome these problems due to random
writes, in this paper, we propose a new file system
for SSDs, SFS. First, SFS exploits the maximum write
bandwidth of SSD by taking a log-structured approach.
SFS transforms all random writes at file system level to
sequential ones at SSD level. Second, SFS takes a new
data grouping strategy on writing, instead of the existing
data separation strategy on segment cleaning. It puts the
data blocks with similar update likelihood into the same
segment. This minimizes the inevitable segment clean-
ing overhead in any log-structured file system by allow-
ing the segments to form a sharp bimodal distribution of
segment utilization.

We have implemented a prototype SFS by modifying
Linux-based NILFS2 and compared it with three state-
of-the-art file systems using several realistic workloads.
SFS outperforms the traditional LFS by up to 2.5 times
in terms of throughput. Additionally, in comparison to
modern file systems such as ext4 and btrfs, it drastically
reduces the block erase count inside the SSD by up to
7.5 times.

1 Introduction
NAND flash memory based SSDs have been revolution-
izing the storage system. An SSD is a purely electronic
device with no mechanical parts, and thus can provide
lower access latencies, lower power consumption, lack
of noise, shock resistance, and potentially uniform ran-
dom access speed. However, there remain two serious
problems limiting wider deployment of SSDs: limited
lifespan and relatively poor random write performance.

The limited lifespan of SSDs remains a critical concern
in reliability-sensitive environments, such as data cen-
ters [5]. Even worse, the ever-increased bit density for
higher capacity in NAND flash memory chips has re-
sulted in a sharp drop in the number of program/erase
cycles from 10K to 5K for the last two years [4]. Mean-
while, previous work [12, 9] shows that random writes
can cause internal fragmentation of SSDs and thus lead
to performance degradation by an order of magnitude. In
contrast to HDDs, the performance degradation in SSDs
caused by the fragmentation lasts for a while after ran-
dom writes are stopped. The reason for this is that ran-
dom writes cause the data pages in NAND flash blocks
to be copied elsewhere and erased. Therefore, the lifes-
pan of an SSD can be drastically reduced by random
writes.

Not surprisingly, researchers have devoted much ef-
fort to resolving these problems. Most of work has been
focused on a flash translation layer (FTL) – an SSD
firmware emulating an HDD by hiding the complex-
ity of NAND flash memory. Some studies [24, 14] im-
proved random write performance by providing more ef-
ficient logical to physical address mapping. Meanwhile,
other studies [22, 14] propose a separation of hot/cold
data to improve random write performance. However,
such under-the-hood optimizations are purely based on
logical block addresses (LBA) requested by a file sys-
tem so that they would become much less effective for
the no-overwrite file systems [16, 48, 10] in which ev-
ery write to the same file block is always redirected to
a new LBA. There are other attempts to improve ran-
dom write performance especially for database systems
[23, 39]. Each attempt proposes a new database stor-
age scheme, taking into account the performance char-
acteristics of SSDs. However, despite the fact that these
flash-conscious techniques are quite effective in specific
applications, they cannot provide the benefit of such op-
timization to general applications.

In this paper, we propose a novel file system, SFS, that
can improve random write performance and extend the
lifetime of SSDs. Our work is motivated by LFS [32],
which writes all modifications to disk sequentially in a
log-like structure. In LFS, the segment cleaning over-
head can severely degrade performance [35, 36] and

140 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

shorten the lifespan of an SSD. This is because quite
a high number of pages need to be copied to secure a
large empty chunk for a sequential write at every seg-
ment cleaning. In designing SFS, we investigate how to
take advantage of performance characteristics of SSD
and I/O workload skewness to reduce the segment clean-
ing overhead.

This paper makes the following specific contributions:

• We introduce the design principles for SSD-based
file systems. The file system should exploit the per-
formance characteristics of SSD and directly utilize
file block level statistics. In fact, the architectural
differences between SSD and HDD results in dif-
ferent performance characteristics for each system.
One interesting example is that, in SSD, the addi-
tional overhead of random write disappears only
when the unit size of random write requests be-
comes a multiple of a certain size. To this end, we
take log-structured approach with a carefully se-
lected segment size.

• To reduce the segment cleaning overhead in the
log-structured approach, we propose an eager on
writing data grouping scheme that classifies file
blocks according to their update likelihood and
writes those with similar update likelihoods into the
same segment. The effectiveness of data grouping
is determined by proper selection of the grouping
criteria. For this, we propose an iterative segment
quantization algorithm to determine the grouping
criteria, while considering disk-wide hotness dis-
tribution. We also propose cost-hotness policy for
victim segment selection. Our eager data grouping
will colocate frequently updated blocks in the same
segments; thus most blocks in those segments are
expected to become rapidly invalid. Consequently,
the segment cleaner can easily find a victim seg-
ment with few live blocks and thus can minimize
the overhead of copying the live blocks.

• Using a number of realistic and synthetic work-
loads, we show that SFS significantly outperforms
LFS and state-of-the-art file systems such as ext4
and btrfs. We also show that SFS can extend the
lifespan of an SSD by drastically reducing the num-
ber of NAND flash block erases. In particular, while
the random write performance of the existing file
systems is highly dependent on the random write
performance of SSD, SFS can achieve nearly max-
imum sequential write bandwidth of SSD for ran-
dom writes at the file system level. Therefore, SFS
can provide high performance even on mid-range
or low-end SSDs as long as their sequential write
performance is comparable to high-end SSDs.

The rest of this paper is organized as follows. Sec-

tion 2 overviews the characteristics of SSD and I/O
workloads. Section 3 describes the design of SFS in
detail, and Section 4 shows the extensive evaluation of
SFS. Related work is described in Section 5. Finally, in
Section 6, we conclude the paper.

2 Background

2.1 Flash Memory and SSD Internals
NAND flash memory is the basic building block of
SSDs. Read and write operations are performed at the
granularity of a page (e.g. 2 KB or 4 KB), and the
erase operation is performed at the granularity of a block
(composed of 64 – 128 pages). NAND flash memory dif-
fers from HDDs in several aspects: (1) asymmetric speed
of read and write operations, (2) no in-place overwrite –
the whole block must be erased before overwriting any
page in that block, and (3) limited program/erase cycles
– a single-level cell (SLC) has roughly 100K erase cy-
cles and a typical multi-level cell (MLC) has roughly
10K erase cycles.

A typical SSD is composed of host interface logic
(SATA, USB, and PCI Express), an array of NAND flash
memories, and an SSD controller. A flash translation
layer (FTL) run by an SSD controller emulates an HDD
by exposing a linear array of logical block addresses
(LBAs) to the host. To hide the unique characteristics
of flash memory, it carries out three main functions: (1)
managing a mapping table from LBAs to physical block
addresses (PBAs), (2) performing garbage collection to
recycle invalidated physical pages, and (3) wear-leveling
to wear out flash blocks evenly in order to extend the
SSD’s lifespan. Agrawal et al. [2] comprehensively de-
scribe the broad design space and tradeoffs of SSD.

Much research has been carried out on FTL to im-
prove performance and extend the lifetime [18, 24, 22,
14]. In a block-level FTL scheme, a logical block num-
ber is translated to a physical block number and the log-
ical page offset within a block is fixed. Since the map-
ping in this instance is coarse-grained, the mapping ta-
ble is small enough to be kept in memory entirely. Un-
fortunately, this results in a higher garbage collection
overhead. In contrast, since a page-level FTL scheme
manages a fine-grained page-level mapping table, it re-
sults in a lower garbage collection overhead. However,
such fine-grained mapping requires a large mapping ta-
ble on RAM. To overcome such technical difficulties,
hybrid FTL schemes [18, 24, 22] extend the block-level
FTL. These schemes logically partition flash blocks into
data blocks and log blocks. The majority of data blocks
are mapped using block level mapping to reduce the re-
quired RAM size and log blocks are mapped using page-
level mapping to reduce the garbage collection overhead.
Similarly, DFTL [14] extends the page-level mapping by

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 141

SSD-H SSD-M SSD-L
Manufacturer Intel Samsung Transcend
Model X25-E S470 JetFlash 700
Capacity 32 GB 64 GB 32 GB
Interface SATA SATA USB 3.0
Flash Memory SLC MLC MLC
Max Sequential Reads (MB/s) 216.9 212.6 69.1
Random 4 KB Reads (MB/s) 13.8 10.6 5.3
Max Sequential Writes (MB/s) 170 87 38
Random 4 KB Writes (MB/s) 5.3 0.6 0.002
Price ($/GB) 14 2.3 1.4

Table 1: Specification data of the flash devices. List price
is as of September 2011.

selectively caching page-level mapping table entries on
RAM.

2.2 Imbalance between Random and Se-
quential Write Performance in SSDs

Most SSDs are built on an array of NAND flash memo-
ries, which are connected to the SSD controller via mul-
tiple channels. To exploit this inherent parallelism for
better I/O bandwidth, SSDs perform read or write op-
erations as a unit of a clustered page [19] that is com-
posed of physical pages striped over multiple NAND
flash memories. If the request size is not a multiple of
the clustered page size, extra read or write operations
are performed in the SSD and the performance is de-
graded. Thus, the clustered page size is critical in I/O
performance.

Write performance in SSDs is highly workload depen-
dent and is eventually limited by the garbage collection
performance of FTL. Previous work [12, 9, 39, 37, 38]
has reported that random write performance drops by
more than an order of magnitude after extensive random
updates and returns to the initial high performance only
after extensive sequential writes. The reason for this is
that random writes increase the garbage collection over-
head in FTL. In a hybrid FTL, random writes increase
the associativity between log blocks and data blocks, and
incur the costly full merge [24]. In page-level FTL, as it
tends to fragment blocks evenly, garbage collection has
large copying overhead.

In order to improve garbage collection performance,
SSD combines several blocks striped over multiple
NAND flash memories into a clustered block [19]. The
purpose of this is to erase multiple physical blocks in
parallel. If all write requests are aligned in multiples of
the clustered block size and their sizes are also multiples
of the clustered block size, random write updates and in-
validates a clustered block as a whole. Therefore, in hy-
brid FTL, a switch merge [24] with the lowest overhead
occurs. Similarly, in page-level FTL, empty blocks with
no live pages are selected as victims for garbage collec-
tion. The result of this is that random write performance
converges with sequential write performance. To ver-

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

B/
s)

Request size

Sequential Write (SSD-H) Random Write (SSD-H)
Sequential Write (SSD-M) Random Write (SSD-M)
Sequential Write (SSD-L) Random Write (SSD-L)

Figure 1: Sequential vs. random write throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400
c
u
m

u
la

ti
v
e
 w

ri
te

 f
re

q
u
e
n
c
y

reference ranking (x1000)

TPC-C
RES
WEB

Figure 2: Cumulative write frequency distribution.

ify this, we measured sequential write and random write
throughput on three different SSDs in Table 1, ranging
from a high-end SLC SSD (SSD-H) to a low-end USB
memory stick (SSD-L). To determine sustained write
performance, dummy data equal to twice the device’s
capacity is first written for aging, and the throughput of
subsequent writing for 8GB is measured. Figure 1 shows
that random write performance catches up with sequen-
tial write performance when the request size is 16 MB or
32 MB. These unique performance characteristics moti-
vate the second design principle of SFS: write bandwidth
maximization by sequential writes to SSD.

2.3 Skewness in I/O Workloads
Many researchers have pointed out that I/O workloads
have non-uniform access frequency distribution [34, 31,
23, 6, 3, 33, 11]. A disk-level trace of personal work-
stations at Hewlett Packard laboratories exhibits a high
locality of references in that 90% of the writes go to the
1% of blocks [34]. Roselli et al. [31] analyzed file sys-
tem traces collected from four different groups of ma-
chines: an instructional laboratory, a set of computers
used for research, a single web server, and a set of PCs
running Windows NT. They found that files tend to be
either read-mostly or write-mostly and the writes show
substantial locality. Lee and Moon [23] showed that the
update frequency of TPC-C workloads is highly skewed,
in that 29% writes go to 1.6% of pages.

142 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Bhadkamkar et al. [6] collected and investigated I/O
traces of office and developer desktop workloads, a ver-
sion control server, and a web server. Their analysis con-
firms that the top 20% most frequently accessed blocks
contribute to a substantially large (45-66%) percentage
of total access. Moreover, high and low frequency blocks
are spread over the entire disk area in most cases. Fig-
ure 2 depicts the cumulative write frequency distribution
of three real workloads: an IO trace collected by our-
selves while running TPC-C [40] using Oracle DBMS
(TPC-C), a research group trace (RES), and a web sever
trace equipped with Postgres DBMS (WEB) collected
by Roselli et al [31]. This observation motivates the third
design principle of SFS: block grouping according to
write frequency.

3 Design of SFS
SFS is motivated by a simple question: How can we
utilize the performance characteristics of SSD and the
skewness of the I/O workload in designing an SSD-based
file system? In this section, we describe the rationale be-
hind the design decisions in SFS, its system architecture,
and several key techniques including hotness measure,
segment quantization, segment writing, segment clean-
ing and victim selection policy, and crash recovery.

3.1 SFS: Design for SSD-based File Sys-
tems of the 2010s

Historically, existing file systems and modern SSDs
have evolved separately without consideration of each
other. With the exception of the recently introduced
TRIM command, the two layers communicate with each
other through simple read and write operations using
only LBA information. For this reason, there are many
impedance mismatches between the two layers, thus hin-
dering the optimal performance when both layers are
simply used together. In this section, we explain three
design principles of SFS. First, we identify general per-
formance problems when the existing file systems are
running on modern SSDs and suggest that a file system
should exploit the file block semantics directly. Second,
we propose to take a log-structured approach based on
the observation that the random write bandwidth is much
slower than the sequential one. Third, we criticize that
the existing lazy data grouping in LFS during segment
cleaning fails to fully utilize the skewness in write pat-
terns and argue that an eager data grouping is necessary
to achieve sharper bimodality in segments. In followings
we will describe each principle in detail.

File block level statistics – Beyond LBA: The exist-
ing file systems perform suboptimally when running on
top of SSDs with current FTL technology. This subopti-
mal performance can be attributed to poor random write
performance in SSDs. One of the basic functionalities of

file systems is to allocate an LBA for a file block. With
regard to this LBA allocation, there have been two gen-
eral policies in file system community: in-place-update
and no-overwrite. The in-place-update file systems such
as FAT32 [27] and ext4 [25] always overwrite a dirty file
block to the same LBA so that the same LBA ever cor-
responds to a file block unless the file frees the block.
This unwritten assumption in file systems, together with
the LBA level interface between file systems and storage
devices, allows the underlying FTL mechanism in SSDs
to exploit the overwrites against the same LBA address.
In fact, most FTL research [24, 22, 13, 14] has focused
on improving the random write performance based on
the LBA level write patterns. Despite the relentless im-
provement in FTL technology, the random write band-
width in modern SSDs, as presented in Section 2.2, still
lags far behind the sequential one.

Meanwhile, several no-overwrite file systems have
been implemented, such as btrfs [10], ZFS [48], and
WAFL [16], where dirty file blocks are written to new
LBAs. These systems are known to improve scalabil-
ity, reliability, and manageability [29]. In those systems,
however, because the unwritten assumption between file
blocks and their corresponding LBAs is broken, the FTL
receives new LBA write request for every update of a file
block and thus cannot exploit any file level hotness se-
mantics for random write optimization.

In summary, the LBA-based interface between the no-
overwrite file systems and storage devices does not al-
low the file blocks’ hotness semantic to flow down to
the storage layer. In addition, the relatively poor random
write performance in SSDs is the source of suboptimal
performance in the in-place-update file systems. Conse-
quently, we suggest that file systems should directly ex-
ploit the hotness statistics at the file block level. This al-
lows for optimization of the file system performance re-
gardless of whether the unwritten assumption holds and
how the underlying SSDs perform on random writes.

Write bandwidth maximization by sequentialized
writes to SSD: In Section 2.2, we show that the ran-
dom write throughput becomes equal to the sequential
write throughput only when the request size is a multiple
of the clustered block size. To exploit such performance
characteristics, SFS takes a log-structured approach that
turns random writes at the file level into sequential writes
at the LBA level. Moreover, in order to utilize nearly
100% of the raw SSD bandwidth, the segment size is set
to a multiple of the clustered block size. The result is that
the performance of SFS will be limited by the maximum
sequential write performance regardless of random write
performance.

Eager on writing data grouping for better bimodal
segmentation: When there are not enough free seg-
ments, a segment cleaner copies the live blocks from vic-

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 143

Segment Writing

1. select victim
segments

Segment Cleaning

2. collect dirty blocks
and classify blocks
according to hotness

warm
blocks

hot
blocks

read-only
blocks

cold
blocks

3. schedule segment
writing

1. segment
quantization

write request

2. read the live blocks
and mark dirty

3. trigger segment
writing

not enough free segments

Figure 3: Overview of writing process and segment
cleaning in SFS.

tim segments in order to secure free segments. Since seg-
ment cleaning includes reads and writes of live blocks, it
is the main source of overhead in any log-structured file
system. Segment cleaning cost becomes especially high
when cold data are mixed with hot data in the same seg-
ment. Since cold data are updated less frequently, they
are highly likely to remain live at the segment clean-
ing and thus be migrated to new segments. If hot data
and cold data are grouped into different segments, most
blocks in the hot segment will be quickly invalidated,
while most blocks in the cold segment will remain live.
As a result, the segment utilization distribution becomes
bimodal: most of the segments are almost either full or
empty of live blocks. The cleaning overhead is drasti-
cally reduced, because the segment cleaner can almost
always work with nearly empty segments. To form a bi-
modal distribution, LFS uses a cost-benefit policy [32]
that prefers cold segments over hot segments. However,
LFS writes data regardless of hot/cold and then tries to
separate data lazily on segment cleaning. If we can cate-
gorize hot/cold data when it is first written, there is much
room for improvement.

In SFS, we classify data on writing based on file block
level statistics as well as segment cleaning. In such early
data grouping, since segments are already composed
of homogeneous data with similar update likelihood,
we can significantly reduce segment cleaning overhead.
This is particularly effective because I/O skewness is
common in real world workloads, as shown in Sec-
tion 2.3.

3.2 SFS Architecture
SFS has four core operations: segment writing, segment
cleaning, reading, and crash recovery. Segment writing
and segment cleaning are particularly crucial for perfor-
mance optimization in SFS, as depicted in Figure 3. Be-
cause the read operation in SFS is same as that of ex-
isting log-structured file systems, we will not cover its

detail in this paper.
As a measure for representing the future update like-

lihood of data in SFS, we define hotness for file block,
file, and segment, respectively. As the hotness is higher,
the data is expected to be updated sooner. The first step
of segment writing in SFS is to determine the hotness
criteria for block grouping. This is, in turn, determined
by segment quantization that quantizes a range of hot-
ness values into a single hotness value for a group. For
the sake of brevity, it is assumed throughout this paper
that there are four segment groups: hot, warm, cold, and
read-only groups. The second step of segment writing is
to calculate the block hotness for each block and assign
them to the nearest quantized group by comparing the
block hotness and the group hotness. At this point, those
blocks with similar hotness levels should belong to the
same group (i.e. their future update likelihood is simi-
lar). As the final step of segment writing, SFS always
fills a segment with blocks belonging to the same group.
If the number of blocks in a group is not enough to fill
a segment, the segment writing of the group is deferred
until the segment is filled. This eager grouping of file
blocks according to the hotness measure serves to colo-
cate blocks with similar update likelihoods in the same
segment. Therefore, segment writing in SFS is very ef-
fective at achieving sharper bimodality in segment uti-
lization distribution.

Segment cleaning in SFS consists of three steps: se-
lect victim segments, read the live blocks in victim seg-
ments into the page cache and mark the live blocks as
dirty, and trigger the writing process. The writing pro-
cess treats the live blocks from victim segments the same
as normal blocks; each live block is classified into a spe-
cific quantized group according to its hotness. After all
the live blocks are read into the page cache, the victim
segments are then marked as free so that they can be
reused for writing. For better victim segment selection,
cost-hotness policy is introduced, which takes into ac-
count both the number of live blocks in segment (i.e.
cost) and the segment hotness.

In the following sections, we will explain each com-
ponent of SFS in detail: how to measure hotness (§ 3.3),
segment quantization (§ 3.4), segment writing (§ 3.5),
segment cleaning (§ 3.6), and crash recovery (§ 3.7).

3.3 Measuring Hotness
In SFS, hotness is used as a measure of how likely the
data is to be updated. Hotness is defined for file block,
file, and segment, respectively. Although it is difficult
to estimate data hotness without prior knowledge of fu-
ture access pattern, SFS exploits both the skewness and
the temporal locality in the I/O workload so as to esti-
mate the update likelihood of data. From the skewness
observed in many workloads, frequently updated data

144 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

tends to be updated quickly. Moreover, because of the
temporal locality in references, the recently updated data
is likely to be changed quickly. Thus, using the skewness
and the temporal locality, hotness is defined as write count

age .
Each hotness of file block, file, and segment is specifi-
cally defined as follows.

First, block hotness Hb is defined by age and write
count of a block as follows:

Hb =

{
Wb

T−Tm
b

if Wb > 0,

Hf otherwise.

where T is the current time, Tm
b is the last modified time

of the block, and Wb is the total number of writes on the
block since the block was created. If a block is newly
created (Wb = 0), Hb is defined as the hotness of the
file that the block belongs to.

Next, file hotness Hf is used to estimate the hotness
of a newly created block. It is defined by age and write
count of a file as follows:

Hf =
Wf

T − Tm
f

where Tm
f is the last modified time of the file, and Wf

is the total number of block updates since the file was
created.

Finally, segment hotness represents how likely a seg-
ment is to be updated. Since a segment is a collection
of blocks, it is reasonable to derive its hotness from the
hotness of live blocks contained within. That is, as the
hotness of live blocks in a segment is higher, the seg-
ment hotness also becomes higher. Therefore, we define
hotness of a segment Hs as the average hotness of the
live blocks in the segment. However, it is expensive to
calculate Hs because the liveness of all blocks in a seg-
ment must be tested. To determine Hs for all segments
in a disk, the liveness of all blocks in the disk must be
checked. To alleviate this cost, we approximately calcu-
late the average hotness of live blocks in a segment as
follows:

Hs =
1

N

∑
i

Hbi

≈ mean of write count of live blocks
mean of age of live blocks

=

∑
i Wbi

N · T −
∑

i T
m
bi

where N is the number of live blocks in a segment,
Hbi , T

m
bi

, and Wbi are block hotness, last modified time,
and write count of i-th live block, respectively. When
a segment is created, SFS stores

∑
i T

m
bi

and
∑

i Wbi

in the segment usage meta-data file (SUFILE), and up-
dates them by subtracting Tm

bi
and Wbi whenever a block

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

s
e
g
m

e
n
t
h
o
tn

e
s
s

segment hotness ranking

hot group

warm group

cold group

read-only group

Figure 4: Example of segment quantization.

is invalidated. Using this approximation, we can incre-
mentally calculate Hs of a segment without checking the
liveness of blocks in the segment. We will elaborate on
how to manage meta-data for hotness in Section 4.1.

3.4 Segment Quantization
In order to minimize the overhead of copying the live
blocks during segment cleaning, it is crucial for SFS to
properly group blocks according to hotness and then to
write them in grouped segments. The effectiveness of
block grouping is determined by the grouping criteria.
In fact, improper criteria may colocate blocks from dif-
ferent groups into the same segment, thus deteriorating
the effectiveness of grouping. Ideally, grouping criteria
should consider the distribution of all blocks’ hotness
in the file system, yet in reality this is too costly. Thus,
we instead use segment hotness as an approximation of
block hotness and devise an algorithm to calculate the
criterion, iterative segment quantization.

In SFS, segment quantization is a process used to par-
tition the hotness range of a file system into k sub-ranges
and calculate a quantized value for each sub-range rep-
resenting a group. There are many alternative ways to
quantize hotness. For example, each group can be quan-
tized using equi-height partitioning or equi-width par-
titioning. Equi-height partitioning equally divides the
whole hotness range into multiple groups and equi-width
partitioning makes each group have an equal number of
segments. In Figure 4, the segment hotness distribution
is computed by measuring the hotness for all segments
on the disk after running TPC-C workload under 70%
disk utilization. In such a distribution where most seg-
ments are not hot, however, both approaches fail to cor-
rectly reflect the hotness distribution and the resulting
group quantization is suboptimal.

In order to correctly reflect the hotness distribution of
segments and to properly quantize them, we propose an
iterative segment quantization algorithm. Inspired by the
data clustering approach in statistics domain [15], our
iterative segment quantization partitions segments into
k groups and tries to find the centers of natural groups
through an iterative refinement approach. A detailed de-

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 145

scription of the algorithm is as follows:

1. If the number of written segments is less than or
equal to k, assign a randomly selected segment hot-
ness to initial value of Hgi , which denotes hotness
of the i-th group.

2. Otherwise update Hgi as follows:

(a) Assign each segment to the group Gi whose
hotness is closest to the segment hotness.

Gi = {Hsj : ‖Hsj −Hgi‖ ≤ ‖Hsj −Hgi∗‖
for all i∗ = 1, . . . , k}

(b) Calculate the new means to be the group hot-
ness Hgi .

Hgi =
1

|Gi|
∑

Hsj
∈Gi

Hsj

3. Repeat Step 2 until Hgi no longer changes or three
times at most.

Despite the fact that its computational overhead in-
creases in proportion to the number of segments, the
large segment size means that the overhead of the pro-
posed algorithm is reasonable (32 segments for 1 GB
disk space given 32 MB segment size). To further reduce
the overhead, SFS stores Hgi in meta-data and reloads
them at mounting for faster convergence.

3.5 Segment Writing
As illustrated in Figure 3, segment writing in SFS con-
sists of two sequential steps: one to group dirty blocks in
the page cache and the other to write the blocks group-
wise in segments. Segment writing is invoked in four
cases: (a) SFS periodically writes dirty blocks every five
seconds, (b) flush daemon forces a reduction in the num-
ber of dirty pages in the page cache, (c) segment clean-
ing occurs, and (d) an fsync or sync occurs. The first
step of segment writing is segment quantization: all Hgi

are updated as described in Section 3.4. Next, the block
hotness Hb of every dirty block is calculated, and each
block is assigned to the group Hgi whose hotness is clos-
est to the block hotness.

To avoid blocks in different groups being colocated in
the same segment, SFS completely fills a segment with
blocks from the same group. In other words, among all
groups, only the groups large enough to completely fill a
segment are written. Thus, when the group size, i.e. the
number of blocks belonging to a group, is less than the
segment size, SFS will defer writing the blocks to the
segment until the group size reaches the segment size.
However, when an fsync or sync occurs or SFS initiates
a check-point, every dirty block including the deferred
blocks should be immediately written to segment regard-
less of the group size. In this case, we take a best-effort

approach: at first, writing out blocks groupwise as many
as possible, then writing only the remaining blocks re-
gardless of group. In all cases, writing a block accom-
panies updating relevant meta-data, Tm

b , Wb, Tm
f , Wf ,∑

i T
m
bi

, and
∑

i Wbi , and invalidating the liveness of
the overwritten block. Since the writing process contin-
uously reorganizes file blocks according to hotness, it
helps to form sharp bimodal distribution of segment uti-
lization, and thus to reduce the segment cleaning over-
head. Further, it almost always generates aligned large
sequential write requests that are optimal for SSD.

Because the blocks under segment cleaning are han-
dled similarly, their writing can also be deferred if the
number of live blocks belonging to a group is not enough
to completely fill a segment. As such, there is a danger
that the not-yet-written blocks under segment cleaning
might be lost if the originating segments of the blocks
are already overwritten by new data but a system crash
or a sudden power off is encountered. To cope with such
data loss, two techniques are introduced. First, SFS man-
ages a free segment list and allocates segments in the
least recently freed (LRF) order. Second, SFS checks
whether writing a normal block could cause a not-yet-
written block under segment cleaning to be overwritten.
Let St denote a newly allocated segment and St+1 de-
note a segment that will be allocated in next segment
allocation. If there are not-yet-written blocks under seg-
ment cleaning that originate in St+1, SFS writes such
blocks to St regardless of grouping. This guarantees
that not-yet-written blocks under segment cleaning are
never overwritten before they are written elsewhere. The
segment-cleaned blocks are thus never lost, even in a
system crash or a sudden power off, because they al-
ways have an on-disk copy. The LRF allocation scheme
increases the opportunity for a segment-cleaned block
to be written by block grouping rather than this scheme.
The details of minimizing the overhead in this process
are omitted from this paper.

3.6 Segment Cleaning: Cost-hotness policy
In any log-structured file system, the victim selection
policy is critical to minimizing the overhead of segment
cleaning. There are two well-known segment clean-
ing policies: greedy policy [32] and cost-benefit policy
[32, 17]. Greedy policy [32] always selects segments
with the smallest number of live blocks, hoping to re-
claim as much space as possible with the least copying
out overhead. However, it does not consider the hotness
of data blocks during segment cleaning. In practice, be-
cause the cold data tends to remain unchanged for a long
time before it becomes invalidated, it would be very ben-
eficial to separate cold data from hot data. To this end,
cost-benefit policy [32, 17] prefers cold segments to hot
segments when the number of live blocks is equal. Even

146 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

though it is critical to estimate how long a segment re-
mains unchanged, cost-benefit policy simply uses the
last modified time of any block in the segment (i.e. the
age of the youngest block) as a simple measure of the
segment’s update likelihood.

As a natural extension of cost-benefit policy, we intro-
duce cost-hotness policy; since hotness in SFS directly
represents the update likelihood of segment, we use seg-
ment hotness instead of segment age. Thus, SFS chooses
a victim among the segments, which maximizes the fol-
lowing formula:

cost-hotness =
free space generated

cost ∗ segment hotness

=
(1− Us)

2UsHs

where Us is segment utilization, i.e. the fraction of the
live blocks in a segment. The cost of collecting a seg-
ment is 2Us (one Us to read valid blocks and the other
Us to write them back). Although cost-hotness policy
needs to access the utilization and the hotness of all seg-
ments, it is very efficient because our implementation
keeps them in segment usage meta-data file (SUFILE)
and meta-data size per segment is quite small (48 bytes
long). All segment usage information is very likely to be
cached in memory and can be accessed without access-
ing the disk in most cases. We will describe the detail of
meta-data management in Section 4.1.

In SFS, the segment cleaner is invoked when the disk
utilization exceeds a water-mark. The water-mark for
the our experiments is set to 95% of the disk capacity
and the segment cleaning is allowed to process up to
three segments at once (96 MB given the segment size of
32 MB). The prototype did not implement the idle time
cleaning scheme suggested by Blackwell et al. [7], yet
this could be seamlessly integrated with SFS.

3.7 Crash Recovery
Upon a system crash or a sudden power off, the in
progress write operations may leave the file system in-
consistent. This is because dirty data blocks or meta-
data blocks in the page cache may not be safely writ-
ten to the disk. In order to restore such inconsistencies
from failures, SFS uses a check-point mechanism; on re-
mounting after a crash, the file system is rolled back to
the last check-point state, and then resumes in a normal
manner. A check-point is the state in which all of the file
system structures are consistent and complete. In SFS, a
check-point is carried out in two phases; first, it writes
out all the dirty data and meta-data to the disk, and then
updates the superblock in a special fixed location on the
disk. The superblock keeps the root address of the meta-
data, the position in the last written segment and time-
stamp. SFS can guarantee the atomic write of the su-

perblock by alternating between writing it to two sep-
arate physical blocks on the disk. During re-mounting,
SFS reads both copies of the superblock, compares their
time stamps and uses the more recent one.

Frequent check-pointing can minimize data loss from
crashes but can hinder normal system performance. Con-
sidering this trade-off, SFS performs a check-point in
four cases: (a) every thirty seconds after creating a
check-point, (b) when more than 20 segments (640 MB
given a segment size of 32 MB) are written, (c) when
performing sync or fsync operation, and (d) when the file
system is unmounted.

4 Evaluation

4.1 Experimental Systems
Implementation: SFS is implemented based on
NILFS2 [28] by retrofitting the in-memory and on-
disk meta-data structures to support block grouping and
cost-hotness segment cleaning. NILFS2 in the mainline
Linux kernel is based on log-structured file system [32]
and incorporates advanced features such as b-tree based
block management for scalability and continuous snap-
shot [20] for ease of management.

Implementing SFS requires a significant engineering
effort, despite the fact that it is based on the already ex-
isting NILFS2. NILFS2 uses b-tree for scalable block
mapping and virtual-to-physical block translation in data
address translation (DAT) meta-data file to support con-
tinuous snapshot. One technical issue of b-tree based
block mapping is the excessive meta-data update over-
head. If a leaf block in a b-tree is updated, its effect is
always propagated up to the root node and all the corre-
sponding virtual-to-physical entries in the DAT are also
updated. Consequently, random writes entail a signifi-
cant amount of meta-data updates — writing 3.2 GB
with 4 KB I/O unit generates 3.5 GB of meta-data. To
reduce this meta-data update overhead and support the
check-point creation policy discussed in Section 3.7, we
decided to cut off the continuous snapshot feature. In-
stead, SFS-specific fields are added to several meta-data
structures: superblock, inode file (IFILE), segment us-
age file (SUFILE), and DAT file. Group hotness Hgi is
stored in the superblock and loaded at mounting for the
iterative segment quantization. Per file write count Wf

and the last modified time Tm
f are stored in the IFILE.

The SUFILE contains information for hotness calcula-
tion and segment cleaning: Us, Hs,

∑
i T

m
bi

and
∑

i Wbi .
Per-block write count Wb and the last modified time
Tm
b are stored in the DAT entry along with virtual-to-

physical mapping. Of these, Wb and Tm
b are the largest,

each being eight bytes long. Since the meta-data fields
for continuous snapshot in the DAT entry have been re-
moved, the size of the DAT entry in SFS is the same as

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 147

that of NILFS2 (32 bytes). As a result of these changes,
we reduce the runtime overhead of meta-data to 5%–
10% for the workloads used in our experiments. In SFS,
since a meta-data file is treated the same as a normal file
with a special inode number, a meta-data file can also be
cached in the page cache for efficient access.

Segment cleaning in NILFS2 is not elaborated to the
state-of-the-art in academia. It takes simple time-stamp
policy [28] that selects the oldest dirty segment as a vic-
tim. For SFS, we implemented the cost-hotness policy
and segment cleaning triggering policy described in Sec-
tion 3.6.

In our implementation, we used Linux kernel 2.6.37,
and all experiments are performed on a PC using a 2.67
GHz Intel Core i5 quad-core processor with 4 GB of
physical memory.

Target SSDs: Currently, the spectrum of SSDs avail-
able in the market is very wide in terms of price and per-
formance; flash memory chips, RAM buffers, and hard-
ware controllers all vary greatly. For this paper, we se-
lect three state-of-the-art SSDs as shown in Table 1. The
high-end SSD is based on SLC flash memory and the
rest are based on MLC. Hereafter, these three SSDs are
referred to as SSD-H, SSD-M, and SSD-L ranging from
high-end to low-end.

Figure 1 shows sequential vs. random write through-
put of the three devices. The request sizes of random
write whose bandwidth converges to that of sequential
write are 16 MB, 32 MB, and 16 MB for SSD-H, SSD-
M, and SSD-L, respectively. To fully exploit device per-
formance, the segment size is set to 32 MB for all three
devices.

Workloads: To study the impact of SFS on various
workloads, we use a mixture of synthetic and real-world
workloads. Two real-world file system traces are used
in our experiments: OLTP database workload, and desk-
top workload. For OLTP database workload, the file sys-
tem level trace is collected while running TPC-C [40].
The database server runs Oracle 11g DBMS and the
load server runs Benchmark Factory [30] using TPC-
C benchmark scenario. For desktop workload, we used
RES from the University of California at Berkeley [31].
RES is a research workload collected for 113 days on a
system consisting of 13 desktop machines of a research
group. In addition, two traces of random writes with
different distributions are generated as synthetic work-
loads: one with Zipfian distribution and the other with
uniform random distribution. The uniform random write
is the workload that shows the worst case behavior of
SFS, since SFS tries to utilize the skewness in workloads
during block grouping.

Since our main area of interest is in maximum write
performance, write requests in the workloads are re-
played as fast as possible in a single thread and through-

0

2

4

6

8

1 2 3 4 5 6

W
ri

te
 c

os
t

Number of group

Zipf TPC-C

Figure 5: Write cost vs. number of group. Disk utiliza-
tion is 85%.

put is measured at the application level. Native Com-
mand Queuing (NCQ) is enabled to maximize the par-
allelism in the SSD. In order to explore the system be-
havior on various disk utilizations, we sequentially filled
the SSD with enough dummy blocks, which are never
updated after creation, until the desired utilization is
reached. Since the amount of the data block update is
the same for a workload regardless of the disk utiliza-
tion, the amount of the meta-data update is also the same.
Therefore, in our experiment results, we can directly
compare performance metrics for a workload regardless
of the disk utilization.

Write Cost: To write new data in SFS, a new seg-
ment is generated by the segment cleaner. This cleaning
process will incur additional read and write operations
for the live blocks being segment-cleaned. Therefore, the
write cost of data should include the implicit I/O cost of
segment cleaning as well as the pure write cost of new
data. In this paper, we define the write cost Wc to com-
pare the write cost induced by the segment cleaning. It
is defined by three component costs – the write cost of
new data Wnew

c , the read and the write cost of the data
being segment-cleaned, Rsc

c and W sc
c – as follows:

Wc =
Wnew

c +Rsc
c +W sc

c

Wnew
c

Each component cost is defined by division of the
amount of I/O by throughput. Since the unit of write
in SFS is always a large sequential chunk, we choose
the maximum sequential write bandwidth in Table 1 for
throughputs of W sc

c and Wnew
c . Meanwhile, since the

live blocks being segment-cleaned are assumed to be
randomly located in a victim segment, the 4 KB ran-
dom read bandwidth in Table 1 is selected for the read
throughput of Rsc

c . Throughout this paper, we measured
the amount of I/O while replaying the workload trace
and thus calculated the write cost for a workload.

4.2 Effectiveness of SFS Techniques
As discussed in Section 3, the key techniques of SFS
are (a) on writing block grouping, (b) iterative segment
quantization, and (c) cost-hotness segment cleaning. To

148 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0
1
2
3
4
5
6
7
8

Zipf TPC-C

W
ri

te
 c

os
t

equi-width partitioning equi-height partitioning
iterative quantization

Figure 6: Write costs of quantization schemes. Disk uti-
lization is 85%.

0

1

2

3

4

5

Zipf TPC-C

W
ri

te
 c

os
t

cost-benefit cost-hotness

Figure 7: Write cost vs. segment cleaning scheme. Disk
utilization is 85%.

examine how each technique contributes to the overall
performance, we measured the write costs of Zipf and
TPC-C workload under 85% disk utilization on SSD-M.

First, to verify how the block grouping is effective,
we measured the write costs by varying the number of
groups from one to six. As shown in Figure 5, we can
observe that the effect of block grouping is consider-
able. When the blocks are not grouped (i.e. the num-
ber of groups is 1), the write cost is fairly high: 6.96
for Zipf and 5.98 for TPC-C. Even when the number of
groups increases to two or three, no significant reduction
in write cost is observed. However, when the number of
groups reaches four the write costs of Zipf and TPC-C
workloads significantly drop to 4.21 and 2.64, respec-
tively. In the case of five or more groups, the write cost
reduction is marginal. The additional groups do not help
much when there are already enough groups covering
hotness distribution, but may in fact increase the write
cost. Since more blocks can be deferred due to insuffi-
cient blocks in a group, this could result in more blocks
being written without grouping when creating a check-
point.

Next, we compared the write cost of the different seg-
ment quantization schemes across four groups. Figure 6
shows that our iterative segment quantization reduces
the write costs significantly. The equi-width partition-
ing scheme has the highest write cost; 143% for Zipf
and 192% for TPC-C over the iterative segment quan-
tization. The write costs of the equi-height partitioning
scheme are 115% for Zipf and 135% for TPC-C over the

iterative segment quantization.
Finally, to verify how cost-hotness policy affects per-

formance, we compared the write cost of cost-hotness
policy and cost-benefit policy with the iterative segment
quantization for four groups. As shown in Figure 7, cost-
hotness policy can reduce the write cost by approxi-
mately 7% over for both TPC-C and Zipf workload.

4.3 Performance Evaluation
4.3.1 Write Cost and Throughput
To show how SFS and LFS perform against various
workloads with different write patterns, we measured
their write costs and throughput for two synthetic work-
loads and two real workloads, and presented the perfor-
mance results in Figure 8 and 9. For LFS, we imple-
mented the cost-benefit cleaning policy in our code base
(hereafter LFS-CB). Since throughput is measured at the
application level, it includes the effects of the page cache
and thus can exceed the maximum throughput of each
device. Due to space constraints, only the experiments
on SSD-M are shown here. The performance of SFS on
different devices is shown in Section 4.3.3.

First, let us explain how much SFS can improve the
write cost. It is clear from Figure 8 that SFS significantly
reduces the write cost compared to LFS-CB. In partic-
ular, the relative write cost improvement of SFS over
LFS-CB gets higher as disk utilization increases. Since
there is not enough time for the segment cleaner to re-
organize blocks under high disk utilization, our on writ-
ing data grouping shows greater effectiveness. For the
TPC-C workload which has high update skewness, SFS
reduces the write cost by 77.4% under 90% utilization.
Although uniform random workload without skewness
is a worst case workload, SFS reduces the write cost by
27.9% under 90% utilization. This shows that SFS can
effectively reduce the write cost for a variety of work-
loads.

To see if the lower write costs in SFS will result in
higher performance, throughput is also compared. As
Figure 9 shows, SFS improves throughput of the TPC-C
workload by 151.9% and that of uniform random work-
load by 18.5% under 90% utilization. It shows that the
write cost reduction in SFS actually results in perfor-
mance improvement.

4.3.2 Segment Utilization Distribution
To further study why SFS significantly outperforms
LFS-CB, we also compared the segment utilization dis-
tribution of SFS and LFS-CB. Segment utilization is cal-
culated by dividing the number of live blocks in the
segment by the number of total blocks per segment.
After running a workload, the distribution is computed
by measuring the utilizations of all non-dummy seg-

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 149

0

5

10

15

20
W

ri
te

 c
os

t

Disk utilization

LFS-CB SFS

(a) Zipf

0
5

10
15
20
25
30
35

W
ri

te
 c

os
t

Disk utilization

LFS-CB SFS

(b) Uniform random

0

5

10

15

20

25

W
ri

te
 c

os
t

Disk utilization

LFS-CB SFS

(c) TPC-C

0
5

10
15
20
25
30
35
40

W
ri

te
 c

os
t

Disk utilization

LFS-CB SFS

(d) RES

Figure 8: Write cost vs. disk utilization with SFS and LFS-CB on SSD-M.

0
20
40
60
80

100
120
140
160

Th
ro

ug
hp

ut
 (M

B/
s)

Disk utilization

LFS-CB SFS

(a) Zipf

0
20
40
60
80

100
120

Th
ro

ug
hp

ut
 (M

B/
s)

Disk utilization

LFS-CB SFS

(b) Uniform random

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
s)

Disk utilization

LFS-CB SFS

(c) TPC-C

0
50

100
150
200
250
300
350
400

Th
ro

ug
hp

ut
 (M

B/
s)

Disk utilization

LFS-CB SFS

(d) RES

Figure 9: Throughput vs. disk utilization with SFS and LFS-CB on SSD-M.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
a
c
ti
o
n
 o

f
s
e
g
m

e
n
ts

segment utilization

SFS
LFS-CB

(a) Zipf

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
a
c
ti
o
n
 o

f
s
e
g
m

e
n
ts

segment utilization

SFS
LFS-CB

(b) Uniform random

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
a
c
ti
o
n
 o

f
s
e
g
m

e
n
ts

segment utilization

SFS
LFS-CB

(c) TPC-C

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
a
c
ti
o
n
 o

f
s
e
g
m

e
n
ts

segment utilization

SFS
LFS-CB

(d) RES

Figure 10: Segment utilization vs. fraction of segments. Disk utilization is 70%.

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

B/
s)

Disk utilization

SSD-H SSD-M SSD-L

(a) Zipf

0
20
40
60
80

100
120

Th
ro

ug
hp

ut
 (M

B/
s)

Disk utilization

SSD-H SSD-M SSD-L

(b) Uniform random

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
s)

Disk utilization

SSD-H SSD-M SSD-L

(c) TPC-C

0
50

100
150
200
250
300
350
400

Th
ro

ug
hp

ut
 (M

B/
s)

Disk utilization

SSD-H SSD-M SSD-L

(d) RES

Figure 11: Throughput vs. disk utilization with SFS on different devices.

150 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

ments on the SSD. Since SFS continuously re-groups
data blocks according to hotness, it is likely that a sharp
bimodal distribution is formed. Figure 10 shows the
segment utilization distribution when disk utilization is
70%. We can see the obvious bimodal segment distri-
bution in SFS for all workloads except for the skewless
uniform random workload. Even in the uniform random
workload, the segment utilization of SFS is skewed to
lower utilization. Under such bimodal distribution, the
segment cleaner can select as victims those segments
with few live blocks. For example, as shown in Fig-
ure 10a, SFS will select a victim segment with 10% uti-
lization, while LFS-CB will select a victim segment with
30% utilization. In this case, the number of live blocks of
a victim in SFS is just one-third of that in LFS-CB, thus
the segment cleaner copies only one-third the amount
of blocks. The reduced cleaning overhead results in a
significant performance gap between SFS and LFS-CB.
This experiment shows that SFS forms a sharp bimodal
distribution of segment utilization by data block group-
ing, and reduces the write cost.

4.3.3 Effects of SSD Performance
In the previous sections, we showed that SFS can sig-
nificantly reduce the write cost and drastically im-
prove throughput on SSD-M. As shown in Section 2.2,
SSDs have various performance characteristics. To see
whether SFS can improve the performance on various
SSDs, we compared throughput of the same workloads
on SSD-H, SSD-M, and SSD-L in Figure 11. As shown
in Table 1, SSD-H is ten-fold more expensive than SSD-
L, the maximum sequential write performance of SSD-
H is 4.5 times faster than SSD-L, and the 4 KB random
write performance of SSD-H is more than 2,500 times
faster than SSD-L. Despite the fact that these three SSDs
show such large variances in performance and price,
Figure 11 shows that SFS performs regardless of the
random write performance. The main limiting factor is
the maximum sequential write performance. This is be-
cause, except for updating superblock, SFS always gen-
erates large sequential writes to fully exploit the max-
imum bandwidth of SSD. The experiment shows that
SFS can provide high performance even on mid-range
or low-end SSD only if sequential write performance is
high enough.

4.4 Comparison with Other File Systems
Up to now, we have analyzed how SFS performs un-
der various environments with different workloads, disk
utilization, and SSDs. In this section, we compared the
performance of SFS using three other file systems, each
with different block update policies: LFS-CB for log-
ging policy, ext4 [25] for in-place-update policy, and
btrfs [10] for no-overwrite policy. To enable btrfs’ SSD

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
s)

SFS LFS-CB btrfs btrfs-nodatacow ext4

Figure 12: Throughput under different file systems.

optimization, btrfs was mounted in SSD mode. The
in-place-update mode of btrfs is also tested with the
nodatacow option enabled to further analyze the be-
havior of btrfs (hereafter btrfs-nodatacow). Four work-
loads were run on SSD-M with 85% disk utilization. To
obtain the sustained performance, we measured 8 GB
writing after 20 GB writing for aging.

First, we compared throughput of the file systems in
Figure 12. SFS significantly outperforms LFS-CB, ext4,
btrfs, and btrfs-nodatacow for all four workloads. The
average throughputs of SFS are higher than those of
other file systems: 1.6 times for LFS-CB, 7.3 times for
btrfs, 1.5 times for btrfs-nodatacow, and 1.5 times for
ext4.

Next, we compared the write amplification that repre-
sents the garbage collection overhead inside SSD. We
collected I/O traces issued by the file systems using
blktrace [8] while running four workloads, and the
traces were run on an FTL simulator, which we imple-
mented, with two FTL schemes – (a) FAST [24] as a rep-
resentative hybrid FTL scheme and (b) page-level FTL
[17]. In both schemes, we configure a large block 32 GB
NAND flash memory with 4 KB page, 512 KB block,
and 10% over-provisioned capacity. Figure 13 shows
write amplifications in FAST and page-level FTL for
the four workloads processed by each file system. In all
cases, write amplifications of log-structured file systems,
SFS and LFS-CB, are very low: 1.1 in FAST and 1.0
in page-level FTL on average. This indicates that both
FTL schemes generate 10% or less additional writings.
Log-structured file systems collect and transform ran-
dom writes at file level to sequential writes at LBA level.
This results in optimal switch merge [24] in FAST and
creates large chunks of contiguous invalid pages in page-
level FTL. In contrast, in-place-update file systems, ext4
and btrfs-nodatacow, have the largest write amplifica-
tion: 5.3 in FAST and 2.8 in page-level FTL on average.
Since in-place-update file systems update a block in-
place, random writes at file-level result in random writes
at LBA-level. This contributes to high write amplifica-
tion. Meanwhile, because btrfs never overwrites a block
and allocates a new block for every update, it is likely to
lower the average write amplification: 2.8 in FAST and

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 151

0
1
2
3
4
5
6
7

W
ri

te
 A

m
pl

ifi
ca

tio
n SFS LFS-CB btrfs btrfs-nodatacow ext4

(a) FAST

0
0.5

1
1.5

2
2.5

3
3.5

4

W
ri

te
 A

m
pl

ifi
ca

tio
n SFS LFS-CB btrfs btrfs-nodatacow ext4

(b) Page Mapping

Figure 13: Write amplification with different FTL schemes.

0
50

100
150
200
250
300

N
um

be
r

of
 E

ra
se

s (
x

10
00

) SFS LFS-CB btrfs btrfs-nodatacow ext4

(a) FAST

0
20
40
60
80

100
120
140
160

N
um

be
r

of
 E

ra
se

s (
x

10
00

) SFS LFS-CB btrfs btrfs-nodatacow ext4

(b) Page Mapping

Figure 14: Number of erases with different FTL schemes.

1.2 in page-level FTL on average.
Finally, we compared the number of block erases that

determine the lifespan of SSD in Figure 14. As can
be expected from the write amplification analysis, the
number of block erases in SFS and LFS-CB are signifi-
cantly lower than in all others. Since the segment clean-
ing overhead of SFS is lower than that of LFS-CB, the
number of block erases in SFS is smallest: LFS-CB in-
curs totally 20% more block erases in FAST and page-
level FTL. Erase counts of overwrite file systems, ext4
and btrfs-nodatacow, are significantly higher than that
of SFS. In total, ext4 incurs 3.1 times more block erases
in FAST and 1.8 times more block erases in page-level
FTL. Similarly, total erase counts of btrfs-nodatacow are
3.4 times higher in FAST and 2.0 times higher in page-
level FTL. Interestingly, btrfs incurs the largest number
of block erases: in total, 6.1 times more block erases
in FAST and 3.8 times more block erases in page-level
FTL, and in worst case 7.5 times more block erases than
SFS. Although the no-overwrite scheme in btrfs incurs
lower write amplification compared to ext4 and btrfs-
nodatacow, btrfs shows large overhead to support copy-
on-write and manage fragmentation [21, 46] induced by
random writes at file-level.

In summary, the erase count of the in-place-update
file system is high because of high write amplification.
That of the no-overwrite file system is also high due
to the number of write requests from the file system,
even at relatively low write amplification. The major-

ity of the overhead comes from supporting no-overwrite
and handling fragmentation in the file system. Frag-
mentation of the no-overwrite file system under ran-
dom write is a widely known problem [21, 46]: succes-
sive random writes eventually move all blocks into ar-
bitrary positions, and this makes all I/O access random
at the LBA level. Defragmentation, which is similar to
segment cleaning in a log-structured file system, is im-
plemented [21, 1] to reduce the performance problem
of fragmentation. Similarly to segment cleaning, it also
has additional overhead to move blocks. In case of log-
structured file systems, if we carefully choose segment
size to be aligned with the clustered block size, write
amplification can be minimal. In this case, the segment
cleaning overhead is the major overhead that increases
the erase count. SFS is shown to drastically reduce the
segment cleaning overhead. It can also be seen that the
write amplification and erase count of SFS are signifi-
cantly lower than for all other file systems. Therefore,
SFS can significantly increase the lifetime as well as the
performance of SSDs.

5 Related Work
Flash memory based storage systems and log-structured
techniques have received a lot of interests in both
academia and industry. Here we only present the papers
most related to our work.

FTL-level approaches: There are many FTL-level
approaches to improve random write performance.

152 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Among hybrid FTL schemes, FAST [24] and LAST
[22] are representative. FAST [24] enhances random
write performance by improving the log area utilization
with flexible mapping in log area. LAST [22] further
improves FAST [24] by separating random log blocks
into hot and cold regions to reduce the full merge cost.
Among page-level FTL schemes, DAC [13] and DFTL
[14] are representative. DAC [13] clusters data blocks of
the similar write frequencies into the same logical group
to reduce the garbage collection cost. DFTL [14] reduces
the required RAM size for the page-level mapping table
by using dynamic caching. FTL-level approaches exhibit
a serious limitation in that they depend almost exclu-
sively on LBA to decide sequentiality, hotness, cluster-
ing, and caching. Such approaches deteriorate when a
file system adopts a no-overwrite block allocation pol-
icy.

Disk-based log-structured file systems: There is
much research to optimize log-structured file systems
on conventional hard disks. In the hole plugging method
[44], the valid blocks in victim segments are overwritten
to the holes, i.e. invalid blocks, in other segments with
a few invalid blocks. This reduces the copying cost of
valid blocks in segment cleaning. However, this method
is beneficial only under a storage media that allows in-
place updates. Matthews et al. [26] proposed the adap-
tive method that combines cost-benefit policy and hole-
plugging. It first estimates the cost of cost-benefit pol-
icy and hole-plugging respectively, and then adaptively
selects the policy with the lower cost. However, their
cost model is based on the performance characteristics
of HDD, seek and rotational delay. WOLF [42] sepa-
rates hot pages and cold pages into two different seg-
ment buffers according to the update frequency of data
pages, and writes two segments to disk at once. This sys-
tem works well only when hot pages and cold pages are
roughly half and half, so that they can be separated into
two segments. HyLog [43] uses a hybrid approach: log-
ging for hot pages to achieve high write performance and
overwrite for cold pages to reduce the segment cleaning
cost. In HyLog, it is critical to estimate the ratio of hot
pages to determine the update policy. However, similar
to the adaptive method, its cost model is based on the
performance characteristics of HDD.

Flash-based log-structured file systems: In embed-
ded systems with limited CPU and main memory, spe-
cially designed file systems that directly access raw
flash devices are commonly used. To handle the unique
characteristics of flash memory including no in-place-
update, wear-leveling and bad block management, these
systems take the log-structured approach. JFFS2 [45],
YAFFS2 [47], and UBIFS [41] are widely used flash-
based log-structured file systems. In terms of segment
cleaning, each uses a turn-based selection algorithm

[45, 47, 41] that incorporates wear-leveling into the
segment cleaning process. This consists of two phases,
namely X and Y turns. In the X turn, it selects a victim
segment using greedy policy without considering wear-
leveling. During the Y turn, it probabilistically selects a
full valid segment as a victim block for wear-leveling.

6 Conclusion and Future Work
In this paper, we proposed a next generation file system
for SSD, SFS. It takes a log-structured approach which
transforms the random writes at the file system into the
sequential writes at the SSD, thus achieving high per-
formance and also prolonging the lifespan of the SSD.
Also, in order to exploit the skewness in I/O workloads,
SFS captures the hotness semantics at file block level
and utilizes these in grouping data eagerly on writing. In
particular, we devised an iterative segment quantization
algorithm for correct data grouping and also proposed
the cost-hotness policy for victim segment selection. Our
experimental evaluation confirms that SFS considerably
outperforms existing file systems such as LFS, ext4, and
btrfs, and prolongs the lifespan of SSDs by drastically
reducing block erase count inside the SSD.

Another interesting question is the applicability of
SFS for HDD. Though SFS was originally designed for
targeting primarily for SSDs, its key techniques are ag-
nostic to storage devices. While random write is more
serious in SSD since it hurts the lifespan as well as per-
formance, it hurts performance also in HDD due to in-
creased seek-time. We did preliminary experiments to
see if SFS is beneficial in HDD and got promising ex-
perimental results. As future work, we intend to explore
the applicability of SFS for HDD in greater depth.

Acknowledgements
We thank the anonymous reviewers and our shep-
herd Keith Smith for their feedback and comments,
which have substantially improved the content and pre-
sentation of this paper. This research was supported
by Next-Generation Information Computing Develop-
ment Program through the National Research Founda-
tion of Korea(NRF) funded by the Ministry of Edu-
cation, Science and Technology (2011-0020520). This
work was supported by the National Research Founda-
tion of Korea(NRF) grant funded by the Korea govern-
ment(MEST) (No. 2011-0027613).

References
[1] Linux 3.0. http://kernelnewbies.org/

Linux_3.0.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.
Davis, M. Manasse, and R. Panigrahy. Design
tradeoffs for SSD performance. In Proceeding of

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 153

USENIX 2008 Annual Technical Conference, pages
57–70, Berkeley, CA, USA, 2008. USENIX Asso-
ciation.

[3] S. Akyürek and K. Salem. Adaptive block rear-
rangement. ACM Trans. Comput. Syst., 13:89–121,
May 1995.

[4] D. G. Andersen and S. Swanson. Rethinking Flash
in the Data Center. IEEE Micro, 30:52–54, July
2010.

[5] L. Barroso. Warehouse-scale computing. In
Keynote in the SIGMOD’10 conference, 2010.

[6] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett,
J. Liptak, R. Rangaswami, and V. Hristidis. BORG:
block-reORGanization for self-optimizing storage
systems. In Proccedings of the 7th conference
on File and storage technologies, pages 183–196,
Berkeley, CA, USA, 2009. USENIX Association.

[7] T. Blackwell, J. Harris, and M. Seltzer. Heuris-
tic cleaning algorithms in log-structured file sys-
tems. In Proceedings of the USENIX 1995 Techni-
cal Conference Proceedings, TCON’95, pages 23–
23, Berkeley, CA, USA, 1995. USENIX Associa-
tion.

[8] blktrace. http://linux.die.net/man/8/
blktrace.

[9] L. Bouganim, B. n Jónsson, and P. Bonnet. uFLIP:
Understanding Flash IO Patterns. In Proceedings
of the Conference on Innovative Data Systems Re-
search, CIDR ’09, 2009.

[10] Btrfs. http://btrfs.wiki.kernel.org.

[11] S. D. Carson. A system for adaptive disk rearrange-
ment. Softw. Pract. Exper., 20:225–242, March
1990.

[12] F. Chen, D. A. Koufaty, and X. Zhang. Under-
standing intrinsic characteristics and system impli-
cations of flash memory based solid state drives.
In Proceedings of the eleventh international joint
conference on Measurement and modeling of com-
puter systems, SIGMETRICS ’09, pages 181–192,
New York, NY, USA, 2009. ACM.

[13] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang.
Using data clustering to improve cleaning perfor-
mance for plash memory. Softw. Pract. Exper.,
29:267–290, March 1999.

[14] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash
translation layer employing demand-based selec-
tive caching of page-level address mappings. In
Proceeding of the 14th international conference on
Architectural support for programming languages
and operating systems, ASPLOS ’09, pages 229–
240, New York, NY, USA, 2009. ACM.

[15] J. A. Hartigan and M. A. Wong. Algorithm AS
136: A K-Means Clustering Algorithm. Journal
of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):pp. 100–108, 1979.

[16] D. Hitz, J. Lau, and M. Malcolm. File system de-
sign for an NFS file server appliance. In Proceed-
ings of the USENIX Winter 1994 Technical Con-
ference, pages 19–19, Berkeley, CA, USA, 1994.
USENIX Association.

[17] A. Kawaguchi, S. Nishioka, and H. Motoda. A
flash-memory based file system. In Proceed-
ings of the USENIX 1995 Technical Conference,
TCON’95, pages 13–13, Berkeley, CA, USA,
1995. USENIX Association.

[18] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho.
A space-efficient flash translation layer for Com-
pactFlash systems. IEEE Transactions on Con-
sumer Electronics, 48:366–375, May 2002.

[19] J. Kim, S. Seo, D. Jung, J. Kim, and J. Huh.
Parameter-Aware I/O Management for Solid State
Disks (SSDs). To Appear in IEEE Transactions on
Computers, 2011.

[20] R. Konishi, K. Sato, and Y. Amagai. Filesys-
tem support for Continuous Snapshotting.
http://www.nilfs.org/papers/
ols2007-snapshot-bof.pdf, 2007.
Ottawa Linux Symposium 2007 BOFS material.

[21] J. Kára. Ext4, btrfs, and the others. In Proceed-
ing of Linux-Kongress and OpenSolaris Developer
Conference, pages 99–111, 2009.

[22] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST:
locality-aware sector translation for NAND flash
memory-based storage systems. SIGOPS Oper.
Syst. Rev., 42:36–42, October 2008.

[23] S.-W. Lee and B. Moon. Design of flash-based
DBMS: an in-page logging approach. In Proceed-
ings of the 2007 ACM SIGMOD international con-
ference on Management of data, SIGMOD ’07,
pages 55–66, New York, NY, USA, 2007. ACM.

[24] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A log buffer-based
flash translation layer using fully-associative sec-
tor translation. ACM Trans. Embed. Comput. Syst.,
6, July 2007.

[25] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger,
A. Tomas, and L. Vivier. The new ext4 filesystem:
current status and future plans. In Proceedings of
of the Linux Symposium, June 2007.

[26] J. N. Matthews, D. Roselli, A. M. Costello, R. Y.
Wang, and T. E. Anderson. Improving the per-
formance of log-structured file systems with adap-

154 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

tive methods. In Proceedings of the sixteenth ACM
symposium on Operating systems principles, SOSP
’97, pages 238–251, New York, NY, USA, 1997.
ACM.

[27] S. Mitchel. Inside the Windows 95 File System.
O’Reilly and Associates, 1997.

[28] NILFS2. http://www.nilfs.org/.

[29] R. Paul. Panelists ponder the kernel at Linux Col-
laboration Summit. http://tinyurl.com/
d7sht7, 2009.

[30] QuestSoftware. Benchmark Factory for
Databases. http://www.quest.com/
benchmark-factory/.

[31] D. Roselli, J. R. Lorch, and T. E. Anderson. A com-
parison of file system workloads. In Proceedings of
USENIX Annual Technical Conference, ATEC ’00,
pages 4–4, Berkeley, CA, USA, 2000. USENIX
Association.

[32] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file sys-
tem. ACM Trans. Comput. Syst., 10:26–52, Febru-
ary 1992.

[33] C. Ruemmler and J. Wilkes. Disk Shuffling. Tech-
nical Report HPL-CSP-91-30, Hewlett-Packard
Laboratories, October 1991.

[34] C. Ruemmler and J. Wilkes. UNIX disk access
patterns. In Proceedings of USENIX Winter 1993
Technical Conference, page 405–420, 1993.

[35] M. Seltzer, K. Bostic, M. K. Mckusick, and
C. Staelin. An implementation of a log-structured
file system for UNIX. In Proceedings of the
USENIX Winter 1993 Conference Proceedings on
USENIX Winter 1993 Conference Proceedings,
pages 3–3, Berkeley, CA, USA, 1993. USENIX
Association.

[36] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan. File system
logging versus clustering: a performance compari-
son. In Proceedings of the USENIX 1995 Technical
Conference Proceedings, TCON’95, pages 21–21,
Berkeley, CA, USA, 1995. USENIX Association.

[37] E. Seppanen, M. T. O’Keefe, and D. J. Lilja. High
performance solid state storage under Linux. In
Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies, MSST
’10, pages 1–12, Washington, DC, USA, 2010.
IEEE Computer Society.

[38] SNIA. Solid State Storage (SSS) Performance
Test Specification (PTS) Enterprise Version
1.0. http://www.snia.org/sites/

default/files/SSS_PTS_Enterprise_
v1.0.pdf, 2011.

[39] R. Stoica, M. Athanassoulis, R. Johnson, and
A. Ailamaki. Evaluating and repairing write per-
formance on flash devices. In Proceedings of the
Fifth International Workshop on Data Manage-
ment on New Hardware, DaMoN ’09, pages 9–14,
New York, NY, USA, 2009. ACM.

[40] Transaction Processing Performance Council. TPC
Benchmark C. http://www.tpc.org/
tpcc/spec/tpcc_current.pdf.

[41] UBIFS. Unsorted Block Image File System.
http://www.linux-mtd.infradead.
org/doc/ubifs.html.

[42] J. Wang and Y. Hu. A Novel Reordering Write
Buffer to Improve Write Performance of Log-
Structured File Systems. IEEE Trans. Comput.,
52:1559–1572, December 2003.

[43] W. Wang, Y. Zhao, and R. Bunt. HyLog: A High
Performance Approach to Managing Disk Layout.
In Proceedings of the 3rd USENIX Conference
on File and Storage Technologies, pages 145–158,
Berkeley, CA, USA, 2004. USENIX Association.

[44] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan.
The HP AutoRAID hierarchical storage system.
ACM Trans. Comput. Syst., 14:108–136, February
1996.

[45] D. Woodhouse. JFFS : The Journalling Flash File
System. In Proceedings of the Ottowa Linux Sym-
posium, 2001.

[46] M. Xie and L. Zefan. Performance Improvement
of Btrfs. In LinuxCon Japan, 2011.

[47] YAFFS. Yet Another Flash File System. http:
//www.yaffs.net/.

[48] ZFS. http://opensolaris.org/os/
community/zfs/.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 155

FIOS: A Fair, Efficient Flash I/O Scheduler∗

Stan Park and Kai Shen
Department of Computer Science, University of Rochester

{park, kshen}@cs.rochester.edu

Abstract

Flash-based solid-state drives (SSDs) have the poten-

tial to eliminate the I/O bottlenecks in data-intensive ap-

plications. However, the large performance discrepancy

between Flash reads and writes introduces challenges

for fair resource usage. Further, existing fair queueing

and quanta-based I/O schedulers poorly manage the I/O

anticipation for Flash I/O fairness and efficiency. Some

also suppress the I/O parallelism which causes substan-

tial performance degradation on Flash. This paper de-

velops FIOS, a new Flash I/O scheduler that attains fair-

ness and high efficiency at the same time. FIOS em-

ploys a fair I/O timeslice management with mechanisms

for read preference, parallelism, and fairness-oriented

I/O anticipation. Evaluation demonstrates that FIOS

achieves substantially better fairness and efficiency com-

pared to the Linux CFQ scheduler, the SFQ(D) fair

queueing scheduler, and the Argon quanta-based sched-

uler on several Flash-based storage devices (including

a CompactFlash card in a low-power wimpy node). In

particular, FIOS reduces the worst-case slowdown by a

factor of 2.3 or more when the read-only SPECweb work-

load runs together with the write-intensive TPC-C.

1 Introduction

NAND Flash devices [1, 20, 24] are widely used as

solid-state storage on conventional machines and low-

power wimpy nodes [2, 6]. Compared to mechanical

disks, they deliver much higher I/O performance which

can alleviate the I/O bottlenecks in critical data-intensive

applications. Emerging non-volatile memory (NVRAM)

technologies such as phase-change memory [10, 12],

memristor, and STT-MRAM promise even better perfor-

mance. However, these NVMs under today’s manufac-

turing technologies still suffer from low space density

(or high $/GB) and stability/durability problems. Until

these issues are resolved sometime in the future, NAND

Flash devices will likely remain the dominant solid-state

storage in computer systems.

∗This work was supported in part by the National Science Founda-

tion (NSF) grant CCF-0937571, NSF CAREER Award CCF-0448413,

a Google Research Award, and an IBM Faculty Award.

While Flash-based storage devices may offer substan-

tially improved I/O performance over mechanical disks,

there are critical limitations with respect to writes. First,

Flash suffers from an erase-before-write limitation. That

is, in order to overwrite a previously written location, the

said location must first be erased before writing the new

data. Further aggravating the problem is that the era-

sure granularity is typically much larger (64–256×) than

the basic I/O granularity (2–8KB). This leads to a large

read/write speed discrepancy—Flash reads can be one or

two orders of magnitude faster than writes. This is very

different frommechanical disks on which read/write per-

formance are both dominated by seek/rotation delays and

exhibit similar characteristics.

For a concurrent workload with a mixture of readers

and synchronous writers running on Flash, readers may

be blocked by writes with substantial slowdown. This

means unfair resource utilization between readers and

writers. In extreme cases, it may present vulnerability

to denial-of-service attacks—a malicious user may in-

voke a workload with a continuous stream of writes to

block readers. At the opposite end, strictly prioritiz-

ing reads over writes might lead to unfair (and some-

times extreme) slowdown for applications performing

synchronouswrites. Synchronouswrites are essential for

applications that demand high data consistency and dura-

bility, including databases, data-intensive network ser-

vices [28], persistent key-value store [2], and periodic

state checkpointing [19].

With important implications on performance and re-

liability, Flash I/O fairness warrants first-class atten-

tion in operating system I/O scheduling. Conventional

scheduling methods to achieve fairness (like fair queue-

ing [5, 18] and quanta-based scheduling [3, 36]) fail

to recognize unique Flash characteristics like substan-

tial read-blocked-by-write. In addition, I/O anticipa-

tion (temporarily idling the device in anticipation of a

soon-arriving desirable request) is sometimes necessary

to maintain fair resource utilization. While I/O antici-

pation was proposed as a performance-enhancing seek-

reduction technique for mechanical disks [17], its role

for maintaining fairness has been largely ignored. Fi-

nally, quanta-based scheduling schemes [3, 36] typically

suppress the I/O parallelism between concurrent tasks,

1

156 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

which substantially degrades the I/O efficiency on Flash

devices with internal parallelism.

This paper presents a new operating system I/O sched-

uler (called FIOS) that achieves fair Flash I/O while at-

taining high efficiency at the same time. Our scheduler

uses timeslice management to achieve fair resource uti-

lization under high I/O load. We employ read preference

to minimize read-blocked-by-write in concurrent work-

loads. We exploit device-level parallelism by issuing

multiple I/O requests simultaneously when fairness is not

violated. Finally, we manage I/O anticipation judiciously

such that we achieve fairness with limited cost of device

idling.

We implemented our scheduler in Linux and demon-

strated our results on multiple Flash devices including

three solid-state disks and a CompactFlash card in a low-

power wimpy node. Our evaluation employs several ap-

plication workloads including the SPECweb workload

on an Apache web server, TPC-C workload on a MySQL

database, and the FAWN Data Store developed specif-

ically for low-power wimpy nodes [2]. Our empirical

work also uncovered a flaw in the current Linux’s in-

consistent management of synchronous writes across file

system and I/O scheduler layers.

The rest of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 characterizes

key challenges for supporting Flash I/O fairness and ef-

ficiency that motivate our work. Section 4 presents the

design of our FIOS scheduler for Flash storage devices.

Section 5 describes some implementation notes and Sec-

tion 6 illustrates our experimental evaluation. Section 7

concludes this paper with a summary of our findings.

2 Related Work

There are significant recent research interests in I/O

performance characterization of Flash-based storage de-

vices. Agrawal et al. [1] discussed the impact of block

erasure (before writes) and parallelism to the perfor-

mance of Flash-based SSDs. Polte et al. [31] found

that Flash reads are substantially faster than writes. Past

studies identified abnormal performance issues due to

read/write interference and storage fragmentation [7],

as well as erasure-induced variance of Flash write la-

tency [9]. There is also a recognition on the im-

portance of internal parallelism to the Flash I/O effi-

ciency [8, 30] while our past work identified that the

effects of parallelism depend on specific firmware im-

plementations [30]. Previous Flash I/O characterization

results provide motivation and foundation for Flash I/O

scheduling work in this paper.

Recent research has investigated operating system

techniques to manage Flash-based storage. File system

work [11, 23, 25] has attempted to improve the sequen-

tial write patterns through the use of log-structured file

systems. These efforts are orthogonal to our research

on Flash I/O scheduling. New I/O scheduling heuris-

tics were proposed to improve Flash I/O performance.

In particular, write bundling [21], write block preferen-

tial [14], and page-aligned request merging/splitting [22]

help match I/O requests with the underlying Flash de-

vice data layout. The effectiveness of these write align-

ment techniques, however, is limited on modern SSDs

with write-order-based block mapping. Further, previ-

ous Flash I/O schedulers have paid little attention to the

issue of fairness.

Conventional I/O schedulers are largely designed to

mitigate the high seek and rotational costs in mechan-

ical disks, through elevator-style I/O request ordering

and anticipatory I/O [17]. Quality-of-service objectives

(like meeting task deadlines) were also considered in I/O

scheduling techniques, including Facade [27], Reddy et

al. [33], pClock [16], and Fahrrad [32]. Fairness was not

a primary concern in these techniques and they cannot

address the fairness problems in Flash storage devices.

Fairness-oriented resource scheduling has been ex-

tensively studied in the literature. The original fair

queueing approaches including Weighted Fair Queue-

ing (WFQ) [13], Packet-by-Packet Generalized Proces-

sor Sharing (PGPS) [29], and Start-time Fair Queueing

(SFQ) [15] take virtual time-controlled request ordering

over several task queues to maintain fairness. While

they are designed for network packet scheduling, later

fair queueing approaches like YFQ [5] and SFQ(D) [18]

are adapted to support I/O resources. In particular, they

allow the flexibility to re-order and parallelize I/O re-

quests for better efficiency. Alternatively, I/O fair queue-

ing can be achieved using dedicated per-task quanta

(as in Linux CFQ [3] and Argon [36]) and credits (as

in the SARC rate controller [37]). Achieving fairness

and efficiency on Flash storage, however, must address

unique Flash I/O characteristics like read/write perfor-

mance asymmetry and internal parallelism. A proper

management of I/O anticipation for fairness is also nec-

essary.

3 Challenges and Motivation

We characterize key challenges for supporting Flash

I/O fairness and maintaining high efficiency at the same

time. They include effects of inherent device charac-

teristics (read/write asymmetry and internal parallelism)

as well as behavior of operating system I/O schedulers

(role of I/O anticipation). These results and analysis

serve as both background and motivation for our new I/O

scheduling design.

Experiments in this section and the rest of the paper

will utilize the following Flash-based storage devices—

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 157

0 1 2

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

I/O response time (in msecs)

Intel SSD read (alone)

0 10 20

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

← all respond quickly

I/O response time (in msecs)

Mtron SSD read (alone)

0 0.2 0.4 0.6

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

I/O response time (in msecs)

Vertex SSD read (alone)

0 100 200 300

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

← all respond quickly

I/O response time (in msecs)

CompactFlash read (alone)

0 1 2

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

I/O response time (in msecs)

Intel SSD read (with write)

0 10 20

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

I/O response time (in msecs)

Mtron SSD read (with write)

0 0.2 0.4 0.6

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

I/O response time (in msecs)

Vertex SSD read (with write)

0 100 200 300

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

I/O response time (in msecs)

CompactFlash read (with write)

Figure 1: Distribution of 4KB read response time on four Flash-based storage devices. The first row shows the read

response time when a read runs alone. The second row shows the read performance at the presence of a concurrent

4KB write. The two figures in each column (for one drive) use the same X-Y scale and they can be directly compared.

Figures across different columns (for different drives) necessarily use different X-Y scales due to differing drive

characteristics. We intentionally do not show the quantitative Y values (probability densities) in the figures because

these values have no inherent meaning and they simply depend on the width of each bin in the distribution histogram.

• An Intel X25-M Flash-based SSD released in 2009.

This drive uses multi-level cells (MLC) in which a

particular cell is capable of storing multiple bits of

information.

• An Mtron Pro 7500 Flash-based SSD, released in

2008, using single-level cells (SLC).

• AnOCZVertex 3 Flash-based SSD, released in 2011,

using MLC. This drive employs the SandForce con-

troller which supports new write acceleration tech-

niques such as online compression.

• A SanDisk CompactFlash drive on a 6-Watts

“wimpy” node similar to those employed in the

FAWN array [2].

Read/Write Fairness Our first challenge to Flash I/O

fairness is that Flash writes are often substantially slower

than reads and a reader may experience excessive slow-

down at the presence of current writes. We try to un-

derstand this by measuring the read/write characteris-

tics of the four Flash devices described above. To ac-

quire the native device properties, we bypass the mem-

ory buffer, operating system I/O scheduler, and the de-

vice write cache in the measurements. We also use in-

compressible data in the I/O measurement to assess the

baseline performance for the Vertex drive (whose Sand-

Force controller performs online compression).

Our measurement employs 4KB reads or writes to

random storage locations. Figure 1 illustrates the read

response time distribution in two cases—read alone and

read at the presence of a concurrent write. Comparing

that with the read-alone performance (first row), we find

that a Flash read can experience one or two orders of

magnitude slowdown while being blocked by a concur-

rent write. Further, the Flash read response time be-

comes much less stable (or more unpredictable) when

blocked by a concurrent write. One exception to this

finding is the Vertex drive with the SandForce controller.

Writes on this drive is only modestly slower than reads

and therefore the read-block-by-write effect is much less

pronounced on this drive than on others.

We further examine the fairness between two tasks—

a reader that continuously performs 4KB reads to ran-

dom locations (issues another one immediately after the

previous one completes) and a writer that continuously

performs synchronous 4KB writes to random locations.

Figure 2 shows the slowdown ratios for reads and writes

during a concurrent execution. Results show that the

write slowdown ratios are close to one on all Flash stor-

age devices, indicating that the write performance in the

concurrent execution is similar to the write-alone per-

formance. However, reads experience 7×, 157×, 2×,

and 42× slowdown on the Intel SSD, Mtron SSD, Vertex

SSD, and the low-power CompactFlash respectively.

Existing fairness-oriented I/O schedulers [3, 5, 18, 36,

37] do not recognize the Flash read/write performance

asymmetry. Consequently they provided no support to

3

158 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0

1

2

4

6

8

10
I/

O
 s

lo
w

d
o

w
n

 r
a

ti
o

157 42

Intel SSD

Mtron SSD

Vertex SSD

CompactFlash

Read slowdown

Write slowdown

Figure 2: Slowdown of random 4KB reads and writes

in a concurrent execution. The I/O slowdown ratio for

read (or write) is the I/O latency normalized to that when

running alone.

address the problem of excessive read-blocked-by-write

on Flash.

Role of I/O Anticipation I/O anticipation (temporarily

idling the device in anticipation of a soon-arriving desir-

able request) was proposed as a performance-enhancing

seek-reduction technique for mechanical disks [17].

However, its performance effects on Flash are largely

negative because the cost of device idling far outweighs

limited benefit of I/O spatial proximity. Due to the lack

of performance gain on Flash, the Linux CFQ scheduler

disables I/O anticipation for non-rotating storage devices

like Flash. Fair queueing approaches like YFQ [5] and

SFQ(D) [18] also provide no support for I/O anticipa-

tion.

However, I/O anticipation is sometimes necessary to

maintain fair resource utilization. Without anticipation,

unfairness may arise due to the prematurely switching

task queues before the allotted I/O quantum is fully uti-

lized (in quanta-based scheduling) or the premature ad-

vance of virtual time for “inactive tasks” (in fair queueing

schedulers). Consider the simple example of a concur-

rent run involving a reader and a writer. After servicing

a read, the only queued request at the moment is a write

and therefore a work-conserving I/O scheduler will issue

it. This breaks up the allotted quantum for the reader.

Even if the reader issues another read after a short think-

time, it would be blocked by the outstanding write.

At the opposite end, the quanta-based scheduling in

Argon [36] employs aggressive I/O anticipation such that

it is willing to wait through a task queue’s full quantum

even if few requests are issued. Such excessive I/O antic-

ipation can lead to long idle time and drastically reduce

performance on Flash storage if useful work could other-

wise have been accomplished. Particularly for fast Flash

storage, a few milliseconds are often sufficient for com-

pleting a significant amount of work.

0

1

2

3

4

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

Linux CFQ, no antic.

SFQ(D), no antic.

Full−quantum antic.

Read slowdown

Write slowdown

Figure 3: Fairness of different I/O anticipation ap-

proaches for concurrent reader/writer on the Intel SSD.

We run a simple experiment to demonstrate the fair-

ness and efficiency effects of improper I/O anticipation

on Flash. We run a reader and a writer concurrently on

the Intel SSD. Each task induces some thinktime be-

tween I/O such that the thinktime time is approximately

equal to its I/O device usage time. Figure 3 shows the

reader/writer slowdown under three I/O scheduling ap-

proaches. Implementation details of the schedulers are

provided later in Section 5. The Linux CFQ and SFQ(D)

do not support I/O anticipation which leads to poor fair-

ness between the reader and writer. The full-quantum

anticipation exhibits better fairness (similar reader/writer

slowdown) but this is achieved at excessive slowdown for

both reader and writer. Such fairness is not worthwhile.

While our discussion above uses the example of a

reader running concurrently with a writer, the fairness

implication of I/O anticipation generally applies to con-

current tasks with requests of differing resource usage.

For instance, similar fairness problems with no I/O an-

ticipation or over-aggressive anticipation can arise when

a task making 4KB reads runs concurrently with a task

making 128KB reads.

Parallelism vs. Fairness Flash-based SSDs have some

built-in parallelism through the use of multiple channels.

Within each channel, each Flash package may have mul-

tiple planes which are also parallel. Figure 4 shows the

efficiency of Flash I/O parallelism for 4KB reads and

writes on our Intel, Mtron, and Vertex SSDs. We observe

that the parallel issuance of multiple reads to an SSDmay

lead to throughput enhancement. The speedup is mod-

est (about 30%) for the Mtron SLC drive but substantial

(up to 7-fold and 4-fold) for the Intel and Vertex MLC

drives. On the other hand, writes do not seem to benefit

from I/O parallelism on the Intel and Mtron drives while

write parallelism on the Vertex drive can have up to 3-

fold speedup. We also experimented with parallel I/O at

larger (>4KB) sizes and we found that the speedup of

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 159

1 2 4 8 16 32 64
0

2

4

6

8

Number of concurrent I/O operations

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
I/
O

Intel SSD

Read I/O parallelism Write I/O parallelism

1 2 4 8 16 32 64
0

0.5

1

1.5

Number of concurrent I/O operations

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
I/
O

Mtron SSD

1 2 4 8 16 32 64
0

1

2

3

4

Number of concurrent I/O operations

S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
I/
O

Vertex SSD

Figure 4: Efficiency of I/O parallelism for 4KB reads and writes on three Flash-based SSDs.

parallel request issuance is less substantial for large I/O

requests. A possible explanation is that a single large I/O

request may already benefit from the internal device par-

allelism and therefore parallel request issuance will see

less additional efficiency gain.

The internal parallelism on Flash-based SSDs has sig-

nificant implication on fairness-oriented I/O schedul-

ing. In particular, the quanta-based schedulers (like

Linux CFQ [3] and Argon [36]) only issue I/O requests

from one task queue at a time, which limits parallelism.

The rationale is probably to ease the accounting and allo-

cation of device time usage for each queue. However, the

suppression of I/O parallelism in these schedulers may

lead to substantial performance degradation on Flash.

A desired Flash I/O scheduler must exploit device-level

parallelism by issuing multiple I/O requests simultane-

ously while ensuring fairness at the same time.

4 FIOS Design

In a multiprocessing system, many resource principals

simultaneously compete for the shared I/O resource. The

scheduler should regulate I/O in such a way that accesses

are fair. When the storage device time is the bottleneck

resource in the system, fairness is the case that each re-

source principal acquires an equal amount of device time.

When the storage device is partially loaded, the critical

problem is that a read blocked by a write experiences far

worse slowdown than a write blocked by a read. Such

worst-case slowdown should be minimized.

Practical systems may desire fairness for different

kinds of resource principals. For example, a general-

purpose operating system may desire fairness support

among concurrent processes. A server system may need

fairness across simultaneously running requests [4, 34].

A shared hosting platformmay want fairness across mul-

tiple virtual machines [26]. Our design of fair Flash I/O

scheduling and much of our implementation can be gen-

erally applied to supporting arbitrary resource principals.

When describing the FIOS design, we use the term task

to represent the resource principal that receives the fair-

ness support in a concurrent execution.

Our I/O scheduler, FIOS, tries to achieve fairness

while attaining high efficiency at the same time. Based

on our evaluation and analysis in Section 3, our scheduler

contains four techniques. We first provide a fair times-

lice management that allows timeslice fragmentation and

concurrent request issuance (Section 4.1). We then sup-

port read preference to minimize the read-blocked-by-

write situations (Section 4.2). We further enable concur-

rent issuance of requests to maximize the efficiency of

device-level parallelism (Section 4.3). Finally, we devise

limited I/O anticipation to maintain fairness at minimal

device idling cost (Section 4.4).

4.1 Fair Timeslice Management

FIOS builds around a fairness mechanism of equal

timeslices which govern the amount of time a task has

access to the storage device. As each task is given equal

time-based access to the storage device, the disparity be-

tween read and write access latency of Flash cannot lead

to unequal device usage between tasks. In addition, us-

ing timeslices provides an upper bound on how long a

task may have access to the storage device, ensuring that

no task will be starved indefinitely.

Our I/O timeslices are reminiscent of the I/O quanta in

quanta-based fairness schedulers like Linux CFQ [3] and

Argon [36]. However, the previous quanta-based sched-

ulers suffer two important limitations that make them un-

suitable for Flash fairness and efficiency.

• First, their I/O quanta do not allow fragmentation—

a task must use its current quantum continuously

or it will have to wait for its next quantum in the

round-robin order. The rationale (on mechanical disk

storage devices) was that long continuous run by a

5

160 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

single task tends to require less disk seek and ro-

tation [36]. But for a task that performs I/O with

substantial inter-I/O thinktime, this design leaves two

undesirable choices—either its quantum ends prema-

turely so the remaining allotted resource is forfeited

(as in Linux CFQ) or the device idles through a task’s

full quantum even if few requests are issued (as in

Argon).

• Second, the previous quanta-based schedulers only

allow I/O requests from one task to be serviced at a

time. This was a reasonable design decision for in-

dividual mechanical disks that do not possess inter-

nal parallelism. It also has the advantage of easy re-

source accounting for each task. However, this mech-

anism suppresses Flash I/O parallelism and conse-

quently hurts I/O efficiency.

To address these problems, FIOS allows I/O times-

lice fragmentation and concurrent request issuance from

multiple tasks. Specifically, we manage timeslices in an

epoch-based fashion. An epoch is defined by a collec-

tion of equal timeslices, one per task; the I/O scheduler

should achieve fairness in each epoch. After an I/O com-

pletion, the task’s remaining timeslice is decremented by

an appropriate I/O cost. The cost is the elapsed time from

the I/O issuance to its completion when the storage de-

vice is dedicated to this request in this duration. The cost

accounting is more complicated in the presence of paral-

lel I/O from multiple tasks, which will be elaborated in

Section 4.3. A currently active task does not forfeit its

remaining timeslice should another task be selected for

service by the scheduler. In other words, the timeslice

of a task can be consumed over several non-contiguous

periods within an epoch. Once a task has consumed its

entire timeslice, it must wait until the next epoch at which

point its timeslice is refreshed.

The current epoch ends and a new epoch begins when

either 1) there is no task with non-zero remaining times-

lice in the current epoch; or 2) all tasks with non-zero

remaining timeslices make no I/O request. Fairness must

be maintained in the case of deceptive idleness [17].

Specifically, the I/O scheduler may observe a short idle

period from a task between two consecutive I/O requests

it makes. A fair-timeslice epoch should not end at such

deceptive idleness if the task has non-zero remaining

timeslice. This is addressed through fairness-oriented

I/O anticipation elaborated in Section 4.4.

4.2 Read/Write Interference Management

Our preliminary evaluation in Section 3 shows strong

interference between concurrent reads and writes on

some of the Flash drives, an effect also observed by oth-

ers [7]. Considering that reads are faster than writes,

reads suffer more dramatically from such interference

while the impact on writes appears marginal. A con-

current write not only slows down reads, it also disrupts

device-level read parallelism which leads to further effi-

ciency loss. Part of our fairness goal is to minimize the

worst-case task slowdown. For such fairness, we adopt a

policy of read preference combined with write blocking

to reduce the read-interfered-by-write occurrences. Such

a policy gives preference to shorter jobs, which tends to

produce faster mean response time than a scheduler that

is indiscriminate of job service time. This is a side bene-

fit beyond minimizing the worst-case slowdown.

When both read and write requests are queued in the

I/O scheduler, our policy of read preference will allow

read requests to be issued first. To further avoid inter-

ference from later-issued writes, we block all write re-

quests until outstanding reads are completed. Under this

approach, a read is only blocked by a write when the

read arrives at the I/O scheduler after the write has al-

ready been issued. This is due to the non-preemptibility

of I/O. Both read preference and write blocking lead to

additional queuing time for writes. Fortunately, because

reads are serviced quickly, the additional queueing time

the write request experiences is typically small compared

to the write service time. Note that the read preference

mechanism is still governed by the epoch-based times-

lice enforcement, which serves as an ultimate preventer

of write starvation.

Our preliminary evaluation in Section 3 also shows

that while the read/write interference is very strong on

some drives, it is quite modest on the Vertex SSD. On

such a drive, the benefit of read preference and write

blocking is modest and it may be outweighed by its draw-

backs of possible write starvation and suppressing the

mixed read/write parallelism. Therefore the read/write

interference management is an optional feature in FIOS

that can be disabled for drives that do not exhibit strong

read/write interference.

4.3 I/O Parallelism

Many Flash-based solid-state drives contain internal

parallelism that allows multiple I/O requests to be ser-

viced at the same time. To achieve high efficiency and

exploit the parallel architecture in Flash, multiple I/O

requests should be issued to the Flash device in paral-

lel when fairness is not violated. After issuing an I/O

request to the storage device, FIOS searches for ad-

ditional requests which may be queued, possibly from

other tasks. Any I/O requests that are found are issued

as long as the owner tasks have enough remaining times-

lices and the read/write interference management (if en-

abled) is observed.

I/O parallelism allows multiple tasks to access the stor-

age device concurrently, which complicates the account-

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 161

ing of I/O cost. In particular, a task should not be billed

by the full elapsed time from its request issuance to com-

pletion if requests from other tasks are simultaneously

outstanding on the storage device. The ideal cost ac-

counting for an I/O request should exclude the request

queueing time at the device during which it waits for

other requests and it does not consume the bottleneck re-

source. A precise accounting, however, is difficult with-

out the device-level knowledge of resource sharing be-

tween multiple outstanding requests.

We support two approaches for I/O cost accounting

under parallelism. In the first approach, we calibrate the

elapsed time of standalone read/write requests at differ-

ent data sizes and use the calibration results to assign the

cost of an I/O request online depending on its type (read

or write) and size. Our implementation further assumes a

linear model (typically with a substantial nonzero offset)

between the cost and data size of an I/O request. There-

fore we only need to calibrate four cases (read 4KB, read

128KB, write 4KB, and write 128KB) and use the lin-

ear model to estimate read/write costs at other data sizes.

In practice, such calibration is performed once for each

device, possibly at the device installation time. Note that

the need of request cost estimation is not unique to our

scheduler. Start-time Fair Queueing schedulers [15, 18]

also require a cost estimation for each request when it

just arrives (for setting its start and finish tags).

When the calibrated I/O costs are not available, our

scheduler employs a backup approach for I/O cost ac-

counting. Here we make the following assumption about

the sharing of cost for parallel I/O. During a time period

when the set of outstanding I/O requests on the storage

device remains unchanged (no issuance of a new request

or completion of an outstanding request), all outstanding

I/O requests equally share the device usage cost in this

time period. This is probabilistically true when the inter-

nal device scheduling and operation is independent of the

task owning the request. Such an assumption allows us

to account for the cost of parallel I/O with only informa-

tion available to the operating system. Since the device

parallelism may change during a request’s execution, an

accurate accounting of a request’s execution parallelism

would require carefully tracking the device parallelism

throughout its execution duration. For simplicity, we use

the device parallelism at the time of request issuance to

represent the request execution parallelism. Specifically,

the I/O cost is calculated as

Cost =
Telapsed

Pissuance

(1)

where Telapsed is the request’s elapsed time from its is-

suance to its completion, and Pissuance is the number of

outstanding requests (including the new request) at the

issuance time.

4.4 I/O Anticipation for Fairness

Between two consecutive I/O requests made by a task,

the I/O scheduler may observe a short idle period. This

idle period is unavoidable because it takes non-zero time

for the task to wake up and issue another request. Such

an idleness is deceptive for tasks that continuously make

synchronous I/O requests. The deceptive idleness can

be addressed by I/O anticipation [17], which idles the

storage device in anticipation of a soon-arriving new I/O

request. On mechanical disks, I/O anticipation can sub-

stantially improve the I/O efficiency by reducing the seek

and rotation overhead. In contrast, I/O spatial proxim-

ity has much less benefit for Flash storage. Therefore

I/O anticipation has a negative performance effect and

it must be used judiciously for the purpose of maintain-

ing fairness. Below we describe two important decisions

about fairness-oriented I/O anticipation on Flash—When

to anticipate? How long to anticipate?

When to anticipate? Anticipation is always consid-

ered when a request is just completed. We call the task

that owns the just completed request the anticipating

task.

Deceptive idleness may break fair timeslice manage-

ment when it prematurely triggers an epoch switch while

the anticipating task will quickly process the just com-

pleted I/O request and issue another one soon. I/O an-

ticipation should be utilized to remedy such a fairness

violation. Specifically, while an epoch would normally

end if there is no outstanding I/O request from a task

with non-zero remaining timeslice, we initiate an antici-

pation before the epoch switch if the anticipating task has

non-zero remaining timeslice. In this case the anticipa-

tion target can be either a read or write, though it is more

commonly write since writers are more likely delayed to

the end of an epoch under read preference.

Deceptive idleness may also break read preference.

When there are few tasks issuing reads, there may be

instances when no read request is queued. In order to

facilitate read preference, I/O anticipation is necessary

after completing a read request. If a read request has just

been completed, we anticipate for another read request to

arrive shortly. We do so rather than immediately issuing

a write to the device that may block later reads.

How long to anticipate? I/O anticipation duration

must be bounded in case the anticipated I/O request

never arrives. For maximum applicability and robust-

ness, the system should not assume any application hints

or predictor of the application inter-I/O thinktime. For

seek-reduction on mechanical disks, the I/O anticipation

bound is set to roughly the time of a disk I/O operation

which leads to competitive performance compared to the

7

162 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

optimal offline I/O anticipation. In practice, this is often

set to 6 or 8milliseconds. Our I/O anticipation bound

must be different for two reasons. First, the original an-

ticipation bound addresses the device idling’s tradeoff

with performance gain of seek reduction. Anticipation

has a negative performance effect on Flash and we in-

stead target the different tradeoff with maintaining fair-

ness. Second, the Flash I/O service time is much smaller

than that of a disk I/O operation. This exacerbates the

cost of anticipation-induced device idling on Flash.

FIOS sets the I/O anticipation bound according to

a configurable threshold of tolerable performance loss

for maintaining fairness. This threshold, α, indicates
the maximum proportion of time FIOS idles the de-

vice (while there is pending work) to anticipate for fair-

ness. Specifically, when the deceptive idleness is about

to break fairness, we anticipate for an idling time bound

of Tservice ·
α

1−α
, where Tservice is the average service time

of an I/O request for the anticipating task. This ensures

that the maximum device idle time is no more than α
proportion of the total device time in a sequence of

I/O → anticipation → I/O → anticipation → · · ·

In our implementation, FIOS maintains the per-request

I/O service time Tservice for each task using an

exponentially-weighted moving average of past request

statistics. FIOS sets α = 0.5 by default.

Anticipation-induced device idling consumes device

time and its cost must be properly accounted and at-

tributed. We charge the anticipation cost to the timeslice

of the anticipating task.

5 Implementation Notes

We implemented our FIOS scheduler with the tech-

niques of fair timeslice management, read preference,

I/O parallelism, and I/O anticipation for fairness on

Linux 2.6.33.4. As part of a general-purpose operat-

ing system, our prototype provides fairness to concur-

rent processes. This implementation can be easily ex-

tended to support request-level fairness in a server sys-

tem [4,34] or virtual machine fairness in a shared hosting

platform [26].

Our I/O anticipation may sometimes desire a very

short timer (a few hundred microseconds). The de-

fault Linux I/O schedulers use the kernel tick-based

timer. Specifically with 1000Hz kernel ticks, the min-

imum timer is 1millisecond. Further, because the ker-

nel ticks are not synchronized with the timer setup, the

next tick may occur right after the timer is set. This

means that setting the timer to fire at the next tick may

sometimes lead to almost no anticipation. Our recent re-

search [35] showed that this already happened to some

production versions of Linux with coarse-grained tick

timers. Our FIOS implementation instead uses the Linux

high-resolution timer that can be supported by the pro-

cessor hardware counter overflow interrupts. This allows

us to set precise, fine-grained anticipation timers.

For comparison purposes, we implemented two alter-

native fairness-oriented I/O schedulers in our experimen-

tal platform. The first alternative is SFQ(D) [18], which

is based on the Start-time Fair Queueing approach [15]

but also allows concurrent request issuance for I/O ef-

ficiency. The concurrency is controlled by a depth pa-

rameter D. We set the depth to 32 which allows suffi-

cient I/O parallelism in all our experiments. The SFQ(D)

scheduler requires a cost estimation for each request

when it just arrives (for setting its start and finish tags

in SFQ(D)). In our implementation, we estimate a read’s

cost as the average read service time on the device; simi-

larly, we estimate the cost of a write as the average write

service time on the device.

The second alternative is a quanta-based I/O sched-

uler like the one employed in Argon [36]. This approach

puts a high priority on achieving fair resource use (even

if some tasks only have partial I/O load). All tasks take

round robin turns of I/O quanta. Each task has exclusive

access to the storage device within its quantum. Once an

I/O quantum begins, it will last to its end, regardless of

how few requests are issued by the corresponding task.

However, a quantum will not begin, if no request from

the corresponding task is pending.

The Linux CFQ, our FIOS scheduler, and the quanta

scheduler all use the concept of per-task timeslice or

quantum. In the Linux CFQ, the default timeslice is

100milliseconds, with minor adjustment according to

task priorities. Our FIOS and quanta scheduler imple-

mentations follow the same setting of per-task times-

lice/quantum.

During our empirical work, we discovered a flaw in

Linux that it inconsistently manages synchronous writes

across the file system and I/O scheduler layers. Specif-

ically, a synchronous operation at the file system level

(such as a write on an O SYNC-opened file and I/O as part

of a fsync() call) is not necessarily considered to be

synchronous at the I/O scheduler. Note that this incon-

sistency does not lead to wrong synchronous I/O seman-

tics to the application since the file system will force a

wait on the I/O completion before returning to the ap-

plication. However, being treated as asynchronous I/O

at the I/O scheduler means that they are scheduled with

lowest priority, leading to excessive delay by the applica-

tions who perform synchronous I/O. We fixed this prob-

lem by patching mpage writepage() functions in the

Linux kernel so that file system-level synchronous op-

erations are properly considered synchronous I/O at the

scheduler.

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 163

We perform experiments on the ext4 file system. The

ext4 file system uses very fine-grained file timestamps (in

nanoseconds) so that each file write always leads to a new

modification time and thus triggers an additional meta-

data write. This is unnecessarily burdensome to many

write-intensive applications. We revert back to file times-

tamps in the granularity of seconds (which is the default

in Linux file systems that do not make customized set-

tings). In this case, at most one timestampmetadata write

per second is needed regardless how often the file is mod-

ified.

We also found that the file system journaling writes

made the evaluation results less stable and harder to in-

terpret. Therefore we disabled the journaling in our ex-

periments. We do not believe this setup choice affects

the fundamental results of our evaluation.

6 Experimental Evaluation

We compare FIOS’s fairness and efficiency against

three alternative fairness-oriented I/O schedulers—

Linux CFQ scheduler [3], SFQ(D) start-time fair queue-

ing with a concurrency depth [18], and a quanta-based

I/O scheduler similar to the one employed in Argon [36].

Implementation details for some of these schedulers

were provided in the previous section. We also compare

against the raw device I/O in which requests are issued

to the storage devices as soon as they are passed from the

file system.

We explain our fairness and efficiency metrics in eval-

uation. Fairness is defined as the case that each task gains

equal access to resources. In a concurrent execution with

n tasks, this can be observed if each task experiences a

factor of n slowdown compared to running-alone. We

call this proportional slowdown. Note that better perfor-

mance may be achieved when some tasks only contain

partial I/O load (i.e., they do not make I/O requests for

significant parts of their execution). Some tasks may also

gain better performance if they are able to utilize the al-

lotted resources more efficiently (e.g., through exploiting

device internal parallelism). However, fairness dictates

that none should exhibit substantially worse performance

than the proportional slowdown.

We also devise a metric to represent the overall system

efficiency of a concurrent execution. This metric, we call

concurrent efficiency, measures the relative throughput

of the concurrent execution to the running-alone through-

put of individual tasks. Intuitively, it assigns a base ef-

ficiency of 1.0 to each task’s running-alone performance

(at the absence of resource competition and interference)

and then weighs the throughput of a concurrent execu-

tion against the base efficiency. Consider n concurrent

tasks t1, t2, · · · , tn. Let ti’s running-alone throughput
be Thrputalonei . Let ti’s throughput in the concurrent ex-

ecution be Thrputconci . Then formally for the concurrent

execution:

Concurrent efficiency =

n∑
i=1

Thrputconci

Thrputalonei

. (2)

An efficiency of less than 1.0 indicates the overhead of

concurrent execution or the lack of full utilization of re-

sources. An efficiency of greater than 1.0 indicates the

additional benefit of concurrent execution, e.g., due to

exploiting the parallelism in the storage device.

Our experiments utilize the Flash-based storage de-

vices described in the beginning of Section 3. They

include three (Intel/Mtron/Vertex) Flash-based SSDs as

well as a low-power SanDisk CompactFlash drive.

Section 6.1 will first evaluate the fairness and effi-

ciency using a set of synthetic benchmarks with varying

I/O concurrency. Section 6.2 then provides evaluation

with realistic applications of the SPECweb workload on

an Apache web server and the TPC-C workload on a

MySQL database. Finally, Section 6.3 performs evalu-

ation on a CompactFlash drive in a low-power wimpy

node using the FAWN Data Store workload [2].

6.1 Evaluation with Synthetic I/O Benchmarks

Synthetic I/O benchmarks allow us to flexibly vary

parameters in the resource competition. Each synthetic

benchmark contains a number of tasks issuing I/O re-

quests of different types and sizes. Evaluation here con-

siders four benchmark cases:

• 1-reader 1-writer that concurrently runs a reader

continuously issuing 4KB reads and a writer contin-

uously issuing 4KB writes;

• 4-reader 4-writer that concurrently runs four 4KB

readers and four 4KB writers;

• 4-reader 4-writer (with thinktime) that is like the

above case but each task also induces some exponen-

tially distributed thinktime between I/O such that the

total thinktime time is approximately equal to its I/O

device usage time;

• 4KB-reader and 128KB-reader that concurrently

runs a reader continuously issuing 4KB reads and

another reader continuously issuing 128KB reads.

The last case helps evaluate the value of FIOS for read-

only workloads or workloads in which writes are asyn-

chronous and delayed to the background.

Fairness Figure 5 illustrates the fairness and perfor-

mance of the three read/write benchmark cases under

different I/O schedulers. On the two drives (Intel/Mtron

SSDs) with strong read/write interference, the raw device

I/O, Linux CFQ, and SFQ(D) fail to achieve fairness.

9

164 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0

2

4

6

8

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

1−reader 1−writer on Intel SSD

proportional
slowdown

←
Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

Average read latency Average write latency

0

2

4

6

8

proportional
slowdown

←

157 158

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

1−reader 1−writer on Mtron SSD

0

2

4

6

8

proportional
slowdown

←

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

1−reader 1−writer on Vertex SSD

0

8

16

24

32

proportional
slowdown

←

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

4−reader 4−writer on Intel SSD

0

8

16

24

32

proportional
slowdown

←

617 591

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

4−reader 4−writer on Mtron SSD

0

8

16

24

32

proportional
slowdown

←

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

4−reader 4−writer on Vertex SSD

0

8

16

24

32

proportional
slowdown

←

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

4−reader 4−writer (with thinktime) on Intel SSD

0

8

16

24

32

proportional
slowdown

←

368 135 238

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

4−reader 4−writer (with thinktime) on Mtron SSD

0

8

16

24

32

proportional
slowdown

←

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

4−reader 4−writer (with thinktime) on Vertex SSD

Figure 5: Fairness and performance of synthetic read/write benchmarks under different I/O schedulers. The I/O

slowdown ratio for read (or write) is the I/O latency normalized to that when running alone. Results cover three Flash-

based SSDs (corresponding to the three columns) and three workload scenarios with varying reader/writer concurrency

(corresponding to the three rows). For each case, we mark the slowdown ratio that is proportional to the total number

of tasks in the system, which is a measure of fairness.

Specifically, readers experience many times the propor-

tional slowdown while writers are virtually unaffected.

Because raw device I/O makes no attempt to schedule

I/O, reads and writes are interleaved as they are issued

by applications, severely affecting the response of read

requests. The Linux CFQ does not perform much better

because it disables I/O anticipation for non-rotating stor-

age devices like Flash and it suppresses I/O parallelism

between concurrent tasks. SFQ(D) also suffers from

poor fairness due to its lack of I/O anticipation. For in-

stance, without anticipation, two-task executions degen-

erate to one-read/one-write interleaved I/O issuance and

poor fairness. The quanta scheduler achieves better fair-

ness than other alternatives due to its aggressive main-

tenance of per-task quantum. However, it suffers from

the cost of excessive I/O anticipation and suppression of

I/O parallelism. In contrast, FIOS maintains fairness (ap-

proximately at or below proportional slowdown) in all

the evaluation cases due to our proposed techniques.

On the Vertex SSD, most schedulers achieve good fair-

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 165

0

2

4

6

8

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

4KB−reader and 128KB−reader on Intel SSD

proportional
slowdown

←
Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

Average latency of 4KB reads Average latency of 128KB reads

0

2

4

6

8

proportional
slowdown

←

12 12

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

4KB−reader and 128KB−reader on Mtron SSD

0

2

4

6

8

proportional
slowdown

←

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

I/
O

 s
lo

w
d

o
w

n
 r

a
ti
o

4KB−reader and 128KB−reader on Vertex SSD

Figure 6: Fairness and performance of two-reader (at different read sizes) benchmark under different I/O schedulers.

Intel SSD Mtron SSD Vertex SSD
0

0.5

1

1.5

2

O
v
e
ra

ll
s
y
s
te

m
 e

ff
ic

ie
n
c
y

1−reader 1−writer

Raw device I/O Linux CFQ SFQ(D) Quanta FIOS

Intel SSD Mtron SSD Vertex SSD
0

0.5

1

1.5

2

2.5

O
v
e
ra

ll
s
y
s
te

m
 e

ff
ic

ie
n
c
y

4−reader 4−writer

Intel SSD Mtron SSD Vertex SSD
0

1

2

3

4

O
v
e
ra

ll
s
y
s
te

m
 e

ff
ic

ie
n
c
y

4−reader 4−writer (with thinktime)

Intel SSD Mtron SSD Vertex SSD
0

0.5

1

1.5

2

O
v
e
ra

ll
s
y
s
te

m
 e

ff
ic

ie
n
c
y

4KB−reader and 128KB−reader

Figure 7: Overall system efficiency of synthetic I/O benchmarks under different I/O schedulers. We use the metric of

concurrent efficiency defined in Equation 2. Results cover four benchmark cases and three SSDs.

ness for the read/write benchmark cases due to its modest

read/write interference. However, the quanta scheduler

still exhibits high cost of excessive I/O anticipation.

Figure 6 shows the fairness and performance of the

4KB-reader and 128KB-reader benchmark under differ-

ent I/O schedulers. Results show that only FIOS and

quanta schedulers can maintain fairness in this case. The

benefit manifests on all three drives including the Vertex

SSD.

Efficiency We next evaluate the overall system effi-

ciency. Figure 7 illustrates the concurrent efficiency (de-

fined in Equation 2) under different I/O schedulers. Re-

sults show FIOS achieves higher efficiency when devices

allow substantial internal parallelism. These particularly

include the two cases with four readers on the Intel and

Vertex SSDs. The quanta scheduler exhibits the worst ef-

ficiency. This is because its aggressive fairness measures

lead to substantial efficiency loss.

11

166 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0

2

4

6

8

10

12
I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

4−reader 4−writer (with thinktime) on Intel SSD

Original FIOS

FIOS with I/O−proximity antic.

FIOS without anticipation

Average read latency Average write latency

Figure 8: Evaluation on the effect of fairness-oriented

I/O anticipation in FIOS on the Intel SSD.

I/O Anticipation for Fairness Figure 8 individually

evaluates the effect of fairness-oriented I/O anticipation

in FIOS. We compare with two alternatives—no antic-

ipation and anticipation for I/O proximity (as designed

in [17] and implemented in Linux). We use the 4-reader

4-writer with thinktime to demonstrate the effect of I/O

anticipation. When there is no anticipation, reads suf-

fer substantial additional latency because the deceptive

idleness sometimes breaks read preference. While some

degree of I/O anticipation is necessary, the conventional

I/O anticipation for I/O proximity leads to high perfor-

mance cost due to excessive idling. The I/O anticipation

in FIOS achieves fairness at modest performance cost.

Summary of Results FIOS exhibits better fairness

than all alternative schedulers. In terms of efficiency, it

is competitive with the best of alternative schedulers in

all cases. It is particularly efficient on the Intel SSD be-

cause it can exploit its parallelism while managing the

read-blocked-by-write problem at the same time.

Among the alternative schedulers, the quanta sched-

uler is most fair but very inefficient in many cases due

to the high cost of its aggressive I/O anticipation. The

raw device I/O is most efficient but it is unfair in many

situations, particularly in penalizing the reads.

FIOS is not only effective for maintaining fairness be-

tween reads and synchronous writes, it is also benefi-

cial for regulating read tasks with different I/O costs.

This demonstrates the value of FIOS to support read-

only workloads and workloads in which writes are asyn-

chronous and delayed to the background. Further, this

makes FIOS valuable for the Vertex drive even though

its read/write performance discrepancy is small.

0

2

4

6

8

10

12

R
e
s
p
o
n
s
e
 t
im

e
 s

lo
w

d
o
w

n
 r

a
ti
o

SPECweb and TPC−C on Intel SSD

28

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

SPECweb

TPC−C

0

2

4

6

8

10

12

R
e

s
p

o
n

s
e

 t
im

e
 s

lo
w

d
o

w
n

 r
a

ti
o

SPECweb and TPC−C on Mtron SSD

22 53

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

SPECweb

TPC−C

Figure 9: Fairness and performance of SPECweb run-

ning with TPC-C under different I/O schedulers. The

slowdown ratio for an application is the average request

response time normalized to that when the application

runs alone. Results cover two Flash-based SSDs.

6.2 Evaluation with SPECweb and TPC-C

Beyond the synthetic benchmarks, we also perform

evaluation with realistic workloads. We run the read-

only SPECweb99 workload (running on an Apache 2.2.3

web server) along with the write-intensive TPC-C (run-

ning on a MySQL 5.5.13 database). Each application

is driven by a closed-loop load generator that contains

four concurrent clients, each of which issues requests

continuously (issuing a new request right after the out-

standing one receives a response). The load generators

run on a different machine and send requests through

the network. This evaluation employs the two drives (In-

tel/Mtron SSDs) that exhibit large read/write interference

effects.

Figure 9 illustrates the fairness and performance re-

sults under different I/O schedulers. Unsurprisingly, the

read-only SPECweb tends to experience more slowdown

than the write-intensive TPC-C does on Flash storage.

Among all scheduling approaches, the quanta scheduler

exhibits the worst performance and fairness. This is due

to its excessive I/O anticipation. Realistic application

workloads (like SPECweb and TPC-C) perform signif-

icant computation and networking between storage I/O

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 167

Intel SSD Mtron SSD
0

0.5

1

1.5

O
v
e
ra

ll
s
y
s
te

m
 e

ff
ic

ie
n
c
y

SPECweb and TPC−C

Raw I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

Figure 10: Overall system efficiency of SPECweb run-

ning with TPC-C under different I/O schedulers. We use

the metric of concurrent efficiency defined in Equation 2.

Results cover two Flash-based SSDs.

that appears as inter-I/O thinktime. Idling the storage de-

vice through such thinktime (as in the quanta scheduler)

leads to excessive waste. On the other hand, the poor

fairness of the raw device I/O, Linux CFQ, and SFQ(D)

is due to a lack of I/O anticipation and poor management

of read/write interference on Flash.

FIOS exhibits better fairness and performance than all

the alternative approaches, and its performance is more

stable across the two SSDs. We measure the fairness as

the worst-case application slowdown in a concurrent ex-

ecution (SPECweb slowdown in all cases). Compared to

the quanta scheduler, FIOS reduces the worst-case slow-

down by a factor of nine or more on both SSDs. Com-

pared to the raw device I/O, FIOS reduces the worst-case

slowdown by a factor of 2.3× on the Mtron SSD. Com-

pared to the Linux CFQ, FIOS reduces the worst-case

slowdown by a factor of five on the Mtron SSD. Com-

pared to SFQ(D), FIOS reduces the worst-case slowdown

by about 3.1× on the Intel SSD.

Figure 10 shows the overall system efficiency of

SPECweb running with TPC-C under different I/O

schedulers. Results show that FIOS improves the effi-

ciency above the best alternative scheduler by 14% and

18% on the Intel and Mtron SSDs respectively. FIOS

achieves high efficiency due to its proper management of

read/write interference, I/O parallelism, and controlled

I/O anticipation.

6.3 Evaluation on Low-Power CompactFlash

We also test FIOS on a low-power wimpy node like

the ones used in the FAWN work [2]. Specifically, the

node contains an Alix board with a single-core 500MHz

AMD Geode CPU, 256MB SDRAM memory, and a

16GB SanDisk CompactFlash drive. The full node con-

sumes about 5.9Watts of power at peak load. The Com-

pactFlash, while also NAND Flash-based, is significantly

less sophisticated than solid state drives. CompactFlash

0

1

2

3

T
a

s
k
 s

lo
w

d
o

w
n

 r
a

ti
o

← proportional slowdown

Raw device I/O

Linux CFQ

SFQ(D)

Quanta

FIOS

FAWNDS hash gets FAWNDS hash puts

Figure 11: Performance of concurrent FAWN Data Store

hash gets (data reads) and hash puts (data writes) on a

low-power CompactFlash. The slowdown ratio for a task

is defined as its running-alone throughput divided by its

throughput at the concurrent run. Higher slowdown ratio

means worst performance.

cards lack the sophisticated firmware and degree of par-

allelism available in solid-state drives. Despite these dif-

ferences, CompactFlash still exhibits some of the intrin-

sic Flash characteristics that FIOS is designed to consider

and exploit.

We requested and acquired the FAWN Data Store ap-

plication from the authors [2]. In our experiments, we

concurrently run two FAWN Data Store tasks, one per-

forming hash gets (data reads) and the other performing

hash puts (data writes). We run hash puts synchronously

to ensure that the data is made persistent before its re-

sult is externalized to client. These tasks run against data

stores of 1million records.

Figure 11 presents the resulting get/put slowdown ra-

tios under different I/O schedulers. Only FIOS keeps

both hash gets and puts below the proportional slow-

down. The quanta scheduler also exhibits good fair-

ness because its suppression of parallelism has no harm-

ful effect on the CompactFlash which does not allow

any I/O parallelism. Further, the quanta scheduler’s ex-

cessive I/O anticipation causes little efficiency loss for

FAWN Data Store that performs batched I/O with almost

no inter-I/O thinktime. Under all other approaches (raw

device I/O, Linux CFQ, and SFQ(D)), hash gets expe-

rience worse performance degradation than the propor-

tional slowdown, which indicates poor fairness.

7 Conclusion

Flash-based storage devices are capable of alleviating

I/O bottlenecks in data-intensive applications. However,

the unique performance characteristics of Flash storage

13

168 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

must be taken into account in order to fully exploit their

superior I/O capabilities while offering fair access to ap-

plications. In this paper, we have characterized the per-

formance of several Flash-based storage devices. We

observed that during concurrent access, writes can dra-

matically affect the response time of read requests. We

also observed that Flash-based storage exhibits support

for some degree of parallel I/O, though the benefit of

parallel I/O varies across devices. Further, the lack of

seek/rotation overhead eliminates the performance bene-

fit of anticipatory I/O, but proper I/O anticipation is still

needed for the purpose of fairness.

Based on these motivations, we designed a new Flash

I/O scheduling approach that contains four essential

techniques to ensure fairness with high efficiency—fair

timeslice management that allows timeslice fragmenta-

tion and concurrent request issuance, read/write interfer-

ence management, I/O parallelism, and I/O anticipation

for fairness. We implemented these design principles in

a new I/O scheduler for Linux.

We evaluated our I/O scheduler alongside three alter-

native fairness-oriented I/O schedulers (Linux CFQ [3],

SFQ(D) [18], and a quanta-based I/O scheduler similar

to that in Argon [36]). Our evaluation uses a variety

of synthetic benchmarks and realistic application work-

loads on several Flash-based storage devices (including a

CompactFlash card in a low-powerwimpy node). The re-

sults expose the shortcomings of existing I/O schedulers

while validating our design principles for Flash resource

management. In conclusion, this paper makes the case

that fairness warrants the first-class concern in Flash I/O

scheduling and it is possible to achieve fairness while at-

taining high efficiency.

While FIOS is primarily motivated by the Flash

read/write interference, we also demonstrate that FIOS is

beneficial for regulating the resource usage fairness be-

tween read tasks with different I/O costs (a task perform-

ing small reads runs concurrently with a task performing

large reads). This illustrates the value of FIOS to support

read-only workloads and workloads in which writes are

asynchronous and delayed to the background. Further,

FIOS is also valuable for Flash drives that have modest

read/write performance discrepancy.

Acknowledgments We thank Amal Fahad (University

of Rochester) for setting up the low-power wimpy node

for our evaluation. We also thank Zhuan Chen (Univer-

sity of Rochester) for device installation and machine

maintenance when both authors were away from the

school. Finally, we thank the anonymous FAST review-

ers and our shepherd Randal Burns for comments that

helped improve this paper.

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for SSD

performance. In USENIX Annual Technical Conf., pages

57–70, Boston, MA, June 2008.

[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-

ishayee, L. Tan, and V. Vasudevan. FAWN: A fast array

of wimpy nodes. In SOSP’09: 22th ACM Symp. on Oper-

ating Systems Principles, pages 1–14, Big Sky, MT, Oct.

2009.

[3] J. Axboe. Linux block IO — present and future. In Ot-

tawa Linux Symp., pages 51–61, Ottawa, Canada, July

2004.

[4] G. Banga, P. Druschel, and J. Mogul. Resource contain-

ers: A new facility for resource management in server

systems. In OSDI’99: Third USENIX Symp. on Oper-

ating Systems Design and Implementation, pages 45–58,

New Orleans, LA, Feb. 1999.

[5] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Sil-

berschatz. Disk scheduling with quality of service quar-

antees. In IEEE Int’l Conf. on Multimedia Computing and

Systems, pages 400–405, Florence , Italy, June 1999.

[6] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gor-

don: Using flash memory to build fast, power-efficient

clusters for data-intensive applications. In ASPLOS’09:

14th Int’l Conf. on Architectural Support for Program-

ming Languages and Operating Systems, pages 217–228,

Washington, DC, Mar. 2009.

[7] F. Chen, D. A. Koufaty, and X. Zhang. Understanding

intrinsic characteristics and system implications of Flash

memory based solid state drives. In ACM SIGMETRICS,

pages 181–192, Seattle, WA, June 2009.

[8] F. Chen, R. Lee, and X. Zhang. Essential roles of ex-

ploiting internal parallelism of Flash memory based solid

state drives in high-speed data processing. In HPCA’11:

17th IEEE Symp. on High Performance Computer Archi-

tecture, pages 266–277, San Antonio, TX, Feb. 2011.

[9] S. Chen. FlashLogging: Exploiting Flash devices for syn-

chronous logging performance. In SIGMOD’09: 35th

Int’l Conf. on Management of Data, pages 73–86, Provi-

dence, RI, June 2009.

[10] Choi et al. A 20nm 1.8V 8Gb PRAM with 40MB/s pro-

gram bandwidth. In ISSCC’12: Int’l Solid-State Circuits

Conf., San Francisco, CA, Feb. 2012.

[11] H. Dai, M. Neufeld, and R. Han. ELF: An efficient log-

structured Flash file system for micro sensor nodes. In

SenSys’04: Second ACM Conf. on Embedded Networked

Sensor Systems, pages 176–187, Baltimore, MD, Nov.

2004.

[12] De Sandre et al. A 4 Mb LV MOS-selected embedded

phase change memory in 90 nm standard CMOS technol-

ogy. IEEE Journal of Solid-State Circuits, 46(1):52–63,

Jan. 2011.

14

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 169

[13] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-

ulation of a fair queueing algorithm. In ACM SIGCOMM,

pages 1–12, Austin, TX, Sept. 1989.

[14] M. Dunn and A. L. N. Reddy. A new I/O scheduler for

solid state devices. Technical Report TAMU-ECE-2009-

02, Dept. of Electrical and Computer Engineering, Texas

A&M Univ., Apr. 2009.

[15] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair

queueing: A scheduling algorithm for integrated services

packet switching networks. IEEE/ACM Trans. on Net-

working, 5(5):690–704, Oct. 1997.

[16] A. Gulati, A. Merchant, and P. J. Varman. pClock: An

arrival curve based approach for QoS guarantees in shared

storage systems. In ACM SIGMETRICS, pages 13–24,

San Diego, CA, June 2007.

[17] S. Iyer and P. Druschel. Anticipatory scheduling: A disk

scheduling framework to overcome deceptive idleness in

synchronous I/O. In SOSP’01: 18th ACM Symp. on Oper-

ating Systems Principles, pages 117–130, Banff, Canada,

Oct. 2001.

[18] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional

sharing for a storage service utility. In ACM SIGMET-

RICS, pages 37–48, New York, NY, June 2004.

[19] T. Kelly, A. H. Karp, M. Stiegler, T. Close, and H. K.

Cho. Output-valid rollback-recovery. Technical Report

HPL-2010-155, HP Laboratories, Oct. 2010.

[20] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho.

A space-efficient Flash translation layer for Compact-

Flash systems. IEEE Trans. on Consumer Electronics,

48(2):366–375, May 2002.

[21] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh.

Disk schedulers for solid state drives. In EMSOFT’09:

7th ACM Conf. on Embedded Software, pages 295–304,

Grenoble, France, Oct. 2009.

[22] J. Kim, S. Seo, D. Jung, J.-S. Kim, and J. Huh. Parameter-

aware I/O management for solid state disks (SSDs). IEEE

Trans. on Computers, Apr. 2011.

[23] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and

S. Moriai. The Linux implementation of a log-structured

file system. ACM SIGOPS Operating Systems Review,

40(3):102–107, July 2006.

[24] J. Lee, S. Kim, H. Kwon, C. Hyun, S. Ahn, J. Choi,

D. Lee, and S. H. Noh. Block recycling schemes and their

cost-based optimization in NAND Flash memory based

storage system. In EMSOFT’07: 7th ACM Conf. on Em-

bedded Software, pages 174–182, Salzburg, Austria, Oct.

2007.

[25] A. Leventhal. Flash storage memory. Communications of

the ACM, 51(7):47–51, July 2008.

[26] P. Lu and K. Shen. Virtual machine memory access trac-

ing with hypervisor exclusive cache. In USENIX An-

nual Technical Conf., pages 29–43, Santa Clara, CA, June

2007.

[27] C. R. Lumb, A. Merchant, and G. A. Alvarez. Facade:

Virtual storage devices with performance guarantees. In

FAST’03: Second USENIX Conf. on File and Storage

Technologies, pages 131–144, San Francisco, CA, Apr.

2003.

[28] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and

J. Flinn. Rethink the sync. In OSDI’06: 7th USENIX

Symp. on Operating Systems Design and Implementation,

Seattle, WA, Nov. 2006.

[29] A. K. Parekh. A generalized processor sharing approach

to flow control in integrated services networks. PhD the-

sis, Dept. Elec. Eng. Comput. Sci., MIT, 1992.

[30] S. Park and K. Shen. A performance evaluation of scien-

tific I/O workloads on flash-based SSDs. In IASDS’09:

Workshop on Interfaces and Architectures for Scientific

Data Storage, New Orleans, LA, Sept. 2009.

[31] M. Polte, J. Simsa, and G. Gibson. Comparing perfor-

mance of solid state devices and mechanical disks. In

3rd Petascale Data Storage Workshop, Austin, TX, Nov.

2008.

[32] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M.

Wong, and C. Maltzahn. Efficient guaranteed disk request

scheduling with Fahrrad. In EuroSys’08: Third ACM Eu-

ropean Conf. on Computer Systems, pages 13–25, Glas-

gow, Scotland, Apr. 2008.

[33] A. L. N. Reddy, J. Wyllie, and K. B. R. Wijayaratne. Disk

scheduling in a multimedia I/O system. ACM Trans. on

Multimedia Computing, Communications, and Applica-

tions, 1(1):37–59, Feb. 2005.

[34] K. Shen. Request behavior variations. In ASPLOS’10:

15th Int’l Conf. on Architectural Support for Program-

ming Languages and Operating Systems, pages 103–116,

Pittsburg, PA, Mar. 2010.

[35] K. Shen, C. Stewart, C. Li, and X. Li. Reference-driven

performance anomaly identification. In ACM SIGMET-

RICS, pages 85–96, Seattle, WA, June 2009.

[36] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.

Ganger. Argon: Performance insulation for shared stor-

age servers. In FAST’07: 5th USENIX Conf. on File and

Storage Technologies, pages 61–76, San Jose, CA, Feb.

2007.

[37] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska,

and E. Riedel. Storage performance virtualization via

throughput and latency control. ACM Trans. on Storage,

2(3):283–308, Aug. 2006.

15

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 171

Shredder: GPU-Accelerated Incremental Storage and Computation

Pramod Bhatotia† Rodrigo Rodrigues† Akshat Verma‡

†Max Planck Institute for Software Systems (MPI-SWS) and ‡IBM Research – India

Abstract
Redundancy elimination using data deduplication and

incremental data processing has emerged as an important
technique to minimize storage and computation require-
ments in data center computing. In this paper, we present
the design, implementation and evaluation of Shredder,
a high performance content-based chunking framework
for supporting incremental storage and computation sys-
tems. Shredder exploits the massively parallel process-
ing power of GPUs to overcome the CPU bottlenecks of
content-based chunking in a cost-effective manner. Un-
like previous uses of GPUs, which have focused on ap-
plications where computation costs are dominant, Shred-
der is designed to operate in both compute-and data-
intensive environments. To allow this, Shredder provides
several novel optimizations aimed at reducing the cost
of transferring data between host (CPU) and GPU, fully
utilizing the multicore architecture at the host, and re-
ducing GPU memory access latencies. With our opti-
mizations, Shredder achieves a speedup of over 5X for
chunking bandwidth compared to our optimized parallel
implementation without a GPU on the same host system.
Furthermore, we present two real world applications of
Shredder: an extension to HDFS, which serves as a basis
for incremental MapReduce computations, and an incre-
mental cloud backup system. In both contexts, Shred-
der detects redundancies in the input data across succes-
sive runs, leading to signicant savings in storage, com-
putation, and end-to-end completion times.

1 Introduction
With the growth in popularity of Internet services, on-
line data stored in data centers is increasing at an ever-
growing pace. In 2010 alone, mankind is estimated to
have produced 1,200 exabytes of data [1]. As a result
of this “data deluge,” managing storage and computation
over this data has become one of the most challenging
tasks in data center computing.
A key observation that allows us to address this chal-

lenge is that a large fraction of the data that is produced

and the computations performed over this data are redun-
dant; hence, not storing redundant data or performing re-
dundant computation can lead to signicant savings in
terms of both storage and computational resources. To
make use of redundancy elimination, there exist a se-
ries of research and product proposals (detailed in §8)
for performing data deduplication and incremental com-
putations, which avoid storing or computing tasks based
on redundant data, respectively.
Both data deduplication schemes and incremental

computations rely on storage systems to detect duplicate
content. In particular, the most effective way to perform
this detection is using content-based chunking, a tech-
nique that was pioneered in the context of the LBFS [33]
le system, where chunk boundaries within a le are dic-
tated by the presence of certain content instead of a xed
offset. Even though content-based chunking is useful, it
is a computationally demanding task. Chunking meth-
ods need to scan the entire le contents, computing a n-
gerprint over a sliding window of the data. This high
computational cost has caused some systems to simplify
the ngerprinting scheme by employing sampling tech-
niques, which can lead to missed opportunities for elim-
inating redundancies [9]. In other cases, systems skip
content-based chunking entirely, thus forgoing the op-
portunity to reuse identical content in similar, but not
identical les [22]. Therefore, as we get ooded with in-
creasing amounts of data, addressing this computational
bottleneck becomes a pressing issue in the design of stor-
age systems for data center-scale systems.
To address this issue we propose Shredder, a sys-

tem for performing efcient content-based chunking to
support scalable incremental storage and computations.
Shredder builds on the observation that neither the exclu-
sive use of multicore CPUs nor the specialized hardware
accelerators is sufcient to deal with large-scale data in
a cost-effective manner: multicore CPUs alone cannot
sustain a high throughput, whereas the specialized hard-
ware accelerators lack programmability for other tasks

172 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

and are costly. As an alternative, we explore employing
modern GPUs to meet these high computational require-
ments (while, as evidenced by prior research [23, 26],
also allowing for a low operational cost). The applica-
tion of GPUs in this setting, however, raises a signicant
challenge — while GPUs have shown to produce per-
formance improvements for computation intensive ap-
plications, where CPU dominates the overall cost enve-
lope [23, 24, 26, 43, 44], it still remains to be proven that
GPUs are equally as effective for data intensive applica-
tions, which need to perform large data transfers for a
signicantly smaller amount of processing.
To make the use of GPUs effective in the context of

storage systems, we designed several novel techniques,
which we apply to two proof-of-concept applications. In
particular, Shredder makes the following technical con-
tributions:
GPU acceleration framework. We identied three key
challenges in using GPUs for data intensive applications,
and addressed them with the following techniques:

• Asynchronous execution. To minimize the cost of
transferring data between host (CPU) and GPU, we
use a double buffering scheme. This enables GPUs
to perform computations while simultaneously data
is transferred in the background. To support this
background data transfer, we also introduce a ring
buffer of pinned memory regions.

• Streaming pipeline. To fully utilize the availabil-
ity of a multicore architecture at the host, we use
a pipelined execution for the different stages of
content-based chunking.

• Memory coalescing. Finally, because of the high
degree of parallelism, memory latencies in the GPU
will be high due to the presence of random ac-
cess across multiple bank rows of GPU memory,
which leads to a higher number of conicts. We
address this problemwith a cooperativememory ac-
cess scheme, which reduces the number of fetch re-
quests and bank conicts.

Use cases. We present two applications of Shredder to
accelerate storage systems. The rst case study is a
system called Inc-HDFS, a le-system that is based on
HDFS but is designed to support incremental computa-
tions for MapReduce jobs. Inc-HDFS leverages Shred-
der to provide a mechanism for identifying similarities
in the input data of consecutive runs of the same MapRe-
duce job. In this way Inc-HDFS enables efcient incre-
mental computation, where only the tasks whose inputs
have changed need to be recomputed. The second case
study is a backup architecture for a cloud environment,
where VMs are periodically backed up. We use Shred-
der on a backup server and use content-based chunking

to perform efcient deduplication and signicantly im-
prove backup bandwidth.
We present experimental results that establish the ef-

fectiveness of the individual techniques we propose, as
well as the ability of Shredder to improve the perfor-
mance of the two real-world storage systems.
The rest of the paper is organized as follows. In Sec-

tion 2, we provide background on content-based chunk-
ing, and discuss specic architectural features of GPUs.
An overview of the GPU acceleration framework and its
scalability challenges are covered in Section 3. Section 4
presents present a detailed system design, namely sev-
eral performance optimizations for increasing Shredder’s
throughput. We present the implementation and evalua-
tion of Shredder in Section 5. We cover the two case
studies in Section 6 and Section 7. Finally, we discuss
related work in Section 8, and conclude in Section 9.

2 Background
In this section, we rst present background on content-
based chunking, to explain its cost and potential for par-
allelization. We then provide a brief overviewof the mas-
sively parallel compute architecture of GPUs, namely
their memory subsystem and its limitations.

2.1 Content-based Chunking
Identication of duplicate data blocks has been used for
deduplication systems in the context of both storage [33,
39] and incremental computation frameworks [14]. For
storage systems, the duplicate data blocks need not to be
stored and, in the case of incremental computations, a
sub-computation based on the duplicate content may be
reused. Duplicate identication essentially consists of:

1. Chunking: This is the process of dividing the data
set into chunks in a way that aids in the detection of
duplicate data.

2. Hashing: This is the process of computing a
collision-resistant hash of the chunk.

3. Matching: This is the process of checking if the
hash for a chunk already exists in the index. If it ex-
ists then there is a duplicate chunk, else the chunk
is new and its hash is added to the index.

This paper focuses on the design of chunking schemes
(step 1), since this can be, in practice, one of the main
bottlenecks of a system that tries to perform this class
of optimizations [9, 22]. Thus we begin by giving some
background on how chunking is performed.
One of the most popular approaches for content-based

chunking is to compute a Rabin ngerprint [40] over slid-
ing windows of w contiguous bytes. The hash values
produced by the ngerprinting scheme are used to create
chunk boundaries by starting new chunks whenever the
computed hash matches one of a set of markers (e.g., its

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 173

value mod p is lower or equal to a constant). In more
detail, given a w-bit sequence, it is represented as a poly-
nomial of degree w−1 over the nite eld GF(2):

f (x) = m0+m1x+ · · ·+mw−1xw−1 (1)

Given this polynomial, an irreducible polynomial div(x)
of degree k is chosen. The ngerprint of the original bit
sequence is the remainder r(x) obtained by division of
f (x) using div(x). Chunk boundary is dened when the
ngerprint takes some pre-dened specic values called
markers. In addition, practical schemes dene a mini-
mum min and maximum max chunk size, which implies
that after nding a marker the ngerprint computation
can skip min bytes, and that a marker is always set when
a total of max bytes (including the skipped portion) have
been scanned without nding a marker. The minimum
size limits the metadata overhead for index management
and the maximum size limits the size of the RAM buffers
that are required. Throughout the rest of the paper, we
will use min = 0 and max = ∞ unless otherwise noted.
Rabin ngerprinting is computationally very expen-

sive. To minimize the computation cost, there has been
work on reducing chunking time by using sampling tech-
niques, where only a subset of bytes are used for chunk
identication (e.g., SampleByte [9]). However, such ap-
proaches are limiting because they are suited only for
small sized chunks, as skipping a large number of bytes
leads to missed opportunities for deduplication. Thus,
Rabin ngerprinting still remains one of the most pop-
ular chunking schemes, and reducing its computational
cost presents a fundamental challenge for improving sys-
tems that make use of duplicate identication.
When minimum and maximum chunk sizes are not re-

quired, chunking can be parallelized in a way that differ-
ent threads operate on different parts of the data com-
pletely independent of each other, with the exception
of a small overlap of the size of the sliding window (w
bytes) near partition boundaries. Using min and max
chunk sizes complicates this task, though schemes exist
to achieve efcient parallelization in this setting [29, 31].

2.2 General-Purpose Computing on GPUs
GPU architecture. GPUs are highly parallel, multi-
threaded, many-core processors with tremendous com-
putational power and very high memory bandwidth. The
high computational power is derived from the special-
ized design of GPUs, where more transistors are de-
voted to simple data processing units (ALUs) rather
than used to integrate sophisticated pre-fetchers, control
ows and data caches. Hence, GPUs are well-suited for
data-parallel computations with high arithmetic intensity
rather than data caching and ow control.
Figure 1 illustrates a simplied architecture of a GPU.

A GPU can be modeled as a set of Streaming Multipro-

CPU

(Host)

GPU (Device)

D
e

v
ice

M
e

m
o

ry

Host Memory

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Shared

Memory

Reg

Cache

PCI

SP

SP

SP

SP

SP

SP SP

SP

Figure 1: A simplied view of the GPU architecture.

cessors (SMs), each consisting of a set of scalar proces-
sor cores (SPs). An SM works as SIMT (Single Instruc-
tion, Multiple Threads), where the SPs of a multiproces-
sor execute the same instruction simultaneously but on
different data elements. The data memory in the GPU
is organized as multiple hierarchical spaces for threads
in execution. The GPU has a large high-bandwidth de-
vice memory with high latency. Each SM also contains
a very fast, low latency on-chip shared memory to be
shared among its SPs. Also, each thread has access to a
private local memory.
Overall, a GPU architecture differs from a traditional

processor architecture in the following ways: (i) an or-
der of magnitude higher number of arithmetic units; (ii)
minimal support for prefetching and buffers for outstand-
ing instructions; (iii) high memory access latencies and
higher memory bandwidth.
Programming model. The CUDA [6] programming
model is amongst the most popular programming mod-
els to extract parallelism and scale applications on GPUs.
In this programming model, a host program runs on the
CPU and launches a kernel program to be executed on
the GPU device in parallel. The kernel executes as a grid
of one or more thread blocks, each of which is dynam-
ically scheduled to be executed on a single SM. Each
thread block consists of a group of threads that cooper-
ate with each other by synchronizing their execution and
sharing multiprocessor resources such as shared memory
and registers. Threads within a thread block get executed
on a multiprocessor in scheduling units of 32 threads,
called a warp. A half-warp is either the rst or second
half of a warp.

2.3 SDRAM Access Model
Ofoading chunking to the GPU requires a large amount
of data to be transferred from the host to the GPU mem-
ory. Thus, we need to understand the performance of
the memory subsystem in the GPU, since it is critical to
chunking performance.

3

174 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

The global memory in the Nvidia C2050 GPU is
GDDR5, which is based on the DDR3 memory archi-
tecture [2]. Memory is arranged into banks and banks
are organized into rows. Every bank also has a sense
amplier, into which a row must be loaded before any
data from the row can be read by the GPU. Whenever
a memory location is accessed, an ACT command se-
lects the corresponding bank and brings the row contain-
ing the memory location into a sense amplier. The ap-
propriate word is then transferred from the sense ampli-
er. When an access to a second memory location is
performed within the same row, the data is transferred
directly from the sense amplier. On the other hand, if
the data is accessed from a different row in the bank,
a PRE (pre-charge) command writes the previous data
back from the sense amplier to the memory row. A sec-
ond ACT command is performed to bring the row into
the sense amplier.
Note that both ACT and PRE commands are high la-

tency operations that contribute signicantly to overall
memory latency. If multiple threads access data from
different rows of the same bank in parallel, that sense
amplier is continually activated (ACT) and pre-charged
(PRE) with different rows, leading to a phenomenon
called bank conict. In particular, a high degree of un-
coordinated parallel access to the memory subsystem is
likely to result in a large number of bank conicts.

3 System Overview and Challenges
In this section, we rst present the basic design of Shred-
der. Next, we explain the main challenges in scaling up
our basic design.

3.1 Basic GPU-Accelerated Framework
Figure 2 depicts the workow of the basic design for the
Shredder chunking service. In this initial design, a multi-
threaded program running in user mode on the host (i.e.,
on the CPU) drives the GPU-based computations. The
framework is composed of four major modules. First, the
Reader thread on the host receives the data stream (e.g.,
from a SAN), and places it in the memory of the host for
content-based chunking. After that, the Transfer thread
allocates global memory on the GPU and uses the DMA
controller to transfer input data from the host memory
to the allocated GPU (device) memory. Once the data
transfer from the CPU to the GPU is complete, the host
launches the Chunking kernel for parallel sliding win-
dow computations on the GPU. Once the chunking ker-
nel nds all resulting chunk boundaries for the input data,
the Store thread transfers the resulting chunk boundaries
from the device memory to the host memory. When min-
imum and maximum chunk sizes are set, the Store thread
also adjusts the chunk set accordingly. Thereafter, the
Store thread uses an upcall to notify the chunk bound-

CPU (Host) GPU (Device)

Reader
Chunking

Kernel

Data for

Chunking
Chunked

Data

Transfer

Store

Figure 2: Basic workow of Shredder.

aries to the application that is using the Shredder library.
The chunking kernel is responsible for performing par-

allel content-based chunking of the data present in the
global memory of the GPU. Accesses to the data are per-
formed by multiple threads that are created on the GPU
by launching the chunking kernel. The data in the GPU
memory is divided into equal sized sub-streams, as many
as the number of threads. Each thread is responsible for
handling one of these sub-streams. For each sub-stream,
a thread computes a Rabin ngerprint in a sliding win-
dow manner. In particular, each thread examines a 48-
byte region from its assigned sub-stream, and computes
the Rabin ngerprint for the selected region. The thread
compares the resulting low-order 13 bits of the region’s
ngerprint with a pre-dened marker. This leads to an
expected chunk size of 4 KB. If the ngerprint matches
the marker then the thread denes that particular region
as the end of a chunk boundary. The thread continues to
compute the Rabin ngerprint in a sliding window man-
ner in search of new chunk boundaries by shifting a byte
forward in the sub-stream, and repeating this process.

3.2 Scalability Challenges
The basic design for Shredder that we presented in
the previous section corresponds to the traditional way
in which GPU-assisted applications are implemented.
This design has proven to be sufcient for computation-
intensive applications, where the computation costs can
dwarf the cost of transferring the data to the GPU mem-
ory and accessing that memory from the GPU’s cores.
However, it results in only modest performance gains
for data intensive applications that perform single-pass
processing over large amounts of data, with a compu-
tational cost that is signicantly lower than traditional
GPU-assisted applications.
To understand why this is the case, we present in Ta-

ble 1 some key performance characteristics of a specic
GPU architecture (NVidia Tesla C2050), which helps us
explain some important bottlenecks for GPU-accelerated
applications. In particular, and as we will demonstrate in
subsequent sections, we identied the following bottle-

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 175

Parameter Value
GPU Processing Capacity 1030 GFlops
Reader (I/O) Bandwidth 2 GBps
Host-to-Device Bandwidth 5.406 GBps
Device-to-Host Bandwidth 5.129 GBps
Device Memory Latency 400 - 600 cycles
Device Memory Bandwidth 144 GBps
Shared Memory Latency L1 latency (a few cycles)

Table 1: Performance characteristics of the GPU (NVidia
Tesla C2050)

necks in the basic design of Shredder.

GPU device memory bottleneck. The fact that data
needs to be transferred to the GPU memory before being
processed by the GPU represents a serial dependency:
such processing only starts to execute after the corre-
sponding transfer concludes.

Host bottleneck. The host machine performs three se-
rialized steps (performed by the Reader, Transfer, and
Store threads) in each iteration. Since these three steps
are inherently dependent on each other for a given input
buffer, this serial execution becomes a bottleneck at host.
Also, given the availability of multicore architecture at
the host, this serialized execution leads to an underuti-
lization of resources at host.

High memory latencies and bank conicts. The global
device memory on the GPU has a high latency, of the
order of 400 to 600 cycles. This works well for HPC
algorithms, which are quadratic O(N2) or a higher de-
gree polynomial in the input size N, since the compu-
tation time hides the memory access latencies. Chunk-
ing is also compute intensive, but it is only linear in
the input size (O(N), though the constants are high).
Hence, even though the problem is compute intensive
on traditional CPUs, on a GPU with an order of magni-
tude larger number of scalar cores, the problem becomes
memory-intensive. In particular, the less sophisticated
memory subsystem of the GPU (without prefetching or
data caching support) is stressed by frequent memory ac-
cess by a massive number of threads in parallel. Fur-
thermore, a higher degree of parallelism causes memory
to be accessed randomly across multiple bank rows, and
leads to a very high number of bank conicts. As a re-
sult, it becomes difcult to hide the latencies of accesses
to the device memory.

4 Shredder Optimizations
In this section, we describe several novel optimizations
that extend the basic design to overcome the challenges
we highlighted in the previous section.

0

100

1000

5000
10000

4K 16K 32K 64K 256K 1M 4M 16M 32M 64M

Th
ro

ug
hp

ut
 [M

B/
Se

c]

Buffer Size

HostToDevice-Pageable
HostToDevice-Pinned

DeviceToHost-Pageable
DeviceToHost-Pinned

Figure 3: Bandwidth test between host and device.

4.1 Device Memory Bottlenecks
4.1.1 Concurrent Copy and Execution

The main challenge we need to overcome is the fact that
traditional GPU-assisted applications that follow the ba-
sic design were designed for a scenario where the cost of
transferring data to the GPU is signicantly outweighed
by the actual computation cost. In particular, the ba-
sic design serializes the execution of copying data to the
GPU memory and consuming the data from that memory
by the Kernel thread. This serialized execution may not
suit the needs of data intensive applications, where the
cost of the data transfer step becomes a more signicant
fraction of the overall computation time.
To understand the magnitude of this problem, we mea-

sured the overhead of a DMA transfer of data between
the host and the device memory over the PCIe link con-
nected to GPU. Figure 3 summarizes the effective band-
width between host memory and device memory for dif-
ferent buffer sizes. We measured the bandwidth both
ways between the host and the device to gauge the DMA
overhead for the Transfer and the Store thread. Note
that the effective bandwidth is a property of the DMA
controller and the PCI bus, and it is independent of the
number of threads launched in the GPU. In this experi-
ment, we also varied the buffer type allocated for the host
memory region, which is allocated either as pageable or
pinned memory regions. (The need for pinned memory
will become apparent shortly.)
Highlights. Our measurements demonstrate the follow-
ing: (i) small sized buffer transfers are more expensive
than those using large sized buffers; (ii) the throughput
saturates for buffer sizes larger than 32 MB (for page-
able memory region) and 256 KB (for pinned memory
region); (iii) for large sized buffers (greater than 32 MB),
the throughput difference between pageable and pinned
memory regions is not signicant; and (iv) the effective
bandwidth of the PCIe bus for data transfer is on the or-
der of 5 GB/sec, whereas the global device memory ac-
cess time by scalar processors in GPUs is on the order of

5

176 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

CPU (Host) GPU (Device)

Transfer

Device Memory

Asynchronous

Copy

Time
Copy to

Buffer-I

Compute

Buffer-I

Buffer-I Buffer-2

Copy to

Buffer-2

Compute

Buffer-2

Copy to

Buffer-I

Figure 4: Concurrent copy and execution.

144 GB/sec, an order of magnitude higher.

Implications. The time spent to chunk a given buffer is
split between the memory transfer and the kernel com-
putation. For a non-optimized implementation of the
chunking computation, we spend approximately 25% of
the time performing the transfer. Once we optimize the
processing in the GPU, the host to GPU memory trans-
fer may become an even greater burden on the overall
performance.

Optimization. In order to avoid the serialized execution
of the copy and data consumption steps, we propose to
overlap the copy and the execution phases, thus allowing
for the concurrent execution of data communication and
the chunking kernel computations. To enable this, we
designed a double buffering technique as shown in Fig-
ure 4, where we partition the device memory into twin
buffers. These twin buffers will be alternatively used
for communication and computation. In this scheme, the
host asynchronously copies the data into the rst buffer
and, in the background, the device works on the previ-
ously lled second buffer. To be able to support asyn-
chronous communication, the host buffer is allocated as
a pinned memory region, which prevents the region from
being swapped out by the pager.

Effectiveness. Figure 5 shows the effectiveness of
the double buffering approach, where the histogram for
transfer and kernel execution shows a 30% time over-
lap between the concurrent copy and computation. Even
though the total time taken for concurrent copy and ex-
ecution (Concurrent) is reduced by only 15% as com-
pared to the serialized execution (Serialized), it is im-
portant to note that the total time is now dictated solely
by the compute time. Hence, double buffering is able to
remove the data copying time from the critical path, al-
lowing us to focus only on optimizing the computation
time in the GPU (which we address in § 4.3).
To support the concurrent copy and execution, how-

ever, requires us to pin memory at the host, which re-
duces the memory allocation performance at the host.
We next present an optimization to handle this side effect

 0

 200

 400

 600

 800

 1000

 1200

16M 32M 64M 128M 256M

Ti
m

e
(m

s)

Buffer Size (bytes)

Transfer
Kernel

Serialized
Concurrent

Figure 5: Normalized overlap time of communication
with computation with varied buffer sizes for 1GB data.

and ensure that double buffering leads to an end-to-end
increase in chunking bandwidth.

4.1.2 Circular Ring Pinned Memory Buffers
As explained above, the double buffering requires an
asynchronous copy between host memory and device
memory. To support this asynchronous data transfer, the
host side buffer should be allocated as a pinned mem-
ory region. This locks the corresponding page so that
accessing that region does not result in a page fault until
the region is subsequently unpinned.
To quantify the allocation overheads of using a pinned

memory region, we compared the time required for dy-
namic memory allocation (using malloc) and pinned
memory allocation (using the CUDA memory allocator
wrapper). Since Linux follows an optimistic memory al-
location strategy, where the actual allocation is deferred
until memory initialization, in our measurements we ini-
tialized the memory region (using bzero) to force the
kernel to allocate the desired buffer size. Figure 6 com-
pares the allocation overhead of pageable and pinned
memory for different buffer sizes.
Highlights. The important take away points are the fol-
lowing: (i) pinned memory allocation is more expensive
than the normal dynamic memory allocation; and (ii) an
adverse side effect of having too many pinned memory
pages is that it can increase paging activity for unpinned
pages, which degrades performance.
Implications. The main implication for our system de-
sign is that we need to minimize the allocation of pinned
memory region buffers, to avoid increased paging activ-
ity or even thrashing.
Optimization. To minimize the allocation of pinned
memory region while restricting ourselves to using the
CUDA architecture, we designed a circular ring buffer
built from a pinned memory region, as shown in Fig-
ure 7, with the property that the number of buffers can
be kept low (namely as low as the number of stages in
the streaming pipeline, as described in §4.2). The pinned

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 177

 1

 10

 100

 1000

 10000

16M 32M 64M 128M 256M

Ti
m

e
(m

s)

Buffer Size (bytes)

Pinned Allocation
Memcpy PageableToPinned

Pageable Allocation

Figure 6: Comparison of allocation overhead of pageable
with pinned memory region.

regions in the circular buffer are allocated only once dur-
ing the system initialization, and thereafter are reused in
a round-robin fashion after the transfer between the host
and the device memory is complete. This allows us to
keep the overhead of costly memory allocation negligi-
ble and have sufcient memory pages for other tasks.
Effectiveness. Figure 6 shows the effectiveness of our
approach, where we compare the time for allocating
pageable and pinned memory regions. Since we incur
the additional cost of copying the data from pageable
memory to the pinned memory region, we add this cost
to the total cost of using pageable buffers. Overall, our
approach is faster by an order of magnitude, which high-
lights the importance of this optimization.

4.2 Host Bottleneck
The previously stated optimizations alleviate the device
memory bottleneck for DMA transfers, and allow the
device to focus on performing the actual computation.
However, the host side modules can still become a bot-
tleneck due to the serialized execution of the following
stages (Reader→Transfer→Kernel→Store). In this
case, the fact that all four modules are serially executed
leads to an underutilization of resources at the host side.
To quantify this underutilization at the host, we mea-

sured the number of idle spare cycles per core after the
launch of the asynchronous execution of the kernel. Ta-
ble 2 shows the number of RDTSC tick cycles for dif-
ferent buffer sizes. The RDTSC [8] (Read-Time Stamp
Counter) instruction keeps an accurate count of every
cycle that occurs on the processor for monitoring the
performance. The device execution time captures the
asynchronous copy and execution of the kernel, and the
host kernel launch time measures the time for the host to
launch the asynchronous copy and the chunking kernel.
Highlights. These measurements highlight the follow-
ing: (i) the kernel launch time is negligible compared to
the total execution time for the kernel; (ii) the host is idle
during the device execution time; and (ii) the host has a

GPU (Device)

Device Memory

Pageable

Buffers

Pinned Circular

Ring Buffers

Memcpy

Host Memory

CPU (Host)

Figure 7: Ring buffer for the pinned memory region.

Buffer size (bytes) 16M 32M 64M 128M 256M
Device execution time (ms) 11.39 22.74 42.85 85.7 171.4
Host kernel launch time (ms) 0.03 0.03 0.03 0.08 0.09
Total execution time (ms) 11.42 22.77 42.88 85.78 171.49
Host RDTSC ticks @ 2.67 GHz 3.0e7 6.1e7 1.1e8 2.7e8 5.3e8

Table 2: Host spare cycles per core due to asynchronous
data-transfer and kernel launch.

large number of spare cycles per core, even with a small
sized buffer.
Implications. Given the prevalence of host systems run-
ning on multicore architectures, the sequential execution
of the various components leads to the underutilization of
the host resources, and therefore these resources should
be used to perform other operations.

Optimization. To utilize these spare cycles at the host,
Shredder makes use of a multi-stage streaming pipeline
as shown in Figure 8. The goal of this design is that
once the Reader thread nishes writing the data in the
host main memory, it immediately proceeds to handling
a new window of data in the stream. Similarly, the other
threads follow this pipelined execution without waiting
for the next stage to nish.
To handle the specic characteristics of our pipeline

stages, we use different design strategies for different
modules. Since the Reader and Store modules deal
with I/O, they are implemented as Asynchronous I/O
(as described in §5.2.1), whereas the transfer and kernel
threads are implemented using multi-buffering (a gen-
eralization of the double buffering scheme described in
§4.1.1).
Effectiveness. Figure 9 shows the average speedup from
using our streaming pipeline, measured as the ratio of
time taken by a sequential execution to the time taken
by our multi-stage pipeline. We varied the number of
pipeline stages that can be executed simultaneously (by

7

178 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Time

Transfer

Store

Reader

Chunking Chunking

Store

Transfer

Reader

Figure 8: Multi-staged streaming pipeline.

 0

 0.5

 1

 1.5

 2

 2.5

 3

16M 32M 64M 128M 256M

Sp
ee

du
p

Buffer Size (bytes)

2-Staged Pipeline
3-Staged Pipeline
4-Staged Pipeline

Figure 9: Speedup for streaming pipelined execution.

restricting the number of buffers that are admitted to
the pipeline) from 2 to 4. The results show that a full
pipeline with all four stages being executed simultane-
ously achieves a speedup of 2; the reason why this is
below the theoretical maximum of a 4X gain is that the
various stages do not have equal cost.

4.3 Device Memory Conicts
We have observed (in Figure 5) that the chunking ker-
nel dominates the overall time spent by the GPU. In this
context, it is crucial to try to minimize the contribution
of the device memory access latency to the overall cost.
Highlights. The very high access latencies of the device
memory (on the order of 400-600 cycles @ 1.15 GHz)
and the lack of support for data caching and prefetching
can imply a signicant overhead in the overall execution
time of the chunking kernel.
Implications. The hierarchical memory of GPUs pro-
vides us an opportunity to hide the latencies of the global
device memory by instead making careful use of the
low latency shared memory. (Recall from § 2.2 that the
shared memory is a fast and low latency on-chip mem-
ory which is shared among a subset of the GPU’s scalar
processors.) However, fetching data from global to the
shared memory requires us to be careful to avoid bank
conicts, which can negatively impact the performance
of the GPU memory subsystem. This implies that we
should try to improve the inter-thread coordination in
fetching data from the device global memory to avoid
these bank conicts.

Device Memory

Shared Memory

Half-warp

Memory

 Coalescing

Thread-n

Fetching the Data in Shared Memory

Processing the Data in Shared Memory

T
im

e

... ...

Thread-1 Thread-2

Shared Memory

Figure 10: Memory coalescing to fetch data from global
device memory to the shared memory.

Optimization. We designed a thread cooperation mech-
anism to optimize the process of fetching data from the
global memory to the shared memory, as shown in Fig-
ure 10. In this scheme, a single block that is needed by a
given thread is fetched at a time, but each block is fetched
with the cooperation of all the threads, and their coordi-
nation to avoid bank conicts. The idea is to iterate over
all data blocks for all threads in a thread block, fetch one
data block at a time in a way that different threads request
consecutive but non-conicting parts of the data block,
and then, after all data blocks are fetched, let each thread
work on its respective blocks independently. This is fea-
sible since threads in a warp (or half-warp) execute the
same stream of instructions (SIMT). Figure 10 depicts
how threads in a half-warp cooperate with each other to
fetch different blocks sequentially in time.
In order to ensure that the requests made by different

threads when fetching different parts of the same data
block do not conict, we followed the best practices sug-
gested by the device manufacturer to ensure these re-
quests correspond to a single access to one row in a
bank [6, 7, 42]. In particular, Shredder lets multiple
threads of a half-warp read a contiguous memory inter-
val simultaneously, under following conditions: (i) the
size of the memory element accessed by each thread is
either 4, 8, or 16 bytes; (ii) the elements form a contigu-
ous block of memory; i.e, the Nth element is accessed by
the Nth thread in the half-warp; and (iii) the address of
the rst element is aligned at a boundary of a multiple of
16 bytes.

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 179

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

16M 32M 64M 128M 256M

Ti
m

e
(m

s)

Buffer Size (bytes)

Device Memory
Memory Coalescing

Figure 11: Normalized chunking kernel time with varied
buffer-sizes for 1 GB data.

Effectiveness. Figure 11 shows the effectiveness of the
memory coalescing optimization, where we compare the
execution time for the chunking kernel using the normal
device memory access and the optimized version. The
results show that we improve performance by a factor of
8 by reducing bank conicts. Since the granularity of
memory coalescing is 48 KB (which is the size for the
shared memory per thread block), we do not see any im-
pact from varying buffer sizes (16 MB to 512 MB), and
the benets are consistent across different buffer sizes.

5 Implementation and Evaluation
We implemented Shredder in CUDA [6], and for an ex-
perimental comparison, we also implemented an opti-
mized parallel host-only version of content-based chunk-
ing. This section describes these implementations and
evaluates them.

5.1 Host-Only Chunking using pthreads

We implemented a library for parallel content-based
chunking on SMPs using POSIX pthreads. We derived
parallelism by creating pthreads that operate in differ-
ent data regions using a Single Program Multiple Data
(SPMD) strategy and communicate using a shared mem-
ory data structure. At a high level, the implementation
works as follows: (1) divide the input data equally in
xed-size regions among N threads; (2) invoke the Ra-
bin ngerprint-based chunking algorithm in parallel on
N different regions; (3) synchronize neighboring threads
in the end to merge the resulting chunk boundaries.
An issue that arises is that dynamicmemory allocation

can become a bottleneck due to the the serialization re-
quired to avoid race conditions. To address this, we used
the Hoard memory allocator [12] instead of malloc.

5.2 Shredder Implementation
The Shredder library implementation comprises two
main modules, the host driver and the GPU kernel. The
host driver runs the control part of the system as a multi-
threaded process on the host CPU running Linux. The

GPU kernel uses one or more GPUs as co-processors for
accelerating the SIMT code, and is implemented using
the CUDA programming model from the NVidia GP-
GPU toolkit [6]. Next we explain key implementation
details for both modules.

5.2.1 Host Driver
The host driver module is responsible for reading the in-
put data either from the network or the disk and trans-
ferring the data to the GPU memory. Once the data is
transferred then the host process dispatches the GPU ker-
nel code in the form of RPCs supported by the CUDA
toolkit. The host driver has two types of function-
ality: (1) the Reader/Store threads deal with reading
and writing data from and to I/O channels; and (2)
the Transfer thread is responsible for moving data be-
tween the host and the GPU memory. We implemented
the Reader/Store threads using Asynchronous I/O and
the Transfer thread using CUDA RPCs and page-pinned
memory.
Asynchronous I/O (AIO). With asynchronous non-
blocking I/O, it is possible to overlap processing and I/O
by initiating multiple transfers at the same time. In AIO,
the read request returns immediately, indicating that the
read was successfully initiated. The application can then
perform other processing while the background read op-
eration completes. When the read response arrives, a sig-
nal registered with the read request is triggered to signal
the completion of the I/O transaction.
Since the Reader/Store threads operate at the granular-

ity of buffers, a single input le I/O may lead to issuing
multiple aio-read system calls. To minimize the over-
head of multiple context switches per buffer, we used
lio-listio to initiate multiple transfers at the same
time in the context of a single system call (meaning one
kernel context switch).

5.2.2 GPU Kernel

The GPU kernel can be trivially derived from the C
equivalent code by implementing a collection of func-
tions in equivalent CUDA C with some assembly anno-
tations, plus different access mechanisms for data layout
in the GPU memory. However, an efcient implementa-
tion of the GPU kernel requires a bit more understanding
of vector computations and the GPU architecture. We
briey describe some of these considerations.
Kernel optimizations. We have implementedminor ker-
nel optimizations to exploit vector computation in GPUs.
In particular, we used loop unrolling and instruction-
level optimizations for the core Rabin ngerprint block.
These changes are important because of the simpli-
ed GPU architecture, which lacks out-of-order execu-
tion, pipeline stalling in register usage, or instruction
reordering to eliminate Read-after-Write (RAW) depen-

9

180 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.5

 1

 1.5

 2

 2.5

CPU GPU

Th
ro

ug
hp

ut
 [G

Bp
s]

CPU w/o Hoard
CPU w/ Hoard

GPU Basic
GPU Streams

GPU Streams + Memory

Figure 12: Throughput comparison of content-based
chunking between CPU and GPU versions.

dencies.
Warp divergence. Since the GPU architecture is Single
InstructionMultiple Threads (SIMT), if threads in a warp
diverge on a data-dependent conditional branch, then the
warp is serially executed until all threads in it converge
to the same execution path. To avoid a performance dip
due to this divergence in warp execution, we carefully
restructured the algorithm to have little code divergence
within a warp, by minimizing the code path under data-
dependent conditional branches.

5.3 Evaluation of Shredder
We now present our experimental evaluation of the per-
formance of Shredder.
Experimental setup. We used a fermi-based GPU ar-
chitecture, namely the Tesla C2050 GPU consisting of
448 processor cores (SPs). It is organized as a set of 14
SMs each consisting of 32 SPs running at 1.15 GHz. It
has 2.6 GB of off-chip global GPU memory providing
a peak memory bandwidth of 144 GB/s. Each SM has
32768 registers and 48 KB of local on-chip shared mem-
ory, shared between its scalar cores.
We also used an Intel Xeon processor based system

as the host CPU machine. The host system consists of
12 Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz with 48
GB of main memory. The host machine is running Linux
with kernel 2.6.38 in 64-bit mode, additionally patched
with GPU direct technology [4] (for SAN devices). The
GCC 4.3.2 compiler (with -O3) was used to compile the
source code of the host library. The GPU code is com-
piled using the CUDA toolkit 4.0 with NVidia driver ver-
sion 270.41.03. The posix implementation is run with 12
threads.
Results. We measure the effectiveness of GPU-
accelerated content-based chunking by comparing the
performance of different versions of the host-only and
GPU based implementation, as shown in Figure 12. We
compare the chunking throughput for the pthreads imple-
mentation with and without using the Hoard memory al-

Shredder

Data Incremental

MapReduce

Hadoop

M M M

R R

Incremental

HDFS

Figure 13: Incremental computations using Shredder.

locator. For the GPU implementation, we compared the
performance of the system with different optimizations
turned on, to gauge their effectiveness. In particular,
GPU Basic represents a basic implementation without
any optimizations. The GPU Streams version includes
the optimization to remove host and device bottlenecks
using double buffering and a 4-stage pipeline. Lastly
GPU Streams + Memory represents a version with all
optimizations, including memory coalescing.
Our results show that a naive GPU implementation can

lead to a 2X improvement over a host-only optimized im-
plementation. The observation clearly highlights the po-
tential of GPUs to alleviate computational bottlenecks.
However, this implementation does not remove chunk-
ing as a bottleneck since SAN bandwidths on typical data
servers exceed 10 Gbps. Incorporating the optimizations
lead to Shredder outperforming the host-only implemen-
tation by a factor of over 5X .

6 Case Study I: Incremental Computations
This section presents a case study of applying Shredder
in the context of incremental computations. First we re-
view Incoop, a system for bulk incremental processing,
and then describe how we used Shredder to improve it.

6.1 Background: Incremental MapReduce
Incoop [14] is a generic MapReduce framework for in-
cremental computations. Incoop leverages the fact that
data sets that are processed by bulk data processing
frameworks likeMapReduce evolve slowly, and often the
same computation needs to be performed repeatedly on
this changing data (such as computing PageRank on ev-
ery new web crawl) [21, 32, 34]. Incoop aims at pro-
cessing this data incrementally, by avoiding recomputing
parts of the computation that did not change, and trans-
parently, by being backwards-compatible with the inter-
face used by MapReduce frameworks.
To achieve these goals, Incoop employs a ne-grained

result reuse mechanism, which captures a dependence

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 181

Split-1 Split-2 Split-3

Store

Input File

-copyFromLocalGPU

Data

Node-1

Data

Node-2Content-based

 Marker

Name

Node

Shredder Enabled

HDFS Client

Figure 14: Shredder enabled chunking in Inc-HDFS.

graph among inputs and sub-computations, propagates
changes along that graph so that only sub-computations
that have changed need to be recomputed, and uses
memoization to be able to reuse outputs from sub-
computations whose inputs did not change. Incoop uses
the Inc-HDFS le system (an extension to HDFS) to
identify changes in the input and propagate them.

6.2 GPU-Accelerated Incremental HDFS
We use Shredder to support Incoop by designing a GPU-
accelerated Incremental HDFS (Inc-HDFS), which is in-
tegrated with Incoop as shown in Figure 13. Inc-HDFS
leverages Shredder to perform content-based chunking
instead of using xed-size chunking as in the original
HDFS, thus ensuring that small changes to the input lead
to small changes in the set of chunks that are provided as
input to Map tasks. This enables the results of the com-
putations performed by most Map tasks to be reused.

6.3 Implementation and Evaluation
We built our prototype GPU-accelerated Inc-HDFS on
Hadoop-0.20.2. It is implemented as an extension to
HDFS, where the computationally expensive chunking
is ofoaded to the Shredder-enabled HDFS client (as
shown in Figure 14), before uploading chunks to the re-
spective data nodes that will be storing them.
Inc-HDFS client. We integrated the Shredder library
with Inc-HDFS client using a JAVA-CUDA interface.
Once the data upload function is invoked, the Shredder li-
brary noties the chunk boundaries to the Store thread,
which in turn pushes the chunks from the memory of the
client to the data nodes of HDFS.
Semantic chunking framework. The default behav-
ior of the Shredder library is to split the input le into
variable-length chunks based on the contents. However,
since chunking is oblivious to the semantics of the input
data, this could cause chunk boundaries to be placed any-
where, including, for instance, in the middle of a record
that should not be broken. To address this, we lever-

 1

 10

 100

 0 5 10 15 20 25

Sp
ee

du
p

(w
.r.

t.
H

ad
oo

p)

Incremental Changes (%)

Word-Count
Co-occurrence Matrix

K-means Clustering

Figure 15: Speedup for incremental computation

age the fact that the MapReduce framework relies on the
InputFormat class of the job to split up the input le(s)
into logical InputSplits, each of which is then assigned to
an individual Map task. We reuse this class to ensure that
we respect the record boundaries in the chunking pro-
cess.
HDFS shell. We extended the HDFS shell interface to
invoke content-based chunking using the Shredder im-
plementation. In particular, the shell interface offers new
command (in addition to copyFromLocal) for upload-
ing data in Inc-HDFS: copyFromLocalGPU.
Evaluation. We evaluated the effectiveness of incre-
mental computations by measuring the speedups w.r.t.
Hadoop for varying percentages of changes in the in-
put data. Figure 15 shows the performance gains on
a 20-node cluster, where all three MapReduce appli-
cations (K-means, Word-Count, Co-occurrence Matrix)
show signicant improvement in run-time for incremen-
tal runs. The effectiveness of the incremental approach
degrades as the percentage of changes in the data set in-
creases. Note that this experiment is not meant to high-
light the speedup enabled by GPU acceleration, but in-
stead shows how, after the data is chunked using Shred-
der, detecting duplicates at the storage level can imply
savings in computation time.

7 Case Study II: Incremental Storage
In this section, we present our second case study where
we use Shredder in the context of a consolidated incre-
mental backup system.

7.1 Background: Cloud Backup
Figure 16 describes our target architecture, which is typ-
ical of cloud back-ends. Applications are deployed on
virtual machines hosted on physical servers. The le
system images of the virtual machines are hosted in a
virtual machine image repository stored in a SAN vol-
ume. In this scenario, the backup process works in the
following manner. Periodically, full image snapshots are
taken for all the VM images that need to be backed up.

11

182 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Cloud Managed Environment

Host N

Host 2

Host 1

VM1

Snapshot

VM2 VMk
VM Image

Repository

Mount Backup

Server

Primary Site Backup

 Site

Figure 16: A typical cloud backup architecture

The core of the backup process is a backup server and
a backup agent running inside the backup server. The
image snapshots are mounted by the backup agent. The
backup server performs the actual backup of the image
snapshots onto disks or tapes. The consolidated or cen-
tralized data backup process ensures compliance of all
virtual machines with the agreed upon backup policy.
Backup servers typically have very high I/O bandwidth
since, in enterprise environments, all operations are typ-
ically performed on a SAN [28]. Furthermore, the use
of physical servers allows multiple dedicated ports to be
employed solely for the backup process.

7.2 GPU-Accelerated Data Deduplication
The centralized backup process is eminently suitable
for deduplication via content-based chunking, as most
images in a data-center environment are standardized.
Hence, virtual machines share a large number of les
and a typical backup process would unnecessarily copy
the same content multiple times. To exploit this fact, we
integrate Shredder with the backup server, thus enabling
data to be pushed to the backup site at a high rate while
simultaneously exploiting opportunities for savings.
The Reader thread on the backup server reads the

incoming data and pushes that into Shredder to form
chunks. Once the chunks are formed, the Store thread
computes a hash for the overall chunk, and pushes the
chunks in the backup setup as a separate pipeline stage.
Thereafter, these hashes collected for the chunks are
batched together to enqueue in an index lookup queue.
Finally, a lookup thread picks up the enqueued chunk
ngerprints and looks up in the index whether a partic-
ular chunk needs to be backed up or is already present
in the backup site. If a chunk already exists, a pointer
to the original chunk is transferred instead of the chunk
data. We deploy an additional Shredder agent residing on
the backup site, which receives all the chunks and point-
ers and recreates the original uncompressed data. The
overall architecture for integrating Shredder in a cloud

Backup Site Backup Server

Shredder

Backup

Agent

Shredder

Agent

Image Snapshot

Figure 17: GPU-accelerated consolidated backup setup

backup system is described in Figure 17.

7.3 Implementation and Evaluation
Since high bandwidth bre channel adapters are fairly
expensive, we could not recreate the high I/O rate of
modern backup servers in our testbed. Hence, we used
a memory-driven emulation environment to experimen-
tally validate the performance of Shredder. On our
backup agent, we keep a master image in memory us-
ing memcached [5]. The backup agent creates new le
system images from the master image by replacing part
of the content from the master image using a predened
similarity table. The master image is divided into seg-
ments. The image similarity table contains a probability
of each segment being replaced by a different content.
The agent uses these probabilities to decide which seg-
ments in the master image will be replaced. The image
generation rate is kept at 10 Gbps to closely simulate the
I/O processing rate of modern X-series employed for I/O
processing applications [28].
In this experiment, we also enable the requirement of

a minimum and maximum chunk size, as used in practice
by many commercial backup systems. As mentioned in
Section 3, our current implementation of Shredder is not
optimized for including a minimum andmaximum chunk
size, since the data that is skipped after a chunk bound-
ary is still scanned for computing a Rabin ngerprint on
the GPU, and only after all the chunk boundaries are col-
lected will the Store thread discard all chunk boundaries
within the minimum chunk size limit. As future work,
we intend to address this limitation using more efcient
techniques that were proposed in the literature [29, 31].
As a result of this limitation, we observe in Fig-

ure 18 that we are able to achieve a speedup of only
2.5X in backup bandwidth compared to the pthread im-
plementation, but still we manage to keep the backup
bandwidth close to the target 10 Gbps. The results
also show that even though the chunking process oper-
ates independently of the degree of similarity in input
data, the backup bandwidth decreases when the similar-
ity between the data decreases. This is not a limitation

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 183

 1

 2

 3

 4

 5

 6

 7

 8

 9

 5 10 15 20 25

Ba
nd

w
id

th
 (G

bp
s)

Probability of Segment Changes

Pthreads-CPU
Shredder-GPU

Figure 18: Backup bandwidth improvement due to
Shredder with varying image similarity ratios

of our chunking scheme but of the unoptimized index
lookup and network access, which reduces the backup
bandwidth. Combined with optimized index mainte-
nance (e.g., [17]), Shredder is likely to achieve the tar-
get backup bandwidth for the entire spectrum of content
similarity.

8 Related Work
Our work builds on contributions from several different
areas, which we briey survey.
GPU-accelerated systems. GPUs were initially de-
signed for graphics rendering, but, because of their cost-
effectiveness, they were quickly adopted by the HPC
community for scientic computations [3, 35]. Re-
cently, the systems research community has leveraged
GPUs for building other systems. In particular, Pack-
etShader [23] is a software router for general packet pro-
cessing, and SSLShader [26] uses GPUs in web servers
to efciently perform cryptographic operations. GPUs
have also been used to accelerate functions such as pat-
tern matching [44], network coding [43], and complex
cryptographic operations [24]. In our work, we explored
the potential of GPUs for large scale data, which raises
challenges due to the overheads of data transfer. Re-
cently, GPUs were used in software-based RAID con-
trollers [16] for performing high-performance calcula-
tions of error correcting codes. However, this work does
not propose optimizations for efcient data transfer.
Incremental Computations. Since modifying the out-
put of a computation incrementally is asymptotically
more efcient than recomputing everything from scratch,
researchers and practitioners have built a wide range
of systems and algorithms for incremental computa-
tions [14, 21, 25, 32, 34, 36, 37]. Our proposal speeds
up the process of change identication in the input and is
complementary to these systems.
Incremental Storage. Data deduplication is commonly
used in storage systems. In particular, there is a large
body of research on efcient index management [13, 17,

30, 46, 47]. In this paper, we focus on the complemen-
tary problem of content-based chunking [20, 27, 33].
High throughput content-based chunking is particularly
relevant in environments that use SANs, where chunk-
ing can become a bottleneck. To overcome this bottle-
neck, systems have compromised the deduplication ef-
ciency with sampling techniques or xed-size chunking,
or they have tried to scale chunking by deploying multi-
node systems [15, 18, 19, 45]. A recent proposal shows
that multi-node systems not only incur a high cost but
also increase the reference management burden [22]. As
a result, building a high throughput, cost-effective, single
node systems becomes more important. Our system can
be seen as an important step in this direction.

Network Redundancy Elimination. Content-based
chunking has also been proposed in the context of
redundancy elimination for content distribution net-
works (CDNs), to reduce the bandwidth consumption of
ISPs [9, 10, 11, 38]. Also, many commercial vendors
(such as Riverbed, Juniper, Cisco) offer middleboxes to
improve bandwidth usage in multi-site enterprises, data
centers and ISP links. Our proposal is complementary to
this work, since it can be used to improve the throughput
of redundancy elimination in such solutions.

9 Conclusions and Future Work

In this paper we have presented Shredder, a novel frame-
work for content-based chunking using GPU accelera-
tion. We applied Shredder to two incremental storage
and computation applications, and our experimental re-
sults show the effectiveness of the novel optimizations
that are included in the design of Shredder.
There are several interesting avenues for future work.

First, we would like to incorporate into the library
several optimizations for parallel content-based chunk-
ing [29, 31]. Second, our proposed techniques need to
continuously adapt to changes in the technologies that
are used by GPUs, such as the use of high-speed Inni-
Band networking, which enables further optimizations in
the packet I/O engine using GPU-direct [4]. Third, we
would like explore new applications like middleboxes for
bandwidth reduction using network redundancy elimina-
tion [10]. Finally, we would like to incorporate Shredder
as an extension to recent proposals to devise new operat-
ing system abstractions to manage GPUs [41].

Acknowledgments

We thank Remzi Arpaci-Dusseau, the sysnets group
members at MPI-SWS, Rose Hoberman, the anonymous
reviewers, and our shepherd, Mark Lillibridge, for com-
ments and suggestions on this paper. We thank Krishna
Gummadi for granting access to the GPU hardware.

13

184 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] The data deluge. http://www.economist.com/node/15579717,

Feb. 2010.

[2] Calculating Memory System Power for DDR3.
http://download.micron.com/pdf/technotes/ddr3/TN41 01DDR3
%20Power.pdf, Jan. 2012.

[3] General Purpose computation on GPUs. http://www.gpgpu.org,
Jan. 2012.

[4] GPUDirect. http://developer.nvidia.com/gpudirect, Jan. 2012.

[5] Memcached. http://memcached.org/, Jan. 2012.

[6] NVidia CUDA. http://developer.nvidia.com/cuda-downloads,
Jan. 2012.

[7] NVidia CUDA Tutorial. http://people.maths.ox.ac.uk/g̃ilesm/-
hpc/NVIDIA/NVIDIA CUDA Tutorial No NDA Apr08.pdf,
Jan. 2012.

[8] Using the RDTSC Instruction for Performance Monitoring - Intel
Developers Application Notes . http://www.ccsl.carleton.ca/ ja-
muir/rdtscpm1.pdf, Jan. 2012.

[9] AGGARWAL, B., AKELLA, A., ANAND, A., BALACHANDRAN,
A., CHITNIS, P., MUTHUKRISHNAN, C., RAMJEE, R., AND
VARGHESE, G. EndRE: an end-system redundancy elimination
service for enterprises. In Proceedings of the 7th USENIX confer-
ence on networked systems design and implementation (Berkeley,
CA, USA, 2010), NSDI’10, USENIX Association, pp. 28–28.

[10] ANAND, A., GUPTA, A., AKELLA, A., SESHAN, S., AND
SHENKER, S. Packet caches on routers: the implications of uni-
versal redundant trafc elimination. In Proceedings of the ACM
SIGCOMM 2008 conference on Data communication (New York,
NY, USA, 2008), SIGCOMM ’08, ACM, pp. 219–230.

[11] ANAND, A., SEKAR, V., AND AKELLA, A. Smartre: an archi-
tecture for coordinated network-wide redundancy elimination. In
Proceedings of the ACM SIGCOMM 2009 conference on Data
communication (New York, NY, USA, 2009), SIGCOMM ’09,
ACM, pp. 87–98.

[12] BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D., AND
WILSON, P. R. Hoard: a scalable memory allocator for mul-
tithreaded applications. In Proceedings of the ninth interna-
tional conference on Architectural support for programming lan-
guages and operating systems (New York, NY, USA, 2000), AS-
PLOS’00, ACM, pp. 117–128.

[13] BHAGWAT, D., ESHGHI, K., LONG, D. D. E., AND LILLIB-
RIDGE, M. Extreme binning: Scalable, parallel deduplication
for chunk-based le backup. In Proceedings of the 17th IEEE
International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems, MASCOTS’09
(2009).

[14] BHATOTIA, P., WIEDER, A., RODRIGUES, R., ACAR, U. A.,
AND PASQUIN, R. Incoop: Mapreduce for incremental computa-
tions. In Proceedings of the 2nd ACM Symposium on Cloud Com-
puting (New York, NY, USA, 2011), SOCC ’11, ACM, pp. 7:1–
7:14.

[15] CLEMENTS, A. T., AHMAD, I., VILAYANNUR, M., AND LI,
J. Decentralized deduplication in san cluster le systems. In
Proceedings of the 2009 conference on USENIX Annual technical
conference (Berkeley, CA, USA, 2009), USENIX’09, USENIX
Association, pp. 8–8.

[16] CURRY, M. L., WARD, H. L., SKJELLUM, A., AND
BRIGHTWELL, R. A lightweight, gpu-based software raid sys-
tem. In Proceedings of the 2010 39th International Conference
on Parallel Processing (Washington, DC, USA, 2010), ICPP ’10,
IEEE Computer Society, pp. 565–572.

[17] DEBNATH, B., SENGUPTA, S., AND LI, J. Chunkstash: speed-
ing up inline storage deduplication using ash memory. In Pro-
ceedings of the 2010 USENIX conference on USENIX annual
technical conference (Berkeley, CA, USA, 2010), USENIX’10,
USENIX Association, pp. 16–16.

[18] DONG, W., DOUGLIS, F., LI, K., PATTERSON, H., REDDY, S.,
AND SHILANE, P. Tradeoffs in scalable data routing for dedupli-
cation clusters. In Proceedings of the 9th USENIX conference
on File and stroage technologies (Berkeley, CA, USA, 2011),
FAST’11, USENIX Association, pp. 2–2.

[19] DUBNICKI, C., GRYZ, L., HELDT, L., KACZMARCZYK, M.,
KILIAN, W., STRZELCZAK, P., SZCZEPKOWSKI, J., UNGURE-
ANU, C., AND WELNICKI, M. Hydrastor: a scalable secondary
storage. In Proccedings of the 7th conference on File and storage
technologies (Berkeley, CA, USA, 2009), FAST’09, USENIX
Association, pp. 197–210.

[20] ESHGHI, K., AND TANG, H. K. A Framework for Analyzing
and Improving Content-Based Chunking Algorithms. Tech. Rep.
HPL-2005-30R1, HP Technical Report, 2005.

[21] GUNDA, P. K., RAVINDRANATH, L., THEKKATH, C. A., YU,
Y., AND ZHUANG, L. Nectar: automatic management of data
and computation in datacenters. In Proceedings of the 9th
USENIX conference on Operating systems design and implemen-
tation (Berkeley, CA, USA, 2010), OSDI’10, USENIX Associa-
tion, pp. 1–8.

[22] GUO, F., AND EFSTATHOPOULOS, P. Building a high-
performance deduplication system. In Proceedings of the 2011
USENIX conference on USENIX annual technical conference
(Berkeley, CA, USA, 2011), USENIX’11, USENIX Association,
pp. 25–25.

[23] HAN, S., JANG, K., PARK, K., AND MOON, S. Packetshader: a
gpu-accelerated software router. In Proceedings of the ACM SIG-
COMM 2010 conference on SIGCOMM (New York, NY, USA,
2010), SIGCOMM ’10, ACM, pp. 195–206.

[24] HARRISON, O., AND WALDRON, J. Practical symmetric key
cryptography on modern graphics hardware. In Proceedings of
the 17th conference on Security symposium (Berkeley, CA, USA,
2008), USENIX Security’08, USENIX Association, pp. 195–
209.

[25] HE, B., YANG, M., GUO, Z., CHEN, R., SU, B., LIN, W., AND
ZHOU, L. Comet: batched stream processing for data intensive
distributed computing. In Proceedings of the 1st ACM symposium
on Cloud computing (New York, NY, USA, 2010), SoCC ’10,
ACM, pp. 63–74.

[26] JANG, K., HAN, S., HAN, S., MOON, S., AND PARK, K.
Sslshader: cheap ssl acceleration with commodity processors. In
Proceedings of the 8th USENIX conference on Networked sys-
tems design and implementation (Berkeley, CA, USA, 2011),
NSDI’11, USENIX Association, pp. 1–1.

[27] KRUUS, E., UNGUREANU, C., AND DUBNICKI, C. Bimodal
content dened chunking for backup streams. In Proceedings
of the 8th USENIX conference on File and storage technologies
(Berkeley, CA, USA, 2010), FAST’10, USENIX Association,
pp. 18–18.

[28] KULKARNI, V. Delivering on the i/o bandwidth promise: over
10gb/s large sequential bandwidth on ibm x3850/x3950 x5. Tech.
rep., IBM, 2010.

[29] LILLIBRIDGE, M. Parallel processing of input data to lo-
cate landmarks for chunks, 16 August 2011. U.S. Patent No.
8,001,273.

[30] LILLIBRIDGE,M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZISE, G., AND CAMBLE, P. Sparse indexing: large scale,
inline deduplication using sampling and locality. In Proccedings
of the 7th conference on File and storage technologies (Berkeley,
CA, USA, 2009), FAST’09, USENIX Association, pp. 111–123.

14

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 185

[31] LILLIBRIDGE, M., ESHGHI, K., AND PERRY, G. Producing
chunks from input data using a plurality of processing elements,
12 July 2011. U.S. Patent No. 7,979,491.

[32] LOGOTHETIS, D., OLSTON, C., REED, B., WEBB, K. C., AND
YOCUM, K. Stateful bulk processing for incremental analytics.
In Proceedings of the 1st ACM symposium on Cloud computing
(New York, NY, USA, 2010), SoCC ’10, ACM, pp. 51–62.

[33] MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES, D. A
low-bandwidth network le system. In Proceedings of the eigh-
teenth ACM symposium on Operating systems principles (New
York, NY, USA, 2001), SOSP ’01, ACM, pp. 174–187.

[34] OLSTON, C., CHIOU, G., CHITNIS, L., LIU, F., HAN, Y.,
LARSSON, M., NEUMANN, A., RAO, V. B., SANKARASUB-
RAMANIAN, V., SETH, S., TIAN, C., ZICORNELL, T., AND
WANG, X. Nova: continuous pig/hadoop workows. In Proceed-
ings of the 2011 international conference on Management of data
(New York, NY, USA, 2011), SIGMOD ’11, ACM, pp. 1081–
1090.

[35] OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRGER, J., LEFOHN, A., AND PURCELL, T. J. A survey of
general-purpose computation on graphics hardware. Computer
Graphics Forum 26, 1 (2007), 80–113.

[36] PENG, D., AND DABEK, F. Large-scale incremental processing
using distributed transactions and notications. In Proceedings
of the 9th USENIX conference on Operating systems design and
implementation (Berkeley, CA, USA, 2010), OSDI’10, USENIX
Association, pp. 1–15.

[37] POPA, L., BUDIU, M., YU, Y., AND ISARD, M. DryadInc:
Reusing work in large-scale computations. In 1st USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud ’09) (June 15
2009).

[38] PUCHA, H., ANDERSEN, D. G., AND KAMINSKY, M. Ex-
ploiting similarity for multi-source downloads using le hand-
prints. In Proceedings of the 4th USENIX conference on Net-
worked systems design and implementation (Berkeley, CA, USA,
2007), NSDI’07, USENIX Association, pp. 2–2.

[39] QUINLAN, S., AND DORWARD, S. Awarded best paper! - venti:
A new approach to archival data storage. In Proceedings of the 1st
USENIX Conference on File and Storage Technologies (Berkeley,
CA, USA, 2002), FAST ’02, USENIX Association.

[40] RABIN, M. O. Fingerprinting by random polynomials. Tech.
rep., 1981.

[41] ROSSBACH, C. J., CURREY, J., SILBERSTEIN, M., RAY, B.,
AND WITCHEL, E. Ptask: operating system abstractions to man-
age gpus as compute devices. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (New York,
NY, USA, 2011), SOSP ’11, ACM, pp. 233–248.

[42] SAXENA, V., SABHARWAL, Y., AND BHATOTIA, P. Perfor-
mance evaluation and optimization of random memory access on
multicores with high productivity. In International Conference
on High Performance Computing (HiPC) (2010), IEEE.

[43] SHOJANIA, H., LI, B., AND WANG, X. Nuclei: Gpu-accelerated
many-core network coding. In Proc. of IEEE Infocom , Rio de
Janeiro (2009), INFOCOM’09, pp. 459–467.

[44] SMITH, R., GOYAL, N., ORMONT, J., SANKARALINGAM, K.,
AND ESTAN, C. Evaluating gpus for network packet signature
matching. In Proceedings of the International Symposium on Per-
formance Analysis of Systems and Software, ISPASS’09 (2009).

[45] UNGUREANU, C., ATKIN, B., ARANYA, A., GOKHALE, S.,
RAGO, S., CALKOWSKI, G., DUBNICKI, C., AND BOHRA, A.
Hydrafs: a high-throughput le system for the hydrastor content-
addressable storage system. In Proceedings of the 8th USENIX
conference on File and storage technologies (Berkeley, CA, USA,
2010), FAST’10, USENIX Association, pp. 17–17.

[46] XIA, W., JIANG, H., FENG, D., AND HUA, Y. Silo: a
similarity-locality based near-exact deduplication scheme with
low ram overhead and high throughput. In Proceedings of the
2011 USENIX conference on USENIX annual technical confer-
ence (Berkeley, CA, USA, 2011), USENIX’11, USENIX Asso-
ciation, pp. 26–28.

[47] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the disk bot-
tleneck in the data domain deduplication le system. In Proceed-
ings of the 6th USENIX Conference on File and Storage Tech-
nologies (Berkeley, CA, USA, 2008), FAST’08, USENIX Asso-
ciation, pp. 18:1–18:14.

15

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 187

Adding Advanced Storage Controller Functionality

via Low-Overhead Virtualization
Muli Ben-Yehuda, Michael Factor,
Eran Rom, and Avishay Traeger

IBM Research–Haifa

{muli,factor,eranr,avishay}@il.ibm.com

Eran Borovik and Ben-Ami Yassour
{eran.borovik,benami.yassour}@gmail.com

Abstract

Historically, storage controllers have been extended by

integrating new code, e.g., file serving, database process-

ing, deduplication, etc., into an existing base. This in-

tegration leads to complexity, co-dependency and insta-

bility of both the original and new functions. Hypervi-

sors are a known mechanism to isolate different func-

tions. However, to enable extending a storage controller

by providing new functions in a virtual machine (VM),

the virtualization overhead must be negligible, which is

not the case in a straightforward implementation. This

paper demonstrates a set of mechanisms and techniques

that achieve near zero runtime performance overhead for

using virtualization in the context of a storage system.

1 Introduction

Additional functions, such as file serving or database, are

often added to existing storage systems to meet new re-

quirements. Historically, this has been done via code in-

tegration, or by running the new function on a gateway

or virtual storage appliance (VSA [37]). Code integration

generally performs best. However, the new function must

run on the same OS version, the controller’s main func-

tionality is vulnerable to bugs due to lack of isolation,

resource management is complicated for software which

assumes a dedicated system, and development complex-

ity increases in particular when the new function already

exists as independent software. The gateway approach

offers isolation but adds both latency and hardware costs.

A hypervisor can isolate the new function, allow for

differing OS versions, and simplify development. How-

ever, until now the high performance overhead of virtu-

alization (in particular virtualized I/O) has made this ap-

proach impractical. In this paper, we show how to use

server-based virtualization to integrate new functions into

a storage system with near zero performance cost. Our

approach is in line with the VSA approach, but we run

the VM directly on the storage system.

While our work was done using KVM [14], our in-

sights are not KVM-specific. We do take advantage of the

fact that KVM uses an asymmetric model in which some

of the code is virtualized (the new features) while other

code (the original storage system) runs on “bare metal,”

unaware of the existence of the hypervisor.

There are three sources of performance overhead. Base

overheads include aspects such as virtual memory man-

agement or process switching. External communication

with storage clients is important when the new function is

a “filter” on top of the original storage system, e.g., a file

server. Finally, internal communication overheads are in-

curred to tie the new function to the original controller.

To reduce base overhead, we use two main techniques.

First, we statically allocate CPU cores to the guest to en-

sure that the function has sufficient resources. Second,

we statically allocate memory for the VM, backing that

area with larger pages to reduce translation overheads.

The straightforward implementation of external com-

munication is expensive because the hypervisor inter-

venes when physical events occur (e.g., interrupts or de-

vice accesses). Each such intervention entails an ex-

pensive “exit” from the guest code to the hypervisor.

The highest-performing approach for reducing this over-

head is device assignment, which eliminates exits for de-

vice access. Thus, to reduce these costs, we assign the

network device directly to the guest using an SR-IOV-

enabled adapter [23] which allows the guest to send re-

quests directly to the device. To eliminate exits for inter-

rupts, we use polling instead of interrupts, a well-known

technique in storage systems.

To reduce the cost of internal communication,wemod-

ified KVM’s para-virtual block driver to poll as well,

eliminating exits due to PIOs and interrupt injections.

This provides for a fast, exit-less, zero-copy transport.

By using these techniques, we show nomeasurable dif-

ference in network latency between bare metal and virtu-

alized I/O and under 5% difference in throughput. For

internal communication, micro-benchmarks show 6.6µs

latency overhead, read throughput of 357K IOPS, and

write throughput of 284K IOPS; roughly seven times bet-

ter than a base KVM implementation. In addition, an I/O

intensive filer workload running in KVM incurs less than

0.4% runtime performance overhead compared to bare

metal integration.

Our main contributions are:

• a detailed, benchmark-driven analysis of virtualiza-

tion overheads in a storage system context,

• a set of approaches to removing overheads, and

• a demonstration of how these approaches enable

running new storage features in a VM with essen-

tially zero runtime performance overhead.

188 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

The rest of the paper is organized as follows. Section 2

provides background on KVM and VM I/O. We take

an incremental approach to show our performance im-

provements; Section 3 describes the experimental envi-

ronment. Sections 4 and 5 present a performance analysis

and describe optimizations related to the external and in-

ternal communication interfaces, respectively. Base over-

heads are shown together with macro-benchmark results

are in Section 6. Section 7 describes related work and we

conclude in Section 8.

2 x86 I/O Virtualization Primer

We now provide some background information on KVM

(the hypervisor used in this paper) and virtual machine

I/O. There are two main options for where a hypervisor

resides. Type 1 hypervisors run directly on the hard-

ware, whereas type 2 hypervisors are hosted by an OS.

KVM takes a hybrid approach that combines the bene-

fits of both. It is a Linux kernel module that leverages

Intel VT-x or AMD-V CPU features for running unmod-

ified virtual machines, thereby creating a single host ker-

nel/hypervisor that runs both processes and virtual ma-

chines. Such a hybrid architecture allows the storage con-

troller software to run unmodified on bare metal while

also running additional functionality in virtual machines.

There are three main methods for accessing I/O de-

vices in VMs. In the first, emulation, the hypervisor em-

ulates a specific device in software [35]. The OS run-

ning in the VM (guest OS) uses its regular device drivers

to access the emulated device. This method requires no

changes to the guest, but suffers from poor performance.

In the second method, para-virtualization [4], the

guest OS runs specialized code to cooperate with the hy-

pervisor to reduce overheads. For example, KVM’s para-

virtualized drivers use virtio [26], which presents a ring

buffer transport (vring) and device configuration as a PCI

device. Drivers such as network, block, and video are

implemented using virtio. In general, the guest OS driver

places pointers to buffers on the vring and initiates I/O

via a Programmed I/O (PIO) command. The hypervisor

directly accesses the buffers from the guest OS’s mem-

ory (zero-copy). Para-virtualized devices perform better

than emulated devices, but require installing hypervisor-

specific drivers in the guest OS.

The third method, device assignment [6, 17, 39], gives

the VM a physical device that it can submit I/Os to with-

out the hypervisor’s involvement. An I/O Memory Man-

agement Unit (IOMMU) provides address translation and

memory protection [6, 7, 38]. Interrupts, however, are

routed to the guest OS via the hypervisor. Assigning a

device to the VM means that no other OS can access

it (including the hypervisor or other guests). However,

technologies such as Single Root I/O Virtualization (SR-

IOV) [23] allow devices to be assigned to multiple OSs.

3 Experimental Setup

We take an incremental approach to showing how to

eliminate the virtualization overheads. For our ex-

periments we used two servers, each with two quad-

core 2.93GHz EPT-enabled Intel Xeon 5500 processors,

16GB of RAM and an Emulex OneConnect 10Gb Eth-

ernet adapter. The servers were connected with a 10Gb

cable. One server acted as a load generator and the other

was our (emulated) storage controller platform.

We used RHEL 5.4 with the RedHat 2.6.18-164.el5

kernel for both the load server and the guest. The con-

troller server used the RedHat kernel for bare metal runs

and Ubuntu 9.10 with a vanilla 2.6.33 kernel for KVM

runs. The newer kernel was necessary for running KVM.

The controller server was run with four cores enabled,

unless otherwise specified. For VM-based experiments,

two cores and 2GB of memory were assigned to the

guest; all four cores were used by the host in the bare

metal cases.

We used an 8GB ramdisk for the storage back-end in

the experiments described in Section 5 and 6. This al-

lowed us to measure I/O performance without physical

disks becoming the bottleneck. We accessed the ramdisk

via a loopback device, which allowed us to assign disk

I/O handling to specific cores, similar to the way a stor-

age controller functions.

All results shown are the averages of at least 5 runs,

with standard deviations below 5%.

4 Network Communication Performance

Enabling the guest to interact with the outside world re-

quires I/O access. As discussed in Section 2, each of the

three common approaches to I/O virtualization has bene-

fits and drawbacks. We identified device assignment—

the best performing option—as the most suitable ap-

proach for adding new functionality to storage con-

trollers. KVM’s initial device assignment implemen-

tation, however, did not provide the necessary perfor-

mance. In the remainder of this section, we analyze de-

vice assignment and discuss a set of optimizations which

allowed us to achieve near bare-metal performance.

Virtualization overhead is mainly due to events that are

trapped by the hypervisor, causing costly exits [1, 5, 16].

The overhead is a factor of the frequency of exits and the

time it takes the hypervisor to handle the exit and resume

running the guest. To examine the performance impact

of virtualization for our intended use and ways to reduce

it, we focused on networking micro-benchmarks. Our

goal is to minimize the amount of time that the hypervisor

needs to run, by minimizing the number of exits.

The first technique that we used to improve the guest’s

performance is related to the handling of the hlt (halt)

and mwait x86 instructions. When the OS does not have

any work to do it can call these instructions to enter a

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 189

power saving mode. Most hypervisors will trap these

commands and will run other tasks on the core. In our

case, however, the new function should always run. We

therefore instructed the guest OS to enter an idle loop

when there is no work to be done by enabling a kernel

boot parameter (idle=poll). This improves perfor-

mance, as the guest is always running.

The second technique that we used is related to inter-

rupt handling. Most of the guest exits related to device

assignment are caused by interrupts [2, 5, 18]. Every ex-

ternal interrupt causes at least two guest exits: first, when

the interrupt arrives (causing the hypervisor to gain con-

trol and to inject the interrupt to the guest) and when the

guest signals completion of the interrupt handling (caus-

ing the host to gain control and to emulate the comple-

tion for the guest). The guest can configure the adapter to

use two different interrupt-delivery modes: MSI, which

is the newer message based interrupt protocol, or the

legacy INTX protocol. The KVM implementation we

used incurred additional overhead when using MSI inter-

rupts, due to additional exits for masking and unmasking

adapter interrupts. Since most of the virtualization over-

head comes from interrupts, our approach is to run the

adapter in polling rather than interrupt-driven mode.

In Linux today, most network adapters use NAPI [30,

31], a hybrid approach to reducing interrupt overhead

which switches between polling and interrupt-driven op-

eration depending on the network traffic. However, even

with NAPI, we have seen interrupt rates of 70K interrupts

per second. Since such a high interrupt rate can incur pro-

hibitive overhead and interrupts are not necessary for our

intended use case, we decided to forgo interrupts and use

polling. Our polling driver creates a new thread for the

polling functions. The adapter we use has three types of

events: packet received, packet sent, and command com-

pletion. Since there is no way to know when a packet

will be received, our polling driver continuously polls for

packets received; packet sent and command completion

indications are handled by the same polling thread every

so often. Using a constantly polling thread means that we

dedicate most of a core for this functionality. While this

might seem expensive from the resources perspective, it

proved critical to achieve the desired performance. A sin-

gle core could also be used to poll multiple devices by

integrating their polling threads into a single thread, or

by scheduling different polling threads on the same core.

We did not experiment with this configuration.

Next we evaluate the performance of the polling driver

using network micro-benchmarks. Table 1 depicts the av-

erage duration time of a ping flood command going from

a client machine to the system under test. The system un-

der test replies to pings using our polling driver either in

polling mode or in INTX mode. The driver runs either in

the host (bare-metal), or in the guest with halt disabled,

Bare-metal Guest Guest halt

INTX 24 49 89

Polling 21 21 21

Table 1: Ping average latency (µs)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 2 4 8 16 32 64 128

T
ra

n
s
a

c
ti
o

n
s
/s

e
c
o

n
d

Number of netperf processes

host msi
guest msi
guest intx

host poll
guest poll

Figure 1: netperf request-response throughput

 0

 2

 4

 6

 8

 10

 64
 128

 256
 512

 1024

 2048

 4096

 8192

 16384

 32768

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

Message size (bytes)

host msi
guest msi
guest intx
host poll

guest poll

Figure 2: netperf TCP send throughput

or in the guest with halt enabled (guest halt).

Figure 1 shows the results for several netperf

request-response configurations, measuring round-trip

time using 1 byte packets. guest msi and guest intx stand

for the guest using MSI and INTX interrupt delivery, re-

spectively. host msi stands for the host using interrupts

in MSI mode; guest poll and host poll stand for the guest

and host using polling mode, respectively. As expected,

polling mode achieves better performance than interrupt

mode in the host (i.e, on bare metal). Since in guest mode

the cost of interrupts is much higher, the gain from using

polling is more significant than in the bare-metal case.

Using MSI interrupts in guest mode has significant im-

pact on the performance with this KVM version since

there are frequent exits due to interrupt masking calls by

the guest.

Figure 2 shows the results of a single-threaded

netperf send TCP throughput test (system under test

is sending) in the same configurations as the previous fig-

ure: host using polling and INTX interrupts, guest using

190 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 2

 4

 6

 8

 10

 64
 128

 256
 512

 1024

 2048

 4096

 8192

 16384

 32768

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

Message size (bytes)

host msi
host poll

guest poll

Figure 3: netperf TCP receive throughput

polling, INTX, and MSI interrupts. Here the contribution

of polling is less noticeable, since the TCP stack batches

network processing. On bare metal, polling provides bet-

ter performance than interrupt mode. In guest mode, the

advantage of polling is much more significant.

Figure 3 shows the results of a single-threaded

netperf receive TCP throughput test (system under

test is receiving). Here it is surprising to see that for the

bare-metal case the performance of polling (host poll)

is less than that of interrupts (host msi). The reason is

that in the netperf throughput test the sender is the bot-

tleneck. When the receiver is working in polling mode, it

sends many more acknowledgment packets to the sender.

For example in the case of 1K messages, the receiver

sends approximately 10 times as many ACKs. Since

the sender is already the bottleneck, sending more ACKs

generates more load on the sender, which reduces sender

throughput. While this issue is noticeable for this micro-

benchmark, in practice, the handling time of a packet

by the receiver is much larger, hence in most cases the

sender is not the bottleneck. Polling achieves the same

performance in the guest poll and host poll cases, which

indicates that the virtualization-induced runtime over-

head is negligible.

To verify that the reduced polling performance for the

receive test is an artifact of TCP, we ran the same test us-

ing UDP. With UDP, all setups—guest or bare metal, in-

terrupts or polling—achieve the same performance. Be-

cause the sender is the bottleneck, once the TCP ACK

effect is removed, performance is not affected by the re-

ceiver’s mode of operation.

5 Internal Communication Performance

Of the three methods for accessing I/O devices described

in Section 2, we use para-virtualization for internal com-

munication. Para-virtualization performs better than em-

ulated devices, and because we supply the VM image that

runs in the controller, we can easily use custom drivers.

Further, our goal is to transmit I/O requests to a controller

process running on the host, so device assignment is less

Post Guest Execution

[12µs] 24%

virtio-block BE [1.7µs] 3.4%

virtio-block FE [0.9µs] 1.8%

Block Layer [1.3µs] 2.6%

DIO Wait [8.3µs] 16.6%

VFS Layer [2.4µs] 4.8%

Application Layer [1µs] 2%

QEMU BDRV Layer [2.2µs] 4.4%

AIO System Call [9.1µs] 18.2%

Pre Guest Execution

[9.2µs] 18.4%

I/O Completion [1.9µs] 3.8%

Guest vCPU Thread

Physical Core 0

QEMU Main Thread

Physical Core 1

AIO Completion [5.2µs] 10.5%

Other Work [0.8µs] 1.5%

Idle Time [44µs] 88%

Guest User Space Host User SpaceGuest Kernel SpaceLegend:

5

0

µs

Figure 4: Unmodified KVM para-virtualized block I/O path.

virtio-block FE

[0.5µs] 3.1%

Block Layer

[0.7µs] 4.4%

DIO Wait

[13.3µs] 83.6%

VFS Layer [1µs] 6.3%

Application Layer

[0.4µs] 2.5%

Guest vCPU

Benchmark Thread

Physical Core 0

Guest vCPU Polling

Physical Core 2

Poll [14.8µs] 93.1%

I/O Completion

[1.1µs] 6.9%

Host Polling Thread

Physical Core 1

Poll [7µs] 44%

virtio-block BE

[1.1µs] 6.9%

QEMU BDRV Layer

[1.1µs] 6.9%

AIO System Call

[5.7µs] 35.8%

Poll (continued)

AIO Completion

[1µs] 6.3%

Guest User Space Host User SpaceGuest Kernel SpaceLegend:

1

5

.
9

µs

Figure 5: Para-virtualized block I/O path with polling.

practical. For example, we cannot assign the drives be-

cause the storage controller must “own” them, and not the

guest OS. One may also consider using external commu-

nication to access the controller via iSCSI or Fibre Chan-

nel, but this adds unnecessary communication overheads.

We use ramdisk as the backing store for our analysis

to prevent the disks from dominating latencies or becom-

ing a bottleneck. In addition, we use direct I/O to prevent

caching effects that mask virtualization overheads. La-

tencies presented are the average over 10 minutes.

Section 5.1 describes the vanilla KVM para-virtualized

block I/O, and Section 5.2 describes our optimizations.

5.1 KVM Para-virtualized Block I/O

Figure 4 depicts the unmodified para-virtualized block

I/O path in KVM, along with associated latencies for ma-

jor code blocks when executing a 4KB direct I/O write

request. The guest application initiates an I/O, which is

handled by the guest kernel as usual. The direct I/O wait-

ing time (DIOWait, 16.6% of the total), consists of world

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 191

switches and context switches between threads inside the

guest. Though we have drawn it as one block, it is in-

terleaved with other code running on the same core. The

para-virtualized block driver (virtio-block front-end) it-

erates over the requests in the elevator queue and places

each request’s I/O descriptors on the vring, a queue re-

siding in guest memory that is accessible by the host.

The driver then issues a programmed I/O (PIO) command

which causes a world switch from guest to host.

Control is transferred to the KVM kernel module to

handle the exit. The post- and pre-execution times (24%

and 18.4%, respectively) account for the work done

by both KVM and QEMU to change contexts between

the guest and QEMU process (including the exit/entry).

KVM identifies the cause of the exit and, in this case,

passes control to the QEMU virtio-block back-end (BE).

It extracts the I/O descriptors from the vring without

copies and passes the requests to the block driver layer

(QEMU BDRV), which initiates asynchronous I/Os to

the block device. The guest may now resume execution.

An event-driven dedicated QEMU thread receives I/O

completions and forwards them to the virtio-block BE.

The BE updates the vring with completion information

and calls upon KVM to inject an interrupt into the guest,

for which KVM must initiate a world switch. When the

guest resumes, its kernel handles the interrupt as normal,

and then accesses its APIC to signal the end of interrupt,

causing yet another exit. Locks to synchronize the two

QEMU threads incur additional overhead.

5.2 Para-virtualized Block Optimizations

To reduce virtualization overhead, we added a polling

thread to QEMU as depicted in Figure 5. The thread

polls the vring (1) for I/O requests coming from the guest

and (2) for I/O completions coming from the host ker-

nel. The polling thread invokes the virtio-block BE code

on incoming I/Os and completions. This thread does not

necessarily need to reside in QEMU; if the storage con-

troller is polling-based, its polling thread may be used.

As discussed in Section 4, we added a thread to the

guest which polls the networking device. We utilize this

same thread to poll the vring for I/O completions. When

it detects an I/O completion event, it invokes the guest

I/O completion stack, which would normally be called

by the interrupt handler. By using polling on both sides

of the vring, we avoid all I/O-related exits, and thus also

avoid all of the pre- and post-guest execution code. We

also avoid locking the queue, since now only the polling

thread accesses it. For the 4KB direct I/O write, this im-

proves the latency from 50µs to 15.9µs.

Comparing Figures 4 and 5, we see that polling bet-

ter utilizes the CPU for I/O-related work. Additionally,

components that we didn’t directly optimize (such as the

VFS layer, for example) are more efficient thanks to bet-

ter cache utilization and less cache pollution due to fewer

context switches.

We performed two additional code optimizations in

QEMU to reduce latencies, whose impact is already in-

cluded in the above discussion. When accessing a guest’s

memory, QEMU must first translate the address using a

page-table–like data structure. This handles cases where

the guest’s memory can be remapped (for example, when

dealing with PCI devices). In our case, the memory lay-

out is static, rendering the translation unnecessary. Re-

moving unnecessary lookups improved performance by

4.6% for 4KB reads and 4.2% for 4KB writes. The sec-

ond optimization is to use a memory pool for internal

QEMU request structures. This saved 3% for 4KB reads

and 2.5% for 4KB writes.

5.3 Overall Performance Calculation

A storage controller running a new function in a VM that

uses interrupts for its internal communicationwould have

a rather significant performance penalty. Looking at Fig-

ure 4, the corresponding storage controller implementa-

tion would look similar, except that the AIO calls would

be replaced by asynchronous calls to the controller code.

We consider any work done from the time the applica-

tion submits the I/O until it reaches the controller to be

virtualization overhead (work that would not be done if

running directly on the host). In the unmodified case, the

overhead is 49µs (we subtract only the latency of the ap-

plication layer from the total).

If our techniques were integrated into a controller, we

would calculate the latency overhead as follows, based

on Figure 5. We begin with the total, 15.9µs, and sub-

tract the application layer, as we did in the previous case.

Further, we subtract the QEMU BDRV layer, and the

AIO system call and completion, because these would

be replaced by the controller code, and are therefore not

considered virtualization overhead. The final overhead is

therefore 7.7µs before the two QEMU optimizations, and

6.6µs after.

To put the overheads in context, we estimate our per-

formance impact on the fastest latencies published using

the SPC-1 benchmark since 2009 [34]. The fastest re-

sult was 130µs, and our virtualization technique would

add approximately 5% overhead to this case (the baseline

case would add approximately 38%). The average of the

27 controllers’ fastest latencies is 482µs, and in this av-

erage case, our virtualization techniques would add only

1.4% (the baseline would add over 10%).

Our improvements affect throughput in addition to

latency. To measure these effects, we ran micro-

benchmarks consisting of multi-threaded 4KB direct

I/Os. For multi-threaded 4KB direct I/Os, we improved

read IOPs by a factor of 7.3x (from 48.8K to 357.5K),

and write IOPS by 6.5x (from 43.8K to 284.1K).

192 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 200

 400

 600

 800

(1)
BM

base

(2)
BM

polling

(3)
Guest
base

(4)
3+Huge
Pages

(5)
4+Idle
polling

(6)
5+Driver
polling

T
h

ro
u

g
h

p
u

t
(M

B
/s

) 850.0 846.0

594.4 657.1 704.9
844.1

Figure 6: File server workload with 6 cores

6 File Server Workload

We next tested the end-to-end performance of running a

server in a VM on a storage controller. We ran a file

server in our VM, and used dbench [36] v4.00 to gen-

erate 4KB NFS read requests which all arrived at the

10Gb NIC, went through the local file system and block

layers, through the para-virtualized block interface, and

were satisfied by the ramdisk on the host side. We al-

ways allocated two cores to the controller function, and

either two or four to the file server (as specified). In the

virtualized cases, all file server cores were given to the

VM. All cores were fully utilized for all cases.

Figure 6 shows the results when running with six

cores: two for the controller function and four for the file

server. Bars 1 and 2 show the bare metal case without

polling and with, respectively. Roughly the same perfor-

mance is attained in both cases. The third bar shows the

baseline measurement for the guest, which is a signifi-

cant degradation as compared to the bare metal cases. We

identified three main causes for this performance drop.

First, we noticed a large number of page faults on

the host caused by the running VM. We mitigated this

using the Linux kernel’s HugePages mechanism, which

backs a given process with 2MB pages instead of 4KB

pages. This allows the OS to store fewer TLB page en-

tries, resulting in fewer TLB faults and fewer EPT table

lookups. HugePages improved performance by 10.5%, as

shown in the fourth bar of Figure 6. A feature in a recent

Linux kernel release makes the use of HugePages auto-

matic [10]. The second issue affecting performance was

halt exits, described in Section 4. We avoid these exits by

setting the guest scheduler to poll. This further improved

performance by 7.3% (fifth bar in Figure 6). The final

performance improvement was to add driver polling, for

both the network and block interfaces (described in Sec-

tions 4 and 5.2). This further improved performance by

19.7%, and brings the guest’s performance to be statisti-

cally indistinguishable from bare metal.

Next, we ran the same workload, but this time allo-

cated only two cores to the file server (four cores total).

This may be a more common deployment when running

multiple server VMs on a single physical host, for exam-

ple, because there are less cores available for each VM.

The bare metal results are depicted in Figure 7(a). The

first bar shows the bare metal baseline performance of

442.1 MB/s. We see in the second bar that performance

 0

 100

 200

 300

 400

(1)
BM

base

(2)
BM

polling

(3)
2+

Priority

(4)
3+

Affinity

T
h

ro
u

g
h

p
u

t
(M

B
/s

) 442.1

331.1
420.5 438.9

(a) Bare Metal

 0

 100

 200

 300

 400

(1)
Guest
base

(2)
Guest

opt

(3)
Guest
polling

(4)
6+

Priority

(5)
7+

Affinity

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

282.7
348.2 331.9

370.5
437.8

(b) Guest

Figure 7: File server workload with 4 cores

drops to 331.1 MB/s when using polling. This is because

the host now has only two cores, and the polling thread

utilizes a disproportionate amount of CPU resources as

compared to the file server. We remedied this by reducing

the CPU scheduling priority of the polling thread (bar 3),

and by setting the CPU affinities of the polling thread

and some of the file server processes so that they share

the same core (bar 4). These two changes bring the per-

formance back to baseline performance.

In the guest case, depicted in Figure 7(b), the baseline

(bar 1) is approximately 36% lower than the bare metal

case. Bar 2 includes the HugePages and idle polling op-

timizations previously described, and bar 3 adds driver

polling. Similar to the bare metal case, we adjusted the

polling thread scheduling priority and the affinities of the

relevant processes (bars 4 and 5). This brings us to results

that are statistically indistinguishable from bare metal. In

all cases, tuning was not difficult, and a wide range of

values provided the achieved performance.

7 Related Work

Several works explored the idea of running VMs on stor-

age controllers. The IBM DS8300 storage controller

uses logical partitions (LPARs) to enable the creation of

two fault-isolated and performance-isolated virtual stor-

age systems on one physical controller [12]. Pivot3 [24]

and ParaScale [22] are integrated virtualization and scale-

out SAN storage platforms that are geared to data centers.

Fido [8] investigated using shared memory to implement

zero-copy inter-VM communication in Xen in the con-

text of enterprise-class server appliances. Our focus is

different in that we investigate external communication,

zero-copy communication with the controller software,

and various techniques and methods to reduce overheads

caused by I/O virtualization.

Block Mason [21] used building blocks implemented

in VMs to extend block storage functionality. VMware

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 193

VSA [37] pools the internal storage resources of several

servers in a shared storage pool, using dedicated virtual

machines running on each server.

Several works explored off-loading I/O to dedicated

cores [3, 15, 16, 19]. The closest to ours is VPE [19],

which adds host-side polling to KVM’s virtio network

stack. The VPE thread polls the network device for in-

coming packets and polls the guest device driver for new

requests. However, the guest incurs exit overheads for

interrupts and I/O completions since its driver does not

poll. Dedicating cores for improving I/O performance

has also been explored in TCP onloading [25, 32, 33].

There have been several works that investigated reduc-

ing interrupt overhead. The Linux kernel uses NAPI to

disable interrupts of incoming packets as long as there

are packets to be processed [30, 31]. A hybrid approach

is to use interrupts under low load, and polling when

more throughput is needed [11]. With interrupt coalesc-

ing, a single interrupt is generated for a given number of

events or in a pre-defined time period [2, 27]. A series of

works compared these techniques qualitatively and quan-

titatively [28, 29]. Rather than polling for fixed intervals

or according to arrival rates, QAPolling uses the system

state as determined by applications’ receive queues [9].

The Polling Watchdog uses a hardware extension to trig-

ger interrupts only when polling fails to handle a message

in a timely manner [20].

ELI (ExitLess Interrupts [13]) is a recently-published

software-only approach for handling interrupts within

guest virtual machines directly and securely. ELI re-

moves the host from the interrupt handling paths, thereby

allowing guests to reach 97%–100% of bare-metal per-

formance for I/O-intensive workloads.

8 Conclusions and Future Work

We have shown how to use a hypervisor to host and iso-

late new storage system functionswith negligible runtime

performance overhead. The techniques we demonstrated

such as polling, dedicated cores, avoiding page lookups,

etc., while not general purpose are a good fit to our usage

scenario and have a significant payback.

There are several possible extensions. First, ELI [13]

is a promising new approach for exitless interrupts which

would remove the need to poll in the guest. We are in-

vestigating incorporating it into our system. Second, if

we stay with polling, we can explore ways to better uti-

lize the polling cores, e.g., to on-board the TCP stack

to a polling core. Third, we can also benchmark these

techniques when running multiple VMs. Finally, we can

examine how to leverage the fact that we have virtual-

ized the new storage function’s implementation to take

advantage of features such as VM migration to improve

performance and availability.

Acknowledgments

Thank you to our shepherd Arkady Kanevsky and

the reviewers for their helpful comments. Thanks to

Zorik Machulsky and Michael Vasiliev for assisting

with the hardware. The research leading to the re-

sults presented in this paper is partially supported by

the European Communitys Seventh Framework Pro-

gramme ([FP7/2001-2013]) under grant agreement num-

ber 248615 (IOLanes).

References

[1] K. Adams and O. Agesen. A comparison of soft-

ware and hardware techniques for x86 virtualiza-

tion. In Architectural Support for Programming

Languages & Operating Systems (ASPLOS), 2006.

[2] I. Ahmad, A. Gulati, and A. Mashtizadeh. vIC: In-

terrupt coalescing for virtual machine storage de-

vice IO. In USENIX Annual Technical Conf., 2011.

[3] N. Amit, M. Ben-Yehuda, D. Tsafrir, and A. Schus-

ter. vIOMMU: efficient IOMMU emulation. In

USENIX Annual Technical Conf., 2011.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-

ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.

Xen and the art of virtualization. In ACM Sym-

posium on Operating Systems Principles (SOSP).

ACM SIGOPS, October 2003.

[5] M. Ben-Yehuda,M. D. Day, Z. Dubitzky,M. Factor,

N. Har’El, A. Gordon, A. Liguori, O. Wasserman,

and B. Yassour. The Turtles project: Design and im-

plementation of nested virtualization. In USENIX

Symposium on Operating Systems Design & Imple-

mentation (OSDI), 2010.

[6] M. Ben-Yehuda, J. Mason, J. Xenidis, O. Krieger,

L. van Doorn, J. Nakajima, A. Mallick, and

E. Wahlig. Utilizing IOMMUs for virtualization in

Linux and Xen. InOttawa Linux Symposium (OLS),

July 2006.

[7] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Ris-

ter, A. Bruemmer, and L. van Doorn. The price of

safety: Evaluating IOMMU performance. In the

2007 Ottawa Linux Symposium, June 2007.

[8] A. Burtsev, K. Srinivasan, P. Radhakrishnan, L. N.

Bairavasundaram, K. Voruganti, and G. R. Good-

son. Fido: Fast inter-virtual-machine communica-

tion for enterprise appliances. In USENIX Annual

Technical Conf., June 2009.

[9] X. Chang, J. Muppala, W. Kong, P. Zou, X. Li, and

Z. Zheng. A queue-based adaptive polling scheme

to improve system performance in gigabit ether-

net networks. In IEEE International Performance

Computing and Communications Conf., 2007.

[10] J. Corbet. Transparent hugepages in 2.6.38. http:

//lwn.net/Articles/423584/, January 2011.

194 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[11] C. Dovrolis, B. Thayer, and P. Ramanathan. Hip:

Hybrid interrupt-polling for the network inter-

face. ACM SIGOPS Operating Systems Review,

35(4):50–60, October 2001.

[12] B. Dufrasne, A. Baer, P. Klee, and D. Paulin. IBM

system storage DS8000: Architecture and imple-

mentation. Technical Report SG24-6786-07, IBM,

October 2009.

[13] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda,

A. Landau, D. Tsafrir, and A. Schuster. ELI: Bare-

metal performance for I/O virtualization. In Ar-

chitectural Support for Programming Languages &

Operating Systems (ASPLOS), 2012.

[14] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and

A. Liguori. kvm: the Linux virtual machine mon-

itor. In the 2007 Ottawa Linux Symposium, vol-

ume 1, June 2007.

[15] S. Kumar, H. Raj, K. Schwan, and I. Ganev. Re-

architecting VMMs for multicore systems: The

sidecore approach. In Workshop on Interaction be-

tween Opearting Systems & Computer Architecture

(WIOSCA), 2007.

[16] A. Landau, M. Ben-Yehuda, and A. Gordon.

SplitX: Split guest/hypervisor execution on multi-

core. In USENIX Workshop on I/O Virtualization

(WIOV), 2011.

[17] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Un-

modified device driver reuse and improved system

dependability via virtual machines. In USENIX

Symposium on Operating Systems Design & Imple-

mentation (OSDI), 2004.

[18] J. Liu. Evaluating standard-based self-virtualizing

devices: A performance study on 10 GbENICs with

SR-IOV support. In IEEE International Parallel &

Distributed Processing Symposium (IPDPS), 2010.

[19] J. Liu and B. Abali. Virtualization polling engine

(VPE): Using dedicated cpu cores to accelerate I/O

virtualization. In the 23rd international conference

on Supercomputing, June 2009.

[20] O. Maquelin, G. R. Gao, H. H. J. Hum, K. B.

Theobald, and X. Tian. Polling watchdog: Com-

bining polling and interrupts for efficient message

handling. ACM SIGARCH Computer Architecture

News, 24(2):179–188,May 1996.

[21] D. T. Meyer, B. Cully, J. Wires, N. C. Hutchinson,

and A. Warfield. Block mason. In USENIX Work-

shop on I/O Virtualization (WIOV), 2008.

[22] ParaScale. Cloud computing and the parascale plat-

form: An inside view to cloud storage adoption.

White Paper, 2010.

[23] PCI-SIG. Single root I/O virtualization 1.1

specification, January 2010. www.pcisig.com/

specifications/iov/single_root/.

[24] Pivot3. Pivot3 serverless computing technology

overview. White Paper, April 2010.

[25] G. Regnier, S. Makineni, I. Illikkal, R. Iyer,

D. Minturn, R. Huggahalli, D. Newell, L. Cline, and

A. Foong. Tcp onloading for data center servers.

IEEE Computer, 37(11):48–48, 2004.

[26] R. Russell. virtio: Towards a de-facto standard for

virtual I/O devices. ACM SIGOPS Operating Sys-

tems Review, 42(5):95–103, July 2008.

[27] K. Salah. To coalesce or not to coalesce. Interna-

tional Journal of Electronics and Communications,

61(4):215–225, 2007.

[28] K. Salah, K. El-Badawi, and F. Haidari. Per-

formance analysis and comparison of interrupt-

handling schemes in gigabit networks. Journal

of Computer Communications, 30(17):3425–3441,

2007.

[29] K. Salah and A. Qahtan. Implementation and

experimental performance evaluation of a hybrid

interrupt-handling scheme. Journal of Computer

Communications, 32(1):179–188, 2009.

[30] J. Salim. When NAPI Comes To Town. In Linux

2005 Conf., August 2005.

[31] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond

Softnet. In Anual Linux Showcase & Conf., 2001.

[32] L. Shalev, V. Makhervaks, Z. Machulsky, G. Biran,

J. Satran, M. Ben-Yehuda, and I. Shimony. Loosely

coupled TCP acceleration architecture. In The 14th

IEEE Symposium on High-Performance Intercon-

nects, August 2006.

[33] L. Shalev, J. Satran, E. Borovik, and M. Ben-

Yehuda. IsoStack—highly efficient network pro-

cessing on dedicated cores. In USENIX Annual

Technical Conf., June 2010.

[34] SPC. Storage Performance Council, 2007. www.

storageperformance.org.

[35] J. Sugerman, G. Venkitachalam, and B. Lim. Vir-

tualizing I/O devices on VMware workstation’s

hosted virtual machine monitor. InUSENIX Annual

Technical Conf.. USENIX Association, 2001.

[36] A. Tridgell and R. Sahlberg. DBENCH. http://

dbench.samba.org/, 2011.

[37] VMware. Virtual storage appliance. http://www.

vmware.com/products/datacenter-virtualization/

vsphere/vsphere-storage-appliance/overview.html.

[38] P. Willmann, S. Rixner, and A. L. Cox. Pro-

tection strategies for direct access to virtualized

I/O devices. In USENIX Annual Technical Conf..

USENIX Association, June 2008.

[39] B. Yassour, M. Ben-Yehuda, and O. Wasser-

man. Direct device assignment for untrusted fully-

virtualized virtual machines. Technical report, IBM

Research Report H-0263, 2008.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 195

ZZFS: A hybrid device and cloud file system for spontaneous users

Michelle L. Mazurek*, Eno Thereska+, Dinan Gunawardena+, Richard Harper+, and James Scott+

*Carnegie Mellon University, Pittsburgh, PA
+Microsoft Research, Cambridge, UK

Abstract

Good execution of data placement, caching and consis-

tency policies across a user’s personal devices has always

been hard. Unpredictable networks, capricious user be-

havior with leaving devices on or off and non-uniform

energy-saving policies constantly interfere with the good

intentions of a storage system’s policies. This paper’s

contribution is to better manage these inherent uncertain-

ties. We do so primarily by building a low-power com-

munication channel that is available even when a device

is off. This channel is mainly made possible by a novel

network interface card that is carefully placed under the

control of storage system protocols.

The design space can benefit existing placement

policies (e.g., Cimbiosys [21], Perspective [23],

Anzere [22]). It also allows for interesting new ones. We

build a file system called ZZFS around a particular set of

policies motivated by user studies. Its policies cater to

users who interact with the file system in an ad hoc way

— spontaneously and without pre-planning.

1 Introduction

Much work has been done in developing appropriate

data placement, caching and consistency policies in the

“home/personal/non-enterprise” space (e.g., see [8, 10,

16, 19, 20, 21, 22, 23, 24, 26, 28]). Good policies are

crucial in maintaining good performance, reliability and

availability. Unfortunately, there are many barriers that

make the execution of such policies far from automatic.

These barriers often stem from the unpredictability of ev-

eryday life, reflected in variable network resources, de-

vices being off or dormant at inconvenient times, and

users’ time and priority given to data management.

Consider two mundane examples (Section 2 has

more): In the first example, a busy mom desires to show

a friend in the mall a photo that happens to be on the

home computer. That same person might wish to access

her personal medical file (that she does not trust the cloud

for storing) from the beach while on holidays later in the

week. In all likelihood she will find the above tasks im-

possible given that her home computer is most likely dor-

mant or off, and she has not had time to specify any par-

ticular data replication policy among the computer and

the smartphone, or hoarded the files beforehand.

The second example illustrates a consistency problem

and is taken from Live Mesh’s [14] mailing list. Many

technology-savvy users experienced frequent conflicts

with music files. A single user would listen to music on

device A, then later listen to the same music on device

B while A was turned off (the files were kept in peer-to-

peer sync between A and B because the user did not have

enough space on the cloud to store all files). Because the

particular music player software updated song metadata

(like play count and rating), it turns out that this is not a

read-only workload. As a result, the syncing generated

conflicts requiring manual resolution whenever the user

switched devices. It is unfortunate that even in the ab-

sence of true multi-user concurrency, a single user can

still get an inconsistent view of the system.

This paper’s main contribution is to build a low-power,

always-on communication channel that is available even

when a device is off. The hypothesis is that this channel

reduces the likelihood that a device is unreachable and

thus helps the execution of data placement and consis-

tency policies. We build this channel using new hardware

and storage system protocols.

On the hardware front, we incorporate a novel network

interface card (NIC) in the design of the overall storage

system (Section 3.1). The NIC maintains device network

access with negligible energy consumption even when

the device is dormant. The NIC is able to rapidly turn on

the main device if needed. The ability to turn on the main

device can be thought of as Wake-on-Lan(WoL) [11] “on

steroids,” in that the NIC operates through any firewalls

or NAT boxes, does not need to know the MAC address

of the dormant device, and handles mobility across sub-

196 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

nets. The NIC also exports to our storage system a small

on-board flash storage. While the hardware part of the

NIC is not a contribution of this paper, we build the stor-

age system software around it.

We design the I/O communication channel on top of

the NIC by leveraging several technical building blocks.

These are not new individually, but, as we discovered,

work well together to lead to a usable system. In partic-

ular, we use data placement protocols based on version

histories for ensuring consistency (Section 3.3); I/O of-

floading [15, 29] is used to mask any performance laten-

cies of turning on a device on a write request by using

the NIC’s flash storage as a versioned log/journal (Sec-

tion 3.3); and users get a device-transparent view of the

namespace with the metadata by default residing on the

cloud. Metadata can also reside on any device with the

always-on channel implemented (Section 3.2).

Fundamentally, our approach makes good use of any

always-on resources, if available (such as the cloud or

a home server), but also actively augments the number

of always-on resources by turning any personal device

with the new network interface card into an always-on re-

source. Perhaps subtly, however, it turns out that having a

few extra always-on resources allows for interesting data

placement policies that were not possible before. We ex-

plore these through building a file system called ZZFS.

We chose to implement a unique set of data placement

and consistency policies that cater mostly to spontaneous

users (Section 4). These policies were partially influ-

enced by qualitative user research. However, other poli-

cies (e.g., Cimbiosys [21], Perspective [23], Anzere [22])

would equally benefit.

2 Background on the problem

Users often have access to a set of devices with storage

capabilities, such as desktops, laptops, tablets, smart-

phones and data center/cloud storage. Data placement

policies revolve around deciding which user’s data or

files go onto which device. Often, a data placement

policy indicates that the same file should be placed on

multiple devices (e.g., for better reliability, availability

and performance from caching). Consistency policies re-

volve around ways of keeping the multiple file replicas in

sync as to provide the abstraction of a single file to users.

We illustrate problems related to the execution of these

policies through three simple examples, that reflect poli-

cies taken from some recent related work.

Example 1: Two replicas of a file: This example de-

fines the terminology and thus is slightly longer than the

subsequent two. Systems like Perspective [23], Cim-

biosys [21] and Anzere [22], allow a photographer to

say “keep all my photos replicated on my work machine

and tablet.” Imagine a user U and a photo file F . It is

very likely that when U edits F from the work machine,

the tablet is dormant so the changes do not immediately

propagate to the tablet. Typical implementations of this

policy make use of a transaction log L that keeps track of

the changes U makes on the work machine. The log is

later replayed on the tablet to maintain consistency.

When the photographer later on moves to work on the

tablet, the log will still be on the now-dormant work ma-

chine. Thus, the tablet is not able to replay the log. The

user has two options, neither which leads to great satis-

faction with the system: option 1 is for the user to manu-

ally turn on the work machine and wait until all the data

is consistent. This option is implicitly assumed in Per-

spective, for example. Option 1 may be out of reach for

non tech-savvy users who just want to get on with their

work and do not understand they have to wait (“for how

long?”) for consistency to catch up.

Option 2 is to continue working on the stale copy of

F on the tablet, keep a separate transaction log L2 of the

work in the tablet, and then later on, when both machines

happen to be up at the same time, have a way to reconcile

L and L2. In the best case, the copies can be reconciled

automatically (e.g., the user is working on two different

parts of the photo that can be just merged). In the worst

case, manual conflict resolution is required. Option 2

is in fact the only option if there is truly no other way

the devices can communicate with one another (e.g., if

the user is on a plane with the tablet and with no net-

work connectivity). However, it seems wasteful human

effort that the user has to resort to this option even when

the network bandwidth in many places (e.g., within the

home, or work) would be perfectly adequate for auto-

matic peer-to-peer sync, if only the devices were on.

Example 2: Device transparency: Several systems

advocate device transparency, where the namespace re-

flects ones’ files and data, not the device where they re-

side. Eyo, for example, allows a user to list from any

device the metadata (e.g., name) of all files, residing in

all subscribed devices [26]. We like the idea of the meta-

data being always available, but want to help further by

satisfying the user’s data needs as well. Imagine a user

U having the names of all her documents, photos and

videos, displayed on her tablet. When U meets a friend

in the mall, she wishes to show her a short video from

a birthday party. The video happens to physically re-

side on her home computer (although the metadata is on

the tablet). There is reasonable 3G bandwidth to stream

the video, but the home computer is dormant. The user

knows the video exists, but cannot access it.

Example 3: Cloud storage: Having sufficient storage

space to store all user data in the cloud with fast network

connectivity to access it seems technically likely in the

next few years (perhaps sooner in Silicon Valley). How-

ever, any consideration of data placement must include

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 197

Figure 1: Storage system architecture, basic interfaces and Somniloquy hardware in action.

human factors as well as technology and cost trends. Hu-

man factors include, among others, trust in the cloud and

desire to possess, know and control where one’s data

is located. Section 4 describes qualitative user studies

we did in the context of this paper. From those studies,

we believe that devices will continue to be places where

users store some of their data. As such, we fully em-

brace the cloud as another place to store data, and we let

users ultimately decide how to use that place. We do not

second-guess them or force them to automatically place

everything on the cloud. Internally, the system makes

good use of available cloud space (e.g., for storing meta-

data — Section 3.2, and versioned logs — Section 3.3).

On the technical front, our system helps users who

might have slow network connections to the cloud. Imag-

ine a scenario in which a user decides to store a substan-

tial amount of his data on the cloud. A user editing an

article and compiling code while traveling benefits from

the device’s cache to batch writes before sending them to

the cloud. When the user returns home and wants to con-

tinue working on the data from his home PC, he finds the

PC’s state is stale and incurs large performance penal-

ties until the state is refreshed. A good cache placement

policy would automatically hoard the user’s working set

to the home cache before the user would need to use it.

Such a policy is hampered, however, because the home

PC is likely dormant before the user arrives.

Intuition on how this paper helps: This paper is

about enabling a satisfying execution of a user’s data

placement, caching and consistency policies given the

likelihood that devices they rely on are dormant. One

way our system will help the situation in Example 1 is

by allowing peer-to-peer sync policies to work by turn-

ing devices on and off rapidly and automatically. If peer-

to-peer sync would not be advisable (e.g., because of bat-

tery considerations), the system temporarily offloads the

transaction log L onto the cloud. In Example 2, the sys-

tem will continue to present a device-transparent view of

metadata, and will rapidly turn on the home computer to

get the data to the user. In Example 3, either peer-to-

peer or cloud-to-device cache syncing will be enabled by

turning the devices whose caches need refreshing on.

3 Design

Figure 1 shows several building blocks of the storage

system. First, storage-capable devices strive to always

maintain a low-power communication channel through a

new low-power network card. Second, a metadata ser-

vice maintains a unified namespace, encompassing any

available storage space on devices, cloud and any home

servers. Third, an I/O director, in cooperation with the

metadata service and the new communication channel,

manages the I/O flow through the system.

3.1 Maintaining network awareness

Data placement and consistency protocols are helped if

devices maintain an always-on communication channel,

even when dormant or off. Of course, such a channel

should consume minimal power. We chose to use a new

network interface card, called Somniloquy, that is de-

signed to support operation of network-facing services

while a device is dormant. Figure 1 shows it operating

with one of our desktops. Somniloquy was first described

by Agrawal et al. [2] in the context of reducing PC energy

usage. The hardware is not a contribution of this paper.

This paper reports on Somniloquy’s role and integration

into a distributed personal storage system.

Somniloquy consumes between one and two orders of

magnitude less power than a PC in idle state. Somnilo-

quy exports a 5 Mbps Ethernet or Wireless interface (Fig-

ure 1 shows a prototype with the Ethernet interface) and

a few GB of flash storage. Somniloquy runs an embed-

ded distribution of Linux on a low power 400 MHz XS-

cale processor. The embedded OS supports a full TCP/IP

198 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

stack, as well as DHCP and serial port communication.

Power consumption ranges between 290 mW for an idle

wireless interface, 1073 mW for the idle Ethernet inter-

face, and 1675 mW when writing to flash [2].

Somniloquy allows a dormant device to remain re-

sponsive to the network. The NIC can continue to com-

municate using the same IP address as the dormant de-

vice. Somniloquy is more appropriate than Wake-on-

LAN (WoL) [11] for mobile storage devices, because it

operates through firewalls and NAT boxes, and it han-

dles mobility across subnets. The on-board processor

maintains contact with a DNS server to preserve the

hostname-to-IP address mapping, performs basic net-

working tasks, and does I/O to its local flash card.

Does the new NIC make the overall system less se-

cure? Our experience is incomplete. Logically, the sys-

tem is running the same storage service as before. How-

ever, because parts of that service now run on the NIC’s

processor, the attack surface on the system as a whole

has increased. Also, while modern processors have ad-

ditional security features such as execute-disable bits to

prevent buffer overflows, our low power processor does

not support these features yet. Denial-of-service attacks

might result in drained batteries. To partially mitigate

these problems we force the NIC to only listen on one

port (5124) that belongs to the storage service. Further,

we require the main device and the NIC’s processor to be

on the same administrative domain.

Somniloquy is the hardware part of the solution, but it

is insufficient without the storage and file system soft-

ware. Here we give intuition on how the I/O direc-

tor (Section 3.3) will use Somniloquy for two common

operations: reads and writes. A read to a file on a

Somniloquy-enabled storage device incurs a worst-case

latency when the request arrives just as the device is go-

ing into standby. Somniloquy will wake up the device

and the latency is at least standby + resume time. Table 1

shows some measurements to understand this worst-case

penalty. Future devices are likely to have faster standby

and resume times. Writes do not have a similar latency

penalty. The I/O director can temporarily offload data to

Somniloquy’s flash card, or nearby storage-capable re-

sources (such as the cloud) if these are available.

Summary, limitations and alternatives: We design

to allow devices to maintain network awareness even

when dormant. Our specific way of enabling the goal is

to introduce new NIC hardware to each device. Agrawal

et al. [2] describes why Somniloquy is more appropriate

than several other hardware-based alternatives (e.g., Tur-

ducken [25]) and we do not list those alternatives further

here. An assumption we make is that it is cost effec-

tive to augment devices with a smarter network interface

card. Further, we assume the NIC would not drastically

change the failure characteristics of the device. These

Device Standby(s) Resume(s)

Lenovo x61 (Win7) 3.8 2.6

Dell T3500 (Win7) 8.7 7.2

HP Pavillon (XP) 4.9 10.25

Macbook Pro (OSX 10.6.8) 1 2

Ubuntu 11.10 11 4.5

Table 1: Example suspend and resume times for com-

modity devices. The device is first rebooted to clear pre-

vious state then it is put into standby followed by a re-

sume. Section 5.2 shows more realistic end-to-end mea-

surements using the Dell T3500 device.

assumptions might turn out to be a limitation of our ap-

proach, depending on the economics of producing a de-

vice and its failure characteristics. Another limitation is

a lack of evaluation of Somniloquy with tablets or smart-

phones. Currently the driver works for Windows Vista/7

only, which limits the experiments in Section 5 to lap-

tops and desktops. Currently, the NIC can only wake up

devices that are placed into standby, and are not fully off.

A software-based alternative would be to maintain de-

vice network awareness by encapsulating a device in a

virtual machine abstraction and then making sure the vir-

tual machine (VM) is always accessible. SleepServer,

for example, migrates a device’s VMs to an always-on

server before the physical device goes dormant [3]. This

alternative might be more appropriate in enterprise envi-

ronments where VMs are used and dedicated always-on

servers are available, rather than for personal devices.

3.2 Metadata service

The metadata service maintains a mapping among an ob-

ject/file ID, the devices that object is stored onto, and

the replication policy used. The MDS uses a flat object-

based API by default, where each object ID is an opaque

128-bit string. The metadata service (MDS) is a logi-

cal component, and it can reside on any device or server.

The metadata service might be replicated for availabil-

ity. Consensus among replicated services could be main-

tained through the Paxos protocol [22]. Furthermore, the

data belonging to the service might be replicated for reli-

ability, or cached on devices for performance. Data con-

sistency needs to be maintained across the replicas.

The low-power communication channel in Section 3.1

helps with MDS availability and reliability in the fol-

lowing way. If the service is replicated among devices

for availability, Somniloquy wakes up dormant devices

that need to participate in the consensus protocol. If the

data belonging to the MDS is replicated, the I/O director

strives to maintain strong consistency through a range of

techniques described in Section 3.3. A reasonable de-

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 199

fault for home users is to have a single instance of the

metadata service run on a cloud server with content repli-

cation factor of 1, i.e., instead of being replicated, the

metadata content is cached on all devices (this is what

our file system implementation in Section 4 does). The

metadata content can be cached on all devices since its

size is usually small (Section 5.5).

The client library caches a file’s metadata when a file

is created and pulls metadata updates from the metadata

service when accesses to a file fail. The latter could

happen either because the file has moved or it has been

deleted, the access control policy denies access, or the

device has failed. A client’s library synchronously up-

dates the MDS when metadata changes. Those updates

could be subsequently pushed by the metadata service to

other devices caching the metadata (the push could be

lazy, e.g., daily, or could happen as soon as the change

occurs). For the common case when a device is dormant,

Somniloquy could wake up the device (or absorb the

writes in its flash card temporarily) to update its cache.

A client might choose to pull the latest metadata explic-

itly (e.g., through a Refresh button), rather than using the

push model. While the design supports both models, we

believe a hybrid pull and lazy push model is a reasonable

default for home users.

Our design requires storage devices to be explicitly

registered with the MDS. If a device is removed from

the system, either because it has permanently failed or

because a newer device has been bought that replaces it,

a user needs to explicitly de-register the old device and

register the new device with the MDS. The metadata ser-

vice initiates daily heartbeats to user devices to detect

permanent failures and to lazily refresh a device’s meta-

data cache. A heartbeat wakes up a dormant device. A

device is automatically rebuilt after the user triggers the

rebuild process.

Summary, limitations and alternatives: The novel

aspect of our metadata service is that the execution of

both metadata service consensus (for availability) and

metadata replication consistency protocols (for reliabil-

ity and performance through caching) is helped by the

ability to turn participating devices on and off transpar-

ently. The design allows for several consensus and con-

sistency options. However, by default the MDS resides

on the cloud and its content is cached on all devices. The

implicit assumption for this default is that the user will

have at least (>56 Kbps) broadband connectivity at home

or work and some weak 3G connectivity when mobile.

Further, we assumed a few hundreds of MB of storage

space at a cloud provider. We believe this is a weak as-

sumption, but, even in the absence of cloud space, the

metadata service and data could still reside on any de-

vice that incorporates Somniloquy.

3.3 I/O director

The I/O director is the third building block of our design.

Its goal is to be versatile, allowing for a range of data

placement and consistency policies. Uniquely to our sys-

tem, the I/O director has new options for data movement.

It can choose either to wake up a device to make reads or

writes, or to temporarily use the flash storage provided by

Somniloquy; it can also opportunistically use other stor-

age resources to mask performance latencies and main-

tain the always-on communication channel.

The operations of the I/O director are best understood

through Figure 2, which shows a client, a metadata ser-

vice (MDS) and two devices D1 and D2. The data is

replicated on both devices with a particular primary-

based concurrency control mechanism to serialize con-

current requests. In this example, each replicated file has

one replica that is assigned the primary role. Figure 2

shows some common paths for read and write requests.

Reads, in the default case, are serviced by the primary for

an object, as seen in Figure 2(a). When all devices are

dormant and a read or write request arrives, Somniloquy

resumes the device and hands it the request as shown in

Figure 2(b) for reads and Figure 2(d) for writes, respec-

tively. Writes are sent to the primary, which serializes

them to the other replicas of the object as in Figure 2(d).

When objects are replicated and a device goes into a

controlled standby, the metadata service receives an RPC

indicating that, as seen in Figure 2(c). This is an op-

timization to give the MDS the chance to proactively

assign the primary role away from that device to de-

vices that are on. As might be expected, transferring the

primary role does not involve data movement, just net-

work RPCs to inform devices of the new assignment. A

client’s metadata cache might be stale with the old pri-

mary information, so a read will initially go to the dor-

mant device. However, the device is not turned on, since

the primary does not reside there. Instead, the client

times out, which triggers an MDS lookup and cache re-

fresh. The read then proceeds to the device with the pri-

mary, which happens to be on in this example.

The I/O director implements I/O offloading [15, 29] to

mask large write latencies and to implement the logging

subsystem. The logging subsystem gives the abstraction

of a single virtual log to the whole distributed storage

system. The actual log might reside on any storage de-

vice. Its size is limited by the size of cloud space, plus

NIC flash space, plus all free hard drive space across all

devices. Figure 2(e) shows offloading to the log (Sec-

tion 5 evaluates the case when the log physically resides

on a nearby device). Remember that if parts of the log

are on the dormant device’s hard drive, that device can be

woken up as needed to access the log. Data is eventually

reclaimed at the expected device at appropriate times,

200 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

D2 (p)

read
timeout

MDS
lookup read read

(a)Basic read (c) Read with device off-
read from replica

Client

MDS

D1 (p)

D2

on

read

(b)Turn on device
and read

offoff

off on

write

off on

write

reclaim

(d)Turn on device
and write

(e)Write with device off –
offload

Log

(f)Write with no network
connectivity

reclaim

conflict
resolution

no net net

MDS
lookup write

Figure 2: Read and write protocols and common cases. D stands for device and p indicates that the primary for the

file being accessed is on that device. “Off” and “on” indicate whether the device is dormant or not.

e.g., when the device is not in use.

The system is optimized for the common case when

there is some network connectivity among devices and

the cloud. If that is not the case, e.g., when the user is

on a plane without network access, the system will tem-

porarily offload all user writes to the log, and the log will

have to physically reside with the user’s device locally.

When the user gains network connectivity, all partici-

pating devices will have to eventually reclaim data from

the log and do standard conflict resolution (e.g., as in

Bayou [28]), as illustrated in Figure 2(f). Our work does

not add anything novel to this scenario’s logic, but our

implementation makes use of the existing logging infras-

tructure to keep track of write versions.

A user can move the file to a new device, and can

change its replication policy any time. When any of these

options happen, our system allows continuous access to

the file. Any new writes to the file are offloaded to the

versioned log. The I/O director logic maintains the nec-

essary bookkeeping to identify the location of the latest

version of a file. The location could be the old location,

or the log, depending on whether the file has seen any

new writes while being transferred or not. Once the file

has moved to the new location, reclaim is triggered to

copy any bytes that might have changed.

Summary, limitations and alternatives: The novel

aspect of the I/O director is that it has new options

for data movement. It can also choose to turn on a

dormant device. The I/O director is optimized for an

increasingly-common case of at least basic network con-

nectivity among storage devices. It reverts to well-known

conflict resolution techniques otherwise.

We currently use I/O offloading techniques [15, 29]

to augment the base file system (which is not versioned)

with a versioned file system partition. Ursa Minor’s tech-

niques for data placement versatility [1] are a good al-

ternative in case the underlying file system is already

versioned. For example, Ursa Minor uses backpointers

when changing data replication while maintaining data

availability. Also, advanced data encoding policies (e.g.,

the use of erasure codes), and other concurrency control

methods (e.g., based on quorums) could equally benefit

from our always-on communication channel.

3.4 Interaction with energy policies

As remarked above, Somniloquy consumes more than an

order of magnitude less energy than an idle device while

maintaining network awareness. The default interaction

with energy policies is simple. A read overrides the en-

ergy policy and wakes up the device. Writes are fully

buffered in the NIC’s card or cloud before waking up the

device. These policies are similar to the ones offered by

BlueFS [16], in that they actively engineer and divert the

traffic to the right device, but we have more resources

available, in the form of the NIC’s flash card or cloud.

Because the NIC runs a capable operating system,

more complex energy policies can be encoded as part of

the NIC processing. For example, BlueFS reduces en-

ergy usage by reading data from the device that will use

the least amount of energy. That policy could be slightly

modified to take into account the device turn on time, if

the device is dormant. Furthermore, the storage system

could determine whether to wake up a device or not as

a function of whether the device is plugged in or run-

ning on batteries. Also, a more advanced standby strat-

egy might predict future access patterns and prevent the

computer from going into standby. Currently, our de-

vices use simple idle time-based policies, like the ones

implemented on Windows.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 201

4 ZZFS: a file system artifact

Perhaps surprisingly, having a few extra always-on re-

sources allows for interesting data placement policies

that were not possible before. We explore these through

building a file system called ZZFS. We chose to imple-

ment a unique set of data placement and consistency poli-

cies that cater mostly to spontaneous data accesses.

4.1 Design rationale

The design rationale for ZZFS is indirectly influenced by

data from qualitative user research, comments on mailing

lists of popular sync tools like Live Mesh [14] and Drop-

box [4], and our desire to explore new policies. ZZFS’s

policies are different from those of say, Cimbiosys [21]

or Perspective [23], but not necessarily “better” or appro-

priate in all cases.

Data from sync programs: To understand how users

perceive consistency and conflict problems and how they

rate them in fix-priority when compared to performance

problems we collected and analyzed user feedback for

Live Mesh [14] and Dropbox [4], two popular rsync

tools. They serve as a rather coarse proxy for understand-

ing consistency in the absence of a distributed file sys-

tem. Feedback from the sync programs is heavily biased

toward early adopters and technology experts, of course,

but it is nevertheless helpful if only because of its volume

(thousands of messages on public forum boards). Exam-

ple 1 in Section 2 was influenced by this data.

Qualitative studies: Our first qualitative study helped

us understand how people understand, organize, store,

and access their content across different devices. The

users for the qualitative studies were picked at random

by a third-party company that specializes in user stud-

ies. We performed “guerrilla” (street) interviews with six

people. We visited two family homes and we then invited

two different families to a conference room (provided by

the third-party company so that our identities would re-

main unknown to avoid perception bias) to further dis-

cuss concepts through storyboards. The raw data we col-

lected is available upon request, but we have not put it

in paper form yet. In parallel, we conducted a second,

larger-scale study on issues around data possession [17].

How the data influenced us: This research influenced

us to try harder to cater to the character of data access

and device management displayed by ordinary (i.e., non

technical) users. We interpret the data as suggesting that

syncing and replication policies are compromised by the

ways users store data, their ad hoc access of networks,

and the priority given to social and economic matters of

data management.

By default, ZZFS caters to spontaneous users with no

data placement policies specified at all by default. No

user effort is required to pre-organize data on devices (by

hoarding, syncing, etc.) Data by default remains on the

device where the user chose to first create it, with a repli-

cation factor of 1. Users showed a greater concern for

and doubts about transferring data between devices than

device failure. This could be interpreted as similar to

Marshall’s observation that only 5% of data loss is due

to a device failure [12].

Whenever a file needs to be accessed, the device it is

on is asked to provide access to that file. If the device is

dormant, the device is woken up through the I/O direc-

tor and the network-aware part of the device. For more

advanced users who worry more about device failure and

thus specify a higher replication factor for files, ZZFS

strives to reduce the time it takes to reach consistency

among replicas by data offloading and by waking up de-

vices as described in Section 3.3.

We found that users made deliberate and intelligent

decisions about wanting to silo their data on different de-

vices and the cloud. From both user studies, we believe

that devices will continue to be places where users store

their data. Any consideration of data placement must

consider human factors as well as technology and cost

trends. Human factors include, among others, trust in

the cloud and desire to possess, know and control where

one’s data is located. Furthermore, different devices

have unique affordances [6] and properties (e.g., screen

size, capacity, weight, security, price, performance, etc.).

Users seem capable of understanding those affordances,

and ZZFS does not second guess. Data movement is in-

curred only when a user explicitly chooses to do so.

4.2 Implementation details and status

We have implemented most of the design space described

in Section 3. ZZFS is a distributed file system that re-

sults from picking a set of policies. It is implemented

at user-level in C. ZZFS supports devices whose local

file system can be NTFS or FAT. ZZFS has implemented

per-object replication and allows for in-place overwrites

of arbitrary byte ranges within an object. Concurrent ac-

cesses to a file are serialized through a primary. ZZFS’s

namespace is flat and it does not have folders, however it

maintains collections of files through a relate() call.

The current implementation addresses a limited set of

security concerns. Data and network RPCs can be en-

crypted (but are not by default). Each object has an ac-

cess control list that specifies which user can access that

object and from what device. We are actively doing re-

search in what security means for home users [13].

In addition to simple benchmarks that directly access

ZZFS through a client library, we run unmodified, legacy

applications (e.g., MS Office, iTunes, Notepad, etc.) for

demoing and real usage. We do so by mounting ZZFS

202 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

as a block-device through the use of a WebDav ser-

vice [31]. This technique required us to detour the Web-

Dav service to use our APIs [9]. WebDav file seman-

tics are different from NTFS semantics and often lead

to performance inefficiencies (e.g., any time a change is

made to a file, WebDav forces the whole file to be sent

through the network). The following calls are detoured

to use ZZFS’s calls: CreateFile(), FindFirstFile(), Find-

NextFile(), ReadFile(), WriteFile(), GetFileAttributes()

and DeleteFile(). The interface currently is Windows Ex-

plorer. A more appropriate interface for a distributed file

system is work-in-progress.

ZZFS is robust. We are using it daily as a secondary

partition to store non-critical files. When it crashes, it

usually does so because of the NIC’s device driver. The

driver issues will be resolved over time and were not our

primary focus for this paper. However, we are working

toward having ZZFS as a primary partition for all files.

5 Evaluation

First, we measure how ZZFS performs and locate its

bottlenecks. Second, through a series of real scenarios,

we measure latencies and penalties associated with the

always-on communication channel. This is an evalua-

tion of the underlying storage system and also of ZZFS’s

policies. Third, we provide analytical bounds for perfor-

mance for a range of workload and device characteristics.

Fourth, we examine metadata scalability.

5.1 Exposing throughput bottlenecks

This section focuses on throughput. The other sections

will focus on latency. We compare our system against

local file access through the NTFS file system. This is

the only time we will use a set of homogeneous devices

(obviously not realistic for personal devices), because it

is simpler for revealing certain types of bottlenecks. The

devices are three HP servers, each with a dual-core Intel

Xeon 3 GHz processor and 1 GB of RAM. The disk in

each device is a 15 KRPM Seagate Cheetah SCSI disk.

The devices have a 1 Gbps NIC. All reads and writes are

unbuffered, i.e., we do not make use of the RAM.

First, we measure peak bandwidth and IOPS (I/Os per

second) from a single device (“Read.1” and “Write.1” in

Figure 3). Bandwidth is measured in MB/s using 64 KB

sequential reads and writes to a preallocated 2 GB file.

IOPS are measured by sending 10,000 random-access

4 KB IOs to the device with 64 requests outstanding at a

time. Figure 3 shows the average from 5 results (the vari-

ance is negligible). Average local streaming NTFS per-

formance (not shown in graph) is 85 MB/s for reads and

writes and 390 IOPS for reads and 270 IOPS for writes;

hence, ZZFS adds less than 8% overhead.

0
100
200
300
400
500
600
700
800
900
1000

0
10
20
30
40
50
60
70
80
90
100

Read.1 Read.max Write.1 Write.max

IO
PS

Ba
nd

w
id

th
 (M

B/
s)

IOPS BW

Figure 3: Baseline bandwidth and IOPS.

Second, we measure maximum bandwidth and IOPS

from all three devices to understand performance scala-

bility (“Read.max” and “Write.max” in Figure 3). Three

clients pick one random 2 GB file to read or write to, out

of a total of 10 available files. Each file is replicated 3-

way. If all clients pick the same file, accesses still go to

disk since buffering is disabled. Figure 3 shows the re-

sults. As expected from 3-way replication, the saturated

write bandwidth is similar to the bandwidth from a sin-

gle device. Saturated read bandwidth is about a third of

the ideal because requests from all three clients interfere

with one another. This problem exists in many storage

systems because of a lack of performance isolation [30].

Saturated IOPS from all devices is close to the ideal of

3x the IOPS from a single device.

Overall, these results show that our system performs

reasonably well with respect to throughput. Optimiza-

tions are still required, however, especially with respect

to reducing CPU utilization. CPU utilization in the sat-

urated cases was close to 100%, mostly due to unneces-

sary memory copies.

5.2 I/O director

This section focuses on read and write latencies resulting

from the always-on channel. We have real measurements

from a home wireless network. We start by illustrating

the performance asymmetry between reads and writes.

The first workload is an I/O trace replay mimicking a

user listening to music. We use trace replay to just focus

on I/O latencies and skip the time when the user listens

to music and no I/O activity is incurred. Half of the mu-

sic is on his laptop, half on the desktop and the setting is

in “shuffle mode” (i.e., uniform distribution of accesses

to files). The music files are not replicated. The desktop

(Dell T3500 in Table 1) is on a 100 Mbps LAN and the

laptop (Lenovo x61) is on a 56 Mbps wireless LAN. The

Somniloquy NIC is attached to the desktop. The MDS

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 203

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90

A
c
c
e
s
s
 l
a
te

n
c
y
 (

s
)

Time (s)

standby
+

resume

blocked request

Figure 4: A scatter plot over time for a client’s re-

quests. Reads latencies are [mean=0.09 s, 99th=0.36 s,

worst=23.3 s]. Write latencies are [mean=0.014 s,

99th=0.022 s, worst=0.058 s]. There are several per-

formance “bands” for local reads (0.001-0.01 s), remote

writes (0.05-0.1 s) and remote reads (0.05-1 s).

resides on the desktop, but all metadata is fully cached

on the laptop as well. The music program issues 64 KB

reads to completely read a music file, then, after the user

has finished listening, a database is updated with a small

write of 4 KB containing ratings and play count updates.

The database resides on the desktop and is not replicated.

Hence, although this is a common workload, it is quite

complex and has both reads and writes. The user sim-

ply wants to listen to music without worrying where the

music files and database are located.

Figure 4 shows a scatter plot (and latency distribution

in the caption) of the worst-case scenario when request to

read a music file comes just as the desktop is starting to

go into standby. Somniloquy intercepts the read request

and signals the computer to wake up. The time it takes

the computer to accept the request is 23.3 s (standby time

+ resume time) and is illustrated in the scatter plot in

the figure. In practice, prefetching the next song would

be sufficient not to notice any blocking; however, when

prefetching is not possible, this serves as a worst-case

illustration. We note that the desktop is rather old, and if

using a newer device (e.g., the Macbook Pro in Table 1)

the worst case latency would be around 4 seconds.

Figure 5 illustrates that writes do not suffer from this

worst case scenario. The workload in this scenario is

a trace replay of I/O activity mimicking a user sending

64 KB writes to a document from the laptop. The user

uses 2-way replication for those files, with the second

replica kept on the desktop. Both laptop and desktop are

on the wired LAN. Similar to the previous case, the desk-

top has gone abruptly into standby. However, there is a

second laptop nearby that is on, and the I/O director tem-

 0.001

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35 40 45 50 55

A
c
c
e
s
s
 l
a
te

n
c
y
 (

s
)

Time (s)

O.start R.start R.end

Figure 5: A scatter plot over time for a client’s write re-

quests. O.start annotates the time the second device en-

ters standby, and thus offloading begins to a third device.

R.start annotates the time when the second device re-

sumes and reclaim starts (offloading thus ends). R.end

annotates the time when all data has been reclaimed.

Write latencies are [mean=0.1 s, 99th=1 s, worst=1.5 s].

porarily offloads the writes onto that laptop (other op-

tions for the offload location are Somniloquy’s flash card

or the cloud). This way, 2-way, synchronous replication

is always maintained. When the desktop comes out of

standby, the data on the third laptop is reclaimed. Re-

claim does not lead to a noticeable latency increase. The

figure shows a slight increase in latency during data of-

fload since the second laptop is on the wireless LAN. A

handful of requests experience high latencies throughout

the experiment. We believe these are due to the perfor-

mance of the wireless router. Note that writes in this

experiment are slower than in Figure 4 because of larger

write request sizes (64 KB vs. 4 KB) and 2-way replica-

tion vs. no replication.

We compare our system against simple ping and av-

erage disk latencies, i.e., we set a relatively high bar to

compare against. We measured a minimum of 0.06 s ping

latency for 64 KB1, 0.005 s for 4 KB sizes and the disk’s

average latency is 0.015 s (these are slow SATA disks,

not the fast SCSI disks used in the previous section).

Hence, an end-to-end read request (and ack) should take

on average 0.075 s and an end-to-end write request (and

ack) should take on average 0.02 s2. Looking at the per-

formance “bands” in Figure 4, we see that local read la-

tency and remote write latency is very good, while re-

mote read latency is 33% slower than ideal. We have

1Exact size is 65500 B, the maximum ping size.
2Although read requests are sequential, the disk head incurs at least

a full disk rotation before receiving the next request, since the requests

are sent one at a time. Also, experienced disk average latencies are

sometimes better than the above theoretical value because our disk is

not full and the files are on its outer tracks.

204 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500

A
c
c
e
s
s
 l
a
te

n
c
y
 (

s
)

Time (s)

blocking time

blocked request
blocking

offloading

Figure 6: A scatter plot over time showing the ef-

fects of moving a file on concurrent operations on

that file. Without offloading, the concurrent work-

load blocks; with offloading, the concurrent workload

makes progress. When offloading, read latencies are

[mean=0.7 s, 99th=8.6 s, worst=17 s]. Write latencies

are [mean=0.5 s, 99th=7.3 s, worst=14 s].

started collecting detailed performance profiles, but we

note that the delay is unnoticeable to the applications.

File move: The next experiment demonstrates how

moving an object affects performance of concurrent op-

erations on that object. As discussed in Section 3.3, in-

stead of locking the file for the duration of the move,

the I/O director offloads any new writes to the file while

the copy is in progress. In this experiment, we move a

1 GB file from one device to another while simultane-

ously running a series of 64 KB read and write (with

a 1:1 read:write ratio) operations on that object. Fig-

ure 6 shows that, with offloading turned off, the read

and write operations must block until the data move is

complete; with offloading turned on and another laptop

temporarily absorbing new writes, these operations make

progress. The devices are limited by the 56 Mbps wire-

less LAN, and the network is saturated during the file

move, hence access performance during that time is slow

(around 10 s). We believe this is better than blocking for

more than 400 s (the latency of “blocked request” in the

figure). Note that after the move completes, performance

improves because the client is co-located with the device

the file is moved onto.

5.3 ZZFS’s placement policy

Next, we measure ZZFS’s performance in a 3G city-wide

network and an intercontinental network. We look at the

performance resulting from the simple policy of leaving

data on the device it was first created. We illustrate the

performance of our system when a user on the move is

accessing music files stored on the home desktop. Unlike

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12

R
e
q

u
e
s
ts

Access latency (s)

Inter-continental
City-3G

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 0.2 0.4 0.6 0.8 1

Figure 7: A CDF plot for a client’s read and write re-

quests over a 3G city-wide network and intercontinen-

tal network. For the 3G network, read latencies are

[mean=0.21 s, 99th=0.35 s, worst=3.39 s]. Write laten-

cies are [mean=0.17 s, 99th=0.3 s, worst=0.3 s]. For the

intercontinental network read latencies are [mean=0.7 s,

99th=8.2 s, worst=11 s]. Write latencies are [mean=0.2 s,

99th=0.4 s, worst=0.4 s].

the music scenario above, the client has no music files

or metadata cached on the laptop and always reads and

writes to the home desktop. Access sizes are the same as

before (64 KB reads and 4 KB writes).

First, when the user is on a city-wide 3G network, she

is connected to the Internet through a ZTE MF112 mo-

bile broadband device connected to her laptop. Figure 7

shows the latency results. The first request incurs a first-

time setup cost from the 3G provider, which is also the

worst-case latency (we do not know what the provider is

doing; subsequent runs do not incur this penalty, but we

show the worst case). We measured a minimum of 0.23 s

ping latency for 64 KB sizes, 0.13 s for 4 KB sizes in this

environment, and ZZFS’s overhead is comparable. The

latency is good-enough for listening to music.

Second, when the user is on the west coast of the US

(Redmond, Washington) she is connected to the Internet

through a 56 Mbps wireless LAN. The location of the

music files is on a desktop in Cambridge, UK. Figure 7

shows the results. We measured a minimum of 0.25 s

ping latency for 64 KB sizes, 0.19 s for 4 KB sizes in

this environment. ZZFS’s write overhead is comparable,

but its average read latency is 60% higher than ping. We

believe this is due to the unpredictable nature of the in-

tercontinental network. Nevertheless, the user does not

perceive any noticeable delay once the music starts.

A takeaway message from this section is that ZZFS’s

performance is good enough in all cases for the appli-

cations involved. Data is never cached in these experi-

ments, so we expect even better performance in practice.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 205

0.001

0.010

0.100

1.000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Av
er

ag
e

re
qu

es
t l

at
en

cy
 (s

)

Fraction of files on slower device 2

latency of slower device

latency of faster device

Figure 8: Latency tradeoffs for a client’s read requests.

5.4 Sensitivity to parameters

This section reexamines the above scenarios and others

analytically while changing several tunable parameters.

In the next analysis, we revisit the music scenario.

We still have two devices D1 and D2. First, we vary

the amount of idle time I before D1 enters standby (D2

never enters standby since it is the device with the mu-

sic player). Without loss of generality, we assume D1’s

average access latency when D1 is on, L1
ON , is slower

than D2’s average access latency L2 (e.g., D1 could be on

the 3G network). L1
ST DBY is the average access latency

when D1 is on standby. It is the time to resume the device

plus L1
ON .

Second, we vary the fraction of files p1 that reside on

the slower device (p2 = 1 − p1). For example, if D1

enters into standby after I = 15 idle minutes and each

song is on average M = 5 minutes in length, D1 will en-

ter standby if at least ⌊I/M⌋ = 3 consecutive songs are

played from D2 (with no loss of generality, we assume

the writes go to a database also on D2 this time, other-

wise D1 will never enter standby). Figure 8 shows the

expected average latency given by:

E[L] = E[L|D1 = ON]p{D1 = ON}+

E[L|D1 = STDBY]p{D1 = STDBY}
(1)

The above equation further expands to

E[L] = (p1L1
ON

+ p2L2)p{D1 = ON}+ (p1L1
ST DBY

+

p2L2)p{D1 = STDBY}. The analysis assumes a user

is forever listening to songs, and this graph shows the

long-running latency of accesses. All the lines assume

the switch-on times of the Dell T3500, except for the

low switch-on cost line that is the Mac.

We make several observations. In both extremes,

where all files accessed are on D2 or all files are on D1,

the latency is simply that of D2 or D1 respectively. If a

device goes into standby, the worst latency tends to hap-

pen when the user accesses it infrequently, thus giving it

time to standby and then resuming it.

0.001

0.010

0.100

1.000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Av
er

ag
e

re
qu

es
t l

at
en

cy
 (s

)

Write probability

latency of slower device

latency of faster device

latency of offload device

Figure 9: Latency tradeoffs for a client’s requests when

data is replicated on both devices.

The next analysis examines the impact of the

read:write ratio of the workload. 2-way replication is

used, and the same arguments are made about standby.

The difference is that, in this case, D1 enters standby if

there are consecutive reads on D2 (a write would wake

up D1 since it needs to be mirrored there.) Without loss

of generality, we assume a read or write comes every 5

minutes and D1 enters standby after I = 15 minutes. We

illustrate the impact of turning on the device vs. always

offloading (unrealistic in practice) vs. temporarily of-

floading while the device switches on. We assume with-

out loss of generality that data is offloaded to a slow de-

vice, e.g., a data center.

Figure 9 shows the expected average latency E[L] (a

similar formula to the previous example is used, but the

standby latency is the offload latency). We make several

observations. For an all-read workload all files are read

from D2 (faster device). For an all-write workload the

latency is determined by the slowest device. This slower

device is either the offload device, if we always offload,

or D1. In all cases, offloading masks any switch-on costs.

5.5 Metadata

Table 2 shows the number of files for four families the

authors of this paper are part of. This data is biased to-

wards families with tech-savvy members. However, the

point we make in this section is not that this data is repre-

sentative of the population at large. We only confirm an

observation made by Strauss et al. [26] that the amount

of metadata involved is small in all cases and could eas-

ily reside in a data center today, and/or be fully cached

on most consumer devices. We do this while showing

that ZZFS’s metadata structures are reasonably efficient.

We measured the amount of data with R = 1 and ex-

trapolated for R = 3. The amount of metadata is calcu-

lated from ZZFS’s metadata structures and is a function

of the replication factor and number of files. It is in-

206 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

teresting to observe that the second family has relatively

fewer media files, and hence the average file size is much

smaller than the other families. This translates to a higher

relative metadata cost. Intuitively, the ratio of metadata

to data decreases with larger file sizes.

6 Related work

Data placement on devices and servers: AFS [8] and

Coda [10] pioneered the use of a single namespace to

manage a set of servers. AFS requires that client be

connected with AFS servers, while Coda allows discon-

nected operations. Clients cache files that have been

hoarded. BlueFS [16] allows for disconnected opera-

tion, handles a variety of modern devices and optimizes

data placement with regard to energy as well. Ensem-

Blue [19] improved on BlueFS by allowing for a peer-

to-peer dissemination of updates, rather than relying on

a central file server. In Perspective, Salmon et al. use the

view abstraction to help users set policies, based on meta-

data tags, about which files should be stored on which

devices [23]. Recent work on Anzere [22] and Pod-

Base [20] emphasizes the richness of the data placement

policy space for home users.

An implicit assumption of the above work is that home

users know how to set up these policies. This assump-

tion might have been borrowed from enterprise systems,

where data placement decisions can be automated and

are guided by clear utility functions [27]. Our low-

power communication channel can help with the exe-

cution of the above policies and can be used by most

of the above systems as an orthogonal layer. It ensures

that devices are awoken appropriately when the storage

protocols need them to. While our design is compatible

with the above work, ZZFS’s choice of specific policies

for data placement is arguably simpler than in the above

work. It stems from our belief that, for many users, it

takes too much time and effort to be organized enough

to specify placement and replication policies like in Per-

spective or Anzere. ZZFS shows that in many common

cases, no user involvement is required at all.

Consistency: Cimbiosys [21] and Perspective [23]

allow for eventual consistency. Cimbiosys permits

content-based partial replication among devices and is

designed to support collaboration (e.g., shared calen-

dars). Bayou [28] allows for application-specific conflict

resolution. Our work can help the user’s perception of

consistency and reduces the number of accidental con-

flicts. In a system with eventual consistency, the low-

power communication channel can be seen as helping re-

duce the “eventual” time to reach consistency, by turning

dormant devices on appropriately.

File system best practices: ZZFS builds on consider-

able work on best-practices in file system design. For ex-

Family R #files data(GB) metadata(MB)-%

1 1 23291 582 11 (0.0019%)

3 23291 1746 68 (0.0038%)

2 1 3177 2.44 1.6 (0.06%)

3 3177 7.32 9.3 (0.12%)

3 1 31621 705 15 (0.002%)

3 31621 2116 93 (0.004%)

4 1 124645 164 61 (0.036%)

3 124645 492 365 (0.07%)

Table 2: In ZZFS, the size of metadata is O(numfiles

x numdevices). This table shows the total data and

metadata size for existing files of some of the authors.

Files included are “Documents,” “Pictures,” “Videos”

and “Music.” R is the replication factor.

ample, our distributed storage system has a NASD-based

architecture [7], where metadata accesses are decoupled

from data accesses and file naming is decoupled from lo-

cation. The system is device-transparent [26]. The I/O

director maintains versioned histories of files that can

later be merged and is based on I/O offloading [15, 29].

User-centered design: We were inspired by a user-

centered approach to system design. This was manifest

not only in undertaking a small version of user research

ourselves (Section 4), but by reference to the findings in

the HCI literature in general. This literature still remains

small on the topic dealt with here (e.g., see [20, 23]

and also [5, 13, 17, 18]), but nevertheless helped provide

some of the insights key to the technical work which is

the main contribution of the paper.

7 Summary

Unpredictable networks and user behavior and non-

uniform energy-saving policies are a fact of life. They

act as barriers to the execution of well-intended personal

storage system policies. This paper’s contribution is to

manage better these inherent uncertainties. We designed

to enable a world in which devices can be rapidly turned

on and off and are always network aware, even when off

or dormant. The implications for the file system were

illustrated through the implementation of ZZFS, a dis-

tributed device and cloud file system, designed for spon-

taneous and rather ad hoc file accesses.

8 Acknowledgments

We learned from the feedback of our shepherd Atul

Adya, the anonymous reviewers, Tim Harris and Austin

Donnelly, as well as several others at Microsoft.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 207

References

[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.

Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier, M. Prasad,

B. Salmon, R. R. Sambasivan, S. Sinnamohideen, J. D. Strunk,

E. Thereska, M. Wachs, and J. J. Wylie. Ursa Minor: versatile

cluster-based storage. In Proc. USENIX Conference on File and

Storage Technologies (FAST), Dec. 2005.

[2] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and

R. Gupta. Somniloquy: augmenting network interfaces to reduce

PC energy usage. In NSDI’09: Proceedings of the 6th USENIX

symposium on Networked systems design and implementation,

pages 365–380, Boston, Massachusetts, 2009.

[3] Y. Agarwal, S. Savage, and R. Gupta. Sleepserver: a software-

only approach for reducing the energy consumption of PCs within

enterprise environments. In Proceedings of the 2010 USENIX an-

nual technical conference, Boston, MA, 2010. USENIX Associ-

ation.

[4] Dropbox. Dropbox. https://www.dropbox.com.

[5] W. K. Edwards, M. W. Newman, and E. S. Poole. The infras-

tructure problem in HCI. In CHI ’10: Proceedings of the In-

ternational Conference on Human factors in Computing Systems,

Atlanta, GA, 2010.

[6] W. W. Gaver. Technology affordances. In CHI ’91: Proceedings

of the International Conference on Human factors in Computing

Systems, New Orleans, Louisiana, United States, 1991.

[7] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,

H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka.

A cost-effective, high-bandwidth storage architecture. In Proc.

International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), San Jose,

CA, Oct. 1998.

[8] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,

M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale

and performance in a distributed file system. ACM Trans. Com-

put. Syst., 6:51–81, February 1988.

[9] G. Hunt and D. Brubacher. Detours: Binary interception of

Win32 functions. In Proc. USENIX Windows NT Symposium,

Seattle, WA, July 1999.

[10] J. J. Kistler and M. Satyanarayanan. Disconnected operation in

the Coda File System. ACM Trans. Comput. Syst., 10(1):3–25,

1992.

[11] Lieberman software. White paper: Wake on LAN technology.

http://www.liebsoft.com/pdfs/Wake On LAN.pdf.

[12] C. Marshall. Personal archiving 2011 keynote: People are peo-

ple and things change. http://research.microsoft.com/

en-us/people/cathymar/pda2011-for-web.pdf.

[13] M. L. Mazurek, J. P. Arsenault, J. Bresee, N. Gupta, I. Ion,

C. Johns, D. Lee, Y. Liang, J. Olsen, B. Salmon, R. Shay,

K. Vaniea, L. Bauer, L. F. Cranor, G. R. Ganger, and M. K. Reiter.

Access control for home data sharing: Attitudes, needs and prac-

tices. In CHI ’10: Proceedings of the 28th International Confer-

ence on Human Factors in Computing Systems, Atlanta, Georgia,

USA, 2010.

[14] Microsoft. Windows Live Mesh. http://explore.live.com/

windows-live-mesh.

[15] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and

A. Rowstron. Everest: Scaling down peak loads through I/O off-

loading. In Proc. Symposium on Operating Systems Design and

Implementation (OSDI), San Diego, CA, 2008.

[16] E. B. Nightingale and J. Flinn. Energy-efficiency and storage

flexibility in the Blue File System. In OSDI’04: Proceedings of

the 6th conference on Symposium on Opearting Systems Design

& Implementation, pages 363–378, San Francisco, CA, 2004.

[17] W. Odom, A. Sellen, R. Harper, and E. Thereska. Lost in transla-

tion: Understanding the possession of digital things in the cloud.

In CHI ’12: Proceedings of the International Conference on Hu-

man factors in Computing Systems, Austin, TX, 2012.

[18] W. Odom, J. Zimmerman, and J. Forlizzi. Teenagers and their

virtual possessions: Design opportunities and issues. In CHI ’11:

Proceedings of the International Conference on Human factors

in Computing Systems, Vancouver, Canada, 2011.

[19] D. Peek and J. Flinn. EnsemBlue: integrating distributed storage

and consumer electronics. In Proceedings of the 7th USENIX

Symposium on Operating Systems Design and Implementation -

Volume 7, OSDI ’06, Seattle, WA, 2006.

[20] A. Post, J. Navarro, P. Kuznetsov, and P. Druschel. Autonomous

storage management for personal devices with PodBase. In Pro-

ceedings of the 2011 USENIX annual technical conference, Port-

land, OR, 2011. USENIX Association.

[21] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-

Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat. Cimbiosys:

a platform for content-based partial replication. In NSDI’09:

Proceedings of the 6th USENIX symposium on Networked sys-

tems design and implementation, pages 261–276, Boston, Mas-

sachusetts, 2009.

[22] O. Riva, Q. Yin, D. Juric, E. Ucan, and T. Roscoe. Policy expres-

sivity in the Anzere personal cloud. In 2nd ACM Symposium on

Cloud Computing (SOCC), Cascais, Portugal, 2011.

[23] B. Salmon, S. W. Schlosser, L. F. Cranor, and G. R. Ganger. Per-

spective: Semantic data management for the home. In In Proc.

USENIX Conference on File and Storage Technologies (FAST),

San Francisco, CA, 2009.

[24] S. Sobti, N. Garg, F. Zheng, J. Lai, Y. Shao, C. Zhang, E. Ziskind,

A. Krishnamurthy, and R. Y. Wang. Segank: A distributed mobile

storage system. In In Proc. USENIX Conference on File and Stor-

age Technologies (FAST), pages 239–252, San Francisco, CA,

2004.

[25] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Turducken:

hierarchical power management for mobile devices. In Proceed-

ings of the 3rd international conference on Mobile systems, ap-

plications, and services, MobiSys ’05, pages 261–274, Seattle,

Washington, 2005. ACM.

[26] J. Strauss, J. M. Paluska, C. Lesniewski-Laas, B. Ford, R. Morris,

and F. Kaashoek. Eyo: device-transparent personal storage. In

Proceedings of the 2011 USENIX annual technical conference,

Portland, OR, 2011. USENIX Association.

[27] J. D. Strunk, E. Thereska, C. Faloutsos, and G. R. Ganger. Using

utility to provision storage systems. In Proceedings of the 6th

USENIX Conference on File and Storage Technologies, FAST’08,

San Jose, California, 2008. USENIX Association.

[28] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.

Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou,

a weakly connected replicated storage system. In SOSP ’95: Pro-

ceedings of the fifteenth ACM Symposium on Operating Systems

Principles, Copper Mountain, Colorado, United States, 1995.

[29] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical

power-proportionality for data center storage. In Proceedings of

Eurosys’11, pages 169–182, Salzburg, Austria, 2011. ACM.

[30] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger.

Argon: performance insulation for shared storage servers. In

In Proc. USENIX Conference on File and Storage Technologies

(FAST), San Jose, CA, 2007.

[31] Webdav.org. Webdav resources, 2010.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 209

Revisiting Storage for Smartphones

Hyojun Kim ∗, Nitin Agrawal, Cristian Ungureanu
NEC Laboratories America

hyojun.kim@cc.gatech.edu, nitin@nec-labs.com, cristian@nec-labs.com

Abstract

Conventional wisdom holds that storage is not a big con-

tributor to application performance on mobile devices.

Flash storage (the type most commonly used today) draws

little power, and its performance is thought to exceed that

of the network subsystem. In this paper we present ev-

idence that storage performance does indeed affect the

performance of several common applications such as web

browsing, Maps, application install, email, and Facebook.

For several Android smartphones, we find that just by

varying the underlying flash storage, performance over

WiFi can typically vary between 100% to 300% across ap-

plications; in one extreme scenario the variation jumped

to over 2000%. We identify the reasons for the strong cor-

relation between storage and application performance to

be a combination of poor flash device performance, ran-

dom I/O from application databases, and heavy-handed

use of synchronous writes; based on our findings we im-

plement and evaluate a set of pilot solutions to address

the storage performance deficiencies in smartphones.

1 Introduction
Mobile phones, tablets, and ultra-portable laptops are no

longer viewed as the wimpy siblings of the personal com-

puter; for many users they have become the dominant

computing device for a wide variety of applications. Ac-

cording to a recent Gartner report, within the next three

years, mobile devices will surpass the PC as the most

common web access device worldwide [38]. By 2013,

over 40% of the enhanced phone installed-base will be

equipped with advanced browsers [57].

Research pertaining to mobile devices can be broadly

split into applications and services, device architecture,

and operating systems. From a systems perspective, re-

search has tackled many important aspects: understanding

and improving energy management [36, 59, 26], network

middleware [53], application execution models [30, 29],

security and privacy [25, 32, 34, 39], and usability [27].

Prior research has also addressed several important issues

centered around mobile functionality [55, 65], data man-

agement [66], and disconnected access [49, 37]. However,

one important component is conspicuously missing from

the mobile research landscape – storage performance.

∗Work done as an intern, now at Georgia Institute of Technology

 0.125

 1

 8

 64

 512

 4096

 1980 1990 2000 2010 2020
P

e
a

k
 t

h
ro

u
g
h
p
u
t

(M
B

/s
)

Lucent
WaveLan

802.11b

802.11a/g

802.11n

802.11ac

802.11ad

2G
2.5G

2.75-3G

3.5-4G

Local-Area
Wide-Area

Figure 1: Peak throughput of wireless networks. Trends

for local and wide-area wireless networks over past three

decades; y-axis is log base 2.

Storage has traditionally not been viewed as a criti-

cal component of phones, tablets, and PDAs – at least

in terms of the expected performance. Despite the impe-

tus to provide faster mobile access to content locally [40]

and through cloud services [61], performance of the un-

derlying storage subsystem on mobile devices is not well

understood. Our work started with a simple motivating

question: does storage affect the performance of popular

mobile applications? Conventional wisdom suggests the

answer to be no, as long as storage performance exceeds

that of the network subsystem. We find evidence to the

contrary – even interactive applications like web brows-

ing slow down with slower storage.

Storage performance on mobile devices is important

for end-user experience today, and its impact is expected

to grow due to several reasons. First, emerging wireless

technologies such as 802.11n (600 Mbps peak through-

put) [68] and 802.11ad (or “60 GHz”, 7 Gbps peak

throughput) offer the potential for significantly higher net-

work throughput to mobile devices [41]. Figure 1 presents

the trends for network performance over the last sev-

eral decades; local-area networks are not necessarily the

de-facto bottleneck on modern mobile devices. Second,

while network throughput is increasing phenomenally, la-

tency is not [62]. As a result, access to several cloud

services benefits from a split of functionality between the

cloud and the device [29], placing a greater burden on lo-

cal resources including storage [51]. Third, mobile de-

1

210 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

vices are increasingly being used as the primary comput-

ing device, running more performance intensive tasks than

previously imagined. Smartphone usage is on the rise;

smartphones and tablet computers are becoming a popular

replacement for laptops [23]. In developing economies, a

mobile/enhanced phone is often the only computing de-

vice available to a user for a variety of needs.

In this paper, we present a detailed analysis of the I/O

behavior of mobile applications on Android-based smart-

phones and flash storage drives. We particularly focus on

popular applications used by the majority of mobile users,

such as, web browsing, app install, Google Maps, Face-

book, and email. Not only are these activities available

on almost all smartphones, but they are done frequently

enough that performance problems with them negatively

impacts user experience. Further, we provide pilot solu-

tions to overcome existing limitations.

To perform our analysis, we build a measurement in-

frastructure for Android consisting of generic firmware

changes and a custom Linux kernel modified to provide

resource usage information. We also develop novel tech-

niques to enable detailed, automated, and repeatable mea-

surements on the internal and external smartphone flash

storage, and with different network configurations that are

otherwise not possible with the stock setup; for automated

testing with GUI-based applications, we develop a bench-

mark harness using MonkeyRunner [16].

In our initial efforts, we propose and develop a set of pi-

lot solutions that improve the performance of the storage

subsystem and consequently mobile applications. Within

the context of our Android environment, we investigate

the benefits of employing a small amount of phase-change

memory to store performance critical data, a RAID driver

encompassing the internal flash and external SD card, us-

ing a log-structured file system for storing the SQLite

databases, and changes to the SQLite fsync codepath.

We find that changes to the storage subsystem can sig-

nificantly improve user experience; our pilot solutions

demonstrate possible benefits and serve as references for

deployable solutions in the future.

As the popularity of Android-based devices surges, the

setup we have examined reflects an increasingly relevant

software and hardware stack used by hundreds of millions

of users worldwide; understanding and improving the

experience of mobile users is thus a relevant research

thrust for the storage community. Through our analysis

and design we make several observations:

Storage affects application performance: often in

unanticipated ways, storage affects performance of

applications that are traditionally thought of as CPU or

network bound. For example, we found web browsing

to be severely affected by the choice of the underlying

storage; just by varying the underlying flash storage,

performance of web browsing over WiFi varied by 187%

and over a faster network (setup over USB) by 220%. In

the case of a particularly poor flash device, the variation

exceeded 2000% for WiFi and 2450% for USB.

Speed class considered irrelevant: our benchmarking

reveals that the “speed class” marking on SD cards is

not necessarily indicative of application performance;

although the class rating is meant for sequential perfor-

mance, we find several cases in which higher-grade SD

cards performed worse than lower-grade ones overall.

Slower storage consumes more CPU: we observe

higher total CPU consumption for the same application

when using slower cards; the reason can be attributed to

deficiencies in either the network subsystem, the storage

subsystem, or both. Unless resolved, lower performing

storage not only makes the application run slower, it also

increases the energy consumption of the device.

Application knowledge ensues efficient solutions:

leveraging a small amount of domain or application

knowledge provides efficiency, such as in the case of our

pilot solutions; hardware and software solutions can both

benefit from a better understanding of how applications

are using the underlying storage.

The contributions of this paper are threefold. First, we

describe our measurement infrastructure that enables cus-

tom setup of the firmware and software stack on Android-

devices to perform in-depth I/O analysis; along with the

systems software, we contribute a set of benchmarks that

automate several popular GUI-based applications. Sec-

ond, we present a detailed analysis of storage performance

on real Android smartphones and flash devices; to the

best of our knowledge, no such study currently exists in

the research literature. We find a strong correlation be-

tween storage and performance of common applications

and contribute all our research findings. Third, we pro-

pose and evaluate pilot solutions to address the perfor-

mance issues on mobile devices.

Based on our experimental findings and observations

we believe improvements in the mobile storage stack can

be made along multiple dimensions to keep up with the

increasing demands placed on mobile devices. Storage

device improvements alone can account for significant

improvements to application performance. Device man-

ufacturers are actively looking to bring faster devices to

the mobile market; Samsung announced the launch of a

PCM-based multi-chip package for mobile handsets [60].

Mobile I/O and memory bus technology needs to evolve

as well to sustain higher throughput to the devices. Limi-

tations in the systems software stack can however prevent

applications from realizing the full potential of hardware

improvements; we believe changes are also warranted in

the mobile software stack to complement the hardware.

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 211

N
et

w
o

rk

Browser Maps

EmailFacebook

Core Libs

Dalvic VM

Flash Driver

Controller

DRAM Flash

SQLite

Filesystem

Figure 2: Android Architecture. Figure 3: Overview of Android’s Storage Schema.

Partition Function Size and Type

misc Miscellaneous system settings (e.g., Carrier ID, USB config, hardware settings, IMEI number);

persistent shared space for OS and bootloader to communicate

896 KB

recovery Alternative boot-into-recovery partition for advanced recovery and maintenance ops 4 MB, rootfs

boot Enables the phone to boot, includes the bootloader and kernel/initrd 3.5 MB, rootfs

system Contains remaining OS, pre-installed system apps, and user interface; typically read-only 145 MB, yaffs2

cache Android can use it to stage and apply “over the air” updates; holds system images 95 MB, yaffs2

data Stores user data (e.g., contacts, messages, settings) and installed applications; SQLite database

containing app data also stored here. Factory reset wipes this partition

196 MB, yaffs2

sdcard External SD card partition to store media, documents, backup files etc multi-GB, FAT32

sd-ext Additional partition on SD card that can act as data partition, setup is possible through a

custom ROM and data2SD software; non-standard Android partition

Varies

Table 1: Data storage partitions for Android. Partitions on internal flash and external SD card for Nexus One phone.

2 Mobile Device Overview

2.1 Android Overview

We present a brief overview of Android as it pertains to

our storage analysis and development. Figure 2 shows a

simplified Android stack consisting of flash storage, oper-

ating system and Java middleware, and applications; the

OS itself is based on Linux and contains low-level drivers

(e.g., flash memory, network, and power management),

Dalvik virtual machine for application isolation and mem-

ory management, several libraries (e.g., SQLite, libc), and

an application framework for development of new appli-

cations using system services and hardware.

The Dalvik VM is a fast register-based VM provid-

ing a small memory footprint; each application runs as

its own process, with its own instance of the Dalvik VM.

Android also supports “true” multitasking and several ap-

plications run as background processes; processes con-

tinue running in the background when user leaves an ap-

plication (e.g., a browser downloading web pages). An-

droid’s web browser is based on the open-source WebKit

engine [4]; details on Android architecture and develop-

ment can be found on the developer website [2].

2.2 Android Storage Subsystem

Most mobile devices are provisioned with an internal flash

storage, an external SD card slot, and a limited amount of

RAM. In addition, some devices (e.g., LG G2X phone)

also have a non-removable SD partition inside the phone;

such storage is still treated as external.

Figure 3 shows the internal raw NAND and external

flash storage on the Google Nexus One phone. The inter-

nal flash storage contains all the important system parti-

tions, including partitions for the bootloader and kernel,

recovery, system settings, pre-installed system applica-

tions, and user-installed application data. The external

storage is primarily used for storing user content such as

media files (i.e., songs, movies, and photographs), docu-

ments, and backup images. Table 1 presents the function-

ality of the partitions in detail; this storage setup is fairly

typical across Android devices.

Applications can store configuration and data on the de-

vice’s internal storage as well as on the external SD card.

Android uses SQLite [22] database as the primary means

for storage of structured data. SQLite is a transactional

database engine that is lightweight, occupying a small

amount of disk storage and memory; it is thus popular

on embedded and mobile operating systems. Applications

are provided a well defined interface to create, query, and

3

212 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

manage their databases; one or more SQLite databases are

stored per application on /data.

The YAFFS2 [52] file system managing raw NAND

flash was traditionally the file system of choice for the var-

ious internal partitions including /system and /data;

it is lightweight and optimized for flash storage. Recently,

Android transitioned to Ext4 as the default file system

for these partitions [64]. Android provides a filesystem-

like interface to access the external storage as well, with

FAT32 as the commonly used file system on SD cards for

compatibility reasons.

We believe the storage architecture described in this

section is similar for other mobile operating systems as

well; for example, Apple’s iOS also uses SQLite to store

application data. iOS Core Data is a data model frame-

work built on top of SQLite; it provides applications ac-

cess to common functionality such as save, restore, undo

and redo. iOS 4 does not have a central file storage ar-

chitecture, rather every file is stored within the context

of an application. We focus on Android, since it allows

systems-level development.

3 Android Measurement Setup
Since setting up smartphones for systems analysis and de-

velopment is non-trivial, we describe our process here in

detail; we believe this setup can be useful for someone

conducting storage research on Android devices.

3.1 Mobile Device Setup
In this paper we present results for experiments on the

Google Nexus One phone [12]. We also performed the

same or a subset of experiments on the HTC Desire [13],

LG G2X [15], and HTC EVO [14]; the results were simi-

lar and are omitted to save space.

The Nexus One is a GSM phone with a 1 GHz

Qualcomm QSD8250 Snapdragon processor, 512 MB

RAM, and 512 MB internal flash storage; the phone is

running Android Gingerbread 2.3.4, the CyanogenMod

7.1.0 firmware [10] or the Android Open Source Project

(AOSP) [3] distribution (as needed), and a Linux kernel

2.6.35.7 modified to provide resource usage information.

We present a brief description of the generic OS cus-

tomizations, which are fairly typical, and then explain the

storage-specific customization later in this section.

In order to prepare the phones for our experiments, we

setup the Android Debug Bridge (ADB) [1] on a Linux

machine running Ubuntu 10.10. ADB is a command-line

tool provided as part of Android developer platform tools

that lets a host computer communicate with an Android

device; the target device needs to be connected to the host

via USB (in the USB debugging mode) or via TCP/IP. We

subsequently root the device with unrevoked3 [20] to flash

a custom recovery image (ClockworkMod [7]).

For our experiments we needed to bypass some of

the constraints of the stock firmware; in particular, we

needed support for reverse tethering the mobile device

via USB, the ability to custom partition the storage, and

access to a wider range of system tools and Linux util-

ities for development. For example, BusyBox [6] is a

software application that provides many of the standard

Linux tools within a single executable, ideal for an em-

bedded device. CyanogenMod [10] is a custom firmware

that provides these capabilities and is supported on a vari-

ety of smartphones. The Android Open Source Project

(AOSP) [3] distribution provides capabilities similar to

CyanogenMod but is supported only on a handful of

Google-smartphones, including the Google Nexus One.

We used the CyanogenMod distribution for all exper-

iments on non-Nexus phones, and for experiments that

require comparison between a non-Nexus and the Nexus

One phone (not shown in this paper). All Google Nexus

One results presented in this paper exclusively use AOSP;

we equipped both CyanogenMod and AOSP distributions

with our measurement-centric customizations.

An important requirement, specific to our storage ex-

periments, is to be able to compare and contrast applica-

tion performance on different storage devices. Some of

these applications heavily use the internal non-removable

storage. In order to observe and measure all I/O activity,

we change Android’sinit process to mount the different

internal partitions on the external storage. Our approach

is similar to the one taken by Data2SD [19]; in addition,

we were able to also migrate to the SD card the /system

and /cache partitions.

In order to adhere to Android’s boot-time compatibil-

ity tests, we provided a 256 MB FAT32 partition at the

beginning of the SD card, mounted as /sdcard. The

/system, /cache, and /data partitions were format-

ted as Ext3; at the time we conducted our experiments,

YAFFS2 and Ext3 were the pre-installed file systems on

our test phones. We performed a preliminary compari-

son between Ext3 and Ext4 since Android announced the

switch to Ext4 [64], but found the performance differ-

ences to be minor; a detailed comparison across several

file systems can provide more useful data in the future.

Note that this setup is not normally used by end-users

but allows us to run what-if scenarios with storage devices

of different performance characteristics; the internal flash

represents only a single data point in this set.

As part of our experiments, we want to understand the

impact of storage on application performance under cur-

rent WiFi networks, as well as under faster network con-

nectivity (likely to be available in the future). For WiFi,

we set up a dedicated wireless access point (IEEE 802.11

b/g) on a Dell laptop having 2GB RAM and an Intel Core2

processor. Since we do not have a faster wireless network

on the phone, we emulate one by reverse tethering [21] it

over the miniUSB cable connection with the same laptop

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 213

N/W Rx Tx

USB 8.04 7.14

WiFi 1.10 0.53

Table 2: Network

Performance.

Transfer rates for

WiFi and USB

reverse tether link

with iperf (MB/s).

SD Card Speed Cost Performance on desktop (MB/s) Performance on phone (MB/s)

(16 GB) Class US$ Sq W Sq R Rn W Rn R Sq W Sq R Rn W Rn R

Transcend 2 26 4.16 18.03 1.18 2.57 4.35 13.52 1.38 2.92

RiData 2 27 7.93 16.29 0.02 2.15 5.86 11.51 0.03 2.76

Sandisk 4 23 5.48 12.94 0.68 1.06 4.93 8.44 0.67 0.73

Kingston 4 25 4.92 16.93 0.01 1.68 4.56 9.84 0.01 1.94

Wintec 6 25 15.05 16.34 0.01 3.15 9.91 13.38 0.01 3.82

A-Data 6 30 10.78 17.77 0.01 2.97 8.93 13.49 0.01 3.64

Patriot 10 29 10.54 17.67 0.01 2.96 8.83 13.38 0.01 3.72

PNY 10 29 15.31 17.90 0.01 3.56 10.28 14.02 0.01 3.95

Table 3: Raw device performance and cost. Measurements on Desktop with card reader

(left) and on actual phone (right). “Sq” is sequential and “Rn” is random performance.

(allowing the device to access the internet connection of

the host); Table 2 shows the measured performance of our

WiFi and USB RT link using iperf [46].

To minimize variability due to network connections

and dynamic content, we setup a local web server run-

ning Apache on the laptop. The webserver downloads the

web pages that are to be visited during an experiment and

caches them in memory; where available, we download

the mobile friendly version of a web site.

We conducted all experiments on the internal non-

removable flash storage and eight removable microSDHC

cards, two each from the different SD speed classes [17].

Table 3 lists the SD cards along with their specifica-

tions and a baseline performance measurement done on

a Transcend TS-RDP8K card reader1 using the CrystalD-

iskMark benchmark V3.0.1 [9] (shown on the left side).

The total amount of data written is 100 MB, random I/O

size is 4KB, and we report average performance over 3

runs; observed standard deviation is low and we omit it

from the table. Prices shown are as ordered from Ama-

zon.com and its resellers, and Buy.com (to be treated as

approximate). We also performed similar benchmarking

experiments for the eight cards on the Nexus One phone

itself, using our own benchmark program. Testing con-

figuration is as before with 4KB random I/O size and 128

MB of sequential I/O; results in Table 3 (shown on the

right side) exhibit a similar trend albeit lower performance

than for desktop.

To summarize, read performance of the different cards

is not a crucial differentiating factor and much better over-

all than the write performance. Sequential reads clearly

show little or no correlation with the speed class; sequen-

tial write performance roughly improves with speed class,

but with enough exceptions to not qualify as monotonic.

Random read performance is not significantly different

across the cards. The most surprising finding is for ran-

dom writes: most if not all exhibit abysmal performance

(0.02 MB/s or less!); even when sequential write perfor-

mance quadruples (e.g., Transcend versus Wintec), ran-

dom writes perform several orders of magnitude worse.

1 Note that internal flash could not be measured this way.

In terms of overall write performance including ran-

dom and sequential, Kingston consistently performs the

worst and tends to considerably skew the results; we try

not to rely on Kingston results alone when making a claim

about storage performance. In practice, we find that ap-

plication performance varies even with the other better

cards. Transcend performs the best for random writes, by

as much as a factor of 100 compared to many cards, but

performs the worst for sequential writes; Sandisk shows a

similar trend. A-Data, Patriot, Wintec, and PNY perform

poorly for random, but give very good sequential perfor-

mance. Kingston and RiData suffer on both counts as they

not only have poor random write performance, but also

mediocre sequential write performance (shown in bold in

Table 3); appliation-level measurements in §4 reflect the

consequences of the poor microbenchmark results.

3.2 Measurement Software
We first explain our measurement environment and the

changes introduced to collect performance statistics: (1)

We made small changes to the microSD card driver to

allow us to check “busyness” of the storage device by

polling the status of the /proc/storage usage file.

(2) We wrote a background monitoring tool (Monitor)

to periodically read the proc file system and store sum-

mary information to a log file; the log file is written to

the internal /cache partition to avoid influencing the SD

card performance. CPU, memory, storage, and network

utilization information is obtained from /proc/stat,

/proc/meminfo, /proc/storage usage (busy-

ness) and /proc/diskstats, and /proc/net/dev

respectively. (3) We use blktrace [5] to collect block-

level traces for device I/O.

In order to ascertain the overheads of our instrumen-

tation, we conducted experiments with and without the

measurement environment; we found that our changes in-

troduce an overhead of less than 2% in total runtime.

Since many popular mobile applications are interactive,

we needed a technique to execute these applications in a

representative and reproducible manner; for this purpose

we used the MonkeyRunner [16] tool to automate the ex-

ecution of interactive applications. Our MonkeyRunner

5

214 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

App Name Size App Name Size

(Install) (MB) (Launch) (MB)

YouTube 1.95 AngryBird 18.65

Google Maps 6.65 SnowBoard 23.54

Facebook 2.96 Weather 2.60

Pandora 1.22 Imdb 1.38

Google Sky Map 2.16 Books 1.05

Angry Birds 18.65 Gallery 0.58

Music Download 0.70 Gmail 2.14

Angry Birds Rio 17.44 GasBuddy 1.88

Words With Friends 3.75 Twitter 1.36

Advanced Task Killer 0.10 YouTube 0.80

Table 4: Apps for Install and Launch from Android

Market. Install: top Apps in Aug 2011, total size 55.58 MB,

avg size 5.56 MB; Launch: 10 apps launched individually.

setup consists of a number of small programs put together

to facilitate benchmarking with the necessary application;

we illustrate the methodology next.

First, we start the Monitor tool to collect resource uti-

lization information and note its PID. Second, we start

the application under test using MonkeyRunner which de-

fines “button actions” to emulate pressing of various keys

on the device’s touchscreen, for example, browsing for-

ward and backward, zooming in and out with the touch-

screen pinch, and clicking on screen to change display

options. Third, while the various button actions are be-

ing performed, CPU usage is tracked in order to automat-

ically determine the end of an interactive action. A class

function UntilIdle() that we wrote is called from the

MonkeyRunner script to detect the execution status of an

app; it determines idle status using a specified low CPU

threshold and the minimum time the app needs to stay

below the threshold to qualify as idle. Fourth, once the

sequence of actions is completed, we perform necessary

cleanup actions and return to the default home screen.

Fifth, the Monitor tool is stopped and the resource usage

data is dumped to the host computer. Similar scripts are

used to reset the phone to a known state in order to repeat

the experiment (to compute mean and deviation).

3.3 Application Benchmarks

We now describe the Android apps that we use to assess

the impact of storage on application performance; we au-

tomate a variety of popular and frequently used mobile

apps to serve as benchmarks.

WebBench: is a custom benchmark program we

wrote to measure web browsing performance in a non-

interactive manner; it is based on the standard WebView

Java Class provided by Android. WebBench visits a pre-

configured set of web sites one after the other and re-

ports the total elapsed time for loading the web pages.

In order to accurately measure the completion time, we

made use of the public method of WebView class named

onProgressChanged(); when a web page is fully

loaded, WebBench starts loading the next web page on

the list. We ran WebBench to visit the top 50 web sites

according to a recent ranking [8].

AppInstall: installs a set of top 10 Android apps on

Google Android Market (listed in Table 4 on the left),

successively, using the adb install command. App

installation is an important and frequently performed ac-

tivity on smartphones; each application on the phone once

installed is typically updated several times during subse-

quent usage. In addition, often times a user needs to per-

form the install “on the go” based on location or situa-

tional requirements; for example, installing the IKEA app

while shopping for furniture, or the GasBuddy app, when

looking to refuel.

AppLaunch: launches a set of 10 Android apps using

MonkeyRunner listed in Table 4 on the right; the apps are

chosen to cover a variety of usage scenarios: games (An-

gryBird and SnowBoard) take relatively longer to load,

read traffic to storage dominates. Weather and GasBuddy

apps download and show real-time information from re-

mote servers, i.e., network traffic is high. Gmail and

Twitter apps download and store data to local database,

i.e., both network and storage traffic is high. Books and

gallery apps scan the local storage and display the list of

contents, i.e., read to storage dominates. Imdb has no

storage or network traffic due to web cache hits, while

YouTube launch is network intensive.

Facebook: uses the Facebook for Android application;

each run constitutes the following steps: (a) sign into the

author’s Facebook account (b) load the news feed dis-

played initially on the phone screen (c) “drag” the screen

five times to load more feed data (d) sign out.

Google Maps: uses the Google Maps for Android ap-

plication; each run constitutes the following steps: (a)

open the Maps application (b) enter origin and destina-

tion addresses, and get directions (c) zoom into the map

nine times successively (d) switch from “map” mode to

“satellite ” mode (e) close application.

Email: uses the native email app in Android; each run

constitutes the following steps: (a) open the app, (b) input

account information, (c) wait until a list of received emails

appears, and (d) close the application.

RLBench [56]: a synthetic benchmark app that gener-

ates a pre-defined number of various SQL queries to test

SQLite performance on Android.

Pulse News [24]: a popular reader app that fetches

news articles from a number of websites and stores them

locally. Our benchmark consists of the following steps:

(a) open Pulse app, (b) wait until news fetching process

completes, and (c) close the app.

Background: another popular usage scenario is con-

current execution of two or more applications (Android

and iOS are both multi-threaded); several apps run in the

background to periodically “sync” data with a remote ser-

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 215

 0

 100

 200

 300

 400

 500

 600

3600

3700

Internal Transcend RiData SanDisk Kingston Wintec AData Patriot PNY

T
im

e
 (

s
e
c
o
n
d
s
)

W
iF

i

U
S

B

Figure 4: Runtimes for WebBench on Google Nexus One. Runtime for

WebBench for SD cards and internal flash; each bar represents average over three

trials with standard deviation; lighter bar is over WiFi, darker one for USB RT.

Activity Write (MB) Read (MB)

Sq Rn Sq Rn

WebBench 41.3 32.2 6.8 0.5

AppInstall 123.1 5.6 0.7 0.1

Email 1.0 2.2 1.1 0.1

Maps 0.2 0.3 0 0

Facebook 2.0 3.1 0 0

RLBench 25.6 16.8 0 0

Pulse 2.6 1.0 0 0

Table 5: I/O Activity Breakdown. Ag-

gregate seq. and random, writes and reads

during benchmark; note moderate to high

rand:seq write ratios for WebBench, Email,

Maps, Facebook, and low for AppInstall.

Zero value means no activity during run.

 0
 50

 100
 150
 200
 250
 300
 350
 400

I T R S K W A P Y

App Install

 0
 5

 10
 15
 20
 25
 30
245

I T R S K W A P Y

Email

 0
 50

 100
 150
 200
 250
 300
 350

I T R S K W A P Y

Google Maps

 0
 20
 40
 60
 80

 100
 120

 460
 480

I T R S K W A P Y

Facebook

 0

 50

 100

 150

1400

I T R S K W A P Y

RLBench

 0
 20
 40
 60
 80

 100
 120

I T R S K W A P Y

Pulse

Figure 5: Runtimes for popular applications. Similar to Fig 4 but for several other apps on WiFi only; I: Internal, T: Tran-

scend, R: RiData, S: Sandisk, K: Kingston, W: Wintec, A: AData, P: Patriot, Y: PNY. Some graphs are plotted with a discontinuous

y-axis to preserve clarity of the figure in presence of outliers like Kingston.

vice or to provide proactive notifications. Our benchmark

consists of the following set of apps in auto sync mode:

Twitter, books, contacts, Gmail, Picasa, and calendar, and

a set of active widgets: Pulse, news, weather, YouTube,

calendar, Facebook, Market, and Twitter.

For many of the above benchmarks (e.g., Facebook,

Email, Pulse, Background), the actual contents and

amount of data can vary across runs; we measure the total

amount of data transferred and normalize the results per

Megabyte. We also repeat the experiment several times to

measure variations; for multiple iterations, the local appli-

cation cache is deleted following each run.

4 Performance Evaluation
In this section we present detailed measurement results

for application runtime performance, application launch

times, concurrent app execution, and CPU consumption.

4.1 Application Runtime Performance

The first set of experiments compare the performance of

WebBench on internal flash and the eight SD cards de-

scribed earlier. Figure 4 shows the runtime of WebBench

for WiFi and USB reverse tethering.

Surprisingly, even with WiFi, we notice a 187% perfor-

mance difference between the internal flash and RiData;

for Kingston, the difference was a whooping 2040%. To

ensure that the Kingston results were not due to a defec-

tive device, we repeated the experiments with two more

new Kingston cards from two different speed classes; we

found the results to be similarly poor. Here onwards, so as

to not rely on Kingston alone when making a claim about

application performance, we mention the difference both

with the second-worst and worst performing card for any

given experiment.

As expected, the faster the network (USB RT) the

7

216 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 620

 625

 630

 635

 640

 645

 650

 0 50 100 150 200 250 300 350 400 450 500

A
d
d
re

s
s
 S

p
a
c
e
 (

M
B

)

Time (second)

Writes to web cache directory (zoomed in)

 720

 725

 730

 735

 740

 745

 750

 0 50 100 150 200 250 300 350 400 450 500

A
d
d
re

s
s
 S

p
a
c
e
 (

M
B

)

Time (second)

Writes to SQLite database files (zoomed in)

Figure 6: SQLite I/O pattern. The left graph shows write I/O to the webcache directory contents on /data, on right are writes

to SQLite database files; reads are comparatively less and omitted from presentation.

1
3
5

10

15

20

Angrybird

Books
Gallery

GasBuddy

Gmail
IMDb

CrazySboard

Twitter
Weather

YouTube

A
p

p
L

a
u

n
c
h

 T
im

e
 (

s
) RAM

Internal
Transcend

RiData
SanDisk

Kingston
Wintec
AData
Patrit
PNY

Figure 7: Application Launch. Launch times (secs) for several popular

apps on 8 SD cards, internal flash, and a memory-backed RAMdisk.

App R W Rx Tx

AngryBird 20.69 0.04 4.09 4.44

SnowBoard 20.92 0.02 1.87 0.53

Weather 8.72 0.07 16.11 2.56

Imdb 2.71 0.00 0.08 0.00

Books 2.98 0.00 0.00 0.00

Gallery 1.88 0.00 0.00 0.00

Gmail 3.20 0.05 3.00 0.93

GasBuddy 7.47 0.00 2.28 0.80

Twitter 4.62 0.06 5.63 1.61

YouTube 2.06 0.00 65.47 4.83

Table 6: App Launch Summary. Total data

(MB) read and written to storage and transferred

over the network for the set of apps launched.

higher the impact of storage: 222% difference between

internal and RiData, 2450% for Kingston. We find a sim-

ilar trend for several popular apps; Figure 5 shows the

results over WiFi for AppInstall, email, Google Maps,

Facebook, RLBench, and Pulse. Since the phenomenon

of storage and application performance correlation is

clearly identifiable with existing WiFi networks, we here-

after omit results for the USB network. The differ-

ence between the best and worst case performance varies

from 195% (225%) for AppInstall, 80% (1670%) for

email, 60% (660%) for Maps, 80% (575%) for Facebook,

130% (2210%) for RLBench, and 97% (168%) for Pulse;

Kingston numbers are shown in parentheses.

To better understand why storage affects application

performance, we present in Table 5 presents a breakdown

of the I/O activity during various workload runs. Amount

of reads is less than writes for all workloads. In the case

of WebBench roughly 1.3 times more data is written se-

quentially than randomly. Since the difference between

sequential and random performance is at least a factor

of 3 for all SD cards (see Table 3), the time to complete

the random writes dominates; the same holds true for the

other applications in the table. Although not shown in the

table, the /data partition receives most of the I/O, with

only a few reads going to the /system partition.

The disparity between sequential and random write

performance is inherent with flash-based storage; our

evaluation results suggest this to be one of the primary

reasons behind the slower performance. However, this

still doesn’t explain the presence of the random writes

and overwrites even for seemingly sequential application

needs. In order to understand this we take a closer look at

the applications and their usage of Android storage.

The storage schema used by the browser application

consists of the cache as the unstructured web cache stor-

ing image and media files and two SQLite database files;

webview.db is a database for application settings and pref-

erences and webviewCache.db stores an index to manage

the web cache. The database files are much smaller in

size compared to the cache; in our setup, the cache con-

sisted of 315 files totaling 6MB whereas the database files

were 34KB and 137KB for webview.db and webview-

Cache.db respectively. Figure 6 shows the write pattern

to the web cache directory and the SQLite database files;

web cache writes are mostly sequential with reuse of the

same address space over time; SQLite exhibits a high

degree of random writes and updates to the same block

addresses. Since by default the database writes are syn-

chronous, each write causes a (often unnecessary) delay.

4.2 Application Launch

Application launch is an important performance met-

ric [47], especially for mobile users. Figure 7 shows the

time taken to launch a number of Android applications on

the various flash storage devices; Table 6 lists those apps

along with a summary of disk I/O reads and writes, and

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 217

0
50

1000
50

100

 0 50 100 150 200 250 300

U
s
a

g
e

 (
%

)

Time (s)

Activity for Transcend (fast)

CPU

SD
Mem

0
50

1000
50

100

 0 500 1000 1500 2000 2500 3000 3500 4000

U
s
a

g
e

 (
%

)

Time (s)

Activity for Kingston (slow)

CPU

SD
Mem

Card Fast Slow

Idle 1.5 0.7

ioWait 1.6 232.7

Active 20.8 133.3

Total 23.9 366.7

Figure 9: Storage and CPU activity for WebBench on fast and slow SD cards. The graph on the left shows instantaneous

CPU utilization, memory consumption, and storage busyness during the course of a WebBench run on the fast Transcend card; the

graph on the right repeats the same experiment for the slow Kingston, taking considerably longer to finish. Table summarizes the

aggregate CPU ticks (in thousands) used for WebBench; compare the active counts for fast and slow.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Int Tran RiD San Kng Win Adat Pat PNY

C
P

U
 t
ic

k
 c

o
u
n
ts

 (
x
1
0
0
0
)

active
iowait

idle

Figure 8: Aggregate CPU for WebBench. Stacked bar

shows active, idle, and ioWait times on Nexus One; ioWait cor-

relates with runtimes (Fig 4). Even active times vary across de-

vices showing that some devices burn more CPU for same work!

data transferred over the network during the launch. Most

apps take a few seconds to launch, with games taking up-

wards of 10 seconds. Larger apps (e.g., games) tend to

take a noticeable amount of time to launch, contrary to

the target of “significantly less than 1 second to launch a

new app” [31]. As seen in Figure 7, barring a few excep-

tions, the launch time varies between about 10% (for the

Snowboard game) to 40% (for the Weather app); Twitter

(120%) and Gmail (250%) showed the most variation.

In order to ascertain the upper bound of launch time

improvement through storage, we placed all application

data on a RAMdisk; the test is conducted with the PNY

card storing the /system, /sdcard, /cache par-

titions and the /data partition mounted with tmpfs.

To remove the effects of reading from /system and

/sdcard, we warm the buffer cache; we verify the same

by tracking all I/O to the flash storage. Launch times

do not significantly change even when all data is being

read from memory. Storage is likely not a significant con-

tributor to app launch performance; research to speed up

launch will perhaps benefit by focusing on other sources

of delay such as application think time.

4.3 Concurrent Applications
Figure 10 shows I/O activity for a 7200 second run of the

Background workload; during the period, the phone re-

ceived about 1.6 MB of data over the network. Interest-

ingly, the amount of data written to storage in the same

period is 30 MB (a factor of roughly 20); the majority

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0 1 2 3 4 5 6 7

C
u

m
u

la
ti
v
e

 I
/O

 (
M

B
)

Time (Second x 1000)

network RX

seq writes
rand writes
seq reads

rand reads
network RX

Figure 10: Background I/O pattern. Breakdown of I/O

issued by Background apps in 2 hours.

of writes are for updating application-specific data and

indices to the SQLite databases. Although the storage

throughput requirement is quite low, the additional ran-

dom writes can cause latency spikes for foreground ap-

plications (not shown). With the Android development

team’s desire to minimize application switch time and

provide the appearance of “all applications running all of

the time” [31] (see section: “When does an application

’stop’?”) for mobile devices, handling concurrent appli-

cations and their I/O demands can be an increasingly im-

portant challenge in the future.

4.4 CPU Consumption
Figure 8 shows the breakdown of CPU utilization for

WebBench; the stacked bar chart shows the CPU tick

counts during active, idle, and ioWait periods (a “tick”

corresponds to 10ms on our phone); Figure 9 shows the

CPU utilization and I/O busyness for the same experi-

ment for two SD cards: a fast Transcend, and a slow

Kingston. Since the non-idle, non-ioWait CPU consump-

tion includes not only the contribution of the benchmark

but also all background activities, we also measured CPU

consumption for background activities alone (to subtract

from the total). Note that this is unlike the set of back-

ground activities discussed in Section §3.3 as we turned

off automatic syncing and active widgets; we find that the

share of CPU consumption due to background tasks is less

than 1% of the total.

The graphs reveal the interesting phenomenon that ag-

9

218 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 100
 150
 200
 250
 300
 350
 400
 450
 500

A B C D E

Webbench

 50

 60

 70

 80

 90

 100

 110

A B C D E

Facebook

Baseline
Cache in RAM

DB in RAM
All in RAM

Disable fsync

Figure 11: What-If Performance Analysis. Experiments

were conducted for WebBench (left) and Facebook (right); data

stored in memory using a RAMdisk and RiData card as the flash

backing store where needed (e.g., for baseline). Y-axis is Time

in seconds; Solutions A: Baseline, B: Cache in RAM, C: DB in

RAM, D: All in RAM, E: Disable Sync.

gregate CPU consumed for the same benchmark increases

with a slower storage device (by just looking at the “ac-

tive” component). This points to the fact that storage

has an indirect impact on energy consumption by burn-

ing more CPU. Ideally, one would expect a fixed amount

of CPU to be consumed for the same amount of work;

since the results show CPU consumption to be dispropor-

tional to the amount of work, we hypothesize it being due

to deficiencies in either the network subsystem, the stor-

age subsystem, or both. We need to investigate this matter

further to identify the root causes.

Slower storage also increases energy consumption in

other indirect ways; for example, keeping the LCD screen

turned on longer while performing interactive tasks, keep-

ing the WiFi radio busy longer, and preventing the phone

from going to a low-power mode sooner.

5 Pilot Solutions
We present potential improvements in application perfor-

mance through storage system modifications. We start

with a what-if analysis to provide the envelope of perfor-

mance gains and then present a set of pilot solutions.

5.1 What-If Analysis
The detailed analysis of storage performance gave in-

sights into the performance problems faced by applica-

tions, but before proposing actual solutions we wanted

to understand the scope for potential improvements. We

performed a set of what-if analyses to obtain the upper

bounds on performance gains that could be achieved, for

example, by storing all data in memory. For comparison

sake, we performed experiments with both memory as the

backing store (using RAMdisk) and SD cards as the back-

ing store; in the different analysis experiments we placed

different kinds of data on the RAMdisk, for example, the

cache, or the database files. Figure 11 compares the rel-

ative benefits of the various approaches, as measured for

the WebBench and Facebook workloads for the RiData

card and a RAMdisk; the trends for the other SD cards

were similar, although the actual gains were of course dif-

ferent with every card.

Placing the entire “cache” folder on RAM (bars B)

does improve performance, but not by much (i.e., 5% for

WebBench and 15% for Facebook). Placing the SQLite

database on RAM (bars C) however improves perfor-

mance by factors of three and two for WebBench and

Facebook respectively; placing both the cache and the

database on RAM (bars D) does not provide significant

additional benefit. Transforming the cache and database

writes to be asynchronous (bars E) recoups most of the

performance and performs comparably to the SQLite on

RAM solution.

The performance evaluation in the previous section and

the what-if analysis lead to the following conclusions:

First, the key bottleneck is the “wimpy” storage preva-

lent today on mobile devices; even while the internal flash

and the SD cards are increasingly being used for desktop

like-workloads, their performance is significantly worse

than storage media on laptops and desktops. Second,

the Android OS exacerbates the poor storage performance

through its choice of interfaces; the synchronous SQLite

interface primarily geared for ease of application develop-

ment is being used by applications that are perhaps better

off with more light-weight consistency solutions. Third,

the SQLite write traffic itself is quite random with plenty

of synchronous overwrites to the flash storage causing fur-

ther slowdown. Finally, apps use the Android interfaces

oblivious to performance. A particularly striking example

is the heavy-handed management of application caches

through SQLite; the web browser writes a cache map to

SQLite significantly slowing down the cache writes.

We implement and evaluate a set of pilot solutions to

show the potential for improving user experience through

improvements in the Android storage system; while not

rigorous enough to serve as deployable solutions, these

can evolve into robust and detailed solutions in the future.

We classify the solution space into four categories:

• Better storage media for mobile devices to provide

baseline improvements

• Firmware and device drivers to effectively utilize

existing and upcoming storage devices

• Enhancements to mobile OS to avoid the storage

bottlenecks and provide new functionality

• Application-level changes to judiciously use the

supplied storage interfaces

Figure 12 shows the improvements through the pilot so-

lutions for WebBench and Facebook using Kingston and

RiData; as with the what-if analysis, trends for other SD

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 219

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

A B C D E F

T
im

e
 (

s
)

 100

 150

 200

 250

 300

 350

 400

 450

 500

A B C D E F
 0

 100

 200

 300

 400

 500

 600

A B C D E F
 50

 60

 70

 80

 90

 100

 110

A B C D E F
Baseline

RAID
SQLite on nilfs2

Selective sync
SQLite on PCM

RAM

Figure 12: Pilot Solutions. Runtime results for WebBench (leftmost two) and Facebook (rightmost two) for the Kingston and

RiData cards; y-axis is Time in seconds. Solutions A: Baseline, B: RAID over SD, C: SQLite on Nilfs2, D: Selective Sync, E:

SQLite on PCM, F: All in RAM.

cards were similar but actual gains varied. Bars A in Fig-

ure 12 represent the baseline performance, while bars F

are meant to represent an upper bound on performance

with all data stored in RAM.

5.2 Storage Devices Not Wimpy Anymore

An obvious solution is to improve the performance of the

storage device, i.e., using better flash storage or a faster

non-volatile memory such as PCM. Indeed, flash fabrica-

tion technology itself is improving at a fair pace; scaling

trends project flash to double in capacity every two years

until the year 2016 [45]. However, when it comes to per-

formance, cost pressures in the consumer market are driv-

ing manufacturers to move away from the more reliable,

higher performing SLC flash to the less reliable, lower

performing MLC or TLC flash; this makes it harder to rely

solely on improvements due to flash scaling. Our findings

reveal that performance of a relatively small fraction of

I/O traffic is responsible for a large fraction of overall ap-

plication performance. A more efficient solution is thus

to use the faster storage media as a persistent write buffer

for the performance-sensitive I/O traffic: a small amount

of PCM to buffer writes issued by the SQLite database

can improve the performance.

We built a simple PCM emulator for Android to evalu-

ate our solution; the emulator is implemented as a pseudo

block-device based on the timing specifications from re-

cent work [28], using memory as the backing store. The

PCM buffer can be used as staging area for all writes or as

the final location for the SQLite databases; our emulator

can be configured with a small number of device-specific

parameters. Figure 12 (bars E) show the performance im-

provements by using a small amount (16 MB) of PCM; in

this experiment, PCM is used as the final location for only

the database files.

An alternative approach, as envisioned by Pocket

Cloudlets [51], is to rely on substantial augmentation

of existing flash storage capabilities on mobile devices

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

8 16 32 64 128 256 512 1024

T
h
ro

u
g
h
p
u
t
(M

B
/S

)

Address Range for Random Writes (MB)

Transcend
RiData

SanDisk
Kingston

Wintec
A-Data
Patriot

PNY

Figure 13: Explanation of RAID Speedup. Variation in

throughput for SD cards with increasing write address range.

and/or full replacement of flash with PCM or STT-

MRAM [43]. In reality, storage-class memory may be

placed in different forms on the mobile system, for ex-

ample, on the CPU-memory bus, or as backing store for

the virtual memory. Our intent here was two-fold (a) un-

derstand the approximate benefits of using such a persis-

tent buffer, and (b) demonstrate that even with a relatively

small amount of PCM, significant gains can be made by

judiciously storing performance-critical data; a deployed

solution can certainly incorporate PCM in the storage hi-

erarchy in better ways.

5.3 RAID over SD

Another solution is to leverage the I/O parallelism already

existent on most phones: an internal flash drive and an ex-

ternal SD card. We built a simple software RAID driver

for Android with I/O striped to the two devices (RAID-

0) in 4 KB blocks. Note that a deployable solution will

require more effort: (a) it would need to handle storage

devices of potentially differing speeds (b) handle acciden-

tal removal of the external SD card.

While for some SD cards we obtained the expected im-

provements as in Figure 12 (bars B), i.e., greater than 1X

11

220 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

and less than 2X, for others we obtained a speedup greater

than 2X (not shown); we suspected that this could be due

to the idiosyncrasies of the FTL on the card. As many con-

sumer flash devices employ the log-block wear-leveling

scheme [48], their performance is sensitive to the write

footprint; a reduction in the amount of random writes re-

duces the overhead of the garbage collection, improving

the performance.

To verify our hypothesis, we performed another exper-

iment. Figure 13 shows the throughput obtained for an

increasing address range with random writes; the I/O size

is 4KB and number of requests is 2048, totaling 8 MB

of writes. In order to minimize the effects of FTL state

being carried forward from the previous experiment, we

sequentially write 1 GB of data before every run.

For Kingston, Wintec, A-Data, Patriot, and PNY, as

the address range increases, the throughput drops signif-

icantly and then stabilizes at the low level; for RiData,

throughput drops but not as sharply, while for Transcend

the throughput remains consistently high (we do not have

an explanation for the slight increase, multiple measure-

ments gave similar results). Sandisk exhibits more than

one regime change, dropping first around the 32 MB mark

and then around the 1024 MB mark.

To explain our surprising performance improvements,

in a log-block FTL, a small number of physical blocks are

available for use as log blocks to stage an updated block;

a one-to-one correspondence exists between logical and

physical blocks. Since the amount of data written to one

disk in a 2-disk RAID-0 array is roughly half of the total,

the disk write footprint reduces and block address range

shrinks; the RAID scheme simply pushes the operating

regime of an SD card towards the left, and depending on

the actual footprint, provides super-linear speedup! While

we came across this performance variation in course of

our RAID experiments, the implications are more generic;

one can design other solutions centered around the com-

paction of the write address range.

5.4 Using a Log-structured File System
Log-structured file systems provide good performance

for random writes [58]; another solution to alleviate

the effects of the random writes is thus to place the

database files on a log-structured file system. We used

the Nilfs2 [50] file system on Android since it works

with block devices; we created a separate partition on the

phone’s flash storage to store the entire SQLite database.

Figure 12 (bars C) show the benefits of log-structuring;

SQLite on Nilfs2 improves the performance of WebBench

and Facebook by more than a factor of 4 for Kingston, and

over 20% for RiData.

5.5 Application Modifications
Finally, several solutions are possible if one is able to

modify either the SQLite interface or the applications

themselves. We demonstrate the benefits of such tech-

niques with a simple modification to SQLite: providing

the capability to perform selective sync operations based

on application-specific requirements; in our current im-

plementation, we simply turn off sync for the database

files that are deemed asynchronous as per our analysis (for

example, the WebView database file serving as the index

for the web cache). Figure 12 (bars D) compare the ben-

efits of the selective sync operation with other previously

proposed solutions, providing noteworthy benefits espe-

cially for Facebook.

Another potential technique to improve performance at

the application level is through the use of larger transac-

tions, amortizing the overhead of the SQLite sync inter-

face. A careful restructuring of the application program-

ming interface can perhaps lead to significant gains for

future apps, but is beyond the scope for this paper; the in-

terface discussion is a classic chicken-and-egg problem in

the context of storage systems [54, 63]. Recently a new

backend for SQLite has been proposed that uses write-

ahead logging [18]; such techniques have the potential to

ameliorate the random write bottleneck without requiring

changes to the API.

5.6 Summary of Solutions
Through our investigation of the solution space we notice

several avenues for further performance improvements

in the storage subsystem on mobile devices, and conse-

quently the end-user experience. Our analysis reveals that

a small amount of domain or application knowledge can

improve performance in a more efficient way; through our

pilot solutions we demonstrate the potential benefits of ex-

plicit and implicit storage improvements.

Programmers tend to heavily use the general-purpose

“all-synchronous” SQLite interface for its ease of use but

end up suffering from performance shortcomings. We

posit that a data-oriented I/O interface would be one that

enables the programmer to specify the I/O requirements

in terms of its reliability, consistency, and the property of

the data, i.e., temporary, permanent, or cache data, with-

out worrying about how its stored underneath. For ex-

ample, a key-value store specifically for cache data does

not need to provide ultra-reliability; a web browser can

use the cache key-value store as its web cache in a more

performance-efficient manner than SQLite.

6 Related Work
We found little published literature on storage perfor-

mance for mobile devices. One of the earliest works on

storage for mobile computers [33] compares the perfor-

mance of hard disks and flash storage on an HP Omni-

Book; remarkably, many of their general observations are

still valid. Datalight [11], provider of data management

technologies for mobile and embedded devices to OEMs,

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 221

make an observation similar to ours with reference to their

proprietary Reliance Nitro file system. According to their

website, lack of device performance and responsiveness is

one of the important shortcomings of the [Windows] Mo-

bile platforms; OEMs using an optimized software stack

can improve performance. Our results also reaffirm some

of the recent findings for desktop applications on the Mac

OS X [42]: lack of pure sequential access for seemingly

sequential application requests, heavy-handed use of syn-

chronization primitives, and the influence of underlying

libraries on application I/O.

A recent study of web browsers on smartphones [67]

examined the reasons behind slow web browsing per-

formance and found that optimizations centering around

compute-intensive operations provide only marginal im-

provements; instead “resource loading” (e.g., files of vari-

ous types being fetched from the webserver) contributes

most to browser delay. While this work focuses more

specifically on the browser and the network, it reaffirms

the observation that improvements in the OS and hard-

ware are needed to improve application performance.

Other related work has focused on the implications

of network performance on smartphone applications [44]

and on the diversity of smartphone usage [35]. Finally,

there is extensive work in developing smarter, richer, and

more powerful applications for mobile devices, far too

much to cite here. We believe the needs of these appli-

cations are in turn going to drive the performance require-

ments expected of hardware devices, including storage, as

well as the operating system software.

7 Conclusions

Contrary to conventional wisdom, we find evidence that

storage is a significant contributor to application perfor-

mance on mobile devices; our experiments provide insight

into the Android storage stack and reveal its correlation

with application performance. Surprisingly, we find that

even for an interactive application such as web browsing,

storage can affect the performance in non-trivial ways; for

I/O intensive applications, the effects can get much more

pronounced. With the advent of faster networks and I/O

interconnects on the one hand, and a more diverse, pow-

erful set of mobile apps on the other, the performance re-

quired from storage is going to increase in the future. We

believe the storage system on mobile devices needs a fresh

look and we have taken the first steps in this direction.

8 Acknowledgements

We thank the anonymous FAST reviewers and our shep-

herd, Raju Rangaswami, for their valuable feedback that

improved the presentation of this paper. We thank Akshat

Aranya for his assistance in setting up the Android test

environment and experimental data analysis. We thank

Kishore Ramachandran for providing several useful dis-

cussions and detailed comments on the paper.

References
[1] Android Debug Bridge (ADB). http://developer.

android.com/guide/developing/tools/adb.html.
[2] Android Developers Website. http://developer.

android.com/index.html.
[3] Android Open Source Project. http://source.android.

com/index.html.
[4] Android WebKit Package. http://developer.

android.com/reference/android/webkit/
package-summary.html.

[5] Block I/O Layer Tracing: blktrace. http://linux.die.
net/man/8/blktrace.

[6] Busybox unix utilities. http://www.busybox.net/
about.html.

[7] Clockworkmod rom manager and recovery image.
http://www.koushikdutta.com/2010/02/
clockwork-recovery-image.html.

[8] Compete ranking of top 50 web sites for february 2011 reveals
familiar dip. http://tinyurl.com/3ubxzbl.

[9] CrystalDiskMark Benchmark V3.0.1. http://
crystalmark.info/software/CrystalDiskMark/
index-e.html.

[10] Cyanogenmod. http://wiki.cyanogenmod.com/
index.php?title=What_is_CyanogenMod.

[11] Datalight: Software for risk-free mobile
data. http://www.datalight.com/
solutions/linux-flash-file-system/
performance-hardware-managed-media.

[12] Google nexus one. http://en.wikipedia.org/wiki/
Nexus_One.

[13] Htc desire. http://www.htc.com/www/product/
desire/specification.html.

[14] HTC EVO Phone . http://www.htc.com/us/products/
evo-sprint#tech-specs. Retrieved in Sep 2011.

[15] LG G2X P999 Phone. http://www.lg.com/us/
products/documents/LG-G2x-Datasheet.pdf.
Retrieved in Sep 2011.

[16] MonkeyRunner for Android Developers. http://
developer.android.com/guide/developing/
tools/monkeyrunner_concepts.html.

[17] SD Speed Class/UHS Speed Class. https://www.sdcard.
org/consumers/speed_class/.

[18] SQLite Backend with Write-Ahead Logging. http://www.
sqlite.org/draft/releaselog/3_7_0.html.

[19] Starburst data2sd. http://starburst.droidzone.in/.
[20] Unrevoked 3: Set your phone free. http://unrevoked.com/

recovery/.
[21] Usb reverse tethering setup for android 2.2.

http://blog.mycila.com/2010/06/
reverse-usb-tethering-with-android-22.html.

[22] Using databases in android: Sqlite. http://developer.
android.com/guide/topics/data/data-storage.
html#db.

[23] Motorola Webtop: Release Your Smartphone’s True Po-
tential. http://www.motorola.com/Consumers/
US-EN/Consumer-Product-and-Services/WEBTOP/
Meet-WEBTOP, 2011.

[24] Alphonso Labs. Pulse News Reader. https://market.
android.com/details?id=com.alphonso.pulse&
hl=en.

[25] J. Bickford, H. A. Lagar-Cavilla, A. Varshavsky, V. Ganapathy,
and L. Iftode. Security versus energy tradeoffs in host-based mo-
bile malware detection. In MobiSys’11: Proceedings of the 9th
International Conference on Mobile Systems, Applications, and
Services, page TBD, Bethesda, Maryland, USA, June/July 2011.
ACM Press, New York, NY, USA.

[26] A. Carroll and G. Heiser. An analysis of power consumption in
a smartphone. In Proceedings of the 2010 USENIX conference
on USENIX annual technical conference, USENIX ATC’10, pages
21–21, Berkeley, CA, USA, 2010. USENIX Association.

[27] S. J. Castellucci and I. S. MacKenzie. Gathering text entry metrics
on android devices. In Proceedings of the 2011 Conference on
Human Factors in Computing Systems (CHI), CHI EA ’11, pages
1507–1512, New York, NY, USA, 2011. ACM.

13

222 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[28] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database al-
gorithms for phase change memory. In CIDR ’11, pages 21–31,
Asilomar, CA, 2011.

[29] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
Clonecloud: elastic execution between mobile device and cloud.
In Proceedings of the sixth conference on Computer systems, Eu-
roSys ’11, pages 301–314, New York, NY, USA, 2011. ACM.

[30] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer
with code offload. In Proceedings of the 8th international confer-
ence on Mobile systems, applications, and services, MobiSys ’10,
pages 49–62, New York, NY, USA, 2010. ACM.

[31] Dianne Hackborn. Multitasking the Android Way. http://
android-developers.blogspot.com/2010/04/
multitasking-android-way.html, april 2010.

[32] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach.
Quire: Lightweight provenance for smart phone operating sys-
tems. In 20th USENIX Security Symposium, San Francisco, CA,
Aug. 2011.

[33] F. Douglis, R. Cáceres, M. F. Kaashoek, K. Li, B. Marsh, and J. A.
Tauber. Storage alternatives for mobile computers. In OSDI, pages
25–37, 1994.

[34] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. In Proceedings
of the 9th USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–6, Berkeley, CA, USA, 2010.
USENIX Association.

[35] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govin-
dan, and D. Estrin. Diversity in smartphone usage. In Proceedings
of the 8th international conference on Mobile systems, applica-
tions, and services, MobiSys ’10, pages 179–194, New York, NY,
USA, 2010. ACM.

[36] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mo-
bile applications. In Proceedings of the seventeenth ACM sym-
posium on Operating systems principles, SOSP ’99, pages 48–63,
New York, NY, USA, 1999. ACM.

[37] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanarayanan. Data
Staging on Untrusted Surrogates.

[38] Gartner. Gartner highlights key predictions for it organizations and
users in 2010 and beyond. http://www.gartner.com/it/
page.jsp?id=1278413.

[39] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M. Levy.
Keypad: an auditing file system for theft-prone devices. In Pro-
ceedings of the sixth conference on Computer systems, EuroSys
’11, pages 1–16, New York, NY, USA, 2011. ACM.

[40] V. Gundotra and H. Barra. Android: Momentum, Mobile and More
at Google I/O. Keynote at Google I/O, May 2011.

[41] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wether-
all. Augmenting data center networks with multi-gigabit wireless
links. In Proceedings of the ACM SIGCOMM 2011 conference,
SIGCOMM ’11, pages 38–49, New York, NY, USA, 2011. ACM.

[42] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. A File is Not a File: Understanding the I/O Be-
havior of Apple Desktop Applications. In SOSP ’11, Cascais, Por-
tugal, October 2011.

[43] Y. Huai. Spin-transfer torque MRAM (STT-MRAM): Challenges
and Prospects. AAPPS Bulletin, 18(6):33–40, Dec. 2008.

[44] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl.
Anatomizing application performance differences on smartphones.
In Proceedings of the 8th international conference on Mobile sys-
tems, applications, and services, MobiSys ’10, pages 165–178,
New York, NY, USA, 2010. ACM.

[45] I. T. R. for Semiconductors Working Group. International technol-
ogy roadmap for semiconductors. Technical report, International
Technology Roadmap for Semiconductors, 2009.

[46] iperf network performance tool.
http://sourceforge.net/projects/iperf.

[47] Y. Joo, J. Ryu, S. Park, and K. G. Shin. Fast: quick application
launch on solid-state drives. In Proceedings of the 9th USENIX
conference on File and Storage Technologies, FAST ’11, 2011.

[48] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. A space-
efficient flash translation layer for CompactFlash Systems. IEEE
Transactions on Consumer Electronics, 48(2):366–375, 2002.

[49] J. Kistler and M. Satyanarayanan. Disconnected Operation in the
Coda File System. ACM Trans. Comput. Syst., 10(1), February
1992.

[50] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and S. Mo-
riai. The linux implementation of a log-structured file system.
SIGOPS Oper. Syst. Rev., 40(3):102–107, 2006.

[51] E. Koukoumidis, D. Lymberopoulos, K. Strauss, J. Liu, and
D. Burger. Pocket cloudlets. In Proceedings of the sixteenth in-
ternational conference on Architectural support for programming
languages and operating systems, ASPLOS ’11, pages 171–184,
New York, NY, USA, 2011. ACM.

[52] C. Manning. YAFFS: Yet Another Flash File System. http://
www.aleph1.co.uk/yaffs, 2004.

[53] P. Meroni, E. Pagani, G. P. Rossi, and L. Valerio. An opportunistic
platform for android-based mobile devices. In Proceedings of the
Second International Workshop on Mobile Opportunistic Network-
ing, MobiOpp ’10, pages 191–193, New York, NY, USA, 2010.
ACM.

[54] Muthian Sivathanu and Vijayan Prabhakaran and Florentina I.
Popovici and Timothy E. Denehy and Andrea C. Arpaci-Dusseau
and Remzi H. Arpaci-Dusseau. Semantically-Smart Disk Systems.
In Proceedings of the 2nd USENIX Symposium on File and Storage
Technologies (FAST ’03), pages 73–88, 2003.

[55] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware adaptation for
mobility. In Proceedings of the sixteenth ACM symposium on Op-
erating systems principles, SOSP ’97, pages 276–287, New York,
NY, USA, 1997. ACM.

[56] RedLicense Labs. RL Benchmark: SQLite. https://market.
android.com/details?id=com.redlicense.
benchmark.sqlite.

[57] Richard Pentin (Summary). Gartner’s mobile predictions.
http://ifonlyblog.wordpress.com/2010/01/14/
gartners-mobile-predictions/.

[58] M. Rosenblum and J. Ousterhout. The Design and Implementa-
tion of a Log-Structured File System. ACM Trans. Comput. Syst.,
10(1):26–52, Feb. 1992.

[59] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich. Energy management in mobile devices with the cin-
der operating system. In Proceedings of the sixth conference on
Computer systems, EuroSys ’11, pages 139–152, New York, NY,
USA, 2011. ACM.

[60] Samsung Corp. Samsung ships industrys first multi-chip pack-
age with a pram chip for handsets. http://tinyurl.com/
4y9bsds.

[61] M. Satyanarayanan. Mobile computing: the next decade. In Pro-
ceedings of the 1st ACM Workshop on Mobile Cloud Computing &
Services: Social Networks and Beyond, MCS ’10, pages 5:1–5:6,
New York, NY, USA, 2010. ACM.

[62] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The
case for vm-based cloudlets in mobile computing. IEEE Perva-
sive Computing, 8:14–23, October 2009.

[63] S. W. Schlosser and G. R. Ganger. MEMS-based storage devices
and standard disk interfaces: A square peg in a round hole? pages
87–100.

[64] Ted Tso. Android will be using ext4 starting with
Gingerbread. http://www.linuxfoundation.
org/news-media/blogs/browse/2010/12/
android-will-be-using-ext4-starting-gingerbread,
Dec. 2010.

[65] N. Tolia, J. Harkes, M. Kozuch, and M. Satyanarayanan. Inte-
grating Portable and Distributed Storage. In Proceedings of the
3rd USENIX Symposium on File and Storage Technologies (FAST
’04), pages 227–238, San Francisco, California, April 2004.

[66] K. Veeraraghavan, J. Flinn, E. B. Nightingale, and B. Noble.
qufiles: the right file at the right time. In Proceedings of the 8th
USENIX conference on File and storage technologies, FAST’10,
Berkeley, CA, USA, 2010. USENIX Association.

[67] Z. Wang, F. X. Lin, and L. Zhong. Why are Web Browsers Slow
on Smartphones? In ACM HotMobile ’11, March 2011.

[68] WG802.11 - Wireless LAN Working Group. IEEE STAN-
DARD 802.11n-2009. http://standards.ieee.org/
findstds/standard/802.11n-2009.html.

14

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 223

Serving Large-scale Batch Computed Data with Project Voldemort

Roshan Sumbaly Jay Kreps Lei Gao Alex Feinberg Chinmay Soman Sam Shah
LinkedIn

Abstract

Current serving systems lack the ability to bulk load
massive immutable data sets without affecting serving
performance. The performance degradation is largely due
to index creation and modification as CPU and memory
resources are shared with request serving. We have ex-
tended Project Voldemort, a general-purpose distributed
storage and serving system inspired by Amazon’s Dy-
namo, to support bulk loading terabytes of read-only data.
This extension constructs the index offline, by leveraging
the fault tolerance and parallelism of Hadoop. Compared
to MySQL, our compact storage format and data deploy-
ment pipeline scales to twice the request throughput while
maintaining sub 5 ms median latency. At LinkedIn, the
largest professional social network, this system has been
running in production for more than 2 years and serves
many of the data-intensive social features on the site.

1 Introduction
Many social networking and e-commerce web sites con-
tain data-derived features, which usually consist of some
data mining application offering insights to the user. Typi-
cal features include: “People You May Know,” a link pre-
diction system attempting to find other users you might
know on the social network (Figure 1a); collaborative
filtering, which showcases relationships between pairs
of items based on the wisdom of the crowd (Figure 1b);
various entity recommendations; and more. LinkedIn, the
largest professional social network with, as of writing,
more than 135 million members, consists of these and
more than 20 other data-derived features.

The feature data cycle in this context consists of a con-
tinuous chain of three phases: data collection, processing,
and serving. The data collection phase usually involves
log consumption, while the processing phase involves
running algorithms on the output. Algorithms such as
link prediction or nearest-neighbor computation output
hundreds of results per user. For example, the “People

You May Know” feature on LinkedIn runs on hundreds of
terabytes of offline data daily to make these predictions.

Due to the dynamic nature of the social graph, this
derived data changes extremely frequently—requiring
an almost complete refresh and bulk load of the data,
while continuing to serve existing traffic with minimal
additional latency. Naturally, this batch update should
complete quickly to engender frequent pushes.

Interestingly, the nature of this complete cycle means
that live updates are not necessary and are usually handled
by auxiliary data structures. In the collaborative filtering
use case, the data is purely static. In the case of “People
You May Know”, dismissed recommendations (marked
by clicking “X”) are stored in a separate data store with
the difference between the computed recommendations
and these dismissals calculated at page load.

This paper presents read-only extensions to Project
Voldemort, our key-value solution for the final serving
phase of this cycle and discusses how it fits into our fea-
ture ecosystem. Voldemort, which was inspired by Ama-
zon’s Dynamo [7], was originally designed to support
fast online read-writes. Our system leverages a Hadoop
elastic batch computing infrastructure to build its index
and data files, thereby supporting high throughput for
batch refreshes. A custom read-only storage engine plugs
into Voldemort’s extensible storage layer. The Voldemort
infrastructure then provides excellent live serving perfor-
mance for this batch output—even during data refreshes.

Our system supports quick rollback, where data can
be restored to a clean copy, minimizing the time in error
if an algorithm should go awry. This helps support fast,
iterative development necessary for new feature improve-
ments. The storage data layout also provides the ability
to grow horizontally by rebalancing existing data to new
nodes without downtime.

Our system supports twice the request throughput ver-
sus MySQL while serving read requests with a median
latency of less than 5 ms. At LinkedIn, this system has
been running for over 2 years, with one of our largest

224 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

(a)

(b)

Figure 1: (a) The “People You May Know” module. (b) An example
collaborative filtering module.

clusters loading more than 4 terabytes of new data to the
site every day.

The key contributions of this work are:

• A scalable offline index construction, based on
MapReduce [6], which produces partitioned data
for online consumption

• Complete data cycle to refresh terabytes of data with
minimum effect on existing serving latency

• Custom storage format for static data, which lever-
ages the operating system’s page cache for cache
management

Voldemort and its read-only extensions are open source
and are freely available under the Apache 2.0 license.

The rest of the paper is as follows. Section 2 first
discusses related work. We then provide an architectural
overview of Voldemort in Section 3. We follow with
a discussion in Section 4 of existing solutions that we
tried, but found insufficient for bulk loading and serving
largely static data. Section 5 describes Voldemort’s read-
only extensions, including our new storage format and
how data and indexes are built offline and loaded into the
system. Section 6 presents experimental and production
results evaluating our solution. We close with a discussion
of future directions in Section 7.

2 Related Work
MySQL [16] is a common serving system used in various
companies. The two most commonly used MySQL stor-
age engines, MyISAM and InnoDB, provide bulk load-
ing capabilities into a live system with the LOAD DATA
INFILE statement. MyISAM provides a compact on-
disk structure and the ability to delay recreation of the
index after the load. However, these benefits come at the
expense of requiring considerable memory to maintain a
special tree-like cache during bulk loading. Additionally,
the MyISAM storage engine locks the complete table for
the duration of the load, resulting in queued requests. In
comparison, InnoDB supports row-level locking, but its
on-disk structure requires considerable disk space and
its bulk loading is orders of magnitude slower than My-
ISAM.

Considerable work has been done to add bulk loading
ability to new shared nothing [22] cluster databases sim-
ilar to Voldemort. Silberstein et al. [19] introduce the
problem of bulk insertion into range-partitioned tables
in PNUTS [4], which tries to optimize data movement
between machines and total transfer time by adding an
extra planning phase to gather statistics and prepare the
system for the incoming workload. In an extension of
that work [20], Hadoop is used to batch insert data into
PNUTS in the reduce phase. Both of these approaches
optimize the time for data loading into the live system,
but incur latency degradation on live serving due to multi-
tenant issues with sharing CPU and memory during the
full loading process. This is a significant problem with
very large data sets, which even after optimizations, might
take hours to load.

Our system alleviates this problem by moving the con-
struction of the indexes to an offline system. MapRe-
duce [6] has been used for this offline construction in
various search systems [14]. These search layers trigger
builds on Hadoop to generate indexes, and on completion,
pull the indexes to serve search requests.

This approach has also been extended to various
databases. Konstantinou et al. [10] and Barbuzzi et al. [2]
suggest building HFiles offline in Hadoop, then shipping
them to HBase [9], an open source database modeled af-
ter BigTable [3]. These works do not explore the data
pipeline, particularly data refreshes and rollback.

The overall architecture of Voldemort was inspired
from various DHT storage systems. Unlike the previ-
ous DHT systems, such as Chord [21], which provide
O(log N) lookup, Voldemort’s lookups are O(1) be-
cause the complete cluster topology is stored on every
node. This information allows clients to bootstrap from
a random node and direct requests to exact destination
nodes. Similar to Dynamo [7], Voldemort also supports
per tuple-based replication for availability purposes. Up-
dating replicas is easy in the batch scenario because they

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 225

are precomputed and loaded into the Voldemort cluster at
once. The novelty of Voldemort, compared to Dynamo,
is our custom storage engine for bulk-loaded data sets.

3 Project Voldemort
A Voldemort cluster can contain multiple nodes, each
with a unique identifier. A physical host can run multi-
ple nodes, though at LinkedIn we maintain a one-to-one
mapping. All nodes in the cluster have the same number
of stores, which correspond to database tables. General
usage patterns have shown that a site-facing feature can
map to one or more stores. For example, a feature dealing
with group recommendations will map to two stores: one
recording a member id to recommended group ids and
another recording a group id to its corresponding descrip-
tion. Every store has the following list of configurable
parameters, which are identical to Dynamo’s parameters:

• Replication factor (N): Number of nodes which
each key-value tuple is replicated.

• Required reads (R): Number of nodes Voldemort
reads from, in parallel, during a get before declaring
a success.

• Required writes (W): Number of node responses
Voldemort blocks for, before declaring success dur-
ing a put.

• Key/Value serialization and compression: Voldemort
can have different serialization schemas for key and
value. For the custom batch data use case, Voldemort
uses a custom binary JSON format. Voldemort also
supports per tuple-based compression. Serialization
and compression is completely handled by a com-
ponent that resides on the client side with the server
only dealing with raw byte arrays.

• Storage engine type: Voldemort supports various
read-write storage engine formats: Berkeley DB
Java Edition [15] and MySQL [16]. Voldemort also
supports a custom read-only storage engine for bulk-
loaded data.

Every node in the cluster stores the same 2 pieces of
metadata: the complete cluster topology and the store
definitions.

Voldemort has a pluggable architecture, as shown in
Figure 2. Each box represents a module, all of which
share the same code interface. Each module has exactly
one functionality, making it easy to interchange modules.
For example, we can have the routing module on either
the client side or the server side. Functional separation
at the module level also allows us to easily mock these
modules for testing purposes—for example, a mocked up
storage engine backed by a hash map for unit tests.

Many of our modules have been inspired by the original
Dynamo paper. Starting from the top of the Voldemort
stack, our client has a simple get and put API. Every
tuple is replicated for availability, with each value having

Client API

Serialization

Routing
Network Client /

 Server

Responses
Requests

Storage Engine

Conflict Resolution

Repair Mechanism

Figure 2: Voldemort architecture containing modules for a single client
and server. The dotted modules are not used by the read-only storage
engine.

Partition 0
Node 0

Partition 1
Node 1

Partition 2
Node 2

Partition 3
Node 0

Partition 4
Node 1

Partition 5
Node 2

Partition 6
Node 0

Partition 7
Node 1

Partition 8
Node 2

Partition 9
Node 0

Partition 10
Node 1

Partition 11
Node 2

 MD5(key)

Partition
hashed to

Preference list

0
1
2
3
4
5

6
7
8

9

10

11

N0 N1 N2
0 1

1 2

23
3 4

4 5

56
6 7

7 8

89

9 10

10 11

110

Figure 3: Simple hash ring cluster topology for 3 nodes and 12 par-
titions. The preference list generation for a key hashing to partition
11, for a store with N=2, would jump the ring clockwise to place the
other N−1=1 replica on partition 0. The table shows the preference
list generated for every hashed partition. The primary partitions have
been highlighted in bold.

vector clock [11] versioning. The “conflict resolution”
and “repair mechanism” layer, used only by the read-write
storage engines, deal with inconsistent replicas. This does
not apply to read-only stores because Voldemort updates
all the replicas of a key in a store at once, keeping them
in sync.

The “routing” module deals with partitioning as well
as replication. Our partitioning scheme is similar to Dy-
namo’s, wherein Voldemort splits the hash ring into equal
size partitions, assigns them unique ids, and then maps
them to nodes. This ring is then shared with all the stores;
that is, changes in the mapping require changes to all the
stores. To generate the preference list (the list of partition
ids where the replicas will be stored), we first hash the key
(using MD5) to a range belonging to a partition and then
continue jumping the ring clockwise to find N−1 parti-
tions belonging to different nodes. For example, for a
store with N=2 and partition mapping as shown in Fig-

226 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

ure 3, the preference list for a key hashing to partition 11
will be (Partition 11, Partition 0).

The last module, the pluggable storage layer, has the
same get and put functions, along with the ability to
stream data out. In addition to running the full stack
from Figure 2, every node also runs an administrative
service that allows the execution of following privileged
commands: add or remove a store, stream data out, and
trigger read-only store operations.

Voldemort supports two routing modes: server-side and
client-side routing. Client-side routing, the more com-
monly used routing strategy, requires an initial “bootstrap”
step, wherein it retrieves the metadata required for routing
(cluster topology and store definitions) by load balancing
to a random node. Once the metadata has been retrieved
by the client, one fewer hop is necessary compared to
server-side routing, because the replica locations can be
calculated on the fly. However, as we will further explain
in Section 5.7, client-side routing makes rebalancing of
data complicated, because we now need a mechanism to
update the cluster topology metadata on the live clients.

4 Alternative Approaches
Before we started building our own custom storage engine,
we decided to evaluate the existing read-write storage
engines supported in Voldemort, namely, MySQL and
Berkeley DB. Our criteria for success was the ability
to bulk load massive data sets with minimal disk space
overhead, while still serving live traffic.

4.1 Shortcomings of Alternative Approaches

The first approach we tried was to perform multiple put
requests. This naı̈ve approach is problematic as every
request results in an incremental change to the underly-
ing index structure (in most cases, a B+ tree), which in
turn, results in many disk seeks. To solve this problem,
MySQL provides a LOAD DATA statement that tries to
bulk update the underlying index. Unfortunately, using
this statement for the MyISAM storage engine locks the
entire table. InnoDB instead executes this statement with
row-level locking, but experiences substantial disk space
overhead for every tuple. However, to achieve MyISAM-
like bulk loading performance, InnoDB prefers data or-
dered by primary key. Achieving fast load times with low
space overhead in Berkeley DB requires several manual
and non-scalable configuration changes, such as shutting
down cleaner and checkpointer threads.

The next solution we explored was to bulk load into
a different MySQL table on the same cluster and use
views to transparently swap to the new table. We used
the MyISAM storage engine, opting to skip InnoDB due
to the large space requirements. This approach solves
the locking problem, but still hurts serving latency during

the load due to pressure on shared CPU and memory
resources.

We then tried completely offloading the index construc-
tion to another system as building the index on the serving
system has isolation problems. We leveraged the fact that
MyISAM allows copying of database files from another
node into a live database directory, automatically making
it available for serving. We bulk load to a separate cluster
and then copy the resulting database files over to the live
cluster. This two-step approach requires the extra main-
tenance cost of a separate MySQL cluster with exactly
the same number of nodes as the live one. Additionally,
the inability to load compressed data in the bulk load
phase means data is copied multiple times between nodes:
first, as a flat file to the bulk load cluster; then as an in-
ternal copy during the LOAD statement; and finally, as a
raw database file copy to the actual live database. These
copies make the load more time-consuming.

The previous solution was not ideal, due to its depen-
dency on redundant MySQL servers and the resulting
vulnerability to failure downtime. To address this short-
coming, the next attempted approach used the inherent
fault tolerance and parallelism of Hadoop and built in-
dividual node/partition-level data stores, which could be
transferred to Voldemort for serving. A Hadoop job reads
data from a source in HDFS [18], repartitions it on a
per-node basis, and finally writes the data to individual
storage engines (for example, Berkeley DB) on the local
filesystem of the reducer phase Hadoop nodes. The num-
ber of reducers equals the number of Voldemort nodes,
but could have easily been further split on a per-partition
basis. This data is then read from the local filesystem and
copied onto HDFS, where it can be fetched by Voldemort.
The benefit of this approach is that it leverages Hadoop’s
parallelism to build the indexes offline; however, it suf-
fers from an extra copy from the local filesystem on the
reducer nodes to HDFS, which can become a bottleneck
with terabytes of data.

4.2 Requirements

The lack of off-the-shelf solutions, along with the in-
efficiencies of the previous experiments, motivated the
building of a new storage engine and deployment pipeline
with the following properties.

• Minimal performance impact on live requests: The
incoming get requests to the live store must not be
impacted during the bulk load. There is a trade-
off between modifying the current index on the live
server and a fast bulk load—quicker bulk loads result
in increased I/O, which in turn hurts performance.
As a result, we should completely rebuild the index
offline and also throttle fetches to Voldemort.

• Fault tolerance and scalability: Every step of the
data load pipeline should handle failures and also

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 227

scale horizontally to support future expansion with-
out downtime.

• Rollback capability: The general trend we notice in
our business is that incorrect or incomplete data due
to algorithm changes or source data problems needs
immediate remediation. In such scenarios, running
a long batch load job to repopulate correct data is
not acceptable. To minimize the time in error, our
storage engine must support very fast rollback to a
previous good state.

• Ability to handle large data sets: The easy access
to scalable computing through Hadoop, along with
the growing use of complex algorithms has resulted
in large data sets being used as part of many core
products. Classic examples of this, in the context
of social networks, include storing relationships be-
tween a pair of users, or between users and an entity.
When dealing with millions of users, these pairs can
easily reach billions of tuples, motivating our storage
engine to support terabytes of data and perform well
under a large data to memory ratio.

5 Read-only Extensions
To satisfy the requirements laid out in Section 4.2, we
built a new data deployment pipeline as shown in Fig-
ure 4. We use the existing Voldemort architecture to plug
in a new storage engine with a compact custom format
(Section 5.1). For many of LinkedIn’s user-facing fea-
tures, data is generated by algorithms run on Hadoop. For
example, the “People You May Know” feature runs a com-
plex series of Hadoop jobs on log data. We thus leverage
Hadoop as the computation layer for building the index as
its MapReduce component handles failures while HDFS
replication provides availability. After the algorithm’s
computation completes, a driver program coordinates a
refresh of the data. As shown in steps 1 and 2 in Figure 4,
it triggers a build of the output data in our custom storage
format and stores it on HDFS (Section 5.2). This data is
kept in versioned format (Section 5.3) after being fetched
by Voldemort nodes in parallel (Section 5.4), as demon-
strated in steps 3 and 4. Once fetched and swapped in,
as displayed in steps 5 and 6, the data on the Voldemort
nodes is ready for serving (Section 5.5). This section
describes this procedure in detail. We also discuss real
world production scenarios such as data schema changes
(Section 5.6) and the no-downtime addition of new nodes
(Section 5.7).

5.1 Storage Format

Many storage formats try to build data structures that
keep the data memory resident in the process’s address
space, ignoring the effects of the operating system’s page
cache. The several orders of magnitude latency gap be-
tween page cache and disk means that most of the real

Driver
program

Voldemort cluster

1 - Trigger
Build

2 - Build

3 - Trigger
Fetch

5 - Trigger
Swap

6 - Swap

4. Parallel Fetch

Hadoop

HDFS

Figure 4: Steps involved in the complete data deployment pipeline. The
components involved include Hadoop, HDFS, Voldemort, and a driver
program coordinating the full process. The “build” step works on the
output of the algorithm’s job pipeline.

Upper 8
bytes of
md5 of

key

Offset to
start of
collided
tuples in
data file

2 4

Index file Data file

8 4

Tuple Other
collided
tuples

Sorted
by top
8 bytes

Number
of

collided
tuples

Key
size
(k)

Value
size
(v)

4

Key Value

k v

Figure 5: Read-only data is split into multiple chunk buckets, each of
which is further split into multiple chunk sets. A chunk set contains an
index file and a data file. The diagram shows the data layout in these
files. The numbers at the top are sizes in bytes.

performance benefit by maintaining our own structure is
for elements already in the page cache. In fact, this cus-
tom structure may even start taking memory away from
the page cache. This potential interference motivated the
need for our storage engine to exploit the page cache in-
stead of maintaining our own complex heap-based data
structure. Because our data is immutable, Voldemort
memory maps the entire index into the address space. Ad-
ditionally, because Voldemort is written in Java and runs
on the JVM, delegating the memory management to the
operating system eases garbage collection tuning.

To take advantage of the parallelism in Hadoop during
generation, we split the input data destined for a particular
node into multiple chunk buckets, which in turn are split
into multiple chunk sets. Generation of multiple chunk

228 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Node Id Chunk buckets
0 0 0, 3 0, 6 0, 9 0, 2 1, 5 1, 8 1, 11 1
1 1 0, 4 0, 7 0, 10 0, 0 1, 3 1, 6 1, 9 1
2 2 0, 5 0, 8 0, 11 0, 1 1, 4 1, 7 1, 10 1

Table 1: Every Voldemort node is responsible for chunk buckets based
on the primary partition and replica id. This table shows the node id to
chunk bucket mapping for the cluster topology defined in Figure 3.

sets can then be done independently and in parallel. A
chunk bucket is defined by the primary partition id and
replica id, thereby giving it a unique identifier across all
nodes. For a store with N=2, the replica id would be
either 0 for the primary replica or 1 for the secondary
replica. For example, the hashed key in Figure 3 would
fall into buckets 11 0 (on node 2) and 11 1 (on node 0).
Table 1 summarizes the various chunk buckets for a store
with N=2 and cluster topology as shown in Figure 3. Our
initial design had started with the simpler design of having
one chunk bucket per-node (that is, multiple chunk sets
stored on a node with no knowledge of partition/replica),
but the current smaller granularity is necessary to aid in
rebalancing (Section 5.7).

The number of chunk sets per bucket is decided dur-
ing generation on the Hadoop side. The default value
is one chunk set per bucket, but can be increased by
the store owner for more parallelism. The only lim-
itation is that a very large value for this parameter
would result in multiple small-sized files—a scenario
that HDFS does not handle efficiently. As shown in
Figure 5, a chunk set includes a data file and an index
file. The standard naming convention for all our chunk
sets is partition id replica id chunk set id.{data, index}
where partition id is the id of the primary partition, replica
id is a number between 0 to N−1, and chunk set id is a
number between 0 to the predefined number of sets per
bucket−1.

The index file is a compact structure containing the
sorted upper 8 bytes of the MD5 of the key followed by
the 4 byte offset of the corresponding value in the data
file. This simple sorted structure allows us to leverage
Hadoop’s ability to return sorted data in the reducers. Fur-
ther, preliminary tests also showed that the index files
were generally orders of magnitude smaller than the data
files and hence, could fit into the page cache. The use
of MD5, instead of any other hash function yielding uni-
formly distributed values, was an optimization to reuse
the calculation from the generation of the preference list.

We had initially started by using the full 16 bytes of
the MD5 signature, but saw performance problems as
the number of stores grew. In particular, the indexes for
all stores were not page cache resident, and thrashing
behavior was seen for certain stores due to other high-
throughput stores. To alleviate this problem, we needed
to cut down on the amount of data being memory mapped,

which could be achieved by reducing the available key-
space and accepting collisions in the data file.

Our optimization to decrease key-space can be mapped
to the classic birthday paradox: if we want to retrieve
n random integers from a uniform distribution of range
[1, x], the probability that at least 2 numbers are the same
is:

1− e
−n(n−1)

2x (1)

Mapping this to our common scenario of stores keyed by
member id, n is our 135 million member user base, while
the initial value of x is 2128 − 1 (16 bytes of MD5). The
probability of collision in this scenario is close to 0. A
key-space of 4 bytes (that is, 32 bits) yields an extremely
high collision probability of:

1− e
(−135∗106∗(135∗106−1)

2∗(232−1) ∼ 1 (2)

Instead, a compromise of 8 bytes (that is, 64 bits) pro-
duces:

1− e
(−135∗106∗(135∗106−1)

2∗(264−1) < 0.0004 (3)

The probability of more than one collision is even smaller.
As a result, by decreasing the number of bytes of the
MD5 of the key, we were able to cut down the index size
by 40%, allowing more stores to fit into the page cache.
The key-space size is an optional parameter the store
owner can set depending on the semantics of the data.
Unfortunately, this optimization came at the expense of
having to save the keys in the data file to use for lookups
and handle rare collisions.

The data file is also a very highly-packed structure
where we store the number of collided tuples followed by
a list of collided tuples (key size, value size, key, value).
The order of these multiple lists is the same as the corre-
sponding 8 bytes of MD5 of key in the index file. Here,
we need to store the key bytes instead of the MD5 in the
tuples to distinguish collided tuples during reads.

5.2 Chunk Set Generation

Construction of the chunk sets for all the Voldemort nodes
is a single Hadoop job; the pseudo-code representation
is shown in Figure 6. The Hadoop job takes as its input
the number of chunk sets per bucket, cluster topology,
store definition, and the input data location on HDFS. The
job then takes care of replication and partitioning, finally
saving the data into separate node-based directories.

At a high level, the mapper phase deals with the parti-
tioning of the data depending on the routing strategy; the
partitioner phase redirects the key to the correct reducer
and the reducer phase deals with writing the data to a sin-
gle chunk set. Due to Hadoop’s generic InputFormat
mechanics, any source data can be converted to Volde-
mort’s serialization format. The mapper phase emits the

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 229

Global Input: Num Chunk Sets: Number of chunk sets per bucket
Global Input: Replication Factor: Tuple replicas for the store
Global Input: Cluster: The cluster topology
Function: TopBytes(x,n): Returns top n bytes of x
Function: MD5(x): Returns MD5 of x
Function: PreferenceList(x): Partition list for key x
Function: Size(x): Return size in bytes
Function: Make*(x): Convert x to Voldemort serialization

Input: K/V: Key/value from HDFS files
Data: K’/V’: Transformed key/value into Voldemort serialization
map (K, V)

K’ ← MakeKey(K)
V’ ← MakeValue(V)
Replica Id ← 0
MD5K’ ← MD5(K’)
KOut ← TopBytes(MD5K’, 8)
foreach Partition Id ∈ PreferenceList(MD5K’) do

Node Id ← PartitionToNode(Partition Id)
emit(KOut, [Node Id, Partition Id, Replica Id, K’, V’])
Replica Id ← Replica Id + 1

end
end

Input: K: Top 8 bytes of MD5 of Voldemort key
Input: V: [Node Id, Partition Id, Replica Id, K’, V’]
partition (K, V): Integer

Chunk Set Id ← TopBytes(MD5(V.K’), Size(Integer))
% Num Chunk Sets

Bucket Id ← V.Partition Id * Replication Factor +
V.Replica Id

return Bucket Id * Num Chunk Sets + Chunk Set Id
end

Input: K/V: Same as partitioner
Data: Position: Continuous offset into data file. Initialized to 0
reduce (K, Iterator<V> Values)

WriteIndexFile(K)
WriteIndexFile(Position)
WriteDataFile(Values.length)
Position += Size(Short)
foreach V ∈ Values do

WriteDataFile(Size(V.K’))
WriteDataFile(Size(V.V’))
WriteDataFile(V.K’)
WriteDataFile(V.V’)
Position += Size(V.K’) + Size(V.V’) + Size(2*Integer)

end
end

Figure 6: MapReduce pseudo-code used for chunk set generation.

upper 8 bytes of the MD5 of the Voldemort key N times
as the map phase key with the map phase value equal to a
grouped tuple of node id, partition id, replica id, and the
Voldemort key and value.

The custom partitioner generates the chunk set id
within a chunk bucket from this key. Due to the fair
distribution of MD5, we partition the data destined for
a bucket into sets with a mod of the 4 bytes of MD5 by
the predefined number of chunk sets per bucket. This
generated chunk set id, along with the partition id and
replication factor of the store, is used to route the data
further to the correct reducer.

Finally, every reducer is responsible for a single chunk
set, meaning that by having more chunk sets, build phase

parallelism can be increased. Hadoop automatically sorts
input based on the key in the reduce phase, so data arrives
in the order necessary for the index and data files, which
can be constructed as simple appends on HDFS with no
extra processing required. The data layout on HDFS is a
directory for each Voldemort node, with the nomenclature
of node-id.

5.3 Data Versioning

Before we describe how the generated chunk set files
are copied from HDFS, it is essential to understand their
storage layout on the Voldemort nodes. This layout is
crucial because one of our requirements is the ability to
perform instantaneous rollback of data. That is, every
time a new copy of the complete data set is created, the
system needs to demote the previous copy to an earlier
state.

Every store is represented by a directory, which in turn
contains directories corresponding to “versions” of the
data. A symbolic link per store is used to point to the
current serving version directory. Because the data in
all version directories except the serving one is inactive,
we are not affecting page cache usage and latency. Also,
with disks becoming cheaper and providing very fast se-
quential writes compared to random reads, keeping these
previous copies (the number of which is configurable)
is beneficial for quick rollback. Every version directory
(named version-no) has a configurable number as-
sociated with it, which should monotonically increase
with every new fetch. A commonly used example for the
version number is the timestamp of push.

Swapping in a new data version on a single node is
done as follows: copy into a new version directory, close
the current set of active chunk set files, open the chunk set
files from the new version, memory map all the index files,
and change the symbolic link to the new version. The
entire operation is coordinated using a read-write lock. A
rollback follows the same sequence of steps, except that
files are opened in an older version directory. Both of
these operations are very fast as they are purely metadata
operations: no data reads take place.

5.4 Data Load

Figure 4 shows the complete data loading and swapping
process for an individual store. Multiple stores can run
this entire process concurrently.

The initiator of this complete construction is a stan-
dalone driver program that constructs, fetches, and swaps
the data. This program starts the process by triggering the
Hadoop job described in Section 5.2. The job generates
the data on a per-node basis and stores it in HDFS. While
streaming the data to HDFS, the Hadoop job also calcu-
lates a checksum on a per-node basis by storing a running
MD5 on the individual MD5s of all the chunk set files.

230 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Once the Hadoop job is complete, the driver triggers
a fetch request on all the Voldemort nodes. This re-
quest is received by each node’s “administrative service,”
which then initiates a parallel fetch from HDFS into its
respective new version directory. While the data is being
streamed from HDFS, the checksum is validated with
the checksum from the build step. Voldemort uses a pull
model, rather than a push model, as it allows throttling of
this fetch in case of latency spikes.

After the data is available on each node in their new
version directory, the driver triggers a swap operation (de-
scribed in Section 5.3) on all nodes. On one of LinkedIn’s
largest clusters, described in Table 3, this complete oper-
ation takes around 0.012 ms on average with the worst
swap time of around 0.050 ms. Also, to provide global
atomic semantics, the driver ensures that all the nodes
have successfully swapped their data, rolling back the
successful swaps in case of any other swap failures.

5.5 Retrieval

To find a key, the client generates the preference list and
directs the request to the individual nodes. The following
is a sketch of the algorithm to find data once it reaches a
particular node.

1. Calculate the MD5 of the key.
2. Generate the (a) primary partition id, (b) replica id

(the replica being searched when querying this node),
and (c) chunk set id (the first 4 bytes of MD5 of the
key modulo the number of chunk sets per bucket).

3. Find the corresponding active chunk set files (a data
file and an index file) using the 3 variables from the
previous step.

4. Perform a search using the top 8 bytes of MD5 of
the key as the search key in the sorted index file.
Because there are fixed space requirements for every
key (12 bytes: 8 bytes for key and 4 bytes for offset),
this search does not require internal pointers within
the index file. For example, the data location of the
i-th element in the sorted index is simply a jump to
the offset 12 · i+ 8.

5. If found, read the corresponding data location from
the index file and jump to the location in the data
file. Iterate through any potential collided tuples,
comparing keys, and return the corresponding value
on key match.

The most time-consuming step is to search the index
file. A binary search in an index of 1 million keys can
result in around 20 key comparisons; if the index file is
not cached, then 20 disk seeks are required to read one
value. As a small optimization, while fetching the files
from HDFS, Voldemort fetches the index files after all
data files to aid in keeping the index files in the page
cache.

Rather than binary search, another retrieval strategy for
sorted disk files is interpolation search [17]. This search
strategy uses the key distribution to predict the approxi-
mate location of the key, rather than halving the search
space for every iteration. Interpolation search works well
for uniformly distributed keys, dropping the search com-
plexity from O(log N) to O(log log N). This helps in the
uncached scenario by reducing the number of disk seeks.

We also evaluated other strategies like Fast [12] and Pe-
gasus [8]. As proved in Manolopoulos and Poulakas [13],
most of these are better suited for non-uniform distribu-
tions. As MD5 (and its subsets) provides a fairly represen-
tative uniform distribution, there will be minimal speedup
from these techniques.

5.6 Schema Upgrades

As product features evolve, there are bound to be changes
to the underlying data model. For example, an admin-
istrator may want to add a new dimension to a store’s
value or do a complete non-backwards compatible change
from storing an array to a map. Because our data is static
and the system does a full refresh, Voldemort supports
the ability to change the schema of the key and value
without downtime. For the client to transparently handle
this change, the binary JSON serialization format adds a
special version byte during serialization. The mapping
of version byte to schema is saved in the store defini-
tion metadata. The updated store definition metadata can
be propagated to clients by forcing a rebootstrap. Intro-
duction of a new schema after a push is now discovered
by the client during deserialization as it can look up the
new information after reading the version byte. Similarly,
during rollback, the client toggles to an older version of
schema and is able to read the data with no downtime.

5.7 Rebalancing

Over time as new stores get added to the cluster, the
disk to memory ratio increases beyond initial capacity
planning, resulting in increased read latency. Our data
being static, the naı̈ve approach of starting a new larger
cluster, repushing the data, and switching clients does
not scale as it requires massive coordination of multiple
clients communicating with many stores.

This necessitates the need to transparently and incre-
mentally add capacity to the cluster independent of data
pushes. The rebalancing feature allows us to add new
nodes to a live cluster without downtime. This feature was
initially written for read-write stores but easily fits into the
read-only cycle due to the static nature and fine-grained
replication of the data. Our smallest unit of rebalancing
is a partition. In other words, the addition of a new node
translates to giving the ownership of some partitions to
that node. The rebalancing process is run by a tool that
coordinates the full process.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 231

The following describes the rebalancing strategy during
the addition of a new node. First, the rebalancing tool is
provided with the future cluster topology metadata, and
with this data, it generates a list of all primary partitions
that need to be moved. The tool moves partitions in small
batches so as to checkpoint and not refetch too much data
in case of failure.

For every small batch of primary partitions, the sys-
tem generates an intermediate cluster topology metadata,
which is the current cluster topology plus changes in own-
ership of the batch of partitions moved. Voldemort must
take care of all secondary replica movements that might
be required due to the primary partition movement. A
plan is generated that lists the set of donating and steal-
ing node-id pairs along with the chunk buckets being
moved. With this plan, the rebalancing tool starts asyn-
chronous processes (through the administrative service)
on the stealer nodes to copy all chunk sets corresponding
to the moving chunk buckets from their respective donor
nodes. Rebalancing works only on the active version of
the data, ignoring the previous versions. During this copy-
ing, the nodes go into a “rebalancing state” and are not
allowed to swap any new data. Here it is important to
note that the granularity of the bucket selected makes this
process as simple as copying files. If buckets were defined
on a per-node basis (that is, have multiple chunk sets on a
per-node basis), the system would have had to iterate over
all the keys on the node and find the keys belonging to
the moving partition, finally running an extra merge step
to coalesce with the live index on the stealer node’s end.

Once the fetches are complete, the rebalancing tool
updates the intermediate cluster topology on all the nodes
while also running the swap operation, described in Sec-
tion 5.3, for all the stores on the stealer and donor nodes.
The entire process repeats for every batch of primary
partitions.

The intermediate topology change also needs to be
propagated to all the clients. Voldemort propagates this
information as a lazy process where the clients still use
the old metadata. If they contact a node with a request for
a key in a partition that the node is no longer responsible
for, a special exception is propagated, which results in a
rebootstrap step along with a retry of the previous request.

The rebalancing tool has also been designed to handle
failure scenarios elegantly. Failure during a fetch is not
a problem as no new data has been swapped. However,
failure during the topology change and swap phase on
some nodes requires (a) changing the cluster topology
to the previous good cluster topology on all nodes and
(b) rolling back the data on nodes that had successfully
swapped.

Table 2a shows the new preference list generation when
a new node is introduced to a cluster with the original
partition mapping as in Figure 3. For simplicity, we show

Partition
hashed to

Preference list

0
1
2
3
4
5

6
7
8

9

10

11

N0 N1 N2
0 1

1 2

23
3 4

4 5

56
6 7

7 8

89

9 10

10 11

110

Partition
hashed to

Preference list

0
1
2
3
4
5

6
7
8

9

10

11

N0 N1 N2
0 1

1 2

2 3
34

4 5

56

6 7

7 8

89

9 10

10 11

110

N3

(a)
Stealer Donor Chunk buckets
Node Id Node Id to steal

3 0 3 0, 2 1
(b)

Table 2: (a) Change of preference list generation after addition of
4th node (node id 3) to the cluster defined by ring in Figure 3. The
highlighted cells show how moving partition 3 to this new node results
in secondary movement of keys hashing to partition 2. (b) Rebalancing
plan generated for addition of a new node.

an imbalanced move of only one partition, partition 3, to
the new node 3. Table 2b shows the plan that would be
generated during rebalancing. The movement of partition
3 results in secondary movement for partition 2 due to
node mapping changes in its preference list.

6 Evaluation
Our evaluation answers the following questions:
• Can the system rapidly deploy new data sets?
• What is the read latency, and does it scale with data

size and nodes?
• What is the impact on latency during a new data

deployment?
We use a simulated data set where the key is a long

integer between 0 and a varying number and the value is
a fixed size 1024 byte random string. All tests were run
on Linux 2.6.18 machines with Dual CPU (each having
64-bit 8 cores running at 2.67 GHz), 24 GB of RAM, 6
disk RAID-10 array and Gigabit Ethernet. We used Com-
munity Edition version 5.0.27 and the MyISAM storage
engine for all the MySQL tests.

As the read-only storage engine relies on the operating
system’s page cache, we allocated only 4 GB JVM heap.
Similarly, as MyISAM uses a special key cache for index
blocks and the page cache for data blocks, we chose the
same 4 GB for key buffer size.

6.1 Build Times

One of the important goals of Voldemort is rapid data
deployment, which means the build and push phase must

232 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

size (GB)

tim
e

(m
in

s)

0

50

100

150

200

250

300

350

������� � �
�

�
�

0 250 500 750 1000 1250 1500

� Voldemort MySQL

Figure 7: The time to complete the build for the random data set.
We vary the input data size by increasing the number of tuples. We
terminated the MySQL test early due to prolonged data load time.

be fast. Push times are entirely dependent on available
network bandwidth, so we focus on build times.

We define the build time in the case of Voldemort as
the time starting from the first mapper to the end of all
reducers. The number of mappers and reducers was fixed
across runs to steady the amount of parallelism and gen-
erate fixed number of chunk sets per bucket.

In the case of MySQL, the build time is the comple-
tion time of the LOAD DATA INFILE command on an
empty table. This metric ignores the time it took to con-
vert the data to TSV and copy it to the MySQL node. We
applied several optimizations to make MySQL faster, in-
cluding increasing the MySQL bulk insert buffer size and
the MyISAM specific sort buffer size to 256 MB each,
and also delaying the re-creation of the index to a lat-
ter time by running the ALTER TABLE...DISABLE
KEYS statement before the load.

Figure 7 shows the build time as we increased the size
of the input data set. As is clearly evident, MySQL
exhibits extremely slow build times because it buffers
changes to the index before flushing it to the disk. Also,
due to the incremental changes required to the index on
disk, MySQL does roughly 1.4 times more I/O than our
implementation. This factor would increase if we had
bulk loaded into a non-empty table.

6.2 Read Latency

Besides rapid data deployments, read latency must be
acceptable and the system must scale with the number of
nodes. In these experiments, we used 10 million requests
with simulated keys following a uniform distribution be-
tween 0 to number of tuples in the data set.

We first measure how fast the index loads into the oper-
ating system’s page cache. We ran tests on a 100 GB data
set on a single node and reported the median latency after
swap for a continuous stream of uniformly-distributed

time since swap (mins)

m
ed

ia
n

la
te

nc
y

(m
s)

0.5

1

2

4

8

16

32

0 30 60 90 120 150 180

Interpolation Binary MySQL

Figure 8: Single node median read latency taken at 1 minute intervals
since the swap. The distribution of requests is uniform. The slope of the
graph shows the rate of cache warming.

throughput (qps)

la
te

nc
y

(m
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

median

� �

�
� �

�

�

100 200 300 400 500 600 700

0

50

100

150

200

250

99th percentile

�
� �

� �
�

�

100 200 300 400 500 600 700

� MySQL Voldemort

Figure 9: Single node read latency after warming up the cache. This
figure shows the change in latency, for uniformly-distributed requests,
as we vary the client throughput.

requests. For MySQL, we created a view on an exist-
ing table, bulk loaded into a new table, and swapped the
view to the new table without stopping the requests. For
our read-only storage engine, we used the complete data
load process (described in Section 5.4), to swap new data.
The single node was configured to have just one partition
and one chunk set per bucket. We also compared the bi-
nary and interpolation search algorithms for the read-only
storage engine.

Figure 8 shows the median latency, at 1 minute inter-
vals, starting from the swap. MySQL starts with a very
high median latency due to the uncached index and falls
slowly to the stable 1.4 ms mark. Our storage engine
starts with low latency because some indexes are already
page cache resident, with the fetch phase from HDFS
retrieving all index files after the data files. Binary search
initially starts with a high median latency compared to
interpolation, but the slope of the line is steeper, because

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 233

output size (TB)

la
te

nc
y

(m
s)

0

10

20

30

40

median

�

�

�

�

�

0 25 50 75 100

0

50

100

150

99th percentile

�

�

�

� �

0 25 50 75 100

� Uniform Zipfian

Figure 10: Client-side median latency with varying data size. This test
was run on a 32 node cluster with 2 different request distributions.

binary search does an average of 8 lookups, thereby touch-
ing more parts of the index; interpolation search performs
an average of only 1 lookup. While this results in an
initial low read latency, it means that much of the index
is uncached in the long run. Our production systems are
currently running binary search due to this faster cache
warming process. All numbers presented from this point
for the read-only storage engine use binary search.

Figure 9 shows a comparison of Voldemort’s perfor-
mance compared to MySQL on the same 100 GB data set
for varying throughput. The numbers reported are steady-
state latencies; that is, latency reported after the cache
is warmed. For comparison, the steady state latency for
the read-only storage engine in Figure 9 is around 0.3 ms
and is achieved around 90 minutes after the swap. We
observed that the time to achieve this steady state, starting
from the swap time, is linear in the size of the data set. We
increased the client request throughput until the achieved
throughput stopped increasing. These results indicate that
our implementation scales to roughly twice the number
of queries per second while maintaining the same median
latency as MySQL.

To test whether our read-only extensions scale with the
number of nodes, we evaluated read latency for the same
random data set but spread over 32 machines and a store
with N=1. The read tests were run for both uniform as
well as a Zipfian distribution using YCSB [5], an open
source framework for benchmarking cloud data serving
systems, with the number of clients fixed at 100 threads.
The Zipfian distribution ensures that some keys are more
frequently accessed compared to others, simulating the
general site visiting patterns of most websites [1]. Fig-
ure 10 shows the overall client-side median latency while
varying the data set sizes. Querying for frequently ac-
cessed keys naturally aids caching certain sections of the
indexes, thereby exhibiting an overall lower latency for
Zipfian compared to the uniform distribution. We do not

Number of nodes 25
Total (active + backup) data size per node 940 GB
RAM per node 48 GB
Current active data to memory ratio ∼ 10:1
Total number of stores 123
Replication factor for all stores 2
Largest store size (active) 4.15 TB
Smallest store size (active) 700 KB
Max number of store swaps per day 76

Table 3: Statistics for one of LinkedIn’s read-only clusters.

report numbers for a store with N>1 because latency is a
function of data size and is independent of the replication
factor. The results indicate that the system scales with the
data set size and the number of nodes. As the data set size
increases, we are decreasing the memory to data ratio,
affecting read performance. Reducing latency in this case
would require adding memory or additional nodes. Users
can tune this ratio to achieve the desired latency versus
the necessary hardware footprint.

6.3 Production Workloads

Finally, we show the production performance data for two
user-facing features: “People You May Know” (Figure 1a)
and collaborative filtering (Figure 1b):
• People You May Know (PYMK) data set: Users are

presented with a suggested set of other users they
might know and would like to connect with. This
information is kept as a store where the key is the
user’s id and the value is a list of integer recom-
mended user ids and a float score.

• Collaborative filtering (CF) data set: This feature
shows other profiles viewed in the same session as
the visited member’s profile. The value is a list of
two integer ids, a string indicating the entity type,
and a float score.

Table 3 shows some statistics for one of LinkedIn’s
largest clusters. Figure 11 shows the PYMK and CF
median client-side read latencies as a function of time
since a swap on this cluster (both stores use N=2 and
R=1) for one high traffic day. CF has a higher latency
than that of PYMK primarily because of the larger value
size. We see sub-12 ms latency immediately after a swap
with relatively quick stabilization to sub-5 ms latency.
This low latency post-swap allows us to push updates to
these features multiple times per day.

7 Conclusion and Future Work
In this paper, we present a low-latency bulk loading sys-
tem capable of serving multiple terabytes of data. By
moving the index construction offline to a batch system
like Hadoop, our serving layer’s performance becomes

234 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

time (mins)

PY
M

K
m

ed
ia

n
la

te
nc

y
(m

s)

0

2

4

6

8

10

12

14

��������������������

�
���

���
�

��

�
�

��

�

��
�
��
����������

�����
������

�
�
���

��
���

���
��

swap

0 50 100 150

(a)

time (mins)

C
F

m
ed

ia
n

la
te

nc
y

(m
s)

0

5

10

15

20

25

��������������������

�

�

�
�

���

�
�
�
��
�
���
�
���������������������������������������

�
�����

�
��������������

���������
�������

�������
���������

�����������������������������������
�
�
�
�����������

���

swap

0 50 100 150 200 250

(b)

Figure 11: Median client-side read latency for one of LinkedIn’s largest
production clusters, as described in Table 3, for the (a) PYMK and (b)
CF data sets. The dashed line shows the time when the new data set was
swapped in.

more stable and reliable. LinkedIn has been successfully
running read-only Voldemort clusters for the past 2 years.
It has become an integral part of the product ecosystem
with various engineers also using it frequently for quick
prototyping of features. The complete system is open-
source and freely available.

We plan to add other interesting features to the read-
only storage pipeline. Over time we have found that
during fetches we exhaust the full bandwidth between
data centers running Hadoop (in particular HDFS) and
Voldemort. We therefore need improvements to the push
process to reduce network usage with minimal impact on
build time.

To start with, we are exploring incremental loads. This
can be done by generating data file patches on Hadoop by
comparing against the previous data snapshot in HDFS
and then applying these on the Voldemort side during the
fetch phase. We can send the complete index files because
(a) they are relatively small files and (b) we can exploit
the operating system caching of these files during the
fetch phase. This capability has seen few use cases until

recently as most of our stores back recommendation fea-
tures where the delta between data pushes is prohibitively
large. Another important feature to save inter-data cen-
ter bandwidth is the ability to only fetch one replica of
the data from HDFS and then propagate it among the
Voldemort nodes.

Finally, we are investigating additional index structures
that could improve lookup speed and that can easily be
built in Hadoop. In particular, cache-oblivious trees, such
as van Emde Boas trees [23], require no page size knowl-
edge for optimal cache performance.

Acknowledgements
Bhupesh Bansal and Elias Torres worked on an early
version of this project. Thanks to Allen Wittenauer, Anil
Alluri, and Bob Liu for their Hadoop support. Several
people provided helpful feedback on the paper, including
Jun Rao, Bhaskar Ghosh, Igor Perisic, Andrea Dutra,
Deepa Elizabeth Jacob, the anonymous FAST reviewers,
and our shepherd Kimberly Keeton.

References
[1] Lada Adamic and Bernardo Huberman. Zipf’s law

and the Internet. Glottometrics, 3:143–150, 2002.
[2] Antonio Barbuzzi, Pietro Michiardi, Ernst Biersack,

and Gennaro Boggia. Parallel Bulk Insertion for
Large-scale Analytics Applications. In Proceedings
of the 4th International Workshop on Large Scale
Distributed Systems and Middleware (LADIS ’10),
pages 27–31, New York, NY, USA, 2010.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat,
Wilson Hsieh, Deborah Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert Gru-
ber. Bigtable: A Distributed Storage System for
Structured Data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), Berkeley, CA, USA, 2006.

[4] Brian Cooper, Raghu Ramakrishnan, Utkarsh Sri-
vastava, Adam Silberstein, Philip Bohannon, Hans-
Arno Jacobsen, Nick Puz, Daniel Weaver, and Ra-
mana Yerneni. PNUTS: Yahoo!’s Hosted Data Serv-
ing Platform. Proceedings of the VLDB Endowment,
1:1277–1288, August 2008.

[5] Brian Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking
Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing
(SoCC ’10), pages 143–154, New York, NY, USA,
2010.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters. In Pro-
ceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation – Vol-
ume 6 (OSDI ’04), Berkeley, CA, USA, 2004.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 235

[7] Giuseppe DeCandia, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s
Highly Available Key-Value Store. SIGOPS Oper-
ating Systems Review, 41:205–220, October 2007.

[8] M. Dowell and P. Jarratt. The Pegasus method for
computing the root of an equation. BIT Numerical
Mathematics, 12:503–508, 1972.

[9] Lars George. HBase: The Definitive Guide. O’Reilly
Media, 2011.

[10] Ioannis Konstantinou, Evangelos Angelou, Dim-
itrios Tsoumakos, and Nectarios Koziris. Dis-
tributed Indexing of Web Scale Datasets for the
Cloud. In Proceedings of the 2010 Workshop on
Massive Data Analytics on the Cloud (MDAC ’10),
pages 1:1–1:6, New York, NY, USA, 2010.

[11] Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of
the ACM, 21:558–565, July 1978.

[12] Gilbert N. Lewis, Nancy J. Boynton, and F. Warren
Burton. Expected Complexity of Fast Search with
Uniformly Distributed Data. Inf. Process. Lett., 13
(1):4–7, 1981.

[13] Yannis Manolopoulos and G Poulakas. An adapta-
tion of a rootfinding method to searching ordered
disk files revisited. BIT Numerical Mathematics, 29:
364–368, June 1989.

[14] Peter Mika. Distributed Indexing for Semantic
Search. In Proceedings of the 3rd International Se-
mantic Search Workshop (SEMSEARCH ’10), pages
3:1–3:4, New York, NY, USA, 2010.

[15] Michael Olson, Keith Bostic, and Margo Seltzer.
Berkeley DB. In Proceedings of the Annual Con-

ference on USENIX Annual Technical Conference
(ATEC ’99), Berkeley, CA, USA, 1999.

[16] Sasha Pachev. Understanding MySQL Internals.
O’Reilly Media, 2007.

[17] Yehoshua Perl, Alon Itai, and Haim Avni. Interpola-
tion search—a log log N search. Communications
of the ACM, 21:550–553, 1978.

[18] Konstantin Shvachko, Hairong Kuang, Sanjay Ra-
dia, and Robert Chansler. The Hadoop Distributed
File System. Mass Storage Systems and Technolo-
gies, IEEE, 0:1–10, 2010.

[19] Adam Silberstein, Brian Cooper, Utkarsh Srivastava,
Erik Vee, Ramana Yerneni, and Raghu Ramakrish-
nan. Efficient Bulk Insertion into a Distributed Or-
dered Table. In Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of
Data (SIGMOD ’08), pages 765–778, New York,
NY, USA, 2008.

[20] Adam Silberstein, Russell Sears, Wenchao Zhou,
and Brian Cooper. A batch of PNUTS: experiences
connecting cloud batch and serving systems. In Pro-
ceedings of the 2011 International Conference on
Management of Data (SIGMOD ’11), pages 1101–
1112, New York, NY, USA, 2011.

[21] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Ap-
plications. SIGCOMM Computer Communication
Review, 31:149–160, August 2001.

[22] Michael Stonebraker. The Case for Shared Nothing.
Database Engineering, 9:4–9, 1986.

[23] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue.
Theory of Computing Systems, 10:99–127, 1976.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 237

BlueSky: A Cloud-Backed File System for the Enterprise

Michael Vrable∗, Stefan Savage, and Geoffrey M. Voelker

Department of Computer Science and Engineering
University of California, San Diego

Abstract

We present BlueSky, a network file system backed by
cloud storage. BlueSky stores data persistently in a cloud
storage provider such as Amazon S3 or Windows Azure,
allowing users to take advantage of the reliability and
large storage capacity of cloud providers and avoid the
need for dedicated server hardware. Clients access the
storage through a proxy running on-site, which caches
data to provide lower-latency responses and additional
opportunities for optimization. We describe some of the
optimizations which are necessary to achieve good per-
formance and low cost, including a log-structured design
and a secure in-cloud log cleaner. BlueSky supports mul-
tiple protocols—both NFS and CIFS—and is portable to
different providers.

1 Introduction

The promise of third-party “cloud computing” services is
a trifecta of reduced cost, dynamic scalability, and high
availability. While there remains debate about the precise
nature and limit of these properties, it is difficult to deny
that cloud services offer real utility—evident in the large
numbers of production systems now being cloud-hosted
via services such as Amazon’s AWS and Microsoft’s
Azure. However, thus far, services hosted in the cloud
have largely fallen into two categories: consumer-facing
Web applications (e.g., Netflix customer Web site and
streaming control) and large-scale data crunching (e.g.,
Netflix media encoding pipeline).

Little of this activity, however, has driven widespread
outsourcing of enterprise computing and storage applica-
tions. The reasons for this are many and varied, but they
largely reflect the substantial inertia of existing client-
server deployments. Enterprises have large capital and
operational investments in client software and depend on
the familiar performance, availability and security char-
acteristics of traditional server platforms. In essence,
cloud computing is not currently a transparent “drop in”
replacement for existing services.

∗Current affiliation: Google. The work in this paper was performed
while a student at UC San Diego.

There are also substantive technical challenges to
overcome, as the design points for traditional client-
server applications (e.g., file systems, databases, etc.)
frequently do not mesh well with the services offered
by cloud providers. In particular, many such applica-
tions are designed to be bandwidth-hungry and latency-
sensitive (a reasonable design in a LAN environment),
while the remote nature of cloud service naturally in-
creases latency and the cost of bandwidth. Moreover,
while cloud services typically export simple interfaces
to abstract resources (e.g., “put file” for Amazon’s S3),
traditional server protocols can encapsulate significantly
more functionality. Thus, until such applications are re-
designed, much of the latent potential for outsourcing
computing and storage services remains untapped. In-
deed, at $115B/year, small and medium business (SMB)
expenditures for servers and storage represent an enor-
mous market should these issues be resolved [9]. Even
if the eventual evolution is towards hosting all applica-
tions in the cloud, it will be many years before such a
migration is complete. In the meantime, organizations
will need to support a mix of local applications and use
of the cloud.

In this paper, we explore an approach for bridging
these domains for one particular application: network file
service. In particular, we are concerned with the extent
to which traditional network file service can be replaced
with commodity cloud services. However, our design
is purposely constrained by the tremendous investment
(both in capital and training) in established file system
client software; we take as a given that end-system soft-
ware will be unchanged. Consequently, we focus on a
proxy-based solution, one in which a dedicated proxy
server provides the illusion of a single traditional file
server in an enterprise setting, translating requests into
appropriate cloud storage API calls over the Internet.

We explore this approach through a prototype sys-
tem, called BlueSky, that supports both NFS and CIFS
network file system protocols and includes drivers for
both the Amazon EC2/S3 environment and Microsoft’s
Azure. The engineering of such a system faces a number
of design challenges, the most obvious of which revolve
around performance (i.e., caching, hiding latency, and

238 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

maximizing the use of Internet bandwidth), but less intu-
itively also interact strongly with cost. In particular, the
interaction between the storage interfaces and fee sched-
ule provided by current cloud service providers conspire
to favor large segment-based layout designs (as well
as cloud-based file system cleaners). We demonstrate
that ignoring these issues can dramatically inflate costs
(as much as 30× in our benchmarks) without signifi-
cantly improving performance. Finally, across a series
of benchmarks we demonstrate that, when using such a
design, commodity cloud-based storage services can pro-
vide performance competitive with local file servers for
the capacity and working sets demanded by enterprise
workloads, while still accruing the scalability and cost
benefits offered by third-party cloud services.

2 Related Work

Network storage systems have engendered a vast litera-
ture, much of it focused on the design and performance
of traditional client server systems such as NFS, AFS,
CIFS, and WAFL [6, 7, 8, 25]. Recently, a range of
efforts has considered other structures, including those
based on peer-to-peer storage [16] among distributed sets
of untrusted servers [12, 13] which have indirectly in-
formed subsequent cloud-based designs.

Cloud storage is a newer topic, driven by the availabil-
ity of commodity services from Amazon’s S3 and other
providers. The elastic nature of cloud storage is reminis-
cent of the motivation for the Plan 9 write-once file sys-
tems [19, 20], although cloud communication overheads
and monetary costs argue against a block interface and
no storage reclamation. Perhaps the closest academic
work to our own is SafeStore [11], which stripes erasure-
coded data objects across multiple storage providers, ul-
timately exploring access via an NFS interface. How-
ever, SafeStore is focused clearly on availability, rather
than performance or cost, and thus its design decisions
are quite different. A similar, albeit more complex sys-
tem, is DepSky [2], which also focuses strongly on avail-
ability, proposing a “cloud of clouds” model to replicate
across providers.

At a more abstract level, Chen and Sion create an
economic framework for evaluating cloud storage costs
and conclude that the computational costs of the cryp-
tographic operations needed to ensure privacy can over-
whelm other economic benefits [3]. However, this work
predates Intel’s AES-NI architecture extension which
significantly accelerates data encryption operations.

There have also been a range of non-academic at-
tempts to provide traditional file system interfaces for the
key-value storage systems offered by services like Ama-
zon’s S3. Most of these install new per-client file system
drivers. Exemplars include s3fs [22], which tries to map

the file system directly on to S3’s storage model (which
both changes file system semantics, but also can dramat-
ically increase costs) and ElasticDrive [5], which exports
a block-level interface (potentially discarding optimiza-
tions that use file-level knowledge such as prefetching).

However, the systems closest to our own are “cloud
storage gateways”, a new class of storage server that has
emerged in the last few years (contemporaneous with our
effort). These systems, exemplified by companies such
as Nasuni, Cirtas, TwinStrata, StorSimple and Panzura,
provide caching network file system proxies (or “gate-
ways”) that are, at least on the surface, very similar to
our design. Pricing schedules for these systems gener-
ally reflect a 2× premium over raw cloud storage costs.
While few details of these systems are public, in general
they validate the design point we have chosen.

Of commercial cloud storage gateways, Nasuni [17]
is perhaps most similar to BlueSky. Nasuni provides a
“virtual NAS appliance” (or “filer”), software packaged
as a virtual machine which the customer runs on their
own hardware—this is very much like the BlueSky proxy
software that we build. The Nasuni filer acts as a cache
and writes data durably to the cloud. Because Nasuni
does not publish implementation details it is not possi-
ble to know precisely how similar Nasuni is to BlueSky,
though there are some external differences. In terms of
cost, Nasuni charges a price based simply on the quantity
of disk space consumed (around $0.30/GB/month, de-
pending on the cloud provider)—and not at all a function
of data transferred or operations performed. Presumably,
Nasuni optimizes their system to reduce the network and
per-operation overheads—otherwise those would eat into
their profits—but the details of how they do so are un-
clear, other than by employing caching.

Cirtas [4] builds a cloud gateway as well but sells it
in appliance form: Cirtas’s Bluejet is a rack-mounted
computer which integrates software to cache file system
data with storage hardware in a single package. Cirtas
thus has a higher up-front cost than Nasuni’s product,
but is easier to deploy. Panzura [18] provides yet another
CIFS/NFS gateway to cloud storage. Unlike BlueSky
and the others, Panzura allows multiple customer sites
to each run a cloud gateway. Each of these gateways ac-
cesses the same underlying file system, so Panzura is par-
ticularly appropriate for teams sharing data over a wide
area. But again, implementation details are not provided.

TwinStrata [29] and StorSimple [28] implement gate-
ways that present a block-level storage interface, like
ElasticDrive, and thus lose many potential file system-
level optimizations as well.

In some respects BlueSky acts like a local storage
server that backs up data to the cloud—a local NFS
server combined with Mozy [15], Cumulus [30], or sim-
ilar software could provide similar functionality. How-

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 239

ever, such backup tools may not support a high backup
frequency (ensuring data reaches the cloud quickly) and
efficient random access to files in the cloud. Further, they
treat the local data (rather than the cloud copy) as au-
thoritative, preventing the local server from caching just
a subset of the files.

3 Architecture
BlueSky provides service to clients in an enterprise us-
ing a transparent proxy-based architecture that stores
data persistently on cloud storage providers (Figure 1).
The enterprise setting we specifically consider consists
of a single proxy cache colocated with enterprise clients,
with a relatively high-latency yet high-bandwidth link to
cloud storage, with typical office and engineering request
workloads to files totaling tens of terabytes. This sec-
tion discusses the role of the proxy and cloud provider
components, as well as the security model supported by
BlueSky. Sections 4 and 5 then describe the layout and
operation of the BlueSky file system and the BlueSky
proxy, respectively.

Cloud storage acts much like another layer in the stor-
age hierarchy. However, it presents new design consid-
erations that, combined, make it distinct from other lay-
ers and strongly influence its use as a file service. The
high latency to the cloud necessitates aggressive caching
close to the enterprise. On the other hand, cloud storage
has elastic capacity and provides operation service times
independent of spatial locality, thus greatly easing free
space management and data layout. Cloud storage inter-
faces often only support writing complete objects in an
operation, preventing the efficient update of just a portion
of a stored object. This constraint motivates an append
rather than an overwrite model for storing data.

Monetary cost also becomes an explicit metric of
optimization: cloud storage capacity might be elastic,
but still needs to be parsimoniously managed to min-
imize storage costs over time [30]. With an append
model of storage, garbage collection becomes a neces-
sity. Providers also charge a small cost for each opera-
tion. Although slight, costs are sufficiently high to moti-
vate aggregating small objects (metadata and small files)
into larger units when writing data. Finally, outsourcing
data storage makes security a primary consideration.

3.1 Local Proxy
The central component of BlueSky is a proxy situated
between clients and cloud providers. The proxy commu-
nicates with clients in an enterprise using a standard net-
work file system protocol, and communicates with cloud
providers using a cloud storage protocol. Our prototype
supports both the NFS (version 3) and CIFS protocols for
clients, and the RESTful protocols for the Amazon S3
and Windows Azure cloud services. Ideally, the proxy

Segment
Writes

Range
Reads

Disk Journal
Writes

Disk Cache
Reads

Client
Requests

Client
Responses

NFS

CIFS

S3

WASE
n

c
ry

p
ti

o
n

Disk

Network

Memory

Front
Ends

Back
Ends

Resource
Managers

Figure 1: BlueSky architecture.

runs in the same enterprise network as the clients to min-
imize latency to them. The proxy caches data locally and
manages sharing of data among clients without requiring
an expensive round-trip to the cloud.

Clients do not require modification since they continue
to use standard file-sharing protocols. They mount Blue-
Sky file systems exported by the proxy just as if they
were exported from an NFS or CIFS server. Further, the
same BlueSky file system can be mounted by any type of
client with shared semantics equivalent to Samba.

As described in more detail later, BlueSky lowers cost
and improves performance by adopting a log-structured
data layout for the file system stored on the cloud
provider. A cleaner reclaims storage space by garbage-
collecting old log segments which do not contain any live
objects, and processing almost-empty segments by copy-
ing live data out of old segments into new segments.

As a write-back cache, the BlueSky proxy can fully
satisfy client write requests with local network file sys-
tem performance by writing to its local disk—as long as
its cache capacity can absorb periods of write bursts as
constrained by the bandwidth the proxy has to the cloud
provider (Section 6.5). For read requests, the proxy can
provide local performance to the extent that the proxy
can cache the working set of the client read workload
(Section 6.4).

3.2 Cloud Provider

So that BlueSky can potentially use any cloud provider
for persistent storage service, it makes minimal assump-
tions of the provider; in our experiments, we use both
Amazon S3 and the Windows Azure blob service. Blue-
Sky requires only a basic interface supporting get, put,
list, and delete operations. If the provider also sup-
ports a hosting service, BlueSky can co-locate the file
system cleaner at the provider to reduce cost and improve
cleaning performance.

3.3 Security

Security becomes a key concern with outsourcing critical
functionality such as data storage. In designing BlueSky,
our goal is to provide high assurances of data confiden-

240 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

tiality and integrity. The proxy encrypts all client data
before sending it over the network, so the provider can-
not read private data. Encryption is at the level of objects
(inodes, file blocks, etc.) and not entire log segments.
Data stored at the provider also includes integrity checks
to detect any tampering by the storage provider.

However, some trust in the cloud provider is unavoid-
able, particularly for data availability. The provider can
always delete or corrupt stored data, rendering it unavail-
able. These actions could be intentional—e.g., if the
provider is malicious—or accidental, for instance due
to insufficient redundancy in the face of correlated hard-
ware failures from disasters. Ultimately, the best guard
against such problems is through auditing and the use of
multiple independent providers [2, 11]. BlueSky could
readily incorporate such functionality, but doing so re-
mains outside the scope of our current work.

A buggy or malicious storage provider could also
serve stale data. Instead of returning the most recent data,
it could return an old copy of a data object that nonethe-
less has a valid signature (because it was written by the
client at an earlier time). By authenticating pointers be-
tween objects starting at the root, however, BlueSky pre-
vents a provider from selectively rolling back file data.
A provider can only roll back the entire file system to an
earlier state, which customers will likely detect.

BlueSky can also take advantage of computation in
the cloud for running the file system cleaner. As with
storage, we do not want to completely trust the compu-
tational service, yet doing so provides a tension in the
design. To maintain confidentiality, data encryption keys
should not be available on cloud compute nodes. Yet,
if cloud compute nodes are used for file system mainte-
nance tasks, the compute nodes must be able to read and
manipulate file system data structures. For BlueSky, we
make the tradeoff of encrypting file data while leaving
the metadata necessary for cleaning the file system un-
encrypted. As a result, storage providers can understand
the layout of the file system, but the data remains confi-
dential and the proxy can still validate its integrity.

In summary, BlueSky provides strong confidentiality
and slightly weaker integrity guarantees (some data roll-
back attacks might be possible but are largely prevented),
but must rely on the provider for availability.

4 BlueSky File System

This section describes the BlueSky file system layout.
We present the object data structures maintained in the
file system and their organization in a log-structured for-
mat. We also describe how BlueSky cleans the logs com-
prising the file system, and how the design conveniently
lends itself to providing versioned backups of the data
stored in the file system.

4.1 Object Types
BlueSky uses four types of objects for representing data
and metadata in its log-structured file system [23] for-
mat: data blocks, inodes, inode maps, and checkpoints.
These objects are aggregated into log segments for stor-
age. Figure 2 illustrates their relationship in the layout of
the file system. On top of this physical layout BlueSky
provides standard POSIX file system semantics, includ-
ing atomic renames and hard links.

Data blocks store file data. Files are broken apart into
fixed-size blocks (except the last block may be short).
BlueSky uses 32 KB blocks instead of typical disk file
system sizes like 4 KB to reduce overhead: block point-
ers as well as extra header information impose a higher
per-block overhead in BlueSky than in an on-disk file
system. In the evaluations in Section 6, we show the
cost and performance tradeoffs of this decision. Noth-
ing fundamental, however, prevents BlueSky from using
variable-size blocks optimized for the access patterns of
each file, but we have not implemented this approach.

Inodes for all file types include basic metadata: own-
ership and access control, timestamps, etc. For regu-
lar files, inodes include a list of pointers to data blocks
with the file contents. Directory entries are stored inline
within the directory inode to reduce the overhead of path
traversals. BlueSky does not use indirect blocks for lo-
cating file data—inodes directly contain pointers to all
data blocks (easy to do since inodes are not fixed-size).

Inode maps list the locations in the log of the most
recent version of each inode. Since inodes are not stored
at fixed locations, inode maps provide the necessary level
of indirection for locating inodes.

A checkpoint object determines the root of a file sys-
tem snapshot. A checkpoint contains pointers to the loca-
tions of the current inode map objects. On initialization
the proxy locates the most recent checkpoint by scan-
ning backwards in the log, since the checkpoint is always
one of the last objects written. Checkpoints are useful
for maintaining file system integrity in the face of proxy
failures, for decoupling cleaning and file service, and for
providing versioned backup.

4.2 Cloud Log
For each file system, BlueSky maintains a separate log
for each writer to the file system. Typically there are
two: the proxy managing the file system on behalf of
clients and a cleaner that garbage collects overwritten
data. Each writer stores its log segments to a separate
directory (different key prefix), so writers can make up-
dates to the file system independently.

Each log consists of a number of log segments, and
each log segment aggregates multiple objects together
into an approximately fixed-size container for storage
and transfer. In the current implementation segments are

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 241

Checkpoint
Last segments seen:
 cleaner: 3
 proxy: 12
Inode maps:
 [0, 4095]
 [4096, 8191]

Inode map [0, 4095]
2
3
5
6
11
200

Inode 6
Type: regular file
Owner: root
Size: 48 KB
Data blocks:
 0
 1

Data Block
Inode number: 6
Length: 32 KB

Data Block
Inode number: 6
Length: 16 KB

Unencrypted Objects Encrypted Objects

Cloud Log Directories:

Proxy:

Cleaner:

Segment #11 #12

Segment #2 #3 #4

Figure 2: BlueSky filesystem layout. The top portion shows the logical organization. Object pointers are shown with
solid arrows. Shaded objects are encrypted (but pointers are always unencrypted). The bottom of the figure illustrates
how these log items are packed into segments stored in the cloud.

up to about 4 MB, large enough to avoid the overhead
of dealing with many small objects. Though the storage
interface requires that each log segment be written in a
single operation, typically cloud providers allow partial
reads of objects. As a result, BlueSky can read individual
objects regardless of segment size. Section 6.6 quantifies
the performance benefits of grouping data into segments
and of selective reads, and Section 6.7 quantifies their
cost benefits.

A monotonically-increasing sequence number identi-
fies each log segment within a directory, and a byte offset
identifies a specific object in the segment. Together, the
triple (directory, sequence number, offset) describes the
physical location of each object. Object pointers also in-
clude the size of the object; while not required this hint
allows BlueSky to quickly issue a read request for the
exact bytes needed to fetch the object.

In support of BlueSky’s security goals (Section 3.3),
file system objects are individually encrypted (with AES)
and protected with a keyed message authentication code
(HMAC-SHA-256) by the proxy before uploading to the
cloud service. Each object contains data with a mix of
protections: some data is encrypted and authenticated,
some data is authenticated plain-text, and some data is
unauthenticated. The keys for encryption and authenti-
cation are not shared with the cloud, though we assume
that customers keep a safe backup of these keys for dis-
aster recovery. Figure 3 summarizes the fields included
in objects.

BlueSky generates a unique identifier (UID) for each
object when the object is written into the log. The UID
remains constant if an item is simply relocated to a new
log position. An object can contain pointers to other
objects—for example, an inode pointing to data blocks—
and the pointer lists both the UID and the physical lo-

Authenticated:

Object type
Unique identifier (UID)
Inode number

Encrypted:
{

Object payload

Object pointers: UIDs

Unauthenticated: Object pointers: Physical locations

Figure 3: Data fields included in most objects.

cation. A cleaner in the cloud can relocate objects and
update pointers with the new locations; as long as the
UID in the pointer and the object match, the proxy can
validate that the data has not been tampered with.

4.3 Cleaner

As with any log-structured file system, BlueSky requires
a file system cleaner to garbage collect data that has been
overwritten. Unlike traditional disk-based systems, the
elastic nature of cloud storage means that the file sys-
tem can grow effectively unbounded. Thus, the cleaner
is not necessary to make progress when writing out new
data, only to reduce storage costs and defragment data
for more efficient access.

We designed the BlueSky cleaner so that it can run
either at the proxy or on a compute instance within the
cloud provider where it has faster, cheaper access to the
storage. For example, when running the cleaner in Ama-
zon EC2 and accessing storage in S3, Amazon does not
charge for data transfers (though it still charges for op-
erations). A cleaner running in the cloud does not need
to be fully trusted—it will need permission to read and
write cloud storage, but does not require the file system
encryption and authentication keys.

242 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

The cleaner runs online with no synchronous interac-
tions with the proxy: clients can continue to access and
modify the file system even while the cleaner is running.
Conflicting updates to the same objects are later merged
by the proxy, as described in Section 5.3.

4.4 Backups
The log-structured design allows BlueSky to integrate
file system snapshots for backup purposes easily. In fact,
so long as a cleaner is never run, any checkpoint record
ever written to the cloud can be used to reconstruct the
state of the file system at that point in time. Though not
implemented in our prototype, the cleaner or a snapshot
tool could record a list of checkpoints to retain and pro-
tect all required log segments from deletion. Those seg-
ments could also be archived elsewhere for safekeeping.

4.5 Multi-Proxy Access
In the current BlueSky implementation only a single
proxy can write to the file system, along with the cleaner
which can run in parallel. It would be desirable to have
multiple proxies reading from and writing to the same
BlueSky file system at the same time—either from a sin-
gle site, to increase capacity and throughput, or from
multiple sites, to optimize latency for geographically-
distributed clients.

The support for multiple file system logs in BlueSky
should make it easier to add support for multiple concur-
rent proxies. Two approaches are possible. Similar to
Ivy [16], the proxies could be unsynchronized, offering
loose consistency guarantees and assuming only a single
site updates a file most of the time. When conflicting
updates occur in the uncommon case, the system would
present the user with multiple file versions to reconcile.

A second approach is to provide stronger consistency
by serializing concurrent access to files from multiple
proxies. This approach adds the complexity of some
type of distributed lock manager to the system. Since
cloud storage itself does not provide the necessary lock-
ing semantics, a lock manager would either need to run
on a cloud compute node or on the proxies (ideally, dis-
tributed across the proxies for fault tolerance).

Exploring either option remains future work.

5 BlueSky Proxy
This section describes the design and implementation of
the BlueSky proxy, including how it caches data in mem-
ory and on disk, manages its network connections to the
cloud, and indirectly cooperates with the cleaner.

5.1 Cache Management
The proxy uses its local disk storage to implement a
write-back cache. The proxy logs file system write re-
quests from clients (both data and metadata) to a journal

on local disk, and ensures that data is safely on disk be-
fore telling clients that data is committed. Writes are
sent to the cloud asynchronously. Physically, the journal
is broken apart into sequentially-numbered files on disk
(journal segments) of a few megabytes each.

This write-back caching does mean that in the event of
a catastrophic failure of the proxy—if the proxy’s storage
is lost—that some data may not have been written to the
cloud and will be lost. If the local storage is intact no data
will be lost; the proxy will replay the changes recorded
in the journal. Periodically, the proxy snapshots the file
system state, collects new file system objects and any in-
ode map updates into one or more log segments, and up-
loads those log segments to cloud storage. Our prototype
proxy implementation does not currently perform dedu-
plication, and we leave exploring the tradeoffs of such an
optimization for future work.

There are tradeoffs in choosing how quickly to flush
data to the cloud. Writing data to the cloud quickly mini-
mizes the window for data loss. However, a longer time-
out has advantages as well: it enables larger log segment
sizes, and it allows overlapping writes to be combined. In
the extreme case of short-lived temporary files, no data
need be uploaded to the cloud. Currently the BlueSky
proxy commits data as frequently as once every five sec-
onds. BlueSky does not start writing a new checkpoint
until the previous one completes, so under a heavy write
load checkpoints may commit less frequently.

The proxy keeps a cache on disk to satisfy many read
requests without going to the cloud; this cache consists
of old journal segments and log segments downloaded
from cloud storage. Journal and log segments are dis-
carded from the cache using an LRU policy, except that
journal segments not yet committed to the cloud are kept
pinned in the cache. At most half of the disk cache can be
pinned in this way. The proxy sends HTTP byte-range
requests to decrease latency and cost when only part of
a log segment is needed. It stores partially-downloaded
segments as sparse files in the cache.

5.2 Connection Management
The BlueSky storage backends reuse HTTP connections
when sending and receiving data from the cloud; the
CURL library handles the details of this connection pool-
ing. Separate threads perform each upload or download.
BlueSky limits uploads to no more than 32 segments con-
currently, to limit contention among TCP sessions and to
limit memory usage in the proxy (it buffers each segment
entirely in memory before sending).

5.3 Merging System State
As discussed in Section 4.3, the proxy and the cleaner
operate independently of each other. When the cleaner
runs, it starts from the most recent checkpoint written by

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 243

merge inode(inop, inoc):
if inop.id = inoc.id:

return inoc // No conflicting changes
// Start with proxy version and merge cleaner changes
inom ← inop; inom.id ← fresh uuid(); updated ← false
for i in [0 . . . num blocks(inop)− 1]:

bp ← inop.blocks[i]; bc ← inoc.blocks[i]
if bc.id = bp.id and bc.loc �= bp.loc:

// Relocated data by cleaner is current
inom.blocks.append(bc); updated ← true

else: // Take proxy’s version of data block
inom.blocks.append(bp)

return (inom if updated else inop)

Figure 4: Pseudocode for the proxy algorithm that
merges state for possibly divergent inodes. Subscripts
p and c indicate state written by the proxy and cleaner,
respectively; m is used for a candidate merged version.

the proxy. The cleaner only ever accesses data relative
to this file system snapshot, even if the proxy writes ad-
ditional updates to the cloud. As a result, the proxy and
cleaner each may make updates to the same objects (e.g.,
inodes) in the file system. Since reconciling the updates
requires unencrypted access to the objects, the proxy as-
sumes responsibility for merging file system state.

When the cleaner finishes execution, it writes an up-
dated checkpoint record to its log; this checkpoint record
identifies the snapshot on which the cleaning was based.
When the proxy sees a new checkpoint record from the
cleaner, it begins merging updates made by the cleaner
with its own updates.

BlueSky does not currently support the general case
of merging file system state from many writers, and only
supports the special case of merging updates from a sin-
gle proxy and cleaner. This case is straightforward since
only the proxy makes logical changes to the file system
and the cleaner merely relocates data. In the worst case,
if the proxy has difficulty merging changes by the cleaner
it can simply discard the cleaner’s changes.

The persistent UIDs for objects can optimize the check
for whether merging is needed. If both the proxy and
cleaner logs use the same UID for an object, the cleaner’s
version may be used. The UIDs will differ if the proxy
has made any changes to the object, in which case the
objects must be merged or the proxy’s version used. For
data blocks, the proxy’s version is always used. For in-
odes, the proxy merges file data block-by-block accord-
ing to the algorithm shown in Figure 4. The proxy can
similarly use inode map objects directly if possible, or
write merged maps if needed.

Figure 5 shows an example of concurrent updates by
the cleaner and proxy. State (a) includes a file with four
blocks, stored in two segments written by the proxy.
At (b) the cleaner runs and relocates the data blocks.

a)

b)

c)

d)

1 2 3 4Proxy:

1 2 3 4Proxy:

1 2Cleaner: 3 4

1 2 3 4Proxy:

1 2Cleaner: 3 4

4

1 2 3 4Proxy: 4

Figure 5: Example of concurrent updates by cleaner and
proxy, and the resulting merged state.

Concurrently, in (c) the proxy writes an update to the
file, changing the contents of block 4. When the proxy
merges state in (d), it accepts the relocated blocks 1–3
written by the cleaner but keeps the updated block 4. At
this point, when the cleaner runs again it can garbage
collect the two unused proxy segments.

5.4 Implementation

Our BlueSky prototype is implemented primarily in C,
with small amounts of C++ and Python. The core Blue-
Sky library, which implements the file system but not any
of the front-ends, consists of 8500 lines of code (includ-
ing comments and whitespace). BlueSky uses GLib for
data structures and utility functions, libgcrypt for cryp-
tographic primitives, and libs3 and libcurl for interaction
with Amazon S3 and Windows Azure.

Our NFS server consists of another 3000 lines of code,
not counting code entirely generated by the rpcgen RPC
protocol compiler. The CIFS server builds on top of
Samba 4, adding approximately 1800 lines of code in a
new backend. These interfaces do not fully implement
all file system features such as security and permissions
handling, but are sufficient to evaluate the performance
of the system. The prototype in-cloud file system cleaner
is implemented in just 650 lines of portable Python code
and does not depend on the BlueSky core library.

6 Evaluation

In this section we evaluate the BlueSky proxy proto-
type implementation. We explore performance from the
proxy to the cloud, the effect of various design choices
on both performance and cost, and how BlueSky perfor-
mance varies as a function of its ability to cache client
working sets for reads and absorb bursts of client writes.

244 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

6.1 Experimental Setup
We ran experiments on Dell PowerEdge R200 servers
with 2.13 GHz Intel Xeon X3210 (quad-core) proces-
sors, a 7200 RPM 80 GB SATA hard drive, and gigabit
network connectivity (internal and to the Internet). One
machine, with 4 GB of RAM, is used as a load generator.
The second machine, with 8 GB of RAM and an addi-
tional 1.5 TB 7200 RPM disk drive, acts as a standard
file server or a BlueSky proxy. Both servers run Debian
testing; the load generator machine is a 32-bit install (re-
quired for SPECsfs) while the proxy machine uses a 64-
bit operating system. For comparison purposes we also
ran a few tests against a commercial NAS filer in pro-
duction use by our group. We focused our efforts on two
providers: Amazon’s Simple Storage Service (S3) [1]
and Windows Azure storage [14]. For Amazon S3, we
looked at both the standard US region (East Coast) as
well as S3’s West Coast (Northern California) region.

We use the SPECsfs2008 [27] benchmark in many of
our performance evaluations. SPECsfs can generate both
NFSv3 and CIFS workloads patterned after real-world
traces. In these experiments, SPECsfs subjects the server
to increasing loads (measured in operations per second)
while simultaneously increasing the size of the working
set of files accessed. Our use of SPECsfs for research
purposes does not follow all rules for fully-compliant
benchmark results, but should allow for relative compar-
isons. System load on the load generator machine re-
mains low, and the load generator is not the bottleneck.

In several of the benchmarks, the load generator ma-
chine mounts the BlueSky file system with the standard
Linux NFS client. In Section 6.4, we use a synthetic load
generator which directly generates NFS read requests
(bypassing the kernel NFS client) for better control.

6.2 Cloud Provider Bandwidth
To understand the performance bounds on any imple-
mentation and to guide our specific design, we measured
the performance our proxy is able to achieve writing data
to Amazon S3. Figure 6 shows that the BlueSky proxy
has the potential to fully utilize its gigabit link to S3
if it uses large request sizes and parallel TCP connec-
tions. The graph shows the total rate at which the proxy
could upload data to S3 for a variety of request sizes and
number of parallel connections. Network round-trip time
from the proxy to the standard S3 region, shown in the
graph, is around 30 ms. We do not pipeline requests—we
wait for confirmation for each object on a connection be-
fore sending another one—so each connection is mostly
idle when uploading small objects. Larger objects better
utilize the network, but objects of one to a few megabytes
are sufficient to capture most gains. A single connec-
tion utilizes only a fraction of the total bandwidth, so to
fully make use of the network we need multiple parallel

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 100 10000 1e+06 1e+08

E
ffe

ct
iv

e
U

pl
oa

d
B

an
dw

id
th

 (M
bp

s)

Object Size (bytes)

1
2
4
8

16
32

Threads: 64

Figure 6: Measured aggregate upload performance to
Amazon S3, as a function of the size of the objects up-
loaded (x-axis) and number of parallel connections made
(various curves). A gigabit network link is available. Full
use of the link requires parallel uploads of large objects.

TCP connections. These measurements helped inform
the choice of 4 MB log segments (Section 4.1) and a pool
size of 32 connections (Section 5.2).

The S3 US-West data center is closer to our proxy lo-
cation and has a correspondingly lower measured round-
trip time of 12 ms. The round-trip time to Azure from our
location was substantially higher, around 85 ms. Yet net-
work bandwidth was not a bottleneck in either case, with
the achievable bandwidth again approaching 1 Gbps. In
most benchmarks, we use the Amazon US-West region
as the default cloud storage service.

6.3 Impact of Cloud Latency

To underscore the impact latency can have on file sys-
tem performance, we first run a simple, time-honored
benchmark of unpacking and compiling a kernel source
tree. We measure the time for three steps: (1) extract
the sources for Linux 2.6.37, which consist of roughly
400 MB in 35,000 files (a write-only workload); (2)
checksum the contents of all files in the extracted sources
(a read-only workload); (3) build an i386 kernel using
the default configuration and the -j4 flag for up to four
parallel compiles (a mixed read/write workload). For a
range of comparisons, we repeat this experiment on a
number of system configurations. In all cases with a
remote file server, we flushed the client’s cache by un-
mounting the file system in between steps.

Table 1 shows the timing results of the benchmark
steps for the various system configurations. Recall that
the network links client↔proxy and proxy↔S3 are both
1 Gbps—the only difference is latency (12 ms from the
proxy to BlueSky/S3-West and 30 ms to BlueSky/S3-
East). Using a network file system, even locally, adds
considerably to the execution time of the benchmark

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 245

Unpack Check Compile

Local file system
warm client cache 0:30 0:02 3:05
cold client cache 0:27

Local NFS server
warm server cache 10:50 0:26 4:23
cold server cache 0:49

Commercial NAS filer
warm cache 2:18 3:16 4:32

NFS server in EC2
warm server cache 65:39 26:26 74:11

BlueSky/S3-West
warm proxy cache 5:10 0:33 5:50
cold proxy cache 26:12 7:10
full segment 1:49 6:45

BlueSky/S3-East
warm proxy 5:08 0:35 5:53
cold proxy cache 57:26 8:35
full segment 3:50 8:07

Table 1: Kernel compilation benchmark times for various
file server configurations. Steps are (1) unpack sources,
(2) checksum sources, (3) build kernel. Times are given
in minutes:seconds. Cache flushing and prefetching are
only relevant in steps (2) and (3).

compared to a local disk. However, running an NFS
server in EC2 compared to running it locally increases
execution times by a factor of 6–30× due to the high la-
tency between the client and server and a workload with
operations on many small files. In our experiments we
use a local Linux NFS server as a baseline. Our commer-
cial NAS filer does give better write performance than a
Linux NFS server, likely due in part to better hardware
and an NVRAM write cache. Enterprises replacing such
filers with BlueSky on generic rack servers would there-
fore experience a drop in write performance.

The substantial impact latency can have on workload
performance motivates the need for a proxy architec-
ture. Since clients interact with the BlueSky proxy with
low latency, BlueSky with a warm disk cache is able
to achieve performance similar to a local NFS server.
(In this case, BlueSky performs slightly better than NFS
because its log-structured design is better-optimized for
some write-heavy workloads; however, we consider this
difference incidental.) With a cold cache, it has to read
small files from S3, incurring the latency penalty of read-
ing from the cloud. Ancillary prefetching from fetching
full 4 MB log segments when a client requests data in
any part of the segment greatly improves performance,
in part because this particular benchmark has substantial
locality; later on we will see that, in workloads with little
locality, full segment fetches hurt performance. How-
ever, execution times are still multiples of BlueSky with
a warm cache. The differences in latencies between S3-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

R
ea

d
La

te
nc

y
(m

s)

Proxy Cache Size (% Working Set)

Single-Client Request Stream

32 KB
128 KB

1024 KB

Figure 7: Read latency as a function of working set cap-
tured by the proxy. Results are from a single run.

West and S3-East for the cold cache and full segment
cases again underscore the sensitivity to cloud latency.

In summary, greatly masking the high latency to cloud
storage—even with high-bandwidth connectivity to the
storage service—requires a local proxy to minimize la-
tency to clients, while fully masking high cloud latency
further requires an effective proxy cache.

6.4 Caching the Working Set

The BlueSky proxy can mask the high latency overhead
of accessing data on a cloud service by caching data close
to clients. For what kinds of file systems can such a
proxy be an effective cache? Ideally, the proxy needs to
cache the working set across all clients using the file sys-
tem to maximize the number of requests that the proxy
can satisfy locally. Although a number of factors can
make generalizing difficult, previous studies have esti-
mated that clients of a shared network file system typi-
cally have a combined working set that is roughly 10%
of the entire file system in a day, and less at smaller time
scales [24, 31]. For BlueSky to provide acceptable per-
formance, it must have the capacity to hold this working
set. As a rough back-of-the-envelope using this conser-
vative daily estimate, a proxy with one commodity 3 TB
disk of local storage could capture the daily working set
for a 30 TB file system, and five such disks raises the file
system size to 150 TB. Many enterprise storage needs
fall well within this envelope, so a BlueSky proxy can
comfortably capture working sets for such scenarios.

In practice, of course, workloads are dynamic. Even
if proxy cache capacity is not an issue, clients shift
their workloads over time and some fraction of the client
workload to the proxy cannot be satisfied by the cache.
To evaluate these cases, we use synthetic read and write
workloads, and do so separately because they interact
with the cache in different ways.

We start with read workloads. Reads that hit in the
cache achieve local performance, while reads that miss

246 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

in the cache incur the full latency of accessing data in the
cloud, stalling the clients accessing the data. The ratio of
read hits and misses in the workload determines overall
read performance, and fundamentally depends on how
well the cache capacity is able to capture the file system
working set across all clients in steady state.

We populate a BlueSky file system on S3 with 32 GB
of data using 16 MB files.1 We then generate a steady
stream of fixed-size NFS read requests to random files
through the BlueSky proxy. We vary the size of the proxy
disk cache to represent different working set scenarios.
In the best case, the capacity of the proxy cache is large
enough to hold the entire working set: all read requests
hit in the cache in steady state, minimizing latency. In
the worst case, the cache capacity is zero, no part of the
working set fits in the cache, and all requests go to the
cloud service. In practice, a real workload falls in be-
tween these extremes. Since we make uniform random
requests to any of the files, the working set is equivalent
to the size of the entire file system.

Figure 7 shows that BlueSky with S3 provides good
latency even when it is able to cache only 50% of the
working set: with a local NFS latency of 21 ms for 32 KB
requests, BlueSky is able to keep latency within 2× that
value. Given that cache capacity is not an issue, this sit-
uation corresponds to clients dramatically changing the
data they are accessing such that 50% of their requests
are to new data objects not cached at the proxy. Larger
requests take better advantage of bandwidth: 1024 KB
requests are 32× larger than the 32 KB requests, but have
latencies only 4× longer.

6.5 Absorbing Writes

The BlueSky proxy represents a classic write-back cache
scenario in the context of a cache for a wide-area stor-
age backend. In contrast to reads, the BlueSky proxy can
absorb bursts of write traffic entirely with local perfor-
mance since it implements a write-back cache. Two fac-
tors determine the proxy’s ability to absorb write bursts:
the capacity of the cache, which determines the instan-
taneous size of a burst the proxy can absorb; and the
network bandwidth between the proxy and the cloud ser-
vice, which determines the rate at which the proxy can
drain the cache by writing back data. As long as the write
workload from clients falls within these constraints, the
BlueSky proxy can entirely mask the high latency to the
cloud service for writes. However, if clients instanta-
neously burst more data than can fit in the cache, or if
the steady-state write workload is higher than the band-
width to the cloud, client writes start to experience delays
that depend on the performance of the cloud service.

1For this and other experiments, we use relatively small file system
sizes to keep the time for performing experiments manageable.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 W
rit

e
La

te
nc

y
(m

s/
1

M
B

 w
rit

e)

Client Write Rate (MB/s): 2-Minute Burst

Latency vs. Write Rate with Constrained Upload

128 MB Write Buffer
1 GB Write Buffer

Figure 8: Write latencies when the proxy is uploading
over a constrained (≈ 100 Mbps) uplink to S3 as a func-
tion of the write rate of the client and the size of the write
cache to temporarily absorb writes.

We populate a BlueSky file system on S3 with 1 MB
files and generate a steady stream of fixed-size 1 MB
NFS write requests to random files in the file system. The
client bursts writes at different rates for two minutes and
then stops. So that we can overload the network between
the BlueSky proxy and S3, we rate limit traffic to S3 at
100 Mbps while keeping the client↔proxy link unlim-
ited at 1 Gbps. We start with a rate of write requests well
below the traffic limit to S3, and then steadily increase
the rate until the offered load is well above the limit.

Figure 8 shows the average latency of the 1 MB write
requests as a function of offered load, with error bars
showing standard deviation across three runs. At low
write rates the latency is determined by the time to com-
mit writes to the proxy’s disk. The proxy can upload at
up to about 12 MB/s to the cloud (due to the rate limit-
ing), so beyond this point latency increases as the proxy
must throttle writes by the client when the write buffer
fills. With a 1 GB write-back cache the proxy can tem-
porarily sustain write rates beyond the upload capacity.
Over a 10 Mbps network (not shown), the write cache
fills at correspondingly smaller client rates and latencies
similarly quickly increase.

6.6 More Elaborate Workloads
Using the SPECsfs2008 benchmark we next examine the
performance of BlueSky under more elaborate workload
scenarios, both to subject BlueSky to more interesting
workload mixes as well as to highlight the impact of
different design decisions in BlueSky. We evaluate a
number of different system configurations, including a
native Linux nfsd in the local network (Local NFS) as
well as BlueSky communicating with both Amazon S3’s
US-West region and Windows Azure’s blob store. Un-
less otherwise noted, BlueSky evaluation results are for
communication with Amazon S3. In addition to the base

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 247

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200

 0 5 10 15 20 25 30 35 40
A

ch
ie

ve
d

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

Requested Operations per Second

Working Set Size (GB)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

 0 5 10 15 20 25 30 35 40

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Requested Operations per Second

Working Set Size (GB)

Local NFS
BlueSky

BlueSky (4K)
BlueSky (noseg)

BlueSky (norange)
BlueSky (Azure)

Figure 9: Comparison of various file server configurations subjected to the SPECsfs benchmark, with a low degree of
parallelism (4 client processes). All BlueSky runs use cryptography, and most use Amazon US-West.

BlueSky configuration, we test a number of variants: dis-
abling the log-structured design to store each object in-
dividually to the cloud (noseg), disabling range requests
on reads so that full segments must be downloaded (no-
range), and using 4 KB file system blocks instead of the
default 32 KB (4K). The “noseg” case is meant to allow
a rough comparison with BlueSky had it been designed
to store file system objects directly to the cloud (without
entirely reimplementing it).

We run the SPECsfs benchmark in two different sce-
narios, modeling both low and high degrees of client par-
allelism. In the low-parallelism case, 4 client processes
make requests to the server, each with at most 2 outstand-
ing reads or writes. In the high-parallelism case, there are
16 client processes each making up to 8 reads or writes.

Figure 9 shows several SPECsfs runs under the low-
parallelism case. In these experiments, the BlueSky
proxy uses an 8 GB disk cache. The left graph shows the
delivered throughput against the load offered by the load
generator, and the right graph shows the corresponding
average latency for the operations. At a low requested
load, the file servers can easily keep up with the requests
and so the achieved operations per second are equal to
the requested load. As the server becomes saturated the
achieved performance levels off and then decreases.

The solid curve corresponds to a local NFS server
using one of the disks of the proxy machine for stor-
age. This machine can sustain a rate of up to 420 op-
erations/sec, at which point the disk is the performance
bottleneck. The BlueSky server achieves a low latency—
comparable to the local server case—at low loads since
many operations hit in the proxy’s cache and avoid wide-
area network communication. At higher loads, perfor-
mance degrades as the working set size increases. In
write-heavy workloads, BlueSky incidentally performs
better than the native Linux NFS server with local disk,
since BlueSky commits operations to disk in a single

journal and can make better use of disk bandwidth. Fun-
damentally, though, we consider using cloud storage suc-
cessful as long as it provides performance commensurate
with standard local network file systems.

BlueSky’s aggregation of written data into log seg-
ments, and partial retrieval of data with byte-range re-
quests, are important to achieving good performance and
low cost with cloud storage providers. As discussed in
Section 6.2, transferring data as larger objects is impor-
tant for fully utilizing available bandwidth. As we show
below, from a cost perspective larger objects are also bet-
ter since small objects require more costly operations to
store and retrieve an equal quantity of data.

In this experiment we also used Windows Azure as
the cloud provider. Although Azure did not perform as
well as S3, we attribute the difference primarily to the
higher latency (85 ms RTT) to Azure from our proxy
location (recall that we achieved equivalent maximum
bandwidths to both services).

Figure 10 shows similar experiments but with a high
degree of client parallelism. In these experiments, the
proxy is configured with a 32 GB cache. To simulate
the case in which cryptographic operations are better-
accelerated, cryptography is disabled in most experi-
ments but re-enabled in the “+crypto” experimental run.
The “100 Mbps” test is identical to the base BlueSky
experiment except that bandwidth to the cloud is con-
strained to 100 Mbps instead of 1 Gbps. Performance is
comparable at first, but degrades somewhat and is more
erratic under more intense workloads. Results in these
experimental runs are similar to the low-parallelism case.
The servers achieve a higher total throughput when there
are more concurrent requests from clients. In the high-
parallelism case, both BlueSky and the local NFS server
provide comparable performance. Comparing cryptogra-
phy enabled versus disabled, again there is very little dif-
ference: cryptographic operations are not a bottleneck.

248 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600

 0 10 20 30 40 50
A

ch
ie

ve
d

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

Requested Operations per Second

Working Set Size (GB)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

 0 10 20 30 40 50

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Requested Operations per Second

Working Set Size (GB)

Local NFS
BlueSky

BlueSky (crypto)
BlueSky (noseg)

BlueSky (norange)
BlueSky (100 Mbps)

Figure 10: Comparison of various file server configurations subjected to the SPECsfs benchmark, with a high degree
of parallelism (16 client processes). Most tests have cryptography disabled, but the “+crypto” test re-enables it.

Down Op Total (Up)

Baseline $0.18 $0.09 $0.27 $0.56
4 KB blocks 0.09 0.07 0.16 0.47
Full segments 25.11 0.09 25.20 1.00
No segments 0.17 2.91 3.08 0.56

Table 2: Cost breakdown and comparison of various
BlueSky configurations for using cloud storage. Costs
are normalized to the cost per one million NFS opera-
tions in SPECsfs. Breakdowns include traffic costs for
uploading data to S3 (Up), downloading data (Down),
operation costs (Op), and their sum (Total). Amazon
eliminated “Up” costs in mid-2011, but values using the
old price are still shown for comparison.

6.7 Monetary Cost

Offloading file service to the cloud introduces monetary
cost as another dimension for optimization. Figure 9
showed the relative performance of different variants of
BlueSky using data from the low-parallelism SPECsfs
benchmark runs. Table 2 shows the cost breakdown
of each of the variants, normalized per SPECsfs opera-
tion (since the benchmark self-scales, different experi-
ments have different numbers of operations). We use the
September 2011 prices (in US Dollars) from Amazon S3
as the basis for the cost analysis: $0.14/GB stored per
month, $0.12/GB transferred out, and $0.01 per 10,000
get or 1,000 put operations. S3 also offers cheaper price
tiers for higher use, but we use the base prices as a worst
case. Overall prices are similar for other providers.

Unlike performance, Table 2 shows that comparing by
cost changes the relative ordering of the different system
variants. Using 4 KB blocks had very poor performance,
but using them has the lowest cost since they effectively
transfer only data that clients request. The BlueSky base-
line uses 32 KB blocks, requiring more data transfers
and higher costs overall. If a client makes a 4 KB re-

quest, the proxy will download the full 32 KB block;
many times downloading the full block will satisfy fu-
ture client requests with spatial locality, but not always.
Finally, the range request optimization is essential in re-
ducing cost. When the proxy downloads an entire 4 MB
segment when a client requests any data in it, the cost for
downloading data increases by 150×. If providers did
not support range requests, BlueSky would have to use
smaller segments in its file system layout.

Although 4 KB blocks have the lowest cost, we argue
that using 32 KB blocks has the best cost-performance
tradeoff. The costs with 32 KB clocks are higher, but the
performance of 4 KB blocks is far too low for a system
that relies upon wide-area transfers

6.8 Cleaning
As with other file systems that do not overwrite in place,
BlueSky must clean the file system to garbage collect
overwritten data—although less to recover critical stor-
age space, and more to save on the cost of storing unnec-
essary data at the cloud service. Recall that we designed
the BlueSky cleaner to operate in one of two locations:
running on the BlueSky proxy or on a compute instance
in the cloud service. Cleaning in the cloud has com-
pelling advantages: it is faster, does not consume proxy
network bandwidth, and is cheaper since cloud services
like S3 and Azure do not charge for local network traffic.

The overhead of cleaning fundamentally depends on
the workload. The amount of data that needs to be read
and written back depends on the rate at which existing
data is overwritten and the fraction of live data in cleaned
segments, and the time it takes to clean depends on both.
Rather than hypothesize a range of workloads, we de-
scribe the results of a simple experiment to detail how
the cleaner operates.

We populate a small BlueSky file system with 64 MB
of data, split across 8 files. A client randomly writes, ev-
ery few seconds, to a small portion (0.5 MB) of one of

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 249

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
lo

ud
 S

to
ra

ge
 C

on
su

m
ed

 (M
B

)

Cleaner Pass Number

Storage Used: Writes Running Concurrently with Cleaner

Reclaimed
Wasted

Rewritten
Used/Unaltered

Figure 11: Storage space consumed during a write ex-
periment running concurrently with the cleaner.

these files. Over the course of the experiment the client
overwrites 64 MB of data. In parallel a cleaner runs to
recover storage space and defragment file contents; the
cleaner runs every 30 seconds, after the proxy incorpo-
rates changes made by the previous cleaner run. In ad-
dition to providing data about cleaner performance, this
experiment validates the design that allows for safe con-
current execution of both the proxy and cleaner.

Figure 11 shows the storage consumed during this
cleaner experiment; each set of stacked bars shows stor-
age after a pass by the cleaner. At any point in time,
only 64 MB of data is live in the file system, some of
which (bottom dark bar) consists of data left alone by
the cleaner and some of which (lighter gray bar) was
rewritten by the cleaner. Some wasted space (lightest
gray) cannot be immediately reclaimed; this space is ei-
ther mixed useful data/garbage segments, or data whose
relocation the proxy has yet to acknowledge. However,
the cleaner deletes segments which it can establish the
proxy no longer needs (white) to reclaim storage.

This workload causes the cleaner to write large
amounts of data, because a small write to a file can cause
the entire file to be rewritten to defragment the contents.
Over the course of the experiment, even though the client
only writes 64 MB of data the cleaner writes out an ad-
ditional 224 MB of data. However, all these additional
writes happen within the cloud where data transfers are
free. The extra activity at the proxy, to merge updates
written by the cleaner, adds only 750 KB in writes and
270 KB in reads.

Despite all the data being written out, the cleaner is
able to reclaim space during experiment execution to
keep the total space consumption bounded, and when the
client write activity finishes at the end of the experiment
the cleaner can repack the segment data to eliminate all
remaining wasted space.

6.9 Client Protocols: NFS and CIFS
Finally, we use the SPECsfs benchmark to confirm that
the performance of the BlueSky proxy is independent of

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700

 0 5 10 15 20 25

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Requested Operations per Second

Working Set Size (GB)

Native NFS
BlueSky NFS

Samba (CIFS)
BlueSky CIFS

Figure 12: Latencies for read operations in SPECsfs as a
function of aggregate operations per second (for all op-
erations) and working set size.

the client protocol (NFS or CFS) that clients use. The
experiments performed above use NFS for convenience,
but the results hold for clients using CIFS as well.

Figure 12 shows the latency of the read operations in
the benchmark as a function of aggregate operations per
second (for all operations) and working set size. Because
SPECsfs uses different operation mixes for its NFS and
CIFS workloads, we focus on the latency of just the read
operations for a common point of comparison. We show
results for NFS and CIFS on the BlueSky proxy (Sec-
tion 5.4) as well as standard implementations of both pro-
tocols (Linux NFS and Samba for CIFS, on which our
implementation is based). For the BlueSky proxy and
standard implementations, the performance of NFS and
CIFS are broadly similar as the benchmark scales, and
BlueSky mirrors any differences in the underlying stan-
dard implementations. Since SPECsfs uses a working
set much larger than the BlueSky proxy cache capacity
in this experiment, BlueSky has noticeably higher laten-
cies than the standard implementations due to having to
read data from cloud storage rather than local disk.

7 Conclusion
The promise of “the cloud” is that computation and stor-
age will one day be seamlessly outsourced on an on-
demand basis to massive data centers distributed around
the globe, while individual clients will effectively be-
come transient access portals. This model of the fu-
ture (ironically similar to the old “big iron” mainframe
model) may come to pass at some point, but today there
are many hundreds of billions of dollars invested in the
last disruptive computing model: client/server. Thus, in
the interstitial years between now and a potential future
built around cloud infrastructure, there will be a need to
bridge the gap from one regime to the other.

In this paper, we have explored a solution to one such
challenge: network file systems. Using a caching proxy

250 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

architecture we demonstrate that LAN-oriented worksta-
tion file system clients can be transparently served by
cloud-based storage services with good performance for
enterprise workloads. However, we show that exploit-
ing the benefits of this arrangement requires that design
choices (even low-level choices such as storage layout)
are directly and carefully informed by the pricing mod-
els exported by cloud providers (this coupling ultimately
favoring a log-structured layout with in-cloud cleaning).

8 Acknowledgments

We would like to thank our shepherd Ted Wong and the
anonymous reviewers for their insightful feedback, and
Brian Kantor and Cindy Moore for research computing
support. This work was supported in part by the UCSD
Center for Networked Systems. Vrable was further sup-
ported in part by a National Science Foundation Gradu-
ate Research Fellowship.

References
[1] Amazon Web Services. Amazon Simple Storage Service.

http://aws.amazon.com/s3/.
[2] A. Bessani, M. Correia, B. Quaresma, F. André, and

P. Sousa. DepSky: Dependable and Secure Storage in
a Cloud-of-Clouds. In EuroSys 2011, Apr. 2011.

[3] Y. Chen and R. Sion. To Cloud Or Not To
Cloud? Musings On Costs and Viability. http:
//www.cs.sunysb.edu/˜sion/research/
cloudc2010-draft.pdf.

[4] Cirtas. Cirtas Bluejet Cloud Storage Controllers. http:
//www.cirtas.com/.

[5] Enomaly. ElasticDrive Distributed Remote Storage Sys-
tem. http://www.elasticdrive.com/.

[6] I. Heizer, P. Leach, and D. Perry. Common Internet File
System Protocol (CIFS/1.0). http://tools.ietf.
org/html/draft-heizer-cifs-v1-spec-00.

[7] D. Hitz, J. Lau, and M. Malcolm. File System Design
for an NFS File Server Appliance. In Proceedings of the
Winter USENIX Technical Conference, 1994.

[8] J. Howard, M. Kazar, S. Nichols, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed File System. ACM Transactions
on Computer Systems (TOCS), 6(1):51–81, Feb. 1988.

[9] IDC. Global market pulse. http://i.dell.com/
sites/content/business/smb/sb360/en/
Documents/0910-us-catalyst-2.pdf.

[10] Jungle Disk. http://www.jungledisk.com/.
[11] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A Durable

and Practical Storage System. In Proceedings of the 2007
USENIX Annual Technical Conference, June 2007.

[12] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
Untrusted Data Repository (SUNDR). In Proceedings of
the 6th Conference on Symposium on Operating Systems
Design and Implementation (OSDI), Dec. 2004.

[13] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud Storage with

Minimal Trust. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementa-
tion (OSDI), Oct. 2010.

[14] Microsoft. Windows Azure. http://www.
microsoft.com/windowsazure/.

[15] Mozy. http://mozy.com/.
[16] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen.

Ivy: A Read/Write Peer-to-Peer File System. In Proceed-
ings of the 5th Conference on Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2002.

[17] Nasuni. Nasuni: The Gateway to Cloud Storage. http:
//www.nasuni.com/.

[18] Panzura. Panzura. http://www.panzura.com/.
[19] R. Pike, D. Presotto, S. Dorward, B. Flandrena,

K. Thompson, H. Trickey, and P. Winterbottom. Plan 9
From Bell Labs. USENIX Computing Systems, 8(3):221–
254, Summer 1995.

[20] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In Proceedings of the 1st USENIX Con-
ference on File and Storage Technologies (FAST), 2002.

[21] Rackspace. Rackspace Cloud. http://www.
rackspacecloud.com/.

[22] R. Rizun. s3fs: FUSE-based file system backed by Ama-
zon S3. http://code.google.com/p/s3fs/
wiki/FuseOverAmazon.

[23] M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems (TOCS), 10(1):26–52,
1992.

[24] C. Ruemmler and J. Wilkes. A trace-driven analysis of
disk working set sizes. Technical Report HPL-OSR-93-
23, HP Labs, Apr. 1993.

[25] R. Sandberg, D. Goldberg, S. Kleirnan, D. Walsh, and
B. Lyon. Design and Implementation of the Sun Network
Filesystem. In Proceedings of the Summer USENIX Tech-
nical Conference, pages 119–130, 1985.

[26] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka,
and E. Zeidner. Internet Small Computer Systems Inter-
face (iSCSI), Apr. 2004. RFC 3720, http://tools.
ietf.org/html/rfc3720.

[27] Standard Performance Evaluation Corporation.
SPECsfs2008. http://www.spec.org/
sfs2008/.

[28] StorSimple. StorSimple. http://www.
storsimple.com/.

[29] TwinStrata. TwinStrata. http://www.
twinstrata.com/.

[30] M. Vrable, S. Savage, and G. M. Voelker. Cumulus:
Filesystem Backup to the Cloud. In Proceedings of the
7th USENIX Conference on File and Storage Technolo-
gies (FAST), Feb. 2009.

[31] T. M. Wong and J. Wilkes. My cache or yours? Mak-
ing storage more exclusive. In Proceedings of the 2002
USENIX Annual Technical Conference, June 2002.

[32] N. Zhu, J. Chen, and T.-C. Chiueh. TBBT: Scalable and
Accurate Trace Replay for File Server Evaluation. In Pro-
ceedings of the 4th USENIX Conference on File and Stor-
age Technologies (FAST), Dec. 2005.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 251

Rethinking Erasure Codes for Cloud File Systems:
Minimizing I/O for Recovery and Degraded Reads

Osama Khan, Randal Burns
Department of Computer Science

Johns Hopkins University

James Plank, William Pierce
Dept. of Electrical Engineering and Computer Science

University of Tennessee

Cheng Huang
Microsoft Research

Abstract
To reduce storage overhead, cloud file systems are

transitioning from replication to erasure codes. This pro-
cess has revealed new dimensions on which to evalu-
ate the performance of different coding schemes: the
amount of data used in recovery and when performing
degraded reads. We present an algorithm that finds the
optimal number of codeword symbols needed for recov-
ery for any XOR-based erasure code and produces re-
covery schedules that use a minimum amount of data.
We differentiate popular erasure codes based on this cri-
terion and demonstrate that the differences improve I/O
performance in practice for the large block sizes used in
cloud file systems. Several cloud systems [15, 10] have
adopted Reed-Solomon (RS) codes, because of their gen-
erality and their ability to tolerate larger numbers of fail-
ures. We define a new class of rotated Reed-Solomon
codes that perform degraded reads more efficiently than
all known codes, but otherwise inherit the reliability and
performance properties of Reed-Solomon codes.

1 Introduction

Cloud file systems transform the requirements for era-
sure codes because they have properties and workloads
that differ from traditional file systems and storage ar-
rays. Our model for a cloud file system using era-
sure codes is inspired by Microsoft Azure [10]. It con-
forms well with HDFS [8] modified for RAID-6 [14]
and Google’s analysis of redundancy coding [15]. Some
cloud file systems, such as Microsoft Azure and the
Google File system, create an append-only write work-
load using a large block size. Writes are accumulated and
buffered until a block is full and then the block is sealed:
it is erasure coded and the coded blocks are distributed to
storage nodes. Subsequent reads to sealed blocks often
access smaller amounts data than the block size, depend-
ing upon workload [14, 46].

When examining erasure codes in the context of cloud
file systems, two performance critical operations emerge.
These are degraded reads to temporarily unavailable
data and recovery from single failures. Although era-
sure codes tolerate multiple simultaneous failures, single
failures represent 99.75% of recoveries [44]. Recovery
performance has always been important. Previous work
includes architecture support [13, 21] and workload op-
timizations for recovery [22, 48, 45]. However, it is par-
ticularly acute in the cloud owing to scale. Massive sys-
tems have frequent component failures so that recovery
becomes part of regular operation [16].

Frequent and temporary data unavailability in the
cloud results in degraded reads. In the period between
failure and recovery, reads are degraded because they
must reconstruct data from unavailable storage nodes us-
ing erasure codes. This is by necessity a slower opera-
tion than reading the data without reconstruction. Tem-
porary unavailability dominates disk failures. Transient
errors in which no data are lost account for more than
90% of data center failures [15], owing to network par-
titions, software problems, or non-disk hardware faults.
For this reason, Google delays the recovery of failed stor-
age nodes for 15 minutes. Temporary unavailability also
arises systematically when software upgrades take stor-
age nodes offline. In many data centers, software updates
are a rolling, continuous process [9].

Only recently have techniques emerged to reduce the
data requirements of recovering an erasure code. Two re-
cent research projects have demonstrated how the RAID-
6 codes RDP and EVENODD may recover from single
disk failures by reading significantly smaller subsets of
codeword symbols than the previous standard practice of
recovering from the parity drive [51, 49]. Our contribu-
tions to recovery performance generalize these results to
all XOR-based erasure codes, analyze existing codes to
differentiate them based on recovery performance, and
experimentally verify that reducing the amount of data
used in recovery translates directly into improved perfor-

252 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

mance for cloud file systems, but not for typical RAID
array configurations.

We first present an algorithm that finds the optimal
number of symbols needed for recovering data from an
arbitrary number of disk failures, which also minimizes
the amount of data read during recovery. We include an
analysis of single failures in RAID-6 codes that reveals
that sparse codes, such as Blaum-Roth [5], Liberation
[34] and Liber8tion [35], have the best recovery proper-
ties, reducing data by about 30% over the standard tech-
nique that recovers each row independently. We also an-
alyze codes that tolerate three or more disk failures, in-
cluding the Reed-Solomon codes used by Google [15]
and Microsoft Azure [10].

Our implementation and evaluation of this algorithm
demonstrates that minimizing recovery data translates di-
rectly into improved I/O performance for cloud file sys-
tems. For large stripe sizes, experimental results track the
analysis and increase recovery throughput by 30%. How-
ever, the algorithm requires the large stripes created by
large sealed blocks in cloud file systems in order to amor-
tize the seek costs incurred when reading non-contiguous
symbols. This is in contrast to recovery of the smaller
stripes used by RAID arrays and in traditional file sys-
tems in which the streaming recovery of all data outper-
forms our algorithm for stripe sizes below 1 MB. Prior
work on minimizing recovery I/O [51, 49, 27] is purely
analytic, whereas our work incorporates measurements
of recovery performance.

We also examine the amount of data needed to perform
degraded reads and reveal that it can use fewer symbols
than recovery. An analysis of RAID-6 and three disk
failure codes shows that degraded read performance dif-
ferentiates codes that otherwise have the same recovery
properties. Reads that request less than a stripe of data
make the savings more acute, as much as 50%.

Reed-Solomon codes are particularly poor for de-
graded reads in that they must always read all data disks
and parity for every degraded read. This is problem-
atic because RS codes are popular owing to their gen-
erality and applicability to nearly all coding situations.
We develop a new class of codes, Rotated Reed-Solomon
codes, that exceed the degraded read performance of
all other codes, but otherwise have the encoding perfor-
mance and reliability properties of RS Codes. Rotated
RS codes can be constructed for arbitrary numbers of
disks and failures.

2 Related Work
Performance Metrics: Erasure codes have been eval-
uated historically on a variety of metrics, such as the
CPU impact of encoding and decoding [3, 11, 37], the
penalty of updating small amounts of data [5, 26, 52] and
the ability to reconfigure systems without re-encoding [3,

7, 26]. The CPU performance of different erasure codes
can vary significantly. However, for all codes that we
consider, encoding and decoding bandwidth is orders of
magnitude faster than disk bandwidth. Thus, the dom-
inant factor when sealing data is writing the erasure-
coded blocks to disk, not calculating the codes. Simi-
larly, when decoding either for recovery or for degraded
reads, the dominant factor is reading the data.

Updating small amounts of data is also not a con-
cern in cloud file systems—the append-only write pattern
and sealed blocks eliminate small writes in their entirety.
System reconfiguration refers to changing coding param-
eters: changing the stripe width or increasing/decreasing
fault tolerance. This type of reconfigurability is less im-
portant in clouds because each sealed block defines an
independent stripe group, spread across cloud storage
nodes differently than other sealed blocks. There is no
single array of disks to be reconfigured. If the need for
reconfiguration arises, each sealed block is re-encoded
independently.

There has been some work lowering I/O costs in
erasure-coded systems. In particular, WEAVER [19],
Pyramid [23] and Stepped Combination Codes [18] have
all been designed to lower I/O costs on recovery. How-
ever, all of these codes are non-MDS, which means that
they do not have the storage efficiency that cloud stor-
age systems demand. The REO RAID Engine [26] min-
imizes I/O in erasure-coded storage systems; however,
its focus is primarily on the effect of updates on storage
systems of smaller scale.

Cloud Storage Systems: The default storage policy in
cloud file systems has become triplication (triple repli-
cation), implemented in the Google File system [16] and
adopted by Hadoop [8] and many others. Triplication has
been favored because of its ease of implementation, good
read and recovery performance, and reliability.

The storage overhead of triplication is a concern, lead-
ing system designers to consider erasure coding as an al-
ternative. The performance tradeoffs between replication
and erasure coding are well understood and have been
evaluated in many environments, such as peer-to-peer file
systems [43, 50] and open-source coding libraries [37].

Investigations into applying RAID-6 (two fault toler-
ant) erasure codes in cloud file systems show that they
reduce storage overheads from 200% to 25% at a small
cost in reliability and the performance of large reads
[14]. Microsoft research further explored the cost/benefit
tradeoffs and expand the analysis to new metrics: power
proportionality and complexity [53]. For these reasons,
Facebook is evaluating RAID-6 and erasure codes in
their cloud infrastructure [47]. Our work supports this
trend, providing specific guidance as to the relative mer-
its of different RAID-6 codes with a focus on recover-
ability and degraded reads.

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 253

Ford et al. [15] have developed reliability models for
Google’s cloud file system and validated models against
a year of workload and failure data from the Google in-
frastructure. Their analysis concludes that data place-
ment strategies need to be aware of failure groupings and
failure bursts. They also argue that, in the presence of
correlated failures, codes more fault tolerant than RAID-
6 are needed to to reduce exposure to data loss; they con-
sider Reed-Solomon codes that tolerate three and four
disk failures. Windows Azure storage employs Reed-
Solomon codes for similar reasons [10]. The rotated RS
codes that we present inherit all the properties of Reed-
Solomon codes and improve degraded reads.

Recovery Optimization: Workload-based approaches
to improving recovery are independent of the choice of
erasure code and apply to minimum I/O recovery algo-
rithm and rotated RS codes that we present. These in-
clude: load-balancing recovery among disks [22], recov-
ering popular data first to decrease read degradation [48],
and only recovering blocks that contain live data [45].
Similarly, architecture support for recovery can be ap-
plied to our codes, such as hardware that minimizes data
copying [13] and parity declustering [21].

Reducing the amount of data used in recovery has only
emerged recently as a topic and the first results have
given minimum recovery schedules for EVENODD [49]
and row-diagonal parity [51], both RAID-6 codes. We
present an algorithm that defines the recovery I/O lower
bound for any XOR-based erasure code and allows mul-
tiple codes to be compared for I/O recovery cost.

Regenerating codes provide optimal recovery band-
width [12] among storage nodes. This concept is differ-
ent than minimizing I/O; each storage node reads all of
its available data and computes and sends a linear combi-
nation. Regenerating codes were designed for distributed
systems in which wide-area bandwidth limits recovery
performance. Exact regenerating codes [39] recover lost
data exactly (not a new linear combination of data). In
addition to minimizing recovery bandwidth, these codes
can in some cases reduce recovery I/O. The relationship
between recovery bandwidth and recovery data size re-
mains an open problem.

RAID systems suffer reduced performance during
recovery because the recovery process interferes with
workload. Tian et al. [48] reorder recovery so that fre-
quently read data are rebuilt first. This minimizes the
number of reads in degraded mode. Jin et al. [25] pro-
pose reconfiguring an array from RAID-5 to RAID-0
during recovery so that reads to strips of data that are
not on the failed disk do not need to be recovered. Our
treatment differs in that we separate degraded reads from
recovery; we make degraded reads more efficient by re-
building just the requested data, not the entire stripe.

Figure 1: One stripe from an erasure coded storage sys-
tem. The parameters are k = 6, m = 3 and r = 4.

3 Background: Erasure Coded Storage

Erasure coded storage systems add redundancy for fault-
tolerance. Specifically, a system of n disks is partitioned
into k disks that hold data and m disks that hold coding
information. The coding information is calculated from
the data using an erasure code. For practical storage sys-
tems, the erasure code typically has two properties. First,
it must be Maximum Distance Separable (MDS), which
means that if any m of the n disks fails, their contents
may be recomputed from the k surviving disks. Second,
it must be systematic, which means that the k data disks
hold unencoded data.

An erasure coded storage system is partitioned into
stripes, which are collections of disk blocks from each of
the n disks. The blocks themselves are partitioned into
symbols, and there is a fixed number of symbols for each
disk in each stripe. We denote this quantity r. The stripes
perform encoding and decoding as independent units in
the disk system. Therefore, to alleviate hot spots that can
occur because the coding disks may require more activ-
ity than the data disks, one can rotate the disks’ identities
on a stripe-by-stripe basis.

For the purpose of our analysis, we focus on a sin-
gle stripe. There are k data disks labeled D0, . . . , Dk−1

and m coding disks labeled C0, . . . , Cm−1. There are nr
symbols in the stripe. We label the r symbols on data
disk i as di,0, di,1, . . . , di,r−1 and on coding disk j
as cj,0, cj,1, . . . , cj,r−1. We depict an example system
in Figure 1. In this example, k = 6, m = 3 (and there-
fore n = 9) and r = 4.

Erasure codes are typically defined so that each sym-
bol is a w-bit word, where w is typically small, often
one. Then the coding words are defined as computations
of the data words. Thus for example, suppose an era-
sure code were defined in Figure 1 for w = 1. Then
each symbol in the stripe would be composed of one sin-
gle bit. While that eases the definition of the erasure

3

254 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0 1 0 0

1 1 0 1

w bit

words

k data disks

Symbol

|S
y
m

b
o
l|

/
w

 w
o
rd

s
Sealed Block

r sy
m

b
o
ls

1 0 1 0

Figure 2: Relationship between words, symbols and
sealed blocks.

code, it does not map directly to a disk system. In re-
ality, it makes sense for each symbol in a sealed block
to be much larger in size, on the order of kilobytes or
megabytes, and for each symbol to be partitioned into w-
bit words, which are encoded and decoded in parallel.
Figure 2 depicts such a partitioning, where each symbol
is composed of multiple words. When w = 1, this parti-
tioning is especially efficient, because machines support
bit operations like exclusive-or (XOR) over 64-bit and
even 128-bit words, which in effect perform 64 or 128
XOR operations on 1-bit words in parallel.

When w = 1, the arithmetic is modulo 2: addition
is XOR, and multiplication is AND. When w > 1,
the arithmetic employed is Galois Field arithmetic, de-
noted GF (2w). In GF (2w), addition is still XOR; how-
ever multiplication is more complex, requiring a variety
of implementation techniques that depend on hardware,
memory, co-processing elements and w [17].

3.1 Matrix-Vector Definition

All erasure codes may be expressed in terms of a matrix-
vector product. An example is pictured in Figure 3. This
continues the example from Figure 1, where k = 6,
m = 3 and r = 4; In this picture, the erasure code is de-
fined precisely. This is a Cauchy Reed-Solomon code [6]
optimized by the Jerasure library [38]. The word size, w
equals one, so all symbols are treated as bits and arith-
metic is composed solely of the XOR operation. The kr
symbols of data are organized as a kr-element bit vector.
They are multiplied by a nr× kr Generator matrix GT .1

The product is a vector, called the codeword, with nr el-
ements. These are all of the symbols in the stripe. Each
collection of r symbols in the vector is stored on a differ-
ent disk in the system.

Since the the top kr rows of GT compose an identity
matrix, the first kr symbols in the codeword contain the

1The archetypical presentation of erasure codes [26, 29, 32] typi-
cally uses the transpose of this matrix; hence, we call this matrix GT .

data. The remaining mr symbols are calculated from the
data using the bottom mr rows of the Generator matrix.

When up to m disks fail, the standard methodolgy for
recovery is to select k surviving disks and create a de-
coding matrix B from the kr rows of the Generator ma-
trix that correspond to them. The product of B−1 and
the symbols in the k surviving disks yields the original
data [6, 20, 33].

There are many MDS erasure codes that apply to
storage systems. Reed-Solomon codes [40] are de-
fined for all values of k and m. With a Reed-Solomon
code, r = 1, and w must be such that 2w ≥ n. Gener-
ator matrices are constructed from a Vandermonde ma-
trix so that any k × k subset of the Generator matrix
is invertible. There is quite a bit of reference material
on Reed-Solomon codes as they apply to storage sys-
tems [33, 36, 6, 41], plus numerous open-source Reed-
Solomon coding libraries [42, 38, 30, 31].

Cauchy Reed-Solomon codes convert Reed-Solomon
codes with r = 1 and w > 1 to a code where r = w
and w = 1. In doing so, they remove the expensive
multiplication of Galois Fields and replace it with addi-
tional XOR operations. There are an exponential number
of ways to construct the Generator matrix of a Cauchy
Reed-Solomon code. The Jerasure library attempts to
construct a matrix with a minimal number of non-zero
entries [38]. It is these matrices that we use in our exam-
ples with Cauchy Reed-Solomon codes.

For m = 2, otherwise known as RAID-6, there
has been quite a bit of research on constructing codes
where w = 1 and the CPU performance is optimized.
EVENODD [3], RDP [11] and Blaum-Roth [5] codes all
require r + 1 to be a prime number such that k ≤ r + 1
(EVENODD) or k ≤ r. The Liberation codes [34]
require r to be a prime number and k ≤ r, and the
Liber8tion code [35] is defined for r = 8 and k ≤
r. The latter three codes (Blaum-Roth, Liberation and
Liber8tion) belong to a family of codes called Minimum
Density codes, whose Generator matrices have a prov-
ably minimum number of ones.

Both EVENODD and RDP codes have been extrapo-
lated to higher values of m [2, 4]. We call these Gen-
eralized EVENODD and RDP. With m = 3, the same
restrictions on r apply. For larger values of m, there are
additional restrictions on r. The STAR code [24] is an
instance of the generalized EVENODD codefor m = 3,
where recovery is performed without using the Generator
matrix.

All of the above codes have a convenient feature that
disk C0 is constructed as the parity of the data disks, as in
RAID-4/5. Thus, the r rows of the Generator matrix im-
mediately below the identity portion are composed of k
(r × r) identity matrices. To be consistent with these
RAID systems, we will refer to disk C0 as the “P drive.”

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 255

Figure 3: The matrix-vector representation of an erasure code. The parameters are the same as Figure 1: k = 6, m = 3
and r = 4. Symbols are one bit (i.e. w = 1). This is a Cauchy Reed-Solomon code for these parameters.

4 Optimal Recovery of XOR-Based Era-
sure codes

When a data disk fails in an erasure coded disk array, it is
natural to reconstruct it simply using the P drive. Each
failed symbol is equal to the XOR of corresponding sym-
bols on each of the other data disks, and the parity sym-
bol on the P disk. We call this methodology “Reading
from the P drive.” It requires k symbols to be read from
disk for each decoded symbol.

Although it is straightforward both in concept and im-
plementation, in many cases, reading from the P drive
requires more I/O than is necessary. In particular, de-
pending on the erasure code, there are savings that can
be exploited when multiple symbols are recovered in the
same stripe. This effect was first demonstrated by Xiang
et al. in RDP systems in which one may reconstruct all
the failed blocks in a stripe by reading 25 percent fewer
symbols than reading from the P drive [51]. In this sec-
tion, we approach the problem in general.

4.1 Algorithm to Determine the Minimum
Number of Symbols for Recovery

We present an algorithm for recovering from a single
disk failure in any XOR-based erasure code with a mini-
mum number of symbols. The algorithm takes as input a
Generator matrix whose symbols are single bits and the
identity of a failed disk and outputs equations to decode
each failed symbol. The inputs to the equations are the
symbols that must be read from disk. The number of in-
puts is minimized.

The algorithm is computationally expensive — for the
systems evaluated for this paper, each instantiation took
from seconds to hours of compute-time. However, for
any realistic storage system, the number of recovery sce-
narios is limited, so that the algorithm may be run ahead

of time, and the results may be stored for when they are
required by the system.

We explain the algorithm by using the erasure code of
Figure 4 as an example. This small code, with k = m =
r = 2, is not an MDS code; however its simplicity facil-
itates our explanation. We label the rows of GT as Ri,
0 ≤ i < nr. Each row Ri corresponds to a data or coding
symbol, and to simplify our presentation, we will refer to
symbols using Ri rather than di,j or ci,j . Consider a set
of symbols in the codeword whose corresponding rows
in the Generator matrix sum to a vector of zeroes. One
example is {R0, R2, R4}. We call such a set of symbols
a decoding equation, because the fact their rows sum to
zero allows us to decode any one symbol in the set as
long as the remaining symbols are not lost.

Suppose that we enumerate all decoding equations for
a given Generator matrix, and suppose that some sub-
set F of the codeword symbols are lost. For each sym-
bol Ri ∈ F , we can determine the set Ei of decod-
ing equations for Ri. Formally, an equation ei ∈ Ei if
ei∩F = {Ri}. For example, the equation represented by
the set {R0, R2, R4} may be a decoding equation in e2

so long as neither R0 nor R4 is in F .

Figure 4: An example erasure code to explain the algo-
rithm to minimize the number of symbols required to re-
cover from failures.

5

256 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

We can recover all the symbols in F by selecting one
decoding equation ei from each set Ei, reading the non-
failed symbols in ei and then XOR-ing them to produce
the failed symbol. To minimize the number of symbols
read, our goal is to select one equation ei from each Ei

such that the number of symbols in the union of all ei is
minimized.

For example, suppose that a disk fails, and both R0

and R1 are lost. A standard way to decode the failed
bits is to read from the P drive and use coding sym-
bols R4 and R5. In equation form, F = {R0, R1}
e0 = {R0, R2, R4} and e1 = {R1, R3, R5}. Since e0

and e1 have distinct symbols, their union is composed of
six symbols, which means that four must be read for re-
covery. However, if we instead use {R1, R2, R7} for e1,
then (e0 ∪ e1) has five symbols, meaning that only three
are required for recovery.

Thus, our problem is as follows: Given |F | sets of
decoding equations E0, E1, . . . E|F |−1, we wish to se-
lect one equation from each set such that the size of the
union of these equations is minimized. Unfortunately,
this problem is NP-Hard in |F | and |Ei|.2 However, we
can solve the problem for practical values of |F | and |Ei|
(typically less than 8 and 25 respectively) by converting
the equations into a directed, weighted graph and finding
the shortest path through the graph. Given an instance of
the problem, we convert it to a graph as follows. First, we
represent each decoding equation in set form as an nr-
element bit string. For example, {R0, R2, R4} is repre-
sented by 10101000.

Each node in the graph is also represented by an nr-
element bit string. There is a starting node Z whose
string is all zeroes. The remaining nodes are partitioned
into |F | sets, labeled S0, S1, . . . S|F |−1. For each equa-
tion e0 ∈ E0, there is a node s0 ∈ S0 whose bit string
equals e0’s bit string. There is an edge from Z to each s0

whose weight is equal to the number of ones in s0’s bit
string.

For each node si ∈ Si, there is an edge that cor-
responds to each ei+1 ∈ Ei+1. This edge is to a
node si+1 ∈ Si+1 whose bit string is equal to the bitwise
OR of the bit strings of si and ei+1. The OR calculates
the union of the equations leading up to si and ei+1. The
weight of the edge is equal to the difference between the
number of ones in the bit strings of si and si+1. The
shortest path from Z to any node in S|F |−1 denotes the
minimum number of elements required for recovery. If
we annotate each edge with the decoding equation that
creates it, then the shortest path contains the equations
that are used for recovery.

To illustrate, suppose again that F = {R0, R1}, mean-
ing f0 = R0 and f1 = R1. The decoding equations

2Reduction from Vertex Cover.

for E0 and E1 are denoted by ei,j where i is the index of
the lost symbol in the set F and j is an index into the set
Ei. E0 and E1 are enumerated below:

E0 E1

e0,0 = 10101000 e1,0 = 01010100

e0,1 = 10010010 e1,1 = 01101110

e0,2 = 10011101 e1,2 = 01100001

e0,3 = 10100111 e1,3 = 01011011

These equations may be converted to the graph de-
picted in Figure 5, which has two shortest paths of length
five: {e0,0, e1,2} and {e0,1, e1,0}. Both require three
symbols for recovery: {R2, R4, R7} and {R3, R5, R6}.

While the graph clearly contains an exponential num-
ber of nodes, one may program Dijkstra’s algorithm to
determine the shortest path and prune the graph drasti-
cally. For example, in Figure 5, the shortest path will be
discovered before the the dotted edges and grayed nodes
are considered by the algorithm. Therefore, they may be
pruned.

Figure 5: The graph that results when R0 and R1 are lost.

4.2 Algorithm for Reconstruction
When data disk i fails, the algorithm is applied for F =
{di,0, . . . , di,r−1}. When coding disk j fails, F =
{cj,0, . . . , cj,r−1}. If a storage system rotates the iden-
tities of the disks on a stripe-by-stripe basis, then the av-
erage number of symbols for all failed disks multiplied
by the total number of stripes gives a measure of the sym-
bols required to reconstruct a failed disk.

4.3 Algorithm for Degraded Reads
To take maximum advantage of parallel I/O, we assume
that contiguous symbols in the file system are stored on

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 257

different disks in the storage system. In other words, if
one is reading three symbols starting with symbol d0,0,
then those three symbols are d0,0, d1,0 and d2,0, coming
from three different disk drives.

To evaluate degraded reads, we assume that an appli-
cation desires to read B symbols starting at symbol dx,y ,
and that data disk f has failed. We determine the penalty
of the failure to be the number of symbols required to
perform the read, minus B.

There are many cases that can arise from the differ-
ing values of B, f , x and y. To illustrate, first suppose
that B < k (which is a partial read case) and that none of
the symbols to be read reside on disk f . Then the failure
does not impact the read operation — it takes exactly B
symbols to complete the read, and the penalty is zero.

As a second case, consider when B = kr and dx,y =
d0,0. Then we are reading exactly one stripe in its en-
tirety. In this case, we have to read the (k−1)r non-failed
data symbols to fulfill the read request. Therefore, we
may recover very easily from the P drive by reading all
of its symbols and decoding. The read requires kr = B
symbols. Once again, the penalty is zero.

However, consider the case when B = k, f = 0, and
dx,y = d1,0. Symbols d1,0 through dk−1,0 are non-failed
and must be read. Symbol d0,1 must also be read and it
is failed. If we use the P drive to recover, then we need
to read d1,1 through dk−1,0 and c0,1. The total symbols
read is 2k − 1: the failure has induced a penalty of k − 1
symbols.

In all of these cases, the degraded read is contained
by one stripe. If the read spans two stripes, then we
can calculate the penalty as the sum of the penalties of
the read in each stripe. If the read spans more than two
stripes, then we only need to calculate the penalties in the
first and last stripe. This is because, as described above,
whole-stripe degraded reads incur no penalty.

When we perform a degraded read within a stripe, we
modify our algorithm slightly. For each non-failed data
symbol that must be read, we set its bit in the state of the
starting node Z to one. For example, in Figure 4, sup-
pose we are performing a degraded read where B = 2,
f = 0 and dx,y = d0,0. There is one failed bit: F = d0,0.
Since d1,0 = R2 must be read, the starting state Z of the
shortest path graph is labeled 00100000. The algorithm
correctly identifies that only c0,0 needs to be read to re-
cover d0,0 and complete the read.

5 Rotated Reed-Solomon Codes

Before performing analyses of failed disk reconstruction
and degraded reads, we present two instances of a new
erasure code, called the Rotated Reed-Solomon code.
These codes have been designed to be MDS codes that
optimize the performance of degraded reads for single

disk failures. The general formulation and theoretical
evaluation of these codes is beyond the scope of this pa-
per; instead, we present instances for m ∈ {2, 3}.

Figure 6: A Reed-Solomon code for k = 6 and m =
3. Symbols must be w-bit words such that w ≥ 4, and
arithmetic is over GF (2w).

The most intuitive way to present a Rotated Reed-
Solomon code is as a modification to a standard Reed-
Solomon code. We present such a code for m ≤ 3 in
Equation 1. As with all Reed-Solomon codes, r = 1.

for 0 ≤ j < 3, cj,0 =
k−1∑
i=0

(
2j
)i

di,0 (1)

This is an MDS code so long as k, m, r and w adhere
to some constraints, which we detail at the end of this
section. This code is attractive because one may imple-
ment encoding with XOR and multiplication by two and
four in GF (2w), which are all very fast operations. For
example, the m = 2 version of this code lies at the heart
of the Linux RAID-6 coding engine [1].

We present the code pictorally in Figure 6. A chain
of circles denotes taking the XOR of di,0; a chain of tri-
angles denotes taking the XOR of 2idi,0, and a chain of
squares denotes taking the XOR of 4idi,0. To convert this
code into a Rotated Reed-Solomon code, we allow r to
take on any positive value, and define the coding symbols
with Equation 2.

cj,b =

kj
m −1∑
i=0

(2j)idi,(b+1)%r +
k−1∑

i= kj
m

(2j)idi,b. (2)

Intuitively, the Rotated Reed-Solomon code converts
the one-row code in Figure 6 into a multi-row code,
and then the equations for coding disks 1 and 2 are
split across adjacent rows. We draw the Rotated Reed-
Solomon codes for k = 6 and m = {2, 3} and r = 3 in
Figures 7 and 8.

These codes have been designed to improve the
penalty of degraded reads. Consider a RAID-6 system
that performs a degraded read of four symbols starting
at d5,0 when disk 5 has failed. If we reconstruct from

7

258 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Figure 7: A Rotated Reed-Solomon code for k = 6, m =
2 and r = 3.

the P drive, we need to read d0,0 through d4,0 plus c0,0

to reconstruct d5,0. Then we read the non-failed sym-
bols d0,1, d1,1 and d2,1. The penalty is 5 symbols. With
Rotated Reed-Solomon coding, d5,0, d0,1, d1,1 and d2,1

all participate in the equation for c1,0. Therefore, by
reading c1,0, d0,1, d1,1, d2,1, d3,0 and d4,0, one both de-
codes d5,0 and reads the symbols that were required to
be read. The penalty is only two symbols.

Figure 8: A Rotated Reed-Solomon code for k = 6, m =
3 and r = 3.

With whole disk reconstruction, when r is an even
number, one can reconstruct any failed data disk by read-
ing r

2 (k + � k
m�) symbols. The process is exemplified

for k = 6, m = 3 and r = 4 in Figure 9. The first data
disk has failed, and the symbols required to reconstruct
each of the failed symbols is darkened and annotated
with the equation that is used for reconstruction. Each
pair of reconstructed symbols in this example shares four
data symbols for reconstruction. Thus, the whole recon-
struction process requires a total of 16 symbols, as op-
posed to 24 when reading from the P Drive.

The process is similar for the other data drives. Re-
constructing failed coding drives, however does not have

Figure 9: Reconstructing disk 0 when it fails, using Ro-
tated Reed-Solomon coding for k = 6, m = 3, r = 4.

the same benefits. We are unaware at present of how
to reconstruct a coding drive with fewer than the maxi-
mum kr symbols.

As an aside, when more than one disk fails, Rotated
Reed-Solomon codes may require much more computa-
tion to recover than other codes, due to the use of matrix
inversion for recovery. We view this property as less im-
portant, since multiple disk failures are rare occurrences
in practical storage systems, and computational overhead
is less important than the I/O impact of recovery.

5.1 MDS Constraints
The Rotated Reed-Solomon code specified above in Sec-
tion 5 is not MDS in general. In other words, there are
settings of k, m, w and r which cannot tolerate the fail-
ure of any m disks. Below, we detail ways to constrain
these variables so that the Rotated Reed-Solomon code
is MDS. Each of these settings has been verified by test-
ing all combinations of m failures to make sure that they
may be tolerated. They cover a wide variety of system
sizes, certainly much larger than those in use today.

The constraints are as follows:

m ∈ {2, 3}
k ≤ 36, and k + m ≤ 2w + 1

w ∈ {4, 8, 16}
r ∈ {2, 4, 8, 16, 32}

Moreover, when w = 16, r may be any value less
than or equal to 48, except 15, 30 and 45. It is a matter of
future research to derive general-purpose MDS construc-
tions of Rotated Reed-Solomon codes.

6 Analysis of Reconstruction

We evaluate the minimum number of symbols required to
recover a failed disk in erasure coding systems with a va-
riety of erasure codes. We restrict our attention to MDS
codes, and systems with six data disks and either two or

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 259

L
ib

er8
tio

n
 (r=

8
)

R
D

P
 (r=

6
)

B
lau

m
-R

o
th

 (r=
6
)

L
ib

eratio
n
 (r=

7
)

C
au

ch
y
 R

S
 (r=

7
)

C
au

ch
y
 R

S
 (r=

6
)

C
au

ch
y
 R

S
 (r=

8
)

E
V

E
N

O
D

D
 (r=

6
)

R
o
tated

 R
S

 (r=
6
)

C
au

ch
y
 R

S
 (r=

5
)

C
au

ch
y
 R

S
 (r=

4
)

C
au

ch
y
 R

S
 (r=

3
)

G
en

. R
D

P
 (r=

6
)

C
au

ch
y
 R

S
 (r=

4
)

R
o
tated

 R
S

 (r=
6
)

S
T

A
R

 (r=
6
)

C
au

ch
y
 R

S
 (r=

5
)

C
au

ch
y
 R

S
 (r=

6
)

C
au

ch
y
 R

S
 (r=

7
)

C
au

ch
y
 R

S
 (r=

8
)

50

60

70

80

90

P
er

ce
n

ta
g
e

o
f

u
si

n
g
 P

 D
is

k All DisksData Disks Only

m=2 m=3

Figure 10: The minimum number of symbols required to
reconstruct a failed disk in a storage system when k = 6
and m ∈ {2, 3}.

three coding disks. We summarize the erasure codes that
we test in Table 1. For each code, if r has restrictions
based on k and m, we denote it in the table and include
the actual values tested in the last column. All codes,
with the exception of Rotated Reed-Solomon codes, are
XOR codes, and all without exception define the P drive
identically. Since there are a variety of Cauchy Reed-
Solomon codes that can be generated for any value of k,
m and r, we use the codes generated by the Jerasure cod-
ing library, which attempts to minimize the number of
non-zero bits in the Generator matrix [38].

Code m Restrictions on r r tested
EVENODD [3] 2 r + 1 prime ≥ k 6
RDP [11] 2 r + 1 prime > k 6
Blaum-Roth [5] 2 r + 1 prime > k 6
Liberation [34] 2 r prime ≥ k 7
Liber8tion [35] 2 r = 8, r ≥ k 8
STAR [24] 3 r + 1 prime ≥ k 6
Generalized RDP [2] 3 r + 1 prime > k 6
Cauchy RS [6] 2,3 2r ≥ n 3-8
Rotated 2,3 None 6

Table 1: The erasure codes and values of r tested.

For each code listed in Table 1, we ran the algorithm
from section 4.1 to determine the minimum number of
symbols required to reconstruct each of the k + m failed
disks in one stripe. The average number is plotted in
Figure 10. The Y-axis of these graphs are expressed
as a percentage of kr, which represents the number of
symbols required to reconstruct from the P drive. This
is also the number of symbols required when standard
Reed-Solomon coding is employed.

In both sides of the figure, the codes are ordered from
best to worst, and two bars are plotted: the average num-

L
ib

er8
tio

n
 (r=

8
)

R
D

P
 (r=

6
)

B
lau

m
-R

o
th

 (r=
6
)

L
ib

eratio
n
 (r=

7
)

C
au

ch
y
 R

S
 (r=

7
)

C
au

ch
y
 R

S
 (r=

6
)

C
au

ch
y
 R

S
 (r=

8
)

E
V

E
N

O
D

D
 (r=

6
)

R
o
tated

 R
S

 (r=
6
)

C
au

ch
y
 R

S
 (r=

5
)

C
au

ch
y
 R

S
 (r=

4
)

C
au

ch
y
 R

S
 (r=

3
)

G
en

. R
D

P
 (r=

6
)

C
au

ch
y
 R

S
 (r=

4
)

R
o
tated

 R
S

 (r=
6
)

S
T

A
R

 (r=
6
)

C
au

ch
y
 R

S
 (r=

5
)

C
au

ch
y
 R

S
 (r=

6
)

C
au

ch
y
 R

S
 (r=

7
)

C
au

ch
y
 R

S
 (r=

8
)

0.0

0.2

0.4

D
en

si
ty

:
F

ra
ct

io
n

 o
f

o
n

es m=2 m=3

Figure 11: The density of the bottom mr rows of the
Generator matrices for the codes in Figure 10.

ber of symbols required when the failed disk is a data
disk, and when the failed disk can be either data or cod-
ing. In all codes, the performance of decoding data disks
is better than re-encoding coding disks. As mentioned in
Section 5, Rotated Reed-Solomon codes require kr sym-
bols to re-encode. In fact, the C1 drive in all the RAID-6
codes require kr symbols to re-encode. Regardless, we
believe that presenting the performance for data and cod-
ing disks is more pertinent, since disk identities are likely
to be rotated from stripe to stripe, and therefore a disk
failure will encompass all n decoding scenarios.

For the RAID-6 systems, the minimum density codes
(Blaum-Roth, Liberation and Liber8tion) as a whole ex-
hibit excellent performance, especially when data disks
fail. It is interesting that the Liber8tion code, whose con-
struction was the result of a theory-less enumeration of
matrices, exhibits the best performance.

Faced with these results, we sought to determine if
Generator matrix density has a direct impact on disk re-
covery. Figure 11 plots the density of the bottom mr
rows of the Generator matrices for each of these codes.
To a rough degree, density is correlated to recovery
performance of the data disks; however the correlation
is only approximate. The precise relationship between
codes and their recovery performance is a direction of
further research.

Regardless, we do draw some important conclusions
from the work. The most significant one is that reading
from the P drive or using standard Reed-Solomon codes
is not a good idea in cloud storage systems. If recovery
performance is a dominant concern, then the Liber8tion
code is the best for RAID-6, and Generalized RDP is the
best for three fault-tolerant systems.

9

260 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0 5 10 15 20
Number of symbols to read

1.0

1.2

1.4

1.6

1.8
A

ve
ra

ge
 P

en
al

ty
 F

ac
to

r
P Drive Only
Liber8tion: m=2, r=6
Gen. RDP: m=3, r=6
Rotated RS: m=2, r=6
Rotated RS m=3, r=6

Figure 12: The penalty of degraded reads in storage sys-
tems with k = 6.

7 Analysis of Degraded Reads

To evaluate degraded reads, we compute the average
penalty of degraded reads for each value of B from one
to 20. The average is over all k potential data disks fail-
ing and over all kr potential starting points for the read
(all potential dx,y). This penalty is plotted in Figure 12
as a factor of B, so that the impact of the penalty rela-
tive to the size of the read is highlighted. Since whole-
stripe reads incur no penalty, the penalty of all values
of B ≥ kr are the same, which means that as B grows,
the penalty factor approaches one. Put another way, large
degraded reads incur very little penalty.

We plot only a few erasure codes because, with the
exception of Rotated Reed-Solomon codes, all perform
roughly the same. The Rotated Reed-Solomon codes,
which were designed expressly for degraded reads, re-
quire significantly fewer symbols on degraded reads.
This is most pronounced when B is between 5 and 10.
To put the results in context, suppose that symbols are 1
MB and that a cloud application is reading collections of
10 MB files such as MP3 files. If the system is in de-
graded mode, then using Rotated Reed-Solomon codes
with m = 3 incurs a penalty of 4.6%, as opposed to
19.6% using regular Reed-Solomon codes.

Combined with their good performance with whole-
disk recovery, the Rotated Reed-Solomon codes provide
a very good blend of properties for cloud storage sys-
tems. Compared to regular Reed-Solomon codes, or
to recovery strategies that employ only the P -drive for
single-disk failures, their improvement is significant.

8 Evaluation

We have built a storage system to evaluate the recov-
ery of sealed blocks. The goal of our experiments is to
determine the points at which the theoretical results of
sections 6 and 7 apply to storage systems configured as
cloud file system nodes.

0

5

10

15

20

25

30

C
R

S r
=3

C
R

S r
=4

C
R

S r
=5

C
R

S r
=6

C
R

S r
=7

C
R

S r
=8

lib
er

8t
io

n

lib
er

at
io

n

bla
um

-r
ot

h
E
O

R
D

P

R
ot

-R
S

D
a

ta
 R

ec
o

v
er

y
 (

M
B

/s
)

Optimized P Drive

Figure 13: The I/O performance of RAID-6 codes recov-
ering from a single disk failure averaged over all disks
(data and parity).

Experimental Setup: All experiments are run on a 12-
disk array using a SATA interface running on a quad-core
Intel Xeon E5620 processor with 2GB of RAM. Each
disk is a Seagate ST3500413AS Barracuda with 500 GB
capacity and operates at 7200 rpm. The Jerasure v1.2
library was used for construction and manipulation of
the Generator matrices and for Galois Field arithmetic
in rotated Reed-Solomon coding [38]. All tests mirror
the configurations in Table 1, evaluating a variety of era-
sure codes for which k = 6 and m ∈ {2, 3}. Each data
point is the average of twenty trials. Error bars denote a
standard deviation from the mean.

Evaluating Reconstruction: In these experiments, we
affix the symbol size at 16 MB, which results in sealed
blocks containing between 288 and 768 MB, depending
on the values of r and k. After creating a sealed block,
we measure the performance of reconstructing each of
the k + m disks when it fails. We plot the average per-
formance in Figures 13 and 14. Each erasure code con-
tains two measurements: the performance of recovering
from the P drive, and the performance of optimal recov-
ery. The data recovery rate is plotted. This is the speed of
recovering the lost symbols of data from the failed disk.

As demonstrated in Figure 13, for the RAID-6 codes,
optimal recovery improves performance by a factor of
15% to 30%, with Minimum-Density codes realizing the
largest performance gains. As the analysis predicts, the
Liber8tion code outperforms all other codes. In general,
codes with large r and less density have better perfor-
mance. Cauchy Reed-Solomon codes with r ≥ 6 com-
pare well, but with r = 3, they give up about 10% of
recovery performance. The rotated RS code performs
roughly the same as Cauchy-RS codes with r = 8.

Figure 14 confirms that Generalized-RDP substan-
tially outperforms the other codes. Cauchy Reed-
Solomon codes have different structure for m = 3 than

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 261

0

5

10

15

20

25

30

CRS r=4 CRS r=5 CRS r=6 CRS r=7 CRS r=8 GenRDP Rot-RS

D
at

a
R

ec
ov

er
y

(M
B/

s)

Optimized P Drive

Figure 14: The I/O performance of m = 3 codes recov-
ering from a single disk failure.

m = 2, with smaller r offering better performance. This
result matches the analysis in Section 6, but is surprising
nonetheless, because the smaller r codes are denser.

The large block size in cloud file systems means that
data transfer dominates recovery costs. All of the codes
read data at about 120 MB/s on aggregate. The results in
Figures 13 and 14 match those in Figure 10 closely. We
explore the effect of the symbol size and, thus, the sealed
block size in the next experiment.

Size of Sealed Blocks: Examining the relationship be-
tween recovery performance and the amount of the data
underlying each symbol shows that optimal recovery
works effectively only for relatively large sealed blocks.
Figure 15 plots the recovery data rate as a function of
symbol size for GenRDP and Liber8tion with and with-
out optimal recovery. We chose these codes because
their optimized version uses the fewest recovery sym-
bols at m = 2 (Liber8tion) and m = 3 (GenRDP). Our
disk array recovers data sequentially at approximately 20
MB/s. This rate is realized for erasure codes with any
value of r when the code is laid out on an array of disks.
Recovery reads each disk in a sequential pass and re-
builds the data. Unoptimized GenRDP and Liber8tion
approach this rate with increasing symbol size. Full se-
quential performance is realized for symbols of size 16M
or more, corresponding to sealed blocks of size 768 MB
for Liber8tion and 576 MB for GenRDP.

We parameterize experiments by symbol size because
recovery performance scales with the symbol size. Op-
timal recovery determines the minimum number of sym-
bols needed and accesses each symbol independently, in-
curring a seek penalty for most symbols: those not adja-
cent to other needed symbols. For small symbols, this
recovery process is inefficient. There is some noise in
our data at for symbols of size 64K and 256K that comes
from disk track read-ahead and caching.

Optimal recovery performance exceeds the stream-

0

5

10

15

20

25

30

1 4 16 64 256 1024 4096 16384 65536

D
at

a
R

ec
ov

er
y

R
at

e
(M

B/
s)

Symbol Size (kilobytes) (log scale)

GenRDP Liber8tion GenRDP(Opt) Liber8tion(Opt)

Disk Sequential I/O
Recovery Rate

Figure 15: Data recovery rate as a function of the code-
word symbol size.

ing recovery rate above 4M symbols, converging to the
throughput expected by analysis as disk seeks become
fully amortized. Sealed blocks using these parameters
can expect the recovery performance of distributed era-
sure codes to exceed that realized by disk arrays.

As symbols and stripes become too large, recovery re-
quires more memory than is available and performance
degrades. The 64 MB point for Liber8tion(Opt) with
r = 8 shows a small decline from 16 MB, because the
encoded stripe is 2.4 GB, larger than the 2G of memory
on our system.

0

20

40

60

80

100

120

0 5 10 15 20 25

D
at

a
Th

ro
ug

hp
ut

 (M
B/

s)

Read size (symbols)

RotRS m=3 RotRS m=2 P-Drive GenRDP Liber8tion

Figure 16: The throughput of degraded reads as a func-
tion of the number of symbols read.

Degraded Reads: Figure 16 plots the performance of
degraded reads as a function of the number of symbols
read with k = 6 and 16 MB per symbol. We com-
pare Rotated Reed-Solomon codes with P Drive recov-
ery and with the best performing optimal recovery codes,
Liber8tion for m = 2 and GenRDP for m = 3. We
measure the degraded read performance of read requests
ranging from 1 symbol to 20 symbols. For each read
size, we measure the performance of starting at each of
the potential kr starting blocks in the stripe, and plot the
average speed of the read when each data disk fails. The
results match Figure 12 extremely closely. When reading
one symbol, all algorithms perform identically, because

11

262 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
R

S(r
=3)

C
R

S(r
=4)

C
R

S(r
=5)

C
R

S(r
=6)

C
R

S(r
=7)

C
R

S(r
=8)

lib
er

8t
io

n

lib
er

at
io

n

bla
um

-r
ot

h

T
im

e
(s

e
c
)

XOR Reading symbols

Figure 17: Relative cost of computation of XORs and
read I/O during recovery.

they all either read the symbol from a non-failed disk or
they must read six disks to reconstruct. When reading
eight symbols, Rotated Reed-Solomon coding shows the
most improvement over the others, reading 13% faster
than Liber8tion (m = 2) and Generalized RDP (m = 3).
As predicted by Figure 12, the improvement lessens as
the number of symbols read increases. The overall speed
of all algorithms improves as the number of symbols read
increases, because fewer data blocks are read for recov-
ery and then thrown away.

The Dominance of I/O: We put forth that erasure
codes should be evaluated based on the the data used in
recovery and degraded reads. Implicit in this thesis is that
the computation for recovery is inconsequential to over-
all performance. Figure 17 shows the relative I/O costs
and processing time for recovery of a single disk failure.
A single stripe with a 1 MB symbol was recovered for
each code. Codes have different stripe sizes. Computa-
tion cost never exceeds 10% of overall costs. Further-
more, this computation can be overlapped with I/O when
recovering multiple sealed blocks.

9 Discussion
Our findings provide guidance as to how to deploy era-
sure coding in the cloud file systems with respect to
choosing a specific code and the size of sealed blocks.
Cloud file systems distribute the coded blocks from each
stripe (sealed block) on a different set of storage nodes.
This strategy provides load balance and incremental scal-
ability in the data center. It also prevents correlated fail-
ures from resulting in data loss and mitigates the effect
that any single failure has on a data set or application
[15]. However, it does mean that each stripe is recovered
independently from a different set of disks. To achieve
good recovery performance when recovering indepen-
dent stripes, codeword symbols need to be large enough
to amortize disk seek overhead. Our results recommend

a minimum symbol size of 4 MB and prefer 16 MB. This
translates to a minimum sealed block size of 144 MB
and preferred size of 576 MB for RDP and GenRDP, for
example. Cloud file systems would benefit from increas-
ing the sealed blocks to these size from the 64 MB de-
fault. Increasing the symbol size has drawbacks as well.
It increases memory consumption during recovery and
increases the latency of degraded reads, because larger
symbols need to recover more data.

Codes differ substantially in recovery performance,
which demands a careful selection of code and parame-
ters for cloud file systems. Optimally-sparse, Minimum-
Density codes tend to perform best. The Liber8tion code
and Generalized RDP are preferred for m = 2 and
m = 3 respectiveley. Reed-Solomon codes will con-
tinue to be popular for their generality. For some Reed-
Solomon codes, including rotated-RS codes, recovery
performance may be improved by more than 20%. How-
ever, the number of symbols per disk (r) has significant
impact. For k = 6 data disks, the best values are r = 7
for m = 2 and r = 4 for m = 3.

Several open problems remain with respect to optimal
recovery and degraded reads. While our algorithm can
determine the minimum number of symbols needed for
recovery for any given code, it remains unknown how to
generate recovery-optimal erasure codes. We are pursu-
ing this problem both analytically and through a progra-
matic search of feasible generator matrixes. Rotated RS
codes are a first result in lowering degraded read costs.
Lower bounds for the number of symbols needed for de-
graded reads have not been determined.

We have restricted our treatment to MDS codes, since
they are used almost exclusively in practice because of
their optimal storage efficiency. However, some codes
with decreased storage efficiency have much lower re-
covery costs than MDS [27, 18, 28, 23, 19]. Exploring
non-MDS codes more thoroughly will help guide those
building cloud systems in the tradeoffs between storage
efficiency, fault-tolerance, and performance.

Acknowledgments

We thank Sayeed Choudhury, Timothy DiLauro and
other members of the Data Conservancy Project who
provided valuable guidance on the requirements of data
availablity in preservation enviroments. We also thank
Reza Curtmola, Ragib Hasan, John Griffin, Guiseppe
Ateniese and our peers at the Johns Hopkins Storage
Systems Lab for their technical input. This work was
supported by the National Science Foundation awards
CSR-1016636, CCF-0937810, OCI-0830876, and DUE-
0734862 as well as by NetApp and Microsoft Research.

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 263

References

[1] H. P. Anvin. The mathematics of RAID-6.
http://kernel.org/pub/linux/kernel/
people/hpa/raid6.pdf, 2009.

[2] M. Blaum. A family of MDS array codes with minimal
number of encoding operations. In IEEE International
Symposium on Information Theory, September 2006.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:
An efficient scheme for tolerating double disk failures in
RAID architectures. IEEE Transactions on Computing,
44(2):192– 202, February 1995.

[4] M. Blaum, J. Bruck, and A. Vardy. MDS array codes
with independent parity symbols. IEEE Transactions on
Information Theory, 42(2):529–542, February 1996.

[5] M. Blaum and R. M. Roth. On lowest density MDS codes.
IEEE Transactions on Information Theory, 45(1):46–59,
January 1999.

[6] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby,
and D. Zuckerman. An XOR-based erasure-resilient cod-
ing scheme. Technical Report TR-95-048, International
Computer Science Institute, August 1995.

[7] V. Bohossian and J. Bruck. Shortening array codes and
the perfect 1-Factorization conjecture. In IEEE Interna-
tional Symposium on Information Theory, pages 2799–
2803, 2006.

[8] D. Borthakur. The Hadoop distributed file system: Archi-
tecture and design. http://hadoop.apache.org/
common/docs/current/hdfs-design.html,
2009.

[9] E. Brewer. Lessons from giant-scale services. Internet
Computing, 5(4), 2001.

[10] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agar-
wal, M. Fahim ul Haq, M. Ikram ul Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas. Windows Azure storage:
A highly available cloud storage service with strong con-
sistency. In Symposium on Operating Systems Principles,
2011.

[11] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar. Row diagonal parity for double
disk failure correction. In Conference on File and Storage
Technologies, March 2004.

[12] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright,
and K. Ramchandran. Network coding for distributed
storage systems. IEEE Trans. Inf. Theor., 56(9):4539–
4551, September 2010.

[13] A. L. Drapeau et al. RAID-II: A high-bandwidth network
file server. In International Symposium on Computer Ar-
chitecture, 1994.

[14] B. Fan, W Tanisiriroj, L. Xiao, and G. Gibson. DiskRe-
duce: RAID for data-intensive scalable computing. In
Parallel Data Storage Workshop, 2008.

[15] D. Ford, F. Labelle, F. .I. Popovici, M. Stokely, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan. Avail-
ability in globally distributed file systems. In Operating
Systems Design and Implementation, 2010.

[16] S. Ghemawat, H. Gobioff, and S. Leung. The Google file
system. In ACM SOSP, 2003.

[17] K. Greenan, E. Miller, and T. J. Schwartz. Optimizing
Galois Field arithmetic for diverse processor architectures
and applications. In Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, September
2008.

[18] K. M. Greenan, X. Li, and J. J. Wylie. Flat XOR-based
erasure codes in storage systems: Constructions, efficient
recovery, and tradeoffs. Mass Storage Systems and Tech-
nologies, 2010.

[19] J. L. Hafner. Weaver codes: Highly fault tolerant era-
sure codes for storage systems. In Conference on File
and Storage Technologies, 2005.

[20] J. L. Hafner, V. Deenadhayalan, K. K. Rao, and J. A. Tom-
lin. Matrix methods for lost data reconstruction in erasure
codes. In Conference on File and Storage Technologies,
2005.

[21] M. Holland and G. A. Gibson. Parity declustering for
continuous operation in redundant disk arrays. In Archi-
tectural Support for Programming Languages and Oper-
ating Systems. ACM, 1992.

[22] R. Y. Hou, J. Menon, and Y. N. Patt. Balancing I/O re-
sponse time and disk rebuild time in a RAID5 disk array.
In Hawai’i International Conference on System Sciences,
1993.

[23] C. Huang, M. Chen, and J. Li. Pyramid codes: Flexible
schemes to trade space for access efficiency in reliable
data storage systems. Network Computing and Applica-
tions, 2007.

[24] C. Huang and L. Xu. STAR: An efficient coding scheme
for correcting triple storage node failures. IEEE Transac-
tions on Computers, 57(7):889–901, July 2008.

[25] H. Jin, J. Zhang, and K. Hwang. A raid reconfiguration
scheme for gracefully degraded operations. EuroMicro
Conference on Parallel, Distributed, and Network-Based
Processing, 0:66, 1999.

[26] D. Kenchammana-Hosekote, D. He, and J. L. Hafner.
REO: A generic RAID engine and optimizer. In Confer-
ence on File and Storage Technologies, pages 261–276,
2007.

[27] O. Khan, R. Burns, J. S. Plank, and C. Huang. In search
of I/O-optimal recovery from disk failures. In Workshop
on Hot Topics in Storage Systems, 2011.

[28] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman,
and V. Stemann. Practical loss-resilient codes. In 29th
Annual ACM Symposium on Theory of Computing, pages
150–159, El Paso, TX, 1997. ACM.

[29] F. J. MacWilliams and N. J. A. Sloane. The Theory of
Error-Correcting Codes, Part I. North-Holland Publish-
ing Company, 1977.

13

264 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[30] Onion Networks. Java FEC Library v1.0.3. Open source
code distribution: http://onionnetworks.com/
fec/javadoc/, 2001.

[31] A. Partow. Schifra Reed-Solomon ECC Library. Open
source code distribution: http://www.schifra.
com/downloads.html, 2000-2007.

[32] W. W. Peterson and E. J. Weldon, Jr. Error-Correcting
Codes, Second Edition. The MIT Press, 1972.

[33] J. S. Plank. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Software—Practice &
Experience, 27(9):995–1012, 1997.

[34] J. S. Plank. The RAID-6 Liberation codes. In Conference
on File and Storage Technologies, 2008.

[35] J. S. Plank. The RAID-6 Liber8Tion code. Int. J. High
Perform. Comput. Appl., 23:242–251, August 2009.

[36] J. S. Plank and Y. Ding. Note: Correction to the 1997
tutorial on Reed-Solomon coding. Software – Practice &
Experience, 35(2):189–194, February 2005.

[37] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-
OHearn. A performance evaluation and examination of
open-source erasure coding libraries for storage. In Con-
ference on File and Storage Technologies, 2009.

[38] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure:
A library in C/C++ facilitating erasure coding for storage
applications - Version 1.2. Technical Report CS-08-627,
University of Tennessee, August 2008.

[39] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramachan-
dran. Explicit construction of optimal exact regenerating
codes for distributed storage. In Communication, Control,
and Computing, 2009.

[40] I. S. Reed and G. Solomon. Polynomial codes over cer-
tain finite fields. Journal of the Society for Industrial and
Applied Mathematics, 8:300–304, 1960.

[41] L. Rizzo. Effective erasure codes for reliable computer
communication protocols. ACM SIGCOMM Computer
Communication Review, 27(2):24–36, 1997.

[42] L. Rizzo. Erasure codes based on Vander-
monde matrices. Gzipped tar file posted at
http://planete-bcast.inrialpes.fr/
rubrique.php3?id rubrique=10, 1998.

[43] R. Rodrigues and B. Liskov. High availability in DHTS:
Erasure coding vs. replication. In Workshop on Peer-to-
Peer Systems, 2005.

[44] B. Schroeder and G. Gibson. Disk failures in the real
world: What does an MTTF of 1,000,000 mean to you?
In Conference on File and Storage Technologies, 2007.

[45] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Improving storage system avail-
ability with D-GRAID. In Conference on File and Stor-
age Technologies, 2004.

[46] Apache Software. Pigmix. https://cwiki.
apache.org/confluence/display/PIG/
PigMix, 2011.

[47] A. Thusoo, D. Borthakur, R. Murthy, Z. Shao, N. Jain,
H. Liu, S. Anthony, and J. S. Sarma. Data warehousing
and analytics infrastructure at Facebook. In SIGMOD,
2010.

[48] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen,
Z. Wang, and Z. Song. PRO: a popularity-based
multi-threaded reconstruction optimization for RAID-
structured storage systems. In Conference on File and
Storage Technologies, 2007.

[49] Z. Wang, A. G. Dimakis, and J. Bruck. Rebuilding
for array codes in distributed storage systems. CoRR,
abs/1009.3291, 2010.

[50] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. In Workshop on
Peer-to-Peer Systems, 2002.

[51] L. Xiang, Y. Xu, J. C. S. Lui, and Q. Chang. Optimal re-
covery of single disk failure in RDP code storage systems.
In ACM SIGMETRICS, 2010.

[52] L. Xu and J. Bruck. X-Code: MDS array codes with opti-
mal encoding. IEEE Transactions on Information Theory,
45(1):272–276, January 1999.

[53] Z. Zhang, A. Deshpande, X. Ma, E. Thereska, and
D. Narayanan. Does erasure coding have a role to play
in my data center? Microsoft Technical Report MSR-
TR-2010-52, 2010.

14

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 265

NCCloud: Applying Network Coding for the Storage Repair in a

Cloud-of-Clouds

Yuchong Hu†, Henry C. H. Chen†, Patrick P. C. Lee†, Yang Tang‡

†The Chinese University of Hong Kong, ‡Columbia University

ychu@inc.cuhk.edu.hk, {chchen,pclee}@cse.cuhk.edu.hk, ty@cs.columbia.edu

Abstract

To provide fault tolerance for cloud storage, recent stud-

ies propose to stripe data across multiple cloud vendors.

However, if a cloud suffers from a permanent failure and

loses all its data, then we need to repair the lost data from

other surviving clouds to preserve data redundancy. We

present a proxy-based system for multiple-cloud storage

called NCCloud, which aims to achieve cost-effective re-

pair for a permanent single-cloud failure. NCCloud is

built on top of network-coding-based storage schemes

called regenerating codes. Specifically, we propose

an implementable design for the functional minimum-

storage regenerating code (F-MSR), which maintains the

same data redundancy level and same storage require-

ment as in traditional erasure codes (e.g., RAID-6), but

uses less repair traffic. We implement a proof-of-concept

prototype of NCCloud and deploy it atop local and com-

mercial clouds. We validate the cost effectiveness of F-

MSR in storage repair over RAID-6, and show that both

schemes have comparable response time performance in

normal cloud storage operations.

1 Introduction

Cloud storage provides an on-demand remote backup so-

lution. However, using a single cloud storage vendor

raises concerns such as having a single point of failure

[3] and vendor lock-ins [1]. As suggested in [1, 3], a

plausible solution is to stripe data across different cloud

vendors. While striping data with conventional erasure

codes performs well when some clouds experience short-

term failures or foreseeable permanent failures [1], there

are real-life cases showing that permanent failures do oc-

cur and are not always foreseeable [23, 14, 20].

This work focuses on unexpected cloud failures.

When a cloud fails permanently, it is important to ac-

tivate storage repair to maintain the level of data re-

dundancy. A repair operation reads data from existing

surviving clouds and reconstructs the lost data in a new

cloud. It is desirable to reduce the repair traffic, and

hence the monetary cost, due to data migration.

Recent studies (e.g., [6, 8, 16, 25]) propose regener-

ating codes for distributed storage. Regenerating codes

are built on the concept of network coding [2]. They aim

to intelligently mix data blocks that are stored in existing

storage nodes, and then regenerate data at a new storage

node. It is shown that regenerating codes reduce the data

repair traffic over traditional erasure codes subject to the

same fault-tolerance level. Despite the favorable prop-

erty, regenerating codes are mainly studied in the theo-

retical context. It remains uncertain regarding the prac-

tical performance of regenerating codes, especially with

the encoding overhead incurred in regenerating codes.

In this paper, we propose NCCloud, a proxy-based

system designed for multiple-cloud storage. We pro-

pose the first implementable design for the functional

minimum-storage regenerating code (F-MSR) [8], and in

particular, we eliminate the need of performing encoding

operations within storage nodes as in existing theoretical

studies. Our F-MSR implementation maintains double-

fault tolerance and has the same storage cost as in tra-

ditional erasure coding schemes based on RAID-6, but

uses less repair traffic when recovering a single-cloud

failure. On the other hand, unlike most erasure coding

schemes that are systematic (i.e., original data chunks are

kept), F-MSR is non-systematic and stores only linearly

combined code chunks. Nevertheless, F-MSR is suited

to rarely-read long-term archival applications [6].

We show that in a practical deployment setting, F-

MSR can save the repair cost by 25% compared to

RAID-6 for a four-cloud setting, and up to 50% as the

number of clouds further increases. In addition, we con-

duct extensive evaluations on both local cloud and com-

mercial cloud settings. We show that our F-MSR imple-

mentation only adds a small encoding overhead, which

can be easily masked by the file transfer time over the

Internet. Thus, our work validates the practicality of F-

MSR via NCCloud, and motivates further studies of re-

alizing regenerating codes in large-scale deployments.

2 Motivation of F-MSR

We consider a distributed, multiple-cloud storage setting

from a client’s perspective, such that we stripe data over

multiple cloud vendors. We propose a proxy-based de-

sign [1] that interconnects multiple cloud repositories, as

shown in Figure 1(a). The proxy serves as an interface

between client applications and the clouds. If a cloud

experiences a permanent failure, the proxy activates the

repair operation, as shown in Figure 1(b). That is, the

266 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Cloud 2

Cloud 1

Cloud 3

Cloud 4

Cloud 2

Cloud 1

Cloud 3

Cloud 4

(a) Normal operation (b) Repair operation

Cloud 5

Proxy Proxy

Figure 1: Proxy-based design for multiple-cloud stor-

age: (a) normal operation, and (b) repair operation when

Cloud node 1 fails. During repair, the proxy regenerates

data for the new cloud.

proxy reads the essential data pieces from other surviv-

ing clouds, reconstructs new data pieces, and writes these

new pieces to a new cloud. Note that this repair operation

does not involve direct interactions among the clouds.

We consider fault-tolerant storage based on maximum

distance separable (MDS) codes. Given a file object, we

divide it into equal-size native chunks, which in a non-

coded system, would be stored on k clouds. With cod-

ing, the native chunks are encoded by linear combina-

tions to form code chunks. The native and code chunks

are distributed over n > k clouds. When an MDS code is

used, the original file object may be reconstructed from

the chunks contained in any k of the n clouds. Thus, it

tolerates the failure of any n − k clouds. We call this

feature the MDS property. The extra feature of F-MSR

is that reconstructing a single native or code chunk may

be achieved by reading up to 50% less data from the sur-

viving clouds than reconstructing the whole file.

This paper considers a multiple-cloud setting that is

double-fault tolerant (e.g., RAID-6) and provides data

availability toward at most two cloud failures (e.g., a few

days of outages [7]). That is, we set k = n − 2. We

expect that such a fault tolerance level suffices in prac-

tice. Given that a permanent failure is less frequent but

possible, our primary objective is to minimize the cost of

storage repair for a permanent single-cloud failure, due

to the migration of data over the clouds.

We define the repair traffic as the amount of outbound

data being read from other surviving clouds during the

single-cloud failure recovery. Our goal is to minimize

the repair traffic for cost-effective repair. Here, we do not

consider the inbound traffic (i.e., the data being written

to a cloud), as it is free of charge in many cloud vendors

(see Table 1 in Section 5).

We now show how F-MSR saves the repair traffic via

an example. Suppose that we store a file of size M on

four clouds, each viewed as a logical storage node. Let

us first consider RAID-6, which is double-fault tolerant.

Here, we consider the RAID-6 implementation based on

Reed-Solomon codes [26], as shown in Figure 2(a). We

divide the file into two native chunks (i.e., A and B) of

size M /2 each. We add two code chunks formed by the

linear combinations of the native chunks. Suppose now

that Node 1 is down. Then the proxy must download

the same number of chunks as the original file from two

other nodes (e.g., B and A+ B from Nodes 2 and 3, re-

spectively). It then reconstructs and stores the lost chunk

A on the new node. The total storage size is 2M , while

the repair traffic is M .

We now consider the double-fault tolerant implemen-

tation of F-MSR in a proxy-based setting, as shown

in Figure 2(b). F-MSR divides the file into four na-

tive chunks, and constructs eight distinct code chunks

P1, · · · , P8 formed by different linear combinations of

the native chunks. Each code chunk has the same size

M /4 as a native chunk. Any two nodes can be used to re-

cover the original four native chunks. Suppose Node 1 is

down. The proxy collects one code chunk from each sur-

viving node, so it downloads three code chunks of size

M /4 each. Then the proxy regenerates two code chunks

P
′

1 and P
′

2 formed by different linear combinations of

the three code chunks. Note that P ′

1 and P
′

2 are still lin-

ear combinations of the native chunks. The proxy then

writes P
′

1 and P
′

2 to the new node. In F-MSR, the stor-

age size is 2M (as in RAID-6), but the repair traffic is

0.75M , which is 25% of saving.

To generalize F-MSR for n storage nodes, we divide a

file of size M into 2(n− 2) native chunks, and generate

4(n − 2) code chunks. Then each node will store two

code chunks of size M
2(n−2) each. Thus, the total storage

size is Mn
n−2 . To repair a failed node, we download one

chunk from each of n − 1 nodes, so the repair traffic is
M(n−1)
2(n−2) . In contrast, for RAID-6, the total storage size is

also Mn
n−2 , while the repair traffic is M . When n is large,

F-MSR can save the repair traffic by close to 50%.

Note that F-MSR keeps only code chunks rather than

native chunks. To access a single chunk of a file, we need

to download and decode the entire file for the particular

chunk. Nevertheless, F-MSR is acceptable for long-term

archival applications, whose read frequency is typically

low [6]. Also, to restore backups, it is natural to retrieve

the entire file rather than a particular chunk.

This paper considers the baseline RAID-6 implemen-

tation using Reed-Solomon codes. Its repair method is to

reconstruct the whole file, and is applicable for all era-

sure codes in general. Recent studies [18, 28, 29] show

that data reads can be minimized specifically for XOR-

based erasure codes. For example, in RAID-6, data reads

can be reduced by 25% compared to reconstructing the

whole file [28, 29]. Although such approaches are sub-

optimal (recall that F-MSR can save up to 50% of repair

traffic in RAID-6), their use of efficient XOR operations

can be of practical interest.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 267

ANode 1

Proxy
BNode 2

A+BNode 3

A+2BNode 4

A

B

Object of size M

B

A+B
A

New node

A

Node 1

Proxy
Node 2

Node 3

Node 4

Object of size M

New node

A

B

C

D

P1

P2

P3

P4

P7

P8

P5

P6

P3

P5

P7

P1’

P2’

P1’

P2’

(a) RAID-6 (b) F-MSR

Figure 2: Examples of repair operations in RAID-6 and F-MSR with n = 4 and k = 2.

3 F-MSR Implementation

In this section, we present a systematic approach for im-

plementing F-MSR. We specify three operations for F-

MSR on a particular file object: (1) file upload; (2) file

download; (3) repair. A key difference of our imple-

mentation from prior theoretical studies is that we do

not require storage nodes to have encoding capabilities,

so our implementation can be compatible with today’s

cloud storage. Another key design issue is that instead of

simply generating random linear combinations for code

chunks (as assumed in [8]), we also guarantee that the

generated linear combinations always satisfy the MDS

property to ensure data availability, even after iterative

repairs. Here, we implement F-MSR as an MDS code

for general (n,k). We assume that each cloud repository

corresponds to a logical storage node.

3.1 File Upload

To upload a file F , we first divide it into k(n− k) equal-

size native chunks, denoted by (Fi)i=1,2,···,k(n−k). We

then encode these k(n− k) native chunks into n(n− k)
code chunks, denoted by (Pi)i=1,2,···,n(n−k). Each Pi

is formed by a linear combination of the k(n − k) na-

tive chunks. Specifically, we let EM = [αi,j] be an

n(n−k)×k(n−k) encoding matrix for some coefficients

αij (where i = 1, . . . , n(n−k) and j = 1, . . . , k(n−k))
in the Galois field GF(28). We call a row vector of

EM an encoding coefficient vector (ECV), which con-

tains k(n − k) elements. We let ECVi denote the i
th

row vector of EM. We compute each Pi by the scalar

product of ECVi and the native chunk vector (Fi), i.e.,

Pi =
∑k(n−k)

j=1 αijFj for i = 1, 2, · · · , n(n − k), where

all arithmetic operations are performed over GF(28). The

code chunks are then evenly stored in the n storage

nodes, each having (n − k) chunks. Also, we store the

whole EM in a metadata object that is then replicated to

all storage nodes (see Section 4). There are many ways

of constructing EM, as long as it satisfies the MDS prop-

erty and the repair MDS property (see Section 3.3). Note

that the implementation details of the arithmetic opera-

tions in Galois Fields are extensively discussed in [15].

3.2 File Download

To download a file, we first download the correspond-

ing metadata object that contains the ECVs. Then we

select any k of the n storage nodes, and download the

k(n − k) code chunks from the k nodes. The ECVs of

the k(n−k) code chunks can form a k(n−k)×k(n−k)
square matrix. If the MDS property is maintained, then

by definition, the inverse of the square matrix must ex-

ist. Thus, we multiply the inverse of the square matrix

with the code chunks and obtain the original k(n − k)
native chunks. The idea is that we treat F-MSR as a stan-

dard Reed-Solomon code, and our technique of creating

an inverse matrix to decode the original data has been

described in the tutorial [22].

3.3 Iterative Repairs

We now consider the repair of F-MSR for a file F for a

permanent single-node failure. Given that F-MSR regen-

erates different chunks in each repair, one challenge is to

ensure that the MDS property still holds even after itera-

tive repairs. This is in contrast to regenerating the exact

lost chunks as in RAID-6, which guarantees the invari-

ance of the stored chunks. Here, we propose a two-phase

checking heuristic as follows. Suppose that the (r− 1)th

repair is successful, and we now consider how to operate

the rth repair for a single permanent node failure (where

r ≥ 1). We first check if the new set of chunks in all stor-

age nodes satisfies the MDS property after the rth repair.

In addition, we also check if another new set of chunks in

all storage nodes still satisfies the MDS property after the

(r + 1)th repair, should another single permanent node

failure occur (we call this the repair MDS property). We

now describe the r
th repair as follows.

Step 1: Download the encoding matrix from a surviving

node. Recall that the encoding matrix EM specifies the

ECVs for constructing all code chunks via linear combi-

nations of native chunks. We use these ECVs for our later

two-phase checking heuristic. Since we embed EM in a

metadata object that is replicated, we can simply down-

load the metadata object from one of the surviving nodes.

Step 2: Select one random ECV from each of the n − 1
surviving nodes. Note that each ECV in EM corre-

268 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

sponds to a code chunk. We randomly pick one ECV

from each of the n − 1 surviving nodes. We call these

ECVs to be ECVi1 , ECVi2 , · · ·, ECVin−1
.

Step 3: Generate a repair matrix. We construct a (n −

k)× (n−1) repair matrix RM = [γi,j], where each ele-

ment γi,j (where i = 1, . . . , n−k and j = 1, . . . , n−1) is

randomly selected in GF(28). Note that the idea of gen-

erating a random matrix for reliable storage is consistent

with that in [24].

Step 4: Compute the ECVs for the new code chunks and

reproduce a new encoding matrix. We multiply RM

with the ECVs selected in Step 2 to construct n − k

new ECVs, denoted by ECV′

i =
∑n−1

j=1 γi,jECVij for

i = 1, 2, · · · , n− k. Then we reproduce a new encoding

matrix, denoted by EM
′, which is given by:

i
th row vector of EM

′ =

{
ECVi, i is a surviving node,

ECV′

i, i is a new node.

Step 5: Given EM
′, check if both the MDS and repair

MDS properties are satisfied. Intuitively, we verify the

MDS property by enumerating all
(
n

k

)
subsets of k nodes

to see if each of their corresponding encoding matrices

forms a full rank. For the repair MDS property, we check

that for any failed node (out of n nodes), we can collect

any one out of n−k chunks from the other n−1 surviving

nodes and reconstruct the chunks in the new node, such

that the MDS property is maintained. The number of

checks performed for the repair MDS property is at most

n(n − k)n−1
(
n

k

)
. If n is small, then the enumeration

complexities for both MDS and repair MDS properties

are manageable. If either one phase fails, then we return

to Step 2 and repeat. We emphasize that Steps 1 to 5 only

deal with the ECVs, so their overhead does not depend

on the chunk size.

Step 6: Download the actual chunk data and regenerate

new chunk data. If the two-phase checking in Step 5

succeeds, then we proceed to download the n−1 chunks

that correspond to the selected ECVs in Step 2 from the

n − 1 surviving storage nodes to NCCloud. Also, using

the new ECVs computed in Step 4, we regenerate new

chunks and upload them from NCCloud to a new node.

Remark: We claim that in addition to checking the MDS

property, checking the repair MDS property is essential

for iterative repairs. We conduct simulations to justify

that checking the repair MDS property can make itera-

tive repairs sustainable. In our simulations, we consider

multiple rounds of permanent node failures for different

values of n. Specifically, in each round, we randomly

pick a node to permanently fail and trigger a repair. We

say a repair is bad if the loop of Steps 2 to 5 is repeated

over 10 times. We observe that without checking the re-

pair MDS property, we see a bad repair very quickly,

say after no more than 7 and 2 rounds for n = 8 and n

= 12, respectively. On the other hand, checking the re-

pair MDS property makes iterative repairs sustainable for

hundreds of rounds for different values of n, and we do

not yet find any bad repair after extensive simulations.

4 NCCloud Design and Implementation

We implement NCCloud as a proxy that bridges user

applications and multiple clouds. Its design is built on

three layers. The file system layer presents NCCloud as a

mounted drive, which can thus be easily interfaced with

general user applications. The coding layer deals with

the encoding and decoding functions. The storage layer

deals with read/write requests with different clouds.

Each file is associated with a metadata object, which is

replicated at each repository. The metadata object holds

the file details and the coding information (e.g., encoding

coefficients for F-MSR).

NCCloud is mainly implemented in Python, while the

storage schemes are implemented in C for better effi-

ciency. The file system layer is built on FUSE [12].

The coding layer implements both RAID-6 and F-MSR.

RAID-6 is built on zfec [30], and our F-MSR implemen-

tation mimics the optimizations made in zfec for a fair

comparison.

Recall that F-MSR generates multiple chunks to be

stored on the same repository. To save the request cost

overhead (see Table 1), multiple chunks destined for the

same repository are aggregated before upload. Thus,

F-MSR keeps only one (aggregated) chunk per file ob-

ject on each cloud, as in RAID-6. To retrieve a specific

chunk, we calculate its offset within the combined chunk

and issue a range GET request.

5 Evaluation

We now use our NCCloud prototype to evaluate RAID-6

(based on Reed-Solomon codes) and F-MSR in multiple-

cloud storage. In particular, we focus on the setting n =
4 and k = 2. We expect that using n = 4 clouds may

suffice for practical deployment. Based on this setting,

we allow data retrieval with at most two cloud failures.

The goal of our experiments is to explore the practi-

cality of using F-MSR in multiple-cloud storage. Our

evaluation consists of two parts. We first compare the

monetary costs of using RAID-6 and F-MSR based on

the price plans of today’s cloud vendors. We also em-

pirically evaluate the response time performance of our

NCCloud prototype atop a local cloud and also a com-

mercial cloud vendor.

5.1 Cost Analysis

Table 1 shows the monthly price plans for three major

vendors as of September 2011. For Amazon S3, we take

the cost from the first chargeable usage tier (i.e., storage

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 269

S3 RS Azure

Storage (per GB) $0.14 $0.15 $0.15

Data transfer in (per GB) free free free

Data transfer out (per GB) $0.12 $0.18 $0.15

PUT,POST (per 10K requests) $0.10 free $0.01

GET (per 10K requests) $0.01 free $0.01

Table 1: Monthly price plans (in US dollars) for Amazon

S3 (US Standard), Rackspace Cloud Files and Windows

Azure Storage, as of September, 2011.

usage within 1TB/month; data transferred out more than

1GB/month but less than 10TB/month).

From the analysis in Section 2, we can save 25% of

the download traffic during storage repair when n = 4.

The storage size and the number of chunks being gen-

erated per file object are the same in both RAID-6 and

F-MSR (assuming that we aggregate chunks in F-MSR

as described in Section 4). However, in the analysis,

we have ignored two practical considerations: the size

of metadata (Section 4) and the number of requests is-

sued during repair. We now argue that they are negligi-

ble and that the simplified calculations based only on file

size suffice for real-life applications.

Metadata size: Our implementation currently keeps the

F-MSR metadata size within 160B, regardless of the file

size. NCCloud aims at long-term backups (see Sec-

tion 2), and can be integrated with other backup applica-

tions. Existing backup applications (e.g., [27, 11]) typi-

cally aggregate small files into a larger data chunk in or-

der to save the processing overhead. For example, the de-

fault setting for Cumulus [27] creates chunks of around

4MB each. The metadata size is thus usually negligible.

Number of requests: From Table 1, we see that some

cloud vendors nowadays charge for requests. RAID-6

and F-MSR differ in the number of requests when re-

trieving data during repair. Suppose that we store a file

of size 4MB with n = 4 and k = 2. During repair,

RAID-6 and F-MSR retrieve two and three chunks, re-

spectively (see Figure 2). The cost overhead due to the

GET request for RAID-6 is at most 0.427%, and that for

F-MSR is at most 0.854%, a mere 0.427% increase.

5.2 Response Time Analysis

We deploy our NCCloud prototype in real environments.

We then evaluate the response time performance of dif-

ferent operations in two scenarios. The first part ana-

lyzes in detail the time taken by different NCCloud op-

erations, and is done on a local cloud storage in order

to lessen the effects of network fluctuations. The second

part evaluates how NCCloud actually performs in com-

mercial clouds. All results are averaged over 40 runs.

 0

 10

 20

 30

 40

 50

500 400 300 200 100 50 10 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
F-MSR

(a) File upload

 0
 2
 4
 6
 8

 10
 12

500 400 300 200 100 50 10 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
F-MSR

(b) File download

 0
 5

 10
 15
 20
 25
 30
 35

500 400 300 200 100 50 10 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6 (code chunk repair)
RAID-6 (native chunk repair)

F-MSR

(c) Repair

Figure 3: Response times of main NCCloud operations.

 0

 10

 20

 30

 40

 50

 60

R
A

ID
-6

F
-M

S
R

R
A

ID
-6

F
-M

S
R

R
6

 (c
o

d
e

)

R
6

 (n
a

tiv
e

)

F
-M

S
R

T
im

e
 t
a

k
e

n
 (

s
e

c
o

n
d

s
)

(a) Upload (b) Download (c) Repair

File I/O
Upload

Download
Encoding
Decoding

Figure 4: Breakdown of response time when dealing with

500MB file.

5.2.1 On a Local Cloud

The experiment on a local cloud is carried out on an

object-based storage platform based on OpenStack Swift

1.4.2 [21]. NCCloud is mounted on a machine with Intel

Xeon E5620 and 16GB RAM. This machine is connected

to an OpenStack Swift platform attached with a number

of storage servers, each with Intel Core i5-2400 and 8GB

RAM. We create (n+1) = 5 containers on Swift, so each

container resembles a cloud repository (one of them is a

spare node used in repair).

In this experiment, we test the response time of three

basic operations of NCCloud: (a) file upload; (b) file

download; (c) repair. We use eight randomly generated

files from 1MB to 500MB as the data set. We set the path

of a chosen repository to a non-existing location to simu-

late a node failure in repair. Note that there are two types

of repair for RAID-6, depending on whether the failed

node contains a native chunk or a code chunk.

270 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0
 1
 2
 3
 4
 5
 6

10 5 2 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
F-MSR

(a) File upload

 0
 0.5

 1
 1.5

 2
 2.5

 3

10 5 2 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
F-MSR

(b) File download

 0
 1
 2
 3
 4
 5
 6
 7

10 5 2 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6 (code chunk repair)
RAID-6 (native chunk repair)

F-MSR

(c) Repair

Figure 5: Response times of NCCloud on Azure.

Figure 3 shows the response times of all three op-

erations (with 95% confidence intervals plotted), and

Figure 4 shows five key constituents of the response

time when dealing with a 500MB file. Figure 3 shows

that RAID-6 has less response time in file upload and

download. With the help of Figure 4, we pinpoint the

overhead of F-MSR over RAID-6. Due to having the

same MDS property, RAID-6 and F-MSR exhibit similar

data transfer time during upload/download. However, F-

MSR displays a noticeable encoding/decoding overhead

over RAID-6. When uploading a 500MB file, RAID-6

takes 1.490s to encode while F-MSR takes 5.365s; when

downloading a 500MB file, no decoding is needed in the

case of RAID-6 as the native chunks are available, but

F-MSR takes 2.594s to decode.

On the other hand, F-MSR has slightly less response

time in repair. The main advantage of F-MSR is that it

needs to download less data during repair. In repairing

a 500MB file, F-MSR spends 3.887s in download, while

the native-chunk repair of RAID-6 spends 4.832s.

Although RAID-6 generally has less response time

than F-MSR in a local cloud environment, we expect that

the encoding/decoding overhead of F-MSR can be easily

masked by network fluctuations over the Internet, as will

be shown next.

5.2.2 On a Commercial Cloud

The following experiment is carried out on a machine

with Intel Xeon E5530 and 16GB RAM running 64-bit

Ubuntu 9.10. We repeat the three operations in Sec-

tion 5.2.1 on four randomly generated files from 1MB to

10MB atop Windows Azure Storage. On Azure, we cre-

ate (n+1) = 5 containers to mimic different cloud repos-

itories. The same operation for both RAID-6 and F-MSR

are run interleaved to lessen the effect of network fluctu-

ation on the comparison due to different times of the day.

Figure 5 shows the results for different file sizes with

95% confidence intervals plotted. Note that although we

have used only Azure in this experiment, actual usage of

NCCloud should stripe data over different vendors and

locations for better availability guarantees.

From Figure 5, we do not see distinct response time

differences between RAID-6 and F-MSR in all opera-

tions. Furthermore, on the same machine, F-MSR takes

around 0.150s to encode and 0.064s to decode a 10MB

file (not shown in the figures). These constitute roughly

3% of the total upload and download times (4.962s and

2.240s respectively). Given that the 95% confidence in-

tervals for the upload and download times are 0.550s

and 0.438s respectively, network fluctuation plays a big-

ger role in determining the response time. Overall, we

demonstrate that F-MSR does not have significant per-

formance overhead over our baseline RAID-6 implemen-

tation.

6 Related Work

There are several systems proposed for multiple-cloud

storage. HAIL [5] provides integrity and availabil-

ity guarantees for stored data. DEPSKY [4] addresses

Byzantine Fault Tolerance by combining encryption and

erasure coding for stored data. RACS [1] uses erasure

coding to mitigate vendor lock-ins when switching cloud

vendors. It retrieves data from the cloud that is about

to be failed and moves the data to the new cloud. Un-

like RACS, NCCloud excludes the failed cloud in repair.

All the above systems are based on erasure codes, while

NCCloud considers regenerating codes with an emphasis

on storage repair.

Regenerating codes (see survey [9]) exploit the opti-

mal trade-off between storage cost and repair traffic. Ex-

isting studies mainly focus on theoretical analysis. Sev-

eral studies (e.g., [10, 13, 19]) empirically evaluate ran-

dom linear codes for peer-to-peer storage. However,

their evaluations are mainly based on simulations. NCFS

[17] implements regenerating codes, but does not con-

sider MSR codes that are based on linear combinations.

Here, we consider the F-MSR implementation, and per-

form empirical experiments in multiple-cloud storage.

7 Conclusions

We present NCCloud, a multiple-cloud storage file sys-

tem that practically addresses the reliability of today’s

cloud storage. NCCloud not only achieves fault tolerance

of storage, but also allows cost-effective repair when a

cloud permanently fails. NCCloud implements a practi-

cal version of the functional minimum storage regenerat-

ing code (F-MSR), which regenerates new chunks during

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 271

repair subject to the required degree of data redundancy.

Our NCCloud prototype shows the effectiveness of F-

MSR in accessing data, in terms of monetary costs and

response times. The source code of NCCloud is available

at http://ansrlab.cse.cuhk.edu.hk/software/nccloud.

8 Acknowledgments

We would like to thank our shepherd, James Plank, and

the anonymous reviewers for their valuable comments.

This work was supported by grant AoE/E-02/08 from the

University Grants Committee of Hong Kong.

References

[1] H. Abu-Libdeh, L. Princehouse, and H. Weather-

spoon. RACS: A Case for Cloud Storage Diversity.

In Proc. of ACM SoCC, 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Ye-

ung. Network Information Flow. IEEE Trans. on

Information Theory, 46(4):1204–1216, Jul 2000.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia. A View of

Cloud Computing. Communications of the ACM,

53(4):50–58, 2010.

[4] A. Bessani, M. Correia, B. Quaresma, F. André,

and P. Sousa. DEPSKY: Dependable and Secure

Storage in a Cloud-of-Clouds. In Proc. of ACM Eu-

roSys, 2011.

[5] K. D. Bowers, A. Juels, and A. Oprea. HAIL:

A High-Availability and Integrity Layer for Cloud

Storage. In Proc. of ACM CCS, 2009.

[6] B. Chen, R. Curtmola, G. Ateniese, and R. Burns.

Remote Data Checking for Network Coding-Based

Distributed Storage Systems. In Proc. of ACM

CCSW, 2010.

[7] CNNMoney. Amazon’s cloud is back, but still hazy.

http://money.cnn.com/2011/04/25/

technology/amazon_cloud/index.htm.

[8] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wain-

wright, and K. Ramchandran. Network Coding for

Distributed Storage Systems. IEEE Trans. on In-

formation Theory, 56(9):4539–4551, Sep 2010.

[9] A. G. Dimakis, K. Ramchandran, Y. Wu, and

C. Suh. A Survey on Network Codes for Dis-

tributed Storage. Proc. of the IEEE, 99(3):476–489,

Mar 2011.

[10] A. Duminuco and E. Biersack. A Practical Study of

Regenerating Codes for Peer-to-Peer Backup Sys-

tems. In Proc. of IEEE ICDCS, 2009.

[11] B. Escoto and K. Loafman. Duplicity. http://

duplicity.nongnu.org/.

[12] FUSE. http://fuse.sourceforge.net/.

[13] C. Gkantsidis and P. Rodriguez. Network coding

for large scale content distribution. In Proc. of IN-

FOCOM, 2005.

[14] GmailBlog. Gmail back soon for everyone. http:

//gmailblog.blogspot.com/2011/02/

gmail-back-soon-for-everyone.html.

[15] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz.

Optimizing Galois Field Arithmetic for Diverse

Processor Architectures and Applications. In Proc.

of IEEE MASCOTS, 2008.

[16] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Coop-

erative recovery of distributed storage systems from

multiple losses with network coding. IEEE JSAC,

28(2):268–276, Feb 2010.

[17] Y. Hu, C.-M. Yu, Y.-K. Li, P. P. C. Lee, and J. C. S.

Lui. NCFS: On the Practicality and Extensibility of

a Network-Coding-Based Distributed File System.

In Proc. of NetCod, 2011.

[18] O. Khan, R. Burns, J. Plank, and C. Huang. In

Search of I/O-Optimal Recovery from Disk Fail-

ures. In USENIX HotStorage, 2011.

[19] M. Martaló, M. Picone, M. Amoretti, G. Ferrari,

and R. Raheli. Randomized Network Coding in

Distributed Storage Systems with Layered Overlay.

In Information Theory and Application Workshop,

2011.

[20] E. Naone. Are We Safeguarding Social Data?

http://www.technologyreview.com/

blog/editors/22924/, Feb 2009.

[21] OpenStack Object Storage. http://www.

openstack.org/projects/storage/.

[22] J. S. Plank. A Tutorial on Reed-Solomon Coding

for Fault-Tolerance in RAID-like Systems. Soft-

ware - Practice & Experience, 27(9):995–1012,

Sep 1997.

[23] C. Preimesberger. Many data centers unpre-

pared for disasters: Industry group, Mar 2011.

http://www.eweek.com/c/a/IT-

Management/Many-Data-Centers-

Unprepared-for-Disasters-Industry-

Group-772367/.

[24] M. O. Rabin. Efficient Dispersal of Information

for Security, Load Balancing, and Fault Tolerance.

Journal of the ACM, 36(2):335–348, Apr 1989.

[25] K. V. Rashmi, N. B. Shah, P. V. Kumar, and

K. Ramchandran. Explicit Construction of Optimal

Exact Regenerating Codes for Distributed Storage.

In Proc. of Allerton Conference, 2009.

272 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[26] I. Reed and G. Solomon. Polynomial Codes over

Certain Finite Fields. Journal of the Society for In-

dustrial and Applied Mathematics, 8(2):300–304,

1960.

[27] M. Vrable, S. Savage, and G. Voelker. Cumu-

lus: Filesystem backup to the cloud. In Proc. of

USENIX FAST, 2009.

[28] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding

for Array Codes in Distributed Storage Systems. In

IEEE GLOBECOM Workshops, 2010.

[29] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li.

A Hybrid Approach to Failed Disk Recovery Using

RAID-6 Codes: Algorithms and Performance Eval-

uation. ACM Trans. on Storage, 7(3):11, 2011.

[30] zfec. http://pypi.python.org/pypi/

zfec.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 273

Extracting Flexible, Replayable Models from Large Block Traces
V. Tarasov1, S. Kumar1, J. Ma2, D. Hildebrand3, A. Povzner3, G. Kuenning2, and E. Zadok1

1Stony Brook University, 2Harvey Mudd College, and 3IBM Almaden Research

Abstract
I/O traces are good sources of information about real-

world workloads; replaying such traces is often used to
reproduce the most realistic system behavior possible.
But traces tend to be large, hard to use and share, and
inflexible in representing more than the exact system
conditions at the point the traces were captured. Often,
however, researchers are not interested in the precise de-
tails stored in a bulky trace, but rather in some statisti-
cal properties found in the traces—properties that affect
their system’s behavior under load.

We designed and built a system that (1) extracts many
desired properties from a large block I/O trace, (2) builds
a statistical model of the trace’s salient characteristics,
(3) converts the model into a concise description in the
language of one or more synthetic load generators, and
(4) can accurately replay the models in these load gener-
ators. Our system is modular and extensible. We exper-
imented with several traces of varying types and sizes.
Our concise models are 4–6% of the original trace size,
and our modeling and replay accuracy are over 90%.

1 Introduction
Traces are a time-honored way to collect information
about real-world workloads. The information contained
in traces allows a workload to be characterized using fac-
tors such as the exact size and offset of each I/O request,
read/write ratio, ordering of requests, etc. By replaying
a trace, users can evaluate real-world system behavior,
optimize a system based on that behavior, and compare
the performance of different systems [21, 23, 25, 34].

Despite the benefits of traces, they are hard to use in
practice. A trace collected on one system cannot easily
be scaled to match the characteristics of another. It is dif-
ficult to modify traces systematically, e.g., by changing
one workload parameter but leaving all others constant.
Traces are hard to describe and compare in terms that are
easily understood by system implementors. Large trace
files are time-consuming to distribute and can affect the
system’s behavior during replay by polluting the page
cache or causing an I/O bottleneck [20].

In reviewing related work, we observed that in many
cases replaying the exact trace is not required. Instead,
it is often sufficient to use a synthetic workload gener-
ator that accurately reproduces certain specific proper-
ties. For example, a particular system might be more
sensitive to the read-write ratio than to operation size.
In this situation one does not really need to replay the
trace precisely; a synthetic workload that emulates that

read-write ratio would suffice. Of course, this example
is simplistic, and in many cases one would be interested
in more complex combinations of the workload parame-
ters. However, the general idea that only some properties
of the trace affect system behavior remains valid.

Because many systems respond only to a few pa-
rameters, researchers have developed many benchmarks
and synthetic workload generators, such as IOzone [7],
Filebench [12], and Iometer [33], which avoid many
of the deficiencies of traces. But it can be difficult to
configure a benchmark so that it produces a realistic
workload; simple ones are not sufficiently flexible, while
powerful ones like Filebench offer so many options that
it can be daunting to select the correct settings.

In this work we propose to fill the gap between traces
and benchmarks by converting traces into the languages
of the benchmarks. We focus here on block traces due to
their relative simplicity, but we plan to extend this work
to other trace types, e.g., file system and NFS.

Our system creates a universal representation of the
trace, expressed as a multi-dimensional matrix in which
each dimension represents the statistical distribution of
a trace parameter or a function. Each parameter is cho-
sen to represent a specific workload property. We imple-
mented the most commonly used properties, such as I/O
size, inter-arrival time, seek distance, read-write ratio,
etc. End users can easily add new ones as desired. For
each benchmark, a small plugin converts the universal
trace matrix into the specific benchmark’s language.

Many workloads vary significantly during the tracing
period. To address this issue, our system supports trace
chunking across time. Within each chunk, the workload
is considered to be stable and uniform and is expressed
as a separate matrix. We use chunk deduplication to save
space in periods where the workload is the same.

We evaluated the accuracy of our system by generat-
ing models from several publicly available traces. We
first replayed each trace on a test system, observing
throughput, latency, I/O queue length and utilization,
power consumption, request sizes, CPU and memory us-
age, and the numbers of interrupts and context switches.
Then we emulated the trace by running benchmarks with
generated parameters on the same system, collected the
same observations, and compared the results.

Our error was less than 10% on average, and 15% at
most; it can be controlled by varying several parameters.
For a basic set of metrics, we converted a 1.4GB trace to
the Filebench language in only 30s. The resulting trace
description was 60MB, or 23.3× smaller.

1

274 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

2 Background and Motivation
Statistics Matter. Trace replay is a common evalua-
tion technique because, unlike any other testing method,
by definition traces represent reality. However, this real-
ism comes at a price: the trace represents one instance of
one system at one point in time. The next day’s workload
will inevitably be different, as will the same workload on
a system with different hardware, competing workloads,
etc. In the worst case, these variations might cause a sys-
tem to be unintentionally optimized for an atypical oper-
ating point. Even if a trace accurately represents a target
workload, rapid changes in hardware performance make
it difficult to evaluate a design on a modern machine us-
ing measurements and traces captured on a different sys-
tem only a few years earlier.

Our key observation is that for many purposes, statis-
tics are what matter. The exact ordering of operations,
their precise timing, the blocks or files accessed, and
many other details recorded in a trace are variable and
would change if it were re-recorded. Thus, when we re-
play a trace, we do not necessarily want to reproduce
every detail as precisely as possible; instead, we would
like to accurately represent its statistical properties.

An advantage of thinking of traces statistically is that
they become much more flexible. For example, a trace
collected a decade ago would record accesses to only
a fraction of the blocks on a modern disk, and at a very
different rate. Compared to a bulky trace, a statistical de-
scription is much simpler to scale to a modern machine
and therefore provides a convenient abstraction for per-
forming systematic evaluation of many systems.

Generating a good description requires representative
trace properties to be selected. In general, the most ap-
propriate properties depend on the system being tested,
so it is impossible to create a complete list. For most
purposes, however, the parameters of interest are well
defined and widely adopted, e.g., I/O rate and distribu-
tion, read/write ratio. Thus, a statistical model of a trace
should be able to capture those parameters, and should
be able to describe them in sufficient detail so that no
important information is lost. In particular, we should
not reduce complex, empirically observed distributions
to overly simple mathematical models, such as Poisson
arrival processes, without justification.

Some workloads may also exhibit nonstandard, or
even undiscovered, properties that might alter system
behavior. It is therefore advisable to preserve the orig-
inal traces to ensure these properties are retained. A
workload generator can be adapted to include such char-
acteristics once they are identified.

System Response. To evaluate a system empirically,
workloads are applied and appropriate metrics measure
its response. Performance is often characterized by

throughput, latency, CPU utilization, I/O queue length,
and memory usage [39,45]. Power consumption charac-
terizes energy efficiency [29, 36].

In many papers, these metrics are summarized by
statistics such as averages or distributions. But as we
argue above, it is often possible to accurately evaluate
these metrics without resorting to a full and detailed
trace replay. If the system response to a trace emula-
tion is similar to that of a full replay, then emulation can
replace full replay without biasing the results.

To evaluate the accuracy of our trace extraction and
modeling system, we surveyed papers in Usenix FAST
conferences from 2008–2011 and noted that the fre-
quently used metrics fell into four categories: (1)
throughput and latency; (2) I/O utilization and average
I/O queue length; (3) CPU utilization and memory us-
age; and (4) power consumption. Most of the surveyed
papers included 1–2 of these metrics, but in our study we
evaluate all four types to ensure a comprehensive com-
parison. We claim that if all response metrics are similar,
then the trace is modeled properly. We feel that our set
of metrics is sufficiently representative and comprehen-
sive to produce reliable results. There is still a chance
that an unmeasured response parameter may differ; but
our system is modular and easily extensible to emulate
any additional metrics one desires.

Replay Methods. We use system response to evaluate
our trace emulation accuracy. However, a system’s re-
sponse depends on the replay method, and varies based
on the goal of the study. To study peak performance,
traces are often accelerated [31, 40, 44, 48]. For power
efficiency, traces are usually replayed verbatim to pre-
serve realistic idle periods [5, 9]. To stress specific sub-
systems, a subset of the trace is sometimes replayed [38].
Our workload models can emulate existing trace-replay
methods as well as more sophisticated ones.

3 Design
Our five design goals, in decreasing priority, are:

1. Accuracy: Ensure that trace replay and trace emu-
lation yield matching evaluation results.

2. Flexibility: First, leverage existing powerful work-
load generators, rather than creating new ones.
Therefore, traces should be translated into models
that can be accurately described using the capabili-
ties of existing benchmarks. Second, allow users to
choose anything from accurate yet bulky models to
smaller but less precise ones.

3. Extensibility: Allow the model to include addi-
tional properties chosen by the user.

4. Conciseness: The resulting model should be much
smaller than the original trace.

5. Speed: The time to translate large traces should be
reasonable even on a modest machine.

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 275

Feature Extraction. The first step in our model-
building process is to extract important features from
the trace. We first discuss how we extract parameters
from workloads whose statistical characteristics do not
change over time, i.e., stationary workloads. Then we
describe how to emulate a non-stationary workload.

Each block trace record has a set of fields to describe
the parameters of a given request. Fields may include the
operation type, offset or block number, I/O size, times-
tamp, etc. Our translator is field-oblivious: it considers
every parameter as a number. We designate these param-
eters as an n-dimensional vector �p = (p1, p2, ..., pn).
We define a feature function vector on �p:

�f = (f1(�p, s1), f2(�p, s2), ..., fm(�p, sm)) = �f(�p, sf)

Each feature function represents an analysis of some
property of the trace; si represents private state data for
the i-th feature function, which lets us define features
across multiple trace entries and parameters.

For example, assume that p1 and p2 represent the I/O
size and offset fields, respectively. We can then define
the simple feature functions f1—just the I/O size itself—
and f2—the logarithmic inter-arrival distance (offset dif-
ference between two consecutive requests):

f1 = f1(�p, s1) = p1

f2 = f2(�p, s2) = log(p2 − s2.prev offset)

In our translator, the user first chooses a set of m fea-
ture functions. Evaluating these functions on a single
trace record results in a vector that represents a point in
an m-dimensional feature space. The translator divides
the feature space into buckets of user-specified size, and
collects a histogram of feature occurrences in a multi-
dimensional matrix—the feature matrix—that explicitly
captures the relevant statistics of the workload, and im-
plicitly records their correlations.

For example, using the two feature functions above,
plus a third that encodes the operation (0 for reads, 1 for
writes), the resulting feature matrix might look like the
one in Figure 1. In this case, the trace held 52 requests
of size less than 4KB and inter-arrival distance less than
1KB; of those, 38 were reads and 14 were writes.

By choosing a set of feature functions, users can ad-
just the workload representation to capture any impor-
tant trace features. By selecting an appropriate bucket
granularity, users can control the accuracy of the repre-
sentation, trading off precision for computational com-
plexity in the translator and matrix size. Stage 1 in Fig-
ure 2 shows the translator’s role in the overall design.

Once the feature matrix has been created, the transla-
tor can perform a number of additional operations on it:
projection, summation along dimensions, computation
of conditional probabilities, and normalization. These

operations can be used by the benchmark plugins (de-
scribed below) to calculate parameters. For example,
using the matrix in Figure 1, a plugin might first sum
across the distance-vs.-size plane to calculate the total
numbers of reads and writes, normalize these to find
P(read), and then generate benchmark code to condition-
alize I/O size on the operation type.

Clearly, the choice of feature functions affects the
quality of the emulation; currently the investigator must
do this based on the insight into the particular system of
interest, e.g., whether it has been optimized for certain
workloads that can be reflected in an appropriate fea-
ture function. We have implemented a library of over
a dozen standard feature functions based on those com-
monly found in the literature [10, 11, 26, 30], including
operation type, I/O size, offset distribution, inter-arrival
distance, inter-arrival time, process identifier, etc. New
feature functions can easily be added as needed to cap-
ture specialized system characteristics.

Benchmark Plugins. Once a feature matrix has been
constructed from a trace, it is possible to use it directly as
input to a workload generator. However, our goal in this
research is not to create yet another generator. Instead,
we believe that it is best to build on the work of others
by using existing workload generators and benchmarks.
This approach allows us to easily reuse all the exten-
sive facilities that these benchmarks provide. Many ex-
isting benchmarks offer a way to configure the workload
that they generate; some offer command-line configura-
tion parameters (e.g., IOzone [7] and Iometer [33]) while
others offer a more extensive language for that purpose
(e.g., Filebench [12] and fio [13]).

Most existing benchmarks use statistical models to
generate a workload. Some of them use average parame-

Inter−arrival

distance

10

60

0

1

4

0

2

8

(logscale, KB)

I/O Size

(KB)

4 8 12 16
2

1O
pe

ra
tio

n
(r
/w

)

38

38

14 15

100 791

100 791

50

12

499

27

32

12

412

198

000

95

99

Figure 1: Workload representation using a feature matrix

3

276 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Filebench plugin

IOzone plugin

FIO plugin

Workload description

in corresponding

language− trace

− feature functions vector

Deduplicator

1

4

2 3

65

........
threshholds

Translator

1 2 3 4 5 6

merged

{p}

f

matrix granularity

chunking resolution

metrics

comparison

Feature Matrices

1
2

3

Universal Workload
Representation Benchmark Plugins

Figure 2: Overall System Design

ter values; others use more complex distributions. In all
cases, our feature matrices contain all the information
needed to control the models used by these benchmarks.
A simple plugin translates the feature matrix into a spe-
cific benchmark’s parameters or language. For some
benchmarks, the expressiveness of the parameters might
limit the achievable accuracy, but even then the plugin
will help choose the best settings to emulate the original
trace’s workload. Stage 3 in Figure 2 demonstrates the
role of the benchmark plugins in the overall design.

For our initial investigations, we have implemented
plugins for Filebench and IOzone. We chose Filebench
for its flexibility, and IOzone because it is more suitable
for micro-benchmarking. We found that it was easy to
add a plugin for a new benchmark, since only a single
function has to be registered with the translator. The
size of the function depends on the number of feature
functions and the complexity of the target benchmark.

Chunking. Many real-world traces are non-stationary:
their statistical characteristics vary over time. This is es-
pecially true for traces that cover several hours, days,
or weeks. However, most workload generators apply a
stationary load, and cannot vary it over time. We ad-
dress this issue with trace chunking: splitting a trace
into chunks by time, such that the statistics of any given
chunk are relatively stable. Finding chunk boundaries is
difficult, so we first use a constant user-defined chunk
size, measured in seconds. For each chunk, we compute
a feature matrix independently; this results in a sequence
of matrices. We then convert these fixed chunks into
variable-sized ones by feeding the matrices to a dedupli-
cator that merges adjacent similar matrices (Stage 2 in
Figure 2). This optimization works well because many
traces remain stable for extended periods before shifting
to a different workload mode. We normalize the matri-
ces before comparing them, so that the absolute number
of requests in a chunk does not affect the comparison.
We use the maximum distance between matrix cells as a
metric of similarity. When two matrices are found to be
similar, we average their values and use the result to rep-
resent the workloads in the corresponding time chunks.

Besides detecting varying workload phases, the dedu-
plication process also reduces the model size. To achieve
even further compression, we support all-ways dedupli-
cation: every chunk in a trace is deduplicated against

every other chunk (not just adjacent ones).
Along with the matrices, we generate a time-to-

matrices map that serves as an additional input to the
benchmark plugins. If the target benchmark is unable
to support a multi-phase workload, the plugin generates
multiple invocations with appropriate parameters.

In the example in Figure 2, we set the trace duration
to 60s and the initial chunk size to 10s, so the transla-
tor generated six matrices. After all-ways deduplication,
only two remained.

4 Implementation
Traces from different sources often have different for-
mats. We wanted our translator to be efficient and
portable. We chose the efficient and flexible DataSeries
format [2]—recommended by the Storage Networking
Industry Association (SNIA)—and we selected SNIA’s
draft block-trace semantics [37]. We wrote converters
to allow experimentation with existing traces in other
formats. We also created a block-trace replayer for
DataSeries, which supports several commonly used re-
play modes. In total we wrote about 3,700 LoC: 1,500
in the translator, 800 in the converters, 1,000 in the
DataSeries replayer, and 400 in the Filebench and IO-
zone plugins. We plan to release these publicly.

5 Evaluation
To evaluate the accuracy, conversion speed, and com-
pression of our system, we used multiple micro-
benchmarks and a variety of real traces. In this paper
we present evaluation results based on two traces: Fi-
nance1 [28] and MS-WBS [22]. The Finance1 trace
captures the activity of several OLTP applications run-
ning at two large financial institutions. The MS-WBS
traces were collected from daily builds of the Microsoft
Windows Server operating system. The high-level char-
acteristics of the traces are presented in Table 1.

It is fair to assume that the accuracy of our transla-
tor might depend on the system under evaluation. In
our experiments we used a spectrum of block devices:

Characteristic Finance1 MS-WBS
Duration 12 hours 1.5 hours
Reads/Writes (106) 1.2/4.1 0.7/0.6
Avg I/O size 3.5KB 20KB
Seq. Requests 11 % 47%

Table 1: High-level characteristics of the used traces

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 277

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160

R
e

q
u

e
s
ts

/s
e

c

Time (100 sec)

read-replay write-replay read-emul write-emul

Figure 3: Reads and writes per second, Setup P, Fin1 trace.

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

P
o
w

e
r

(W
a
tt
)

Time (Seconds)

Replay

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

P
o
w

e
r

(W
a
tt
)

Time (Seconds)

Emulation

Figure 4: Disk power consumption, Setup P, MS-WBS trace.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450
 0

 20

 40

 60

 80

 100

M
e

m
o

ry
 (

M
B

)

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Time (10 sec)

mem-emulation
mem-replay

cpu-emulation
cpu-replay

Figure 5: Memory and CPU usage, Setup P, Fin1 trace.

various disk drives, flash drives, RAIDs, and even vir-
tual block devices. In this paper we present results from
two extremes of the spectrum. In the first experimental
setup—Setup P—we used a Physical machine with an
external SCSI Seagate Cheetah 300GB disk drive con-
nected through an Adaptec 39320 controller. The fact
that the drive was powered externally allowed us to mea-
sure its power consumption using a WattsUp meter [43].

The second experimental setup (Setup V) is an
enterprise-class system that has a Virtual machine run-
ning under the VMware ESX 4.1 Hypervisor. The
VM accesses its virtual disks on an NFS server backed
by a GPFS parallel file system [19, 35]. The VM
runs CentOS 6.0; the ESX and GPFS servers are IBM
System x3650’s, with GPFS using a DS4700 storage
controller. Accuracy metrics were recorded at the
NFS/GPFS server.

On both setups, we first replayed traces and then emu-
lated them using Filebench. In all experiments we set the
chunk size to 20s and enabled all feature functions. We
chose the matrix granularity for each dimension exper-
imentally, by gradually decreasing it until the accuracy

began to drop. During all runs we collected the accuracy
parameters specified in Section 2 using the iostat, vm-
stat, and wattsup tools; we plotted graphs showing the
value of each accuracy parameter versus time for both
replay and emulation. Due to limited space, we only
present the graphs for a few representative accuracy pa-
rameters. However, we give the average and maximum
emulation error for all experiments.

Figure 3 depicts how the throughput—for both reads
and writes—changes with time for the Finance1 trace.
The replay was performed with infinite acceleration; it
took about 5 hours to complete on Setup P. The trace
emulation line closely follows the replay line; the Root
Mean Square (RMS) distance is lower than 6% and the
maximum distance is below 15%. In the beginning of
the run, read throughput was 4 times higher then later
in the trace. By inspecting the model we found that
the workload exhibits high sequentiality in the begin-
ning of the trace. After startup, the read throughput falls
to 50–100 ops/s, which is reasonable for an OLTP-like
workload and our hardware. The write performance is
2–2.5 times higher than for read, due to the controller’s
write-back cache that makes writes more sequential.

Figure 4 depicts disk-drive power consumption in
Setup P during a 10-minute non-accelerated replay and
emulation of the MS-WBS trace. In the first 5 min-
utes trace activity was low, resulting in low power usage.
Later, a burst of random disk requests increased power
consumption by almost 40%. The emulation line devi-
ates from the replay line by an average of 6%.

In Setup V, the GPFS server was caching requests
coming from a virtual machine. As a result, the run time
of the Fin1 trace was only 75 minutes. The memory and
CPU consumption of the GPFS server during this time
are shown in Figure 5. Memory usage rises steadily, in-
creasing by about 500MB by the end of the run, which is
the working-set size of the Fin1 trace. Discrepancies be-
tween replay and emulation are within 10%, but there are
visible deviations at times when the memory usage steps
up. We attribute this to the complexity of the GPFS’s
cache policy, which is affected by a workload parame-
ter that we did not emulate. CPU utilization remained
steadily about 10% for both replay and emulation.

Figure 6 summarizes the errors for all parameters, for
both setups and traces. The maximum emulation error
was below 15% and RMS distance was 10% on average.
Although the maximum discrepancy might seem high,
Figure 3 shows sufficient behavioral accuracy.

The selection of feature matrix dimensions is vital for
achieving high accuracy. If a system is sensitive to a
workload property that is missing in the feature matrix,
accuracy can suffer. For example, disk- and SSD-based
storage systems may have radically different queuing
and prefetching policies. To ensure high-fidelity replays

5

278 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

Pow
er

E
rr

o
r

(%
)

RMS
Maximum

(a) Setup P, Fin1 trace

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

Pow
er

E
rr

o
r

(%
)

RMS
Maximum

(b) Setup P, MS-WBS trace

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

E
rr

o
r

(%
)

RMS
Maximum

(c) Setup V, Fin1 trace

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

E
rr

o
r

(%
)

RMS
Maximum

(d) Setup V, MS-WBS trace

Figure 6: Root Mean Square (RMS) and maximum relative distances of accuracy parameters for two traces and two systems.

across both types of systems, the feature matrix should
capture the impact of appropriate parameters.

The chunk size and matrix granularity also affect the
model’s accuracy. Our general strategy is to select these
parameters liberally at first (e.g., 100s chunk size and
1MB granularity for I/O size) and then gradually and
repeatedly restrict them (e.g., 10s chunk size, 1KB I/O
size) as needed until the desired accuracy is achieved.
One can always be guaranteed to get high enough accu-
racy if sufficiently small numbers are used.

Conversion Speed and Model Size. The speed of
conversion and the size of the resulting model depend
on the trace length and the translator parameters. On our
2.5GHz server, traces were converted at about 50MB/s,
which is close to the throughput of the 7200RPM disk
drive. The resulting model without deduplication was of
approximately 10–15% size of the original trace. Dedu-
plication removed over 60% of the chunks in both the
Fin1 and MS-WBS traces, resulting in a final model size
reduction of 94–96%. All sizes were measured after
compressing both traces and models using gzip.

6 Related Work
The body of research related to traces is large; we cite
only a representative sample. Many studies have fo-
cused on accurate trace collection with minimum inter-
ference [1, 4, 24, 31, 32]. Other researchers have pro-
posed trace-replaying frameworks at different layers in
the storage stack [3,20,48,48,49]. Since a trace contains
information about the workload applied to the system, a
number of works focused on trace-driven workload char-
acterization [22, 23, 25, 34]. N. Yadwadkar proposed to
identify an application based on its trace [46].

After a workload is characterized, a few researchers
have suggested a workload model that allows them to
generate synthetic workloads with identical characteris-
tics [6, 14–18, 41, 42, 47]. These works address only one
or two workload properties, whereas we present a gen-
eral framework for any number of properties. Also, we
chunk data and generate workload expressions for the

languages of already existing benchmarks.
The two projects most closely related to ours are Dis-

tiller [27] and Chen’s Workload Analyzer [8]. Dis-
tiller’s main goal is to identify important workload prop-
erties. We can use this information to intelligently de-
fine dimensions for our feature matrix. Chen uses ma-
chine learning techniques to identify the dependencies
between workload features. However, the authors do not
emulate traces based on the extracted information.

7 Conclusions and Future Work

We have created a system that extracts flexible workload
models from large I/O traces. Through the novel use of
chunking, we support traces with time-varying statistical
properties. In addition, trace extraction is tunable, allow-
ing model accuracy and size to be traded off against cre-
ation time. Existing I/O benchmarks can readily use the
generated model by implementing a plugin. Our eval-
uation with Filebench and several block traces demon-
strated that the accuracy of generated models approaches
95%, while the model size is less than 6% of the original
trace size. Such concise models allow easy comparison,
scaling and other modifications.

In the future we plan to support file-system-level
traces, build multi-layer models, and add flexibility in
the analysis phase. Our current chunking method is sim-
ple and we want to investigate alternative chunking tech-
niques. We will also work on a graphical tool for manual
trace chunking. To avoid manual selection of the transla-
tor’s parameters, we want to explore various artificial in-
telligence approaches. To further reduce the model size,
we plan to improve the compression ratio by matching
empirical distributions in the feature matrix to explicit
mathematical functions. We recognize that our list of ac-
curacy metrics is not complete and want to experiment
with other accuracy parameters (e.g., latency distribu-
tions). We also plan to develop tools and techniques that
will simplify various operations on our models, such as
time and size scaling, and comparison to other models.

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 279

References
[1] E. Anderson. Capture, conversion, and analysis of

an intense NFS workload. In Proceedings of the
Seventh USENIX Conference on File and Storage
Technologies (FAST ’09), 2009.

[2] E. Anderson, M. Arlitt, C. Morrey, and A. Veitch.
DataSeries: an efficient, flexible, data format for
structured serial data. ACM SIGOPS Operating
Systems Review, 43(1), January 2009.

[3] E. Anderson, M. Kallahalla, M. Uysal, and
R. Swaminathan. Buttress: A toolkit for flexible
and high fidelity I/O benchmarking. In Proceed-
ings of the Third USENIX Conference on File and
Storage Technologies (FAST ’04), 2004.

[4] A. Aranya, C. P. Wright, and E. Zadok. Tracefs:
a file system to trace them all. In Proceedings of
the Third USENIX Conference on File and Storage
Technologies (FAST ’04), 2004.

[5] T. Bisson, S.A. Brandt, and D.D.E. Long. A hybrid
disk-aware spin-down algorithm with I/O subsys-
tem support. In Proceedings of the IEEE 2007 Per-
formance, Computing, and Communications Con-
ference (IPCCC), 2007.

[6] P. Bodik, A. Fox, M. Franklin, M. Jordan, and
D. Patterson. Characterizing, modeling, and gener-
ating workload spikes for stateful services. In Pro-
ceedings of the First ACM Symposium on Cloud
Computing (SOCC), 2010.

[7] D. Capps. IOzone file system benchmark. www.

iozone.org.

[8] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz.
Design implications for enterprise storage systems
via multi-dimensional trace analysis. In Proceed-
ings of the 23rd ACM Symposium on Operating
System Principles (SOSP ’11), 2011.

[9] F. Douglis, P. Krishnan, and B. Bershad. Adaptive
disk spin-down policies for mobile computers. In
Proceedings of the Second Symposium on Mobile
and Location-Independent Computing, 1995.

[10] M. Ebling and M. Satyanarayanan. SynRGen: An
extensible file reference generator. In Proceed-
ings of the 1994 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Sys-
tems, 1994.

[11] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer.
Passive NFS tracing of email and research work-
loads. In Proceedings of the Second USENIX Con-
ference on File and Storage Technologies (FAST
’03), 2003.

[12] Filebench. http://filebench.sourceforge.
net.

[13] fio—flexible I/O tester. http://freshmeat.

net/projects/fio/.

[14] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and
D. Patterson. Statistics-driven workload modeling
for the cloud. In Proceedings of the International
Workshop on Information and Software as Services
(WISS), 2010.

[15] G. Ganger. Generating representative synthetic
workloads: an unsolved problem. In Proceed-
ings of Computer Measurement Group Conference
(CMG), 1995.

[16] M. Gomez and V. Santonja. A new approach in the
modeling and generation of synthetic workloads.
In Proceedings of the 8th Symposium on Mod-
eling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2000.

[17] B. Hong and T. Madhyastha. The relevance of
long-range dependence in disk traffic and impli-
cations for trace synthesis. In Proceedings of the
22nd IEEE / 13th NASA Goddard Conference on
Mass Storage Systems and Technologies (MSST),
2005.

[18] B. Hong, T. Madhyastha, and B. Zhang. Cluster-
based input/output trace analysis. In Proceedings
of 24th IEEE International Performance, Comput-
ing, and Communications Conference (IPCCC),
2005.

[19] IBM. IBM scale out metwork attached storage.
www.ibm.com/systems/storage/network/

sonas/.

[20] N. Joukov, T. Wong, and E. Zadok. Accurate and
efficient replaying of file system traces. In Pro-
ceedings of the Fourth USENIX Conference on File
and Storage Technologies (FAST ’05), 2005.

[21] S. Kavalanekar, D. Narayanan, S. Sankar,
E. Thereska, K. Vaid, and B. Worthington.
Measuring database performance in online ser-
vices: a trace-based approach. In Proceedings
of TPC Technology Conference on Performance
Evaluation and Benchmarking (TPC TC), 2009.

[22] S. Kavalanekar, B. Worthington, Q. Zhang, and
V. Sharda. Characterization of storage work-
load traces from production windows servers. In
Proceedings of IEEE International Symposium on
Workload Characterization (IISWC), 2008.

[23] T. Kimbrel, A. Tomkins, R. Patterson, B. Bershad,
P. Cao, E. Felten, G. Gibson, A. Karlin, and K. Li.
A trace-driven comparison of algorithms for paral-
lel prefetching and caching. In Proceedings of the
Second Symposium on Operating Systems Design
and Implementation (OSDI 1996), 1996.

7

280 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[24] A. Konwinski, J. Bent, J. Nunez, and M. Quist.
Towards an I/O tracing framework taxonomy. In
In Proceedings of the International Workshop on
Petascale Data Storage (PDSW), 2007.

[25] G. H. Kuenning, G. J. Popek, and P. Reiher. An
analysis of trace data for predictive file caching in
mobile computing. In Proceedings of the Summer
1994 USENIX Conference, 1994.

[26] Z. Kurmas. Generating and Analyzing Synthetic
Workloads using Iterative Distillation. PhD thesis,
Georgia Institute of Technology, 2004.

[27] Z. Kurmas, K. Keeton, and K. Mackenzie. Synthe-
sizing representative I/O workloads using iterative
distillation. In Proceedings of IEEE/ACM Interna-
tional Symposium on Modeling, Analysis and Sim-
ulation of Computer Telecommunications Systems
(MASCOTS), 2003.

[28] LASS. UMass trace pepository. http://

traces.cs.umass.edu.

[29] T. Li and L. K. John. Run-time modeling and esti-
mation of operating system power consumption. In
Proceedings of the 2003 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Com-
puter Systems, 2003.

[30] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-
Miner: Mining block correlations in storage sys-
tems. In Proceedings of the Third USENIX Confer-
ence on File and Storage Technologies (FAST ’04),
2004.

[31] M. P. Mesnier, M. Wachs, R. R. Sambasivan,
e. Lopez, J. Hendricks, G. R. Ganger, and
D. O’Hallaron. //TRACE: parallel trace replay
with approximate causal events. In Proceedings of
the Fifth USENIX Conference on File and Storage
Technologies (FAST ’07), 2007.

[32] R. Moore. A universal dynamic trace for Linux
and other operating systems. In Proceedings of
the 2001 USENIX Annual Technical Conference
(ATC), 2001.

[33] OSDL. Iometer project. www.iometer.org.

[34] J. Ousterhout, H. Costa, D. Harrison, J. Kunze,
M. Kupfer, and J. Thompson. A trace-driven anal-
ysis of the UNIX 4.2 BSD file system. In Proceed-
ings of the Tenth ACM Symposium on Operating
System Principles (SOSP), 1985.

[35] F. Schmuck and R. Haskin. GPFS: A shared-disk
file system for large computing clusters. In Pro-
ceedings of the First USENIX Conference on File
and Storage Technologies (FAST ’02), 2002.

[36] P. Sehgal, V. Tarasov, and E. Zadok. Evaluating
performance and energy in file system server work-
loads extensions. In Proceedings of the Eighth
USENIX Conference on File and Storage Tech-
nologies (FAST ’10), 2010.

[37] Storage Networking Industry Association (SNIA).
Block I/O trace common semantics (working
draft). www.snia.org/sites/default/

files/BlockIOSemantics-v1.0r11.pdf,
February 2010.

[38] C. A. N. Soules, G. R. Goodson, J. D. Strunk,
and G. R. Ganger. Metadata efficiency in ver-
sioning file systems. In Proceedings of the Sec-
ond USENIX Conference on File and Storage Tech-
nologies (FAST ’03), 2003.

[39] A. Traeger, N. Joukov, C. P. Wright, and E. Zadok.
A Nine Year Study of File System and Storage
Benchmarking. ACM Transactions on Storage
(TOS), 4(2):25–80, May 2008.

[40] B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin,
M. I. Jordan, and D. A. Patterson. The SCADS di-
rector: scaling a distributed storage system under
stringent performance requirements. In Proceed-
ings of the Nineth USENIX Conference on File and
Storage Technologies (FAST ’11), 2011.

[41] M. Wang, A. Ailamaki, and C. Faloutsos. Captur-
ing the spatio-temporal behavior of real traffic data.
In Proceedings of Performance, 2002.

[42] M. Wang, T. Madhyastha, N. Chan, and S. Pa-
padimitriou. Data mining meets performance eval-
uation: fast algorithms for modeling burst traffic.
In Proceedings of 16th International Conference
on Data Engineering (ICDE), 2002.

[43] Watts up? PRO ES Power Meter. www.

wattsupmeters.com/secure/products.php.

[44] C. Weddle, M. Oldham, J. Qian, A. A. Wang,
P. Reiher, and G. Kuenning. PARAID: a gear-
shifting power-aware RAID. In Proceedings of
the Fifth USENIX Conference on File and Storage
Technologies (FAST ’07), 2007.

[45] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao.
WorkOut: I/O workload outsourcing for boosting
RAID reconstruction performance. In Proceedings
of the Seventh USENIX Conference on File and
Storage Technologies (FAST ’09), 2009.

[46] N. Yadwadkar, C. Bhattacharyya, and K. Gopinath.
Discovery of application workloads from net-
work file traces. In Proceedings of the Eighth
USENIX Conference on File and Storage Tech-
nologies (FAST ’10), 2010.

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 281

[47] J. Zhang, A. Sivasubramaniam, H. Franke, N. Gau-
tam, Y. Zhang, and S. Nagar. Synthesizing repre-
sentative I/O workloads for TPC-H. In Proceed-
ings of International Sypmposium on High Perfor-
mance Computer Architecture (HPCA), 2004.

[48] N. Zhu, J. Chen, and T. Chiueh. TBBT: scalable
and accurate trace replay for file server evalua-
tion. In Proceedings of the Fourth USENIX Confer-
ence on File and Storage Technologies (FAST ’05),
2005.

[49] N. Zhu, J. Chen, T. Chiueh, and D. Ellard. An NFS
trace player for file system evaluation. Technical
Report TR-14-03, Harvard University, December
2003.

9

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 283

scc: Cluster Storage Provisioning Informed by Application Characteristics
and SLAs

Harsha V. Madhyastha∗, John C. McCullough†, George Porter†, Rishi Kapoor†,
Stefan Savage†, Alex C. Snoeren†, and Amin Vahdat†

UC Riverside∗ and UC San Diego†

Abstract
Storage for cluster applications is typically provisioned
based on rough, qualitative characterizations of applica-
tions. Moreover, configurations are often selected based
on rules of thumb and are usually homogeneous across a
deployment; to handle increased load, the application is
simply scaled out across additional machines and storage
of the same type. As deployments grow larger and stor-
age options (e.g., disks, SSDs, DRAM) diversify, how-
ever, current practices are becoming increasingly ineffi-
cient in trading off cost versus performance.

To enable more cost-effective deployment of cluster
applications, we develop scc—a storage configuration
compiler for cluster applications. scc automates clus-
ter configuration decisions based on formal specifica-
tions of application behavior and hardware properties.
We study a range of storage configurations and iden-
tify specifications that succinctly capture the trade-offs
offered by different types of hardware, as well as the
varying demands of application components. We ap-
ply scc to three representative applications and find that
scc is expressive enough to meet application Service
Level Agreements (SLAs) while delivering 2–4.5× sav-
ings in cost on average compared to simple scale-out
options. scc’s advantage stems mainly from its ability
to configure heterogeneous—rather than conventional,
homogeneous—cluster architectures to optimize cost.

1 Introduction
Today, application providers can choose from a range of
storage choices to provision the infrastructure for cluster-
based applications. Storage technologies as diverse as
DRAM, solid state drives (SSDs), and hard disks present
complex trade-offs in cost, capacity, performance (along
multiple dimensions), and power consumption. New
storage technologies such as phase change memory [14]
will soon further complicate the space.

Provisioning, however, is based largely on rules of
thumb and best practices. Applications are broadly cat-

egorized as storage, compute, or memory intensive and
are typically deployed on homogeneous clusters heavy
on the corresponding resource. As application load in-
creases, deployments are “scaled out” by simply adding
more storage and compute in the same configuration.
Not only does this state of affairs fail to take full ad-
vantage of the diversity of available storage choices, but
the increasing scale of deployments makes such ineffi-
ciencies worse; inefficiencies multiplied over thousands
of servers can have substantial costs. In the scale-out
model, a poor initial choice can greatly inflate expenses.

In this paper, we pursue an alternate approach—the
automated selection of cluster storage configurations
based on formal specifications of applications, hardware,
and workloads. Initially, such an approach places signif-
icant burden on those developing and deploying applica-
tions to characterize applications and workloads. How-
ever, the resultant savings in cost necessary to satisfy Ser-
vice Level Agreements (SLAs) can be substantial.

Our primary contributions in implementing this ap-
proach are two-fold. First, we determine how the charac-
teristics of applications, workloads, and hardware should
be specified in order to automate the selection of cluster
configurations. To do so, we study several representative
deployment scenarios and identify a parsimonious yet
sufficiently expressive set of parameters that capture the
trade-offs offered by different types of storage devices
and the varying demands across application components.
Though others have pursued a similar approach of for-
mally specifying workloads and hardware [5, 7, 34], we
extend this approach to account for various types of stor-
age media (e.g., disk, SSD, and DRAM) and to jointly
capture storage and compute requirements of applica-
tions. We show that it is feasible to concisely summarize
the most salient parameters that determine the resource
requirements of specific application deployments, thus
minimizing the burden of formal specification.

Second, we develop scc, a storage configuration com-
piler that takes specifications of applications, workloads,

1

284 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Resource MB/s IOPS Watts Cost
7.2K Disk 90 (R) 125 (R)

5 $213
(500 GB) 90 (W) 125 (W)
15K Disk 150 (R) 285 (R)

2.3 $296
(146 GB) 150 (W) 285 (W)

SSD 250 (R) 2500 (R)
2.4 $456

(32 GB) 80 (W) 1000 (W)
DRAM 12.8K (R) 1.6B (R)

3.5 $35
(1 GB) 12.8K (W) 1.6B (W)

CPU core - - 20 $137

Server type Resource Limits Cost
Server1 4 cores, 1 Gbps network $1400

12GB DRAM, 4 SAS slots
Server2 16 cores, 10 Gbps network $1850

48GB DRAM, 16 SAS slots
Server3 32 cores, 10 Gbps network $11000

512GB DRAM, 16 SAS slots

Table 1: Example set of cluster building blocks input to scc.
Cost is price plus energy costs for 3 years. scc takes read and
write gap parameters as input rather than IOPS.

and hardware as input, automates the navigation of the
large space of storage configurations, and zeroes in on
the configuration that meets application SLAs at mini-
mum cost. To evaluate scc, we experiment with three
distributed applications with distinctly different work-
load characteristics: 1) ProductSearch, a product search
webservice modeled on Google Merchant Center [17], 2)
Terasort, a MapReduce job to sort large tuple collections,
and 3) PhotoShare, a photo-sharing Web service modeled
on Flickr. By deploying these applications on a range of
cluster configurations and measuring application perfor-
mance on these configurations, we present empirical ev-
idence that scc is expressive enough to capture the needs
of a range of applications.

In developing scc and applying it to diverse applica-
tion workloads, we make three key observations. First,
the right choice of storage configuration depends not
only on the storage capacity and I/O needs of the ap-
plication, but also on the application’s compute require-
ments and on the types of server configurations available.
When an application performs a set of operations in se-
quence, the resources assigned to serve each of these op-
erations must be jointly optimized to satisfy the perfor-
mance bound on the sequence of operations at minimum
cost. For example, in an application that performs an
I/O operation on some data followed by some compu-
tation, the storage type assigned to the data depends on
the amount of computation. When the computation con-
sumes significant time, the data may need to be stored
on fast storage like SSDs to meet performance bounds,
whereas when compute time is low, there is greater slack
in performing the I/O and hence, slower cheaper storage
like disk may suffice.

scc

SLA
Specification

Cluster
Building
Blocks

SLA

C
os

t

OutputsInputs

Application
Model

NetworkCPUs CPUs
Server 1 Server n

Storage
Units

Figure 1: Overview of scc.

Second, we find that clusters with heterogeneity—
rather than conventional homogeneity—across servers
are necessary to optimize cost. The resources required
differ across application components because of varying
ratios of capacity, compute, and I/O throughput needs
across components. For example, in a deployment of the
photo-sharing Web service, it may be cheaper to store
photos on disk and cache thumbnails in DRAM; stor-
ing both on disk or both in DRAM may result in higher
cost due to higher I/O throughput needs from thumbnails
or higher storage capacity needs of photos, respectively.
As a result, scc’s suggested configuration meets perfor-
mance SLAs at low cost. For example, in experiments
with Terasort, we find that scc meets performance re-
quirements at 15–20% lower cost than a homogeneous
configuration recommended based on best practices.

Finally, we also find that the most cost-effective clus-
ter architecture depends not only on the application be-
ing provisioned but also on the workload and perfor-
mance requirements. Data that was initially capacity-
bound may become I/O-bound at higher loads, calling
for shifts from high capacity but slow storage, e.g., disks,
to low capacity but fast storage, e.g., SSDs. As a result,
cluster configurations output by scc for ProductSearch
and PhotoShare result in 2x–4.5x average savings in cost
compared to similarly performant scale-out options.

2 Problem setting and overview
Identifying an appropriate cluster architecture to host a
large-scale service is often not straightforward. For ex-
ample, given a set of resources to choose from (e.g., as
shown in Table 1), an application provider has to answer
several questions. What storage technologies should be
employed, and how should data be partitioned across
them? Where should caching be employed? What types
of servers should be chosen to house the selected storage
units? In addition, even if the application’s implemen-
tation is efficient and there is coarse-grained parallelism
in the underlying workload, how will algorithmic shifts
in the application or variations in workload affect the ap-
propriate cluster architecture? Our goal is to automate
the process of answering these questions, rather than re-
lying solely on human judgment.

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 285

Problem setting. In developing scc, our focus is
on the typical scenario where a cluster is dedicated to
a specific application, rather than large-scale data cen-
ters (e.g., Google, Microsoft) that host a mix of applica-
tions. scc caters to the common case where an applica-
tion provider either acquires hardware or uses third-party
infrastructure to deploy an application. In such cases, the
question we seek to answer is: what information from
the infrastructure provider and from the application de-
veloper is necessary to determine a cost-effective cluster
configuration that meets performance goals?

Overview of scc. As shown in Figure 1, scc takes
three inputs: i) a model of application behavior, speci-
fied by the application’s developer, ii) characteristics of
available hardware building blocks specified by the in-
frastructure provider, and iii) application performance
metrics, i.e., a parameterized service level agreement
(SLA). Given these inputs, scc computes how cluster
cost varies as a function of SLA and outputs a low-cost
cluster configuration that meets the SLA at each point
in the space. For example, a webservice SLA might
specify a peak query rate per second. For each poten-
tial SLA value (e.g., 1000 queries per second), scc de-
termines a cost-effective cluster architecture capable of
satisfying the SLA. scc’s output cost vs. SLA value dis-
tribution helps administrators decide what performance
can be supported cost effectively.

Our focus in developing scc is to show how to system-
atically exploit storage diversity; i.e, select among differ-
ent physical media, local and remote storage, and various
caching strategies. In the future, we plan to extend scc
to tailor network configurations and choose among CPU
types. Here, we assume the cluster network can deliver
uniform bandwidth between all pairs of servers [4] and
do not address incast-like scenarios [27] that arise due to
limited packet buffers. Instead, we assume network stor-
age access is limited only by network adapter speeds.

3 Inputs to scc
We now describe how we represent the three inputs to
scc—SLA specifications, properties of cluster building
blocks, and application models. Rather than model the
intricate complexities of algorithms and hardware, scc
captures aggregate high level statistics that are relevant to
application and hardware scaling behavior over a broad
range of scenarios. Towards this end, we identify a key
set of elements that comprise each of scc’s inputs and the
corresponding attributes required to describe these ele-
ments. Figure 2 depicts examples of scc’s three inputs;
our implementation encodes them in XML.

3.1 Specifying SLAs

We consider throughput-based SLAs for two distinct ap-
plication classes: batch and interactive; we defer sup-

<sla task=“photoview” rate=“300”> </sla>
<sla task=“photoupload” rate=“100”> </sla>
<sla task=“tagview” rate=“100”> </sla>

(a)
<resources>

<storage unit name=“7.2KDisk” capacity=“500GB” bus=“SAS”
rateR=“90MBps” gapR=“8ms” rateW=“90MBps” gapW=“8ms”
volatile=“0” price=“200” power=“5W”> </storage unit>

<storage unit name=“SSD” capacity=“32GB” bus=“SAS”
rateR=“250MBps” gapR=“0.4ms” rateW=“80MBps” gapW=“1ms”
volatile=“0” price=“450” power=“2.4W”> </storage unit>

<storage unit name=“DRAM” capacity=“1GB” bus=“DDR3-1333”
rateR=“12.8GBps” gapR=“0.6ns” rateW=“12.8GBps” gapW=“0.6ns”
volatile=“1” price=“25” power=“3.5W”> </storage unit>

.. . additional storage units . . .
<cpu price=“85” power=“20W”> </cpu>
<server name=“HP DL380 G6” price=“1400” cpus=“4” BW=“1Gbps”>

<bus name=“SAS” slots=“4” BW=“6Gbps”> </bus>
<bus name=“DDR3-1333” slots=“12” BW=“21.3GBps”> </bus>

</server>
.. . additional servers . . .

</resources>

(b)
<application>

<dataset name=“tables repository” size=“150GB” persistent=“1”
remote=“1”> </dataset>

<dataset name=“hot ratingsdata” size=“1.6GB” persistent=“*”
remote=“0”> </dataset>

<dataset name=“cold ratingsdata” size=“6.4GB” persistent=“*”
remote=“0”> </dataset>

.. . additional datasets . . .
<task name=“worker” phase=“exec” memory=“1GB”>

<io op=“R” dataset=“tables repository” record size=“800MB”
num records=“1” blocking=“0”> </io>

.. . additional I/O operations . . .
<compute time=“2.2s” blocking=“1”> </compute>
<dependency task=“queryprocessor” num invocations=“1”

parallel=“1” blocking=“1”> </dependency>
</task>
<task name=“queryprocessor” phase=“exec” memory=“200MB”>

<io op=“R” dataset=“hot ratingsdata” probability=“0.8”
num records=“40K” record size=“4KB” blocking=“0”> </io>

<io op=“R” dataset=“cold ratingsdata” probability=“0.2”
num records=“40K” record size=“4KB” blocking=“0”> </io>

<compute time=“0.65s” blocking=“1”> </compute>
</task>

</application>

(c)

Figure 2: Example specifications of (a) SLAs for PhotoShare,
(b) hardware resources, and (c) application behavior for a par-
ticular deployment of ProductSearch.

porting latency-based SLAs to future work. For batch
applications, the SLA has two attributes—the job size
and the required execution time, e.g., for a MapReduce
job, the SLA specifies the number of records to be pro-
cessed and the total run time for doing so. scc is more ap-
plicable for provisioning a new set of VMs for every job
than for provisioning a shared cluster used for running
jobs with varying I/O and compute characteristics. For
interactive applications run as services, each type of re-
quest is associated with its own performance-based SLA
that describes its required sustained processing rate. For
example, in the case of a photo sharing Web service, the
rates of photo uploads, photo views, and album views
are each specified as a separate SLA. scc’s SLAs spec-
ify peak rather than average case throughput. We discuss

3

286 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

how scc accounts for temporal variation in Section 6.3.

3.2 Cluster building blocks

scc’s second input is a characterization of the set of build-
ing blocks available for assembling the cluster. We ac-
count for three types of elements—storage units, CPU
cores, and servers. To ensure our approach is not tied to
the characteristics of any particular technology, we em-
ploy abstract features such as I/O bandwidth and number
of processor slots as the attributes for these elements. Ta-
ble 1 lists sample building blocks used in our evaluation.

3.2.1 Storage

Storage resources come in discrete units, e.g., 1 disk
or 1 stick of DRAM. To differentiate between different
kinds of storage technologies such as disk, SSDs and
DRAM, we characterize each unit based on two prop-
erties: capacity and I/O throughput. Capacity is simply
the amount of available storage measured in bytes. Rep-
resenting I/O throughput is more complex; we capture it
with four attributes—the average rate at which I/O re-
quests are served and the average latency gap between
serving successive I/O requests, accounting for both sep-
arately for reads and writes. The gap parameter captures
overheads involved with non-sequential I/O, e.g., seeks
on disks and block erasure on SSDs. We define read
(write) gap for a particular storage device as the latency
incurred on average between successive reads (writes) to
random logical addresses on the device. The latency to
serve a read (write) request for a chunk of size bytes is
thus (size

rate + gap). We consider gap rather than the com-
monly used IOPS metric because gap enables us to better
capture the range of I/O performance regions from small
to large records. For example, characterizing read per-
formance on a 7.2K-RPM disk based on IOPS and rate
works well for 4 KB and 10 MB reads, but fails to cap-
ture the read throughput with 200 KB reads. In our eval-
uation, we find that these four attributes—rate and gap
for reads and writes—suffice to capture the I/O perfor-
mance of multiple disk types and SSDs. Furthermore,
we believe these attributes are expressive enough to cap-
ture the characteristics of phase change memory (PCM)
and other emerging storage technologies.

The application-visible performance of a storage
medium is also influenced by how the chosen file system
places data. For example, a disk can deliver significantly
higher write throughput when written to in a log for-
mat [28]. Therefore, when an application stores a dataset
on a storage or file system, we measure I/O rates and gaps
of each storage unit when using that system to read/write
data. Further, for each storage unit, we consider two
other attributes: storage persistence (i.e., whether it pro-
vides non-volatile storage) and I/O bus type (e.g., SAS
vs. PCIe).

3.2.2 Servers and compute

Servers impose constraints on how storage can be packed
into a physical box. For each kind of server, we consider
its memory capacity as well as the properties of its I/O
controllers. For each I/O controller, we consider the total
number of units it can support and its maximum avail-
able I/O bandwidth. For example, a serial attached SCSI
(SAS) controller permits up to 128 connected disks, yet
supports a maximum I/O bandwidth of only 6 Gbps, less
than the total sequential I/O throughput that can be ob-
tained from 128 disks. Similarly, throughput for remote
storage is limited by a server’s network interface speed.

As our focus is on storage complexity in cluster archi-
tectures, we consider only a single CPU type, ignoring
trade-offs in compute per unit power [6, 11]. Instead, we
vary the number of cores per server to extract the level of
parallelism needed to maximize storage utilization.

3.2.3 Costs

Finally, an additional attribute for every element in the
resource specification is the amortized cost per hard-
ware unit including both capital and operational outlays.
In our current implementation, the latter subsumes en-
ergy costs, ignoring data center costs and administrator
salaries, and we consider total cluster cost to be a linear
sum of individual components, which may not necessar-
ily be true for large quantities. We leave for future work
discounting the growth of expenses with cluster size and
accounting for increased operational costs with a higher
diversity of server configurations in the cluster.

3.3 Characterizing applications

Our characterization of applications accounts for two
aspects—its implementation and the workload in its
planned deployment. However, unlike previous attempts
at formally specifying workloads [34], simply account-
ing for storage capacity needs and the application’s
stream of I/O operations does not suffice for our pur-
pose. Instead, to capture an application’s implementa-
tion, we first ask the application’s developer to describe
its decomposition into compute and storage components,
and the interaction between them. For example, Fig-
ure 3 depicts the components, and the interaction be-
tween them, for one of the three applications we con-
sider later in our evaluation—a photo sharing Web ser-
vice, PhotoShare. Though our approach places the onus
on application developers to go through the process of
formally specifying the components of their application,
an application’s specification is reusable across deploy-
ments. Some of the characteristics of several applications
are already captured today [23, 24].

Second, we enable those who deploy an application
to annotate the specification of the application’s archi-
tecture with properties of the expected workload in their

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 287

Tasks Datasets

Photo Upload

Thumbnail
Conversion

Photos

(Tag, Photos)
Mapping

Thumbnails

Viewing
Photos

Viewing
Tags

Writing Tags

1 x 200KB

1 x 200KB

10 x 4KB

1 x 4KB

1 x 1KB

10 x 1KB10 x 1KB

remote,persistent
(1 TB)

remote,persistent
(20 GB)

remote,persistent
(2 GB)

Figure 3: Interaction between tasks and datasets in example
application PhotoShare. Edges between tasks and datasets rep-
resent I/O with direction differentiating input and output. Dot-
ted edges indicate task dependencies.

deployment. To do so, we require that the compute
and I/O characteristics of an application’s components,
when subjected to the target workload, be determined
by running small-scale application benchmarks. Extract-
ing these properties requires tracing the application’s
execution—now standard practice in resource-intensive
performance-critical applications. In the absence of
built-in tracing support, systems like Magpie [8] can be
leveraged.

3.3.1 Tasks and datasets

scc’s application specification separates the applica-
tion’s compute and storage requirements into tasks and
datasets. A task is a specific application functional unit;
all threads/processes that perform the same function to-
gether constitute a single task. A dataset is a collection of
records of the same type with similar I/O access patterns.

Execution of tasks. To account for how compute time
and I/O wait time are distributed across a task’s execu-
tion, we represent each task by its execution path; dif-
ferent tasks in an application will have different execu-
tion paths. A task in an interactive application executes
its execution path for each incoming request, whereas in
batch applications, a task’s execution path is executed as
many times as necessary to consume its input. Further,
since batch jobs can go through multiple phases of exe-
cution, we require the application developer to tag each
task with the phase to which it belongs. The cluster can
thus be provisioned to support the maximal resource re-
quirement across phases.

We characterize the execution path of a task as a se-
quence of three types of operations—compute, I/O, and
invocations of other tasks. Each of these can be marked
as either blocking or non-blocking. Compute operations
are characterized by the amount of time spent perform-
ing computation on a particular type of CPU. While this
value can of course vary, we have found that a represen-

tative average is sufficient to inform scc; we show later
in Section 6.1 that scc can help evaluate the sensitivity
of its output to the input values. I/O operations are at-
tributed with the dataset on which the operation is being
performed and whether it is a read or write operation.
Similarly, every task dependency is annotated with the
invoked task.

The operations in a task’s execution path may not be
completely deterministic. For example, an I/O operation
may hit the cache in some cases but not all, or a remote
task may need to be invoked only based on the results of
prior task invocations. To capture such non-determinism,
every operation has an additional attribute—the proba-
bility of its execution. This, for example, enables us to
capture developer knowledge of typical working set sizes
for individual datasets and the hit rate on the working set.

Lastly, we also require that each task node be tagged
with its memory requirements. While some applications
may use all available memory and garbage collect on de-
mand, we consider required memory to be the amount
necessary to maintain performance. Note that this spec-
ifies memory that scc must allocate for computation be-
yond any additional DRAM scc provisions as RAM disks
to store datasets.

Representing datasets. Next, we account for datasets
in terms of their I/O bandwidth and capacity require-
ments. The I/O requirements from a dataset are deter-
mined by all the I/O operations performed on it, across
the execution paths of all tasks. We ask that each I/O
operation be tagged with three attributes—the number
of records read or written, the number of bytes in each
record, and whether records are read in parallel. The
last of these three properties can be specified by the ap-
plication developer, while the other two depend on the
workload for which the application is being deployed.
Again, we find that average values suffice for our tar-
get throughput-based SLAs. Describing I/O in terms of
records accounts for the overhead seen between succes-
sive read/write operations on storage media such as disks
and SSDs, e.g., from disk seeks. We similarly annotate
task dependencies with three attributes—the number of
invocations being performed, whether they are in par-
allel, and whether the whole dependency is blocking or
non-blocking.

Lastly, we account for a dataset’s capacity require-
ments by requiring that it be tagged with three additional
attributes: its size, whether it must be persistent, and
whether the dataset is local or remote. This last attribute
differentiates between data assumed in the application’s
implementation to be on a storage unit local to the task
accessing it as opposed to data that may be stored on a
storage unit on a different machine in the cluster. Though
a remote file can be made to appear local by use of sys-
tems such as NFS, we capture the application developer’s

5

288 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

assumption of local storage, since remote access leads to
higher access latencies. scc leverages this distinction in
two ways. For a remote dataset, scc explicitly accounts
for network load resulting from I/O requests and some
CPU requirements for the machines hosting the dataset.
Conversely, task-local storage constrains the amount of
parallelism available on a single machine due to the stor-
age bandwidth and number of storage unit slots available
on the node.

Figure 2(c) presents an example (for another of the
applications we use in our evaluation, ProductSearch,
a product search Web service) of the precise format in
which such an application characterization is specified
as input to scc.

4 Implementation of scc
Next, we describe how scc processes its inputs to gener-
ate cost-effective cluster configurations.

4.1 Overview

scc determines the cost versus SLA distribution for a
given application deployment by considering the config-
uration for each point in the distribution independently.
To compute the cluster configuration for a target SLA,
scc needs to answer two questions. First, it needs to de-
termine the architecture of the cluster—for each dataset
of the application, it must determine the type of media on
which the dataset should be stored and how to pack the
storage units into servers. This packing is constrained by
the number and location of CPUs available to assign to
the compute tasks that access each dataset. Second, scc
needs to identify the scale at which this architecture must
be instantiated to meet the SLA—scale is determined by
the number of servers, storage units, and CPUs, as well
as the level of parallelism of each application task.

Guiding Principles. Two key principles help scc
identify the right cluster configuration. First, the archi-
tecture and scale for every application component can be
determined independently when all operations are per-
formed asynchronously, but not when some operations
are synchronous. The SLA for any task only specifies
the rate at which a task’s execution path must run. In
the typical case where a task’s execution path contains
some operations that block others, scc needs to deter-
mine the “division of labor” across these operations that
minimizes cost. For example, in a task that reads from
an input dataset and then writes to an output dataset, in
order to meet the task’s SLA, it may suffice to provision
fast storage for any one of the two datasets; provision-
ing fast storage for both datasets may unnecessarily re-
sult in higher cost due to storage capacity requirements,
whereas slow storage for both may incur higher costs
in satisfying I/O throughput needs. Hence, scc jointly
determines resource requirements across all application

Configuration state: S = (S1, . . . ,Sn), where
Si = storage type assigned to ith dataset

for every remote dataset di
compute Ui = no. of units of Si to meet capacity and
I/O needs from di

for every task ti
Ri = average runtime of ti
Pi (parallelism of task ti) = SLA(ti) × Ri
for every dataset d j local to ti,

compute no. of units of S j to meet capacity and
I/O needs from d j for one instance of ti

Linear integer program to choose servers
Variables:

1. booleans for whether kth server is of jth type
2. ∀ remote dataset di, no. of units of Si in kth server
3. ∀ task ti, no. of instances on kth server

Constraints:
Per-server constraints:
1. On each I/O controller, (no. of storage units < no. of

slots) and (I/O throughput < bus bandwidth)
2. (I/O throughput on remote datasets and local datasets

accessed remotely) < network bandwidth
3. no. of CPUs < no. of CPU slots
Per-dataset and per-task constraints:
1. ∀ dataset di, (no. of units across all servers = Ui)
2. ∀ task ti, (no. of instances across all servers = Pi)

Objective:
Minimize cost of (servers + storage units + CPUs)

Figure 4: Summary of scc’s procedure for determining a cost-
effective cluster configuration that satisfies target SLAs, given
a particular assignment of storage types to datasets.

components.
Second, since scc is provisioning for peak load, it pre-

vents over-provisioning by ensuring that at least one re-
source is bottlenecked on every server at peak load. (If
the application provider desires to run the cluster at lower
peak utilization, that can be specified as input.) Based on
our characterization of hardware, there are four possible
bottlenecks on each server—1) the number of slots or
2) the bandwidth on an I/O controller, 3) the number of
CPU cores, or 4) network bandwidth.

Algorithm. Driven by the need for joint optimization
across components, scc represents each point in the state
space of configurations by the assignment of storage unit
types to datasets. As a result, if S is the number of stor-
age choices and D is the number of datasets, scc has to
search through a space of O(SD) configurations; for each
dataset, scc can choose any one of the S storage options.

In cases where the configuration space is too large to
perform an exhaustive search, scc performs a repeated
gradient descent search: We start with a randomly cho-
sen configuration. In each step, we consider all neigh-
boring configurations—those which differ in exactly one

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 289

dataset’s storage-type assignment—and move to the con-
figuration that still meets the SLA with the maximum de-
crease in cost. We repeat this step until we find a configu-
ration where all neighbors have higher cost. Since gradi-
ent descent can lead to a local minimum, we repeat this
procedure multiple times with different randomly cho-
sen initial configurations and settle on the minimum cost
output across the multiple attempts. In our evaluation, we
have found that repeating the gradient descent 10 times is
typically sufficient to find a solution close to the global
minimum. Therefore, even when determining the con-
figuration to satisfy workloads of tens of thousands of
queries per second, scc’s running time for any particular
SLA is within a minute.

At the heart of scc’s search of the configuration space
is a procedure—summarized in Figure 4—that, given
any particular assignment of storage types to datasets,
determines a cost-effective set of resources to meet the
target SLAs. In this procedure, scc first determines for
each remote dataset, i.e., not local to any task, the num-
ber of storage units required of the type assigned to the
dataset in the configuration state. Second, scc determines
the number of CPUs required by every task and the num-
ber of storage units of the assigned type needed by the
task’s local datasets. Finally, it determines the types of
servers and number of each kind required to minimize
overall cluster cost. We describe these three steps using
examples from illustrative applications.

4.2 Resources for datasets

A dataset’s storage resources need to satisfy two require-
ments: capacity and I/O throughput. To determine the
cheapest storage solution that satisfies both, scc com-
putes the number of storage units required to satisfy each
requirement independently and chooses the maximum of
the two. When the former (latter) is more expensive,
we call the dataset capacity (I/O) bound. A capacity-
bound dataset requires storage equal to the dataset’s size
irrespective of the medium used. Determining the stor-
age required by a I/O-bound dataset is more involved.
Though the total capacity of the storage units allocated
to the dataset need only be equal to the dataset’s size,
we may need more units—under-utilizing the capacity
on each of them—to meet throughput demands.

We compute I/O requirements as follows. As de-
scribed in Section 3.3, the application characterization
specifies the record size and the number of records
read/written in every I/O operation. scc computes the
overall number of I/O operations that a particular storage
unit can support based on its rate and gap parameters.
The SLA combined with the probability attributed to an
I/O operation fully specifies the required frequency of the
operation, which in turn determines the number of stor-
age units required to deliver the performance in parallel.

For example, when serving requests to view photos in
PhotoShare, one photo of size 200 KB on average is read
from the photos dataset on every photo view. If the pho-
tos dataset were assigned to 15K-RPM disk (Table 1),
which offers a read rate of 150 MBps and a read gap
of 3.5 ms, it will be able to serve 200 KB-sized reads at
the throughput of 200KB

200KB
150MBps +3.5ms

, approximately 40 MBps.

Therefore, if the SLA specifies 1000 photo views per
second, 200KB×1000/s

40MBps = 5 units of 15K-RPM disks are
required to satisfy the I/O throughput requirement.

4.2.1 Task phases

Not all tasks in an application execute concurrently, e.g.,
the Map and Reduce tasks run in different phases of a
MapReduce job. Since datasets are subject to I/O opera-
tions only from tasks executing in a particular phase, scc
computes the storage needed to meet I/O requirements in
each phase independently. The storage requirements for
a dataset during a particular execution phase are com-
puted as the sum of storage needs across all the I/O op-
erations made on the dataset by the tasks that run in that
phase. scc computes the overall I/O-mandated storage
requirement as the maximum over all phases.

4.2.2 Caching for higher I/O

When a dataset is I/O-bound, storing it across units of
a single type may not always be the cheapest solution.
I/O throughput of persistent datasets can be improved by
introducing a second type of storage unit as a caching
layer. For example, when considering a single storage
type to service the entire load, the SSD is the most cost-
effective option for the tags dataset in the PhotoShare ap-
plication. However, a cheaper solution is to store the per-
sistent copy of the tags on a 7.2K-RPM disk and to serve
reads from a cached copy in DRAM.

scc assumes write-through caching. Persistent storage
units handle all writes and maintain a persistent copy.
Units of another type, with higher I/O rates, handle all
reads. To ensure durability, every write is committed
to both copies and by default, scc provisions enough
storage to cache the entire dataset. However, devel-
oper knowledge of the application’s working set size—
encoded into the application specification as different ca-
pacity requirements for the dataset and for the cache—
can also be used to determine what fraction of the dataset
is to be cached. To evaluate whether such a solution is
cost effective, scc computes the costs of both copies of
the dataset separately and computes their sum.

4.3 Task Resources

scc next determines the resource requirements of each
compute task in three steps. First, it determines the CPU
utilization of the task. Second, it computes the degree of
parallelism—i.e., the number of threads/processes of the

7

290 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

task—required to meet the SLA. Finally, it determines
the number of storage units required per instance of the
task for each of the task’s local datasets.

A task’s CPU utilization is the fraction of its run time
spent performing computation. scc translates a task’s
CPU utilization into the corresponding CPU resources
required by computing the level of parallelism required
to meet the SLA: if a task’s execution path is to be exe-
cuted with frequency F and the task’s average run time
is R, then (F ·R) instances of the task are required. The
value of F for a task is computed from the SLA for that
task and other tasks that depend on it; R is computed by
appropriately summing up the times for compute, I/O,
and task invocation operations in the task’s execution
path, taking into account, for each operation, its prob-
ability and whether it is blocking or non-blocking.

scc calculates each task’s storage requirements for its
local datasets based on capacity and I/O throughput re-
quirements. scc also computes the task’s memory re-
quirements and the network bandwidth needed for I/O
accesses to remote storage. scc determines each of these
three requirements—local storage, memory, and network
bandwidth—per instance of the task and linearly extrap-
olates to a target level of parallelism.

4.4 Optimizing server costs

Finally, scc optimizes cluster cost by minimizing the
cost of required servers. Determining the servers re-
quired to host storage and CPU resources reduces to
the multi-dimensional vector bin packing problem [12].
Each server type is associated with a cost and a vector
of resource limits, such as the I/O bandwidth of each I/O
controller and the maximum number of CPUs that the
server can accommodate. Respecting these resource lim-
its, CPUs and storage units required by tasks and datasets
must be placed across servers, while minimizing total
cost. scc solves this bin-packing problem with a linear
integer program.

5 Evaluation

Next, we demonstrate that scc achieves the right cost ver-
sus performance tradeoff. Unfortunately, it is difficult to
select appropriate comparisons. Though there exists a
large body of work on capacity planning [22], all of it re-
volves around the question: “Given a cluster architecture
for an application, how many servers of each type in the
architecture are necessary?” In contrast, scc minimizes
cost by determining not only the right scale, but also the
architecture most suited for a given application deploy-
ment. Moreover, conversations with major infrastructure
providers reveal that existing approaches for provision-
ing cluster applications used in practice are ad-hoc—the
primary motivation for our work.

5.1 Methodology

We apply scc to three distributed applications with
disparate workload characteristics to identify the cost-
versus-SLA tradeoff in each case. To keep the discus-
sion simple, we fix capacity requirements while vary-
ing the SLA. For each application, we validate the cost-
effectiveness of scc’s output for one particular target
SLA. Though scc readily outputs cluster configurations
on the scale of tens of thousands of servers, we focus on
smaller scales for validation so that we can instantiate the
configurations with hardware we have on hand. Note that
even at the scale of a few servers, the combination of type
and quantity for storage, compute, and servers results in
a very large configuration space. For example, with 5
servers of type Server1, over 1014 cluster configurations
are feasible using the building blocks in Table 1.

In the absence of prior approaches for principled de-
termination of cluster architectures, our evaluation com-
pares configurations output by scc with all possible alter-
native assignments of datasets to storage types; for each
alternative, we consider those quantities of hardware re-
sources to make cost comparable to scc. Here, we present
results from alternate architectures that come closest to
matching scc with respect to satisfaction of SLAs. In
some cases, we also consider alternative architectures at
the scale required to meet input SLAs and show that they
incur higher costs than scc. For each experiment, we
physically provision clusters composed of the building
blocks provided as input to scc.

Table 1 summarizes the resources provided as input to
scc, represented formally as in Figure 2(b). We construct
our specification for cluster building blocks based on HP
ProLiant DL380 G6 servers interconnected by a Gigabit
Ethernet network. In each server (Server1), we consider
the resource limitations to be one quad-core Intel Xeon
processor, four SAS slots, and up to 12 GB of DRAM.
Each of the SAS slots can support a 7.2K-RPM disk, a
15K-RPM disk, or an Intel SSD. To evaluate the perfor-
mance of a given configuration, we turn off CPU cores
and/or use only a subset of the SAS and DIMM slots.

For each of the resources, we consider the cost to be
the amount we paid, excluding support, plus energy costs
computed based on power usage numbers from product
data sheets (we assume $0.10/kWh over a three year de-
ployment). Though the power drawn by any unit can vary
from its specification, we study the robustness of our re-
sults (Section 6.1) and find that they remain unchanged
even if energy costs increase by a factor of two.

5.2 Photo sharing

Our first application, PhotoShare, is an interactive photo
sharing application. It allows users to upload tagged
photos, to view thumbnails for photos associated with
a given tag, and to view the photos. PhotoShare is a

8

(a) PhotoShare

(b) ProductSearch

(c) MapReduce Terasort

Figure 5: Validation of cluster output by scc for particular
SLA values in the three application cases.

C++ FastCGI application hosted on lighttpd webservers.
Uploaded images are thumbnailed and stored, whereas
tag updates are made via RPCs. Data is kept in a dis-
tributed log-based key-value storage system. Image, tag,
and thumbnail views translate to fetches from the store.
The three SLA metrics are the simultaneous rates for up-
loading photos, viewing photos, and viewing thumbnails
associated with tags. Our input workload has, on aver-
age, 200-KB images that convert to 4-KB thumbnails,
and an average of 10 photos/tag and 10 tags/photo.

We apply scc to study the cost as a function SLA by
fixing the ratio of the rates for uploads, photo views, and
tag views at 1:3:1. Figure 6 shows this cost distribu-

Figure 6: Cost versus SLA distribution output by scc for Pho-
toShare. Note log scale on y axis.

tion for a range of SLA values. Perhaps surprisingly,
no huge spikes are observed in this distribution; this is
because scc balances costs across the kind of storage,
the number of CPUs, and the number of machines provi-
sioned. Rather than adding more machines of the same
type, the cluster architecture transitions to faster storage
as the SLA becomes more stringent, with transitions in
storage type for different datasets seen at different SLA
values. Table 2 highlights these transitions. Note that the
quantity in which different types of resources are provi-
sioned varies within each architecture regime specified
by every row in the table.

We further compare the cost output by scc with the
cost associated with a scale-out approach. We compare
the scc configuration to the cases where the building
block is based around: 1) storage servers with four 7.2K-
RPM disks (the cost-optimal storage type for all datasets
at the lowest SLA), and 2) servers with four 15K-RPM
disks. In either case, more storage servers are added as
the required rates increase. Figure 6 shows that the costs
in both cases are significantly greater than with scc, in-
curring between 3 and 4.5 times more cost (note the loga-
rithmic y axis). Thus, simply scaling out a homogeneous
configuration that is cost-effective at low loads can result
in significant cost inflation at higher loads.

To verify the performance of scc’s suggested configu-
ration, we focus on one particular SLA: 100 uploads/s,
300 photo views/s, and 100 tag views/s. The fraction of
the SLA satisfied is the minimum fraction of sustained
request rates across uploads, photo views, and tag views.
scc determines the following cluster configuration for
this SLA: one machine, with 4 CPU cores and 2 GB of
DRAM hosts the webserver; a second machine stores the
photos across four 15K-RPM disks; and a third machine
hosts one SSD for thumbnails, and 1 GB of DRAM and
one 7.2K-RPM disk for tags. Each of the two storage
machines have 2 CPU cores and an additional 1 GB of
DRAM, as required by the key-value storage system.

Figure 5(a) shows that this configuration meets

9

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 291

(a) PhotoShare

(b) ProductSearch

(c) MapReduce Terasort

Figure 5: Validation of cluster output by scc for particular
SLA values in the three application cases.

C++ FastCGI application hosted on lighttpd webservers.
Uploaded images are thumbnailed and stored, whereas
tag updates are made via RPCs. Data is kept in a dis-
tributed log-based key-value storage system. Image, tag,
and thumbnail views translate to fetches from the store.
The three SLA metrics are the simultaneous rates for up-
loading photos, viewing photos, and viewing thumbnails
associated with tags. Our input workload has, on aver-
age, 200-KB images that convert to 4-KB thumbnails,
and an average of 10 photos/tag and 10 tags/photo.

We apply scc to study the cost as a function SLA by
fixing the ratio of the rates for uploads, photo views, and
tag views at 1:3:1. Figure 6 shows this cost distribu-

Figure 6: Cost versus SLA distribution output by scc for Pho-
toShare. Note log scale on y axis.

tion for a range of SLA values. Perhaps surprisingly,
no huge spikes are observed in this distribution; this is
because scc balances costs across the kind of storage,
the number of CPUs, and the number of machines provi-
sioned. Rather than adding more machines of the same
type, the cluster architecture transitions to faster storage
as the SLA becomes more stringent, with transitions in
storage type for different datasets seen at different SLA
values. Table 2 highlights these transitions. Note that the
quantity in which different types of resources are provi-
sioned varies within each architecture regime specified
by every row in the table.

We further compare the cost output by scc with the
cost associated with a scale-out approach. We compare
the scc configuration to the cases where the building
block is based around: 1) storage servers with four 7.2K-
RPM disks (the cost-optimal storage type for all datasets
at the lowest SLA), and 2) servers with four 15K-RPM
disks. In either case, more storage servers are added as
the required rates increase. Figure 6 shows that the costs
in both cases are significantly greater than with scc, in-
curring between 3 and 4.5 times more cost (note the loga-
rithmic y axis). Thus, simply scaling out a homogeneous
configuration that is cost-effective at low loads can result
in significant cost inflation at higher loads.

To verify the performance of scc’s suggested configu-
ration, we focus on one particular SLA: 100 uploads/s,
300 photo views/s, and 100 tag views/s. The fraction of
the SLA satisfied is the minimum fraction of sustained
request rates across uploads, photo views, and tag views.
scc determines the following cluster configuration for
this SLA: one machine, with 4 CPU cores and 2 GB of
DRAM hosts the webserver; a second machine stores the
photos across four 15K-RPM disks; and a third machine
hosts one SSD for thumbnails, and 1 GB of DRAM and
one 7.2K-RPM disk for tags. Each of the two storage
machines have 2 CPU cores and an additional 1 GB of
DRAM, as required by the key-value storage system.

Figure 5(a) shows that this configuration meets

9

292 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Uploads/s Storage unit type
Photos Thumbnails Tags

≤ 5 Disk Disk Disk
5–25 Disk Disk Disk + DRAM

25–330 Disk SSD Disk + DRAM
330–930 SSD Disk + DRAM Disk + DRAM
930–10k Disk + DRAM Disk + DRAM Disk + DRAM

Table 2: Different regimes based on SLA requirements in the
cost-effective architecture for PhotoShare.

the SLA; in fact, the configuration is slightly over-
provisioned. It also shows the configuration is near a
minimum: removing a core from the webserver (Alt1),
replacing the thumbnail’s SSD with a cheaper 15K-RPM
disk (Alt2), removing one of the photo disks (Alt3), or re-
placing the thumbnail’s SSD with two 7.2K-RPM disks
(Alt4) all result in SLA misses. A scale-out architecture
extending Alt4 with more 7.2K-RPM drives (Alt5) incurs
30%-higher cost to meet the SLA.

5.3 Product search

Our second application is a multi-merchant product
search and comparison service, which we call Product-
Search. We store product tables, which include product
serial numbers, types, descriptions, and costs, along with
product type field indices in a Hadoop Distributed File
System (HDFS). In addition, user rating data is stored
in a separate database table. Worker processes running
across the cluster process queries for the cheapest prod-
uct of a given type with a minimum user-specified rating.
Each worker maintains a local copy of the ratings table
as well as an index on the product serial number field;
the ratings table and index are hence, specified as local
datasets in the application’s specification. To execute a
query, a worker fetches the relevant product table and
index from HDFS and then performs a join with the rat-
ings table on the product serial number field, selecting
for rows with the specified product type.

In our deployment, we build product tables with an av-
erage of 200K products, each with an average of 200 rat-
ings. This translates to 8 GB for the ratings and roughly
800 MB for each product table. The SLA for this appli-
cation specifies the required query rate.

We apply scc to determine system cost as a function
of the SLA value. As with PhotoShare, the architec-
ture of the cost-effective cluster changes significantly
across different regimes of the SLA. At low query rates,
scc recommends disks for both HDFS and local stor-
age of workers. As the required query rate increases,
scc transitions to using faster storage or provisioning
more machines to handle the increased load. Figure 7
illustrates one particular transition between query rate
regimes. Also, in this case as well, scc’s configurations
yield significant cost savings compared to simple scale-

Network

HDFS

1x CPU2x CPUs
2x 7.2K disks 4x SSDs

Worker Processes

3 Servers

Network 1x CPU

6 Servers

8 GB DRAM
1x 7.2K disk

Config1

Config2

2x CPUs
2x 7.2K disks

2 Servers

2 Servers

Figure 7: Transition in scc’s output for ProductSearch from
Config1 at 12 queries/minute to Config2 at 13 queries/minute.

out options—roughly 3× and 2× savings on average in
comparison to the scaling out of homogeneous configu-
rations with 7.2K-RPM and 15K-RPM disks, which are
cost-optimal at low loads.

We validate scc with an SLA of 12 queries per minute.
scc’s cluster output for this case has two parts. First,
the HDFS repository is stored across two machines, each
with one CPU and two 7.2K-RPM disks. Second, 12
worker processes are spread across three machines, each
with one CPU and four SSDs. We run this configuration
for 15 minutes. Figure 5(b), which plots the fraction of
required queries completed during the experiment, shows
that this configuration is able to meet the SLA.

Next, we compare scc’s output with alternative config-
urations. First, we consider clusters with alternative lo-
cal storage for the workers—Alt1 and Alt2 use 15K-RPM
drives, and Alt3 uses 7.2K-RPM disks with DRAM.
In each case, we consider the number of workers and
servers to keep cost comparable to scc. In both Alt1 and
Alt2, the disk’s lower random read throughput inflates
query processing times and, hence, aggregate through-
put falls well below the SLA. The performance of Alt3
comes close to the SLA, but still falls short. Second,
when we place all four disks underlying HDFS into one
machine (Alt4), the 1 Gbps network becomes a bottle-
neck relative to the aggregate read throughput from four
7.2K-RPM drives. As a result, download times increase,
leading to SLA violations.

We also use this example application to test scc’s abil-
ity to capture knowledge of working set sizes. We again
apply scc to satisfy the SLA of 12 queries per minute, but
this time with the additional input that 20% of product
types receive 80% of queries (the application specifica-
tion for this case is shown in Figure 2(c)). In this case,
scc outputs an alternate architecture where 12 worker
processes, previously run on three machines each with
four SSDs, are now instead run on three machines each
with four 15K-RPM disks and 10 GB of DRAM. Queries
to “hot” products are served from DRAM and those to
“cold” data are served from the disks. This configuration

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 293

meets the SLA with 7%-lower cost than the case where
access patterns were assumed to be uniform.

5.4 Sorting binary tuples

Our final application, Terasort [29], is a MapReduce job
that sorts collections of 100-byte tuples, each consist-
ing of a 10-byte key and a 90-byte value. A Mapper
reads tuples from a local input file and sends them over
the network to appropriate Shuffle processes. Each Shuf-
fler writes the tuples it receives to a set of intermediate,
sorted local files. Once the Mappers and Shufflers are
done, the Shuffle processes transform into the role of Re-
ducers. Each Reducer merges the tuples in the local files
into an output file of sorted tuples. For this application,
the SLA is the total runtime of the MapReduce job.

We use scc to determine the cost of clusters capable of
sorting 50 GB for a range of runtimes. Note that though
we put together clusters of individual servers here, we
envision that scc will be used for such jobs to provision
a set of virtual machines in a virtualized infrastructure.
Unlike PhotoShare and ProductSearch, we see no signif-
icant architecture changes over different runtimes. scc
uses the basic building block of provisioning Mappers
on machines with four cores and one 7.2K-RPM disk and
Shufflers/Reducers on machines with four cores and two
7.2K-RPM disks. scc provisions more machines for both
components to meet more stringent SLAs. Faster storage
has no benefits because the job is CPU bound.

Next, we verify the performance of the cluster output
by scc for an SLA that requires 50 GB to be sorted in
25 minutes—an average sorting rate of 2 GB per minute.
The scc cluster consists of 8 Mappers and 16 Reducers
spread across two and four machines respectively with
the above-mentioned building blocks. We run the appli-
cation on this cluster to sort 50 GB of input data. Fig-
ure 5(c) plots the SLA-specified runtime divided by the
observed runtime and shows that the scc cluster meets
the SLA.

To evaluate the cost-effectiveness of scc’s output, we
also sort 50 GB of data on several alternative architec-
tures. A few such alternatives include Alt1 and Alt2,
which reduce the number of cores from 4 to 3 on the
Mapper machines and on the Reducer machines, respec-
tively. Alt3 substitutes the two 7.2K-RPM disks on each
of the four Reducer machines with one 15K-RPM disk
shared between the intermediate and output data. Fig-
ure 5(c) shows that the runtime of the Terasort job misses
the SLA by at least 10% in every case. The figure also
shows that two other alternatives—Alt4 and Alt5—which
have similar cost to scc’s output but trade off compute re-
sources for more or faster storage, also fall short.

Unlike our other two example applications, compute-
intensive MapReduce jobs have a cluster configuration
recommended by best practices. We modify the cluster

Attribute Range with same architecture
Lowest Input Highest
value value value

Avg. photo size 50 KB 200 KB 850 KB
Avg. thumbnail size 1 KB 4 KB 30 KB

SSD unit price $200 $450 $900

(a)

Dataset Most sensitive to what change
in hardware costs?

Photos 20% drop in $ of 7.2K-RPM disk
Thumbnails 92% drop in $ of DRAM

Tags 31% drop in $ of 15K-RPM disk

(b)

Table 3: Determining robustness of scc’s output with respect
to its input: (a) robustness of cluster configuration with re-
spect to input values for a sample set of attributes, and (b) the
change in hardware costs to which scc’s storage decision for
each dataset is most sensitive.

architecture to be six machines each with four cores and
two 7.2K-RPM disks—a setup recommended by Cloud-
era for a “Balanced Compute Configuration” [13]. Also,
we configure every node in the cluster to run a fixed num-
ber of Mappers and Reducers. We evaluate three differ-
ent combinations of Mappers and Reducers per node (the
“2M 2R”, “2M 3R”, and “1M 3R” points in Figure 5(c)),
and interestingly, we find that the recommended MapRe-
duce configurations deliver lower performance than scc
for similarly priced clusters. While all three alternatives
meet the SLA when scaled out to an additional machine,
e.g., the “2M 2R+” point in the figure, this results in
16%-higher cost than scc’s recommendation.

6 Discussion
In this section, we discuss the robustness of scc’s output,
its utility in planning application implementation archi-
tectures, and its extensibility on other fronts.

6.1 Robustness of scc’s output

scc’s output cluster configuration for a target SLA is a
function of both the SLA and the exact values specified
for the various attributes in the application and hardware
specifications. In practice, a user of scc may not have
precise values for all attributes due to incomplete knowl-
edge of the application workload, uncertainty of hard-
ware costs, or measurement inaccuracy in benchmarking.

scc is naturally built to cope with such uncertainty.
For every attribute in the input specifications, scc varies
the value of the attribute in the neighborhood of the ini-
tially specified value. For each attribute, it then outputs
the range of values for that attribute wherein the cost-
effective cluster architecture, i.e., the types of resources
assigned to different application components, remains

11

294 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

unchanged; variance of the attribute’s value within this
range can be handled by simply adding more resources
of the same type. Outside of that range, the cluster will
need to be revamped with a different type of resource for
some application component, a significantly more cum-
bersome undertaking. For example, we again consider
PhotoShare with an SLA of 100 uploads/s, 300 photo
views/s, and 100 tag views/s. Table 3(a) shows the value
ranges output by scc for a few attributes, within which
the cluster architecture is robust to change. For exam-
ple, we see that as long as average photo size remains
between 50 KB and 850 KB, the cluster architecture re-
mains the same as that obtained with the input value of
200KB.

Furthermore, scc can also evaluate the sensitivity of
its choice of storage configuration for every dataset in
the application. For example, consider PhotoShare again
with the same input SLA as above. Based on current
hardware costs, scc determines that photos be stored on
15K-RPM disks, thumbnails be stored on SSDs, and tags
be stored persistently on 7.2K-RPM disks and cached
in DRAM, in order to meet the SLA at minimum cost.
However, these recommendations are likely to change as
prices for storage units drop. scc can determine how ro-
bust are its choice of storage options to such changes in
hardware prices. To do so, it varies the price of every
type of storage unit from its input value down to 0, and
notes the inflection points at which the optimal storage
choice for some dataset changes. Based on this analysis,
it can determine, for every dataset, that change in hard-
ware price to which the current storage choice for the
dataset is most sensitive. Table 3(b) shows the output of
this analysis for the three datasets in PhotoShare. While
the storage choices for photos and tags are sensitive to
relatively small reductions in the prices for 7.2K-RPM
and 15k-RPM disks, scc’s recommendation of storing
thumbnails on SSDs is very robust to price fluctuations.

6.2 Informing application development

Thus far, we assumed a fixed application implementa-
tion. However, scc can also help determine the best ap-
plication architecture. For instance, in the case of Tera-
sort, there is a fundamental performance tradeoff be-
tween a cluster configuration with sufficient DRAM to
store all data to be sorted and one that must stage por-
tions of the data into memory from secondary storage.
The former case requires one read and one write of all the
data while the latter requires two reads and two writes of
the data [3].

To explore cost–performance tradeoffs for the two ap-
plication architectures, we must consider the benefits of
servers with more network bandwidth (so remote stor-
age does not become a bottleneck) and more memory (to
allow for storing the entire dataset in memory). In Ta-

ble 1, Server2 is the same HP ProLiant DL380 G6 server
as Server1, but with more resources per server and a 10-
Gigabit Ethernet (10GigE) NIC. Server3 is the HP Pro-
Liant DL785 G5 Server, which accommodates more pro-
cessors and DRAM, again with a 10GigE NIC.

We use scc to determine the cluster configuration nec-
essary to sort 100 TB in the time required to read/write
the whole data from/to disks twice at the read/write rate
of the 7.2K-RPM disk. This cluster costs $239K and
completes sort in 10,000 seconds. For the alternative im-
plementation where all data fits in DRAM, we apply scc
to satisfy the SLA of sorting the complete dataset in half
the SLA of the baseline implementation. The cheapest
cluster configuration determined in this case costs $5.6M
and sorts 100 TB in 5,000 seconds. Thus, according to
scc, the latter implementation provides a 2× speedup at
24× the cost. The application designer can decide if the
faster processing is worth it.

6.3 Extensibility of scc

Our approach of determining cost-effective cluster con-
figurations with scc is extensible in several ways.

Less flexible infrastructure services. Though we re-
strict our attention in this paper to flexible infrastructure
services that permit arbitrary mixing and matching of
compute and storage resources on a per-server or per-
VM basis, scc can also be readily applied to less flexible
services that offer only certain combinations of proces-
sor, storage, and memory configurations, e.g., Amazon’s
EC2 service [1]. In such cases, each combination of re-
sources offered by the infrastructure service can be pro-
vided as input to scc as a separate server type, and the
cost of each server will subsume the costs of all the re-
sources that come with it.

Accounting for availability. Though we have fo-
cused on performance requirements of applications thus
far, performance and availability SLAs need to be con-
sidered in unison. For example, a cheap disk type may
be an attractive option for a capacity-bound dataset but
the degree of replication necessary to meet availability
goals may make the option cost-prohibitive. scc can be
extended to pick for each dataset that combination of
storage type and associated replication factor that meets
the combination of performance, availability, and consis-
tency requirements at minimum cost.

Load variation and incremental growth. Our cur-
rent implementation of scc provisions applications for
peak load. However, when the distribution of load across
time is available, scc can leverage the information in two
ways. First, scc can estimate energy costs more accu-
rately. Second, when pricing for resources is “elastic”,
i.e., a user can provision resources on-demand and pay
for what she uses, scc can make incremental reconfigu-
ration decisions, determining when to simply scale-out

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 295

and when to switch between architectures. scc’s distinc-
tion between remote persistent datasets and local tran-
sient datasets enables it to capture the costs associated
with data redistribution.

Network configuration and CPU diversity. scc’s
specification of application behavior can be used to in-
fer the communication pattern among the application’s
components, and thus inform configuration of the clus-
ter’s network. For example, in the case of ProductSearch,
scc can infer from the application specification that the
workers communicate only with the HDFS repository but
not among themselves. scc can then use this information
to recommend a bi-partite network with servers hosting
HDFS on one side and servers hosting workers on the
other side. scc can also be readily extended to choose
among a range of CPUs; the application specification
simply needs to include for every compute operation the
time required for that operation on each type of CPU.

7 Related work
Our work builds upon and shares some similarities with
several lines of prior work.

Tuning storage: Minerva [5], Hippodrome [7], and
Rome [34] automate the provisioning of disk arrays with
a similar approach of characterizing workloads and stor-
age. Ursa Minor [2] varies erasure coding parameters
depending on an application’s availability requirements.
PADS [9] is configurable to build a wide range of replica-
tion systems with varying consistency semantics. In con-
trast to all of these efforts, we consider an application’s
storage and compute requirements in unison. Moreover,
we choose among different storage media such as disk,
SSD, and DRAM to minimize cost, with multiple media
possibly being used for the same application.

Application modeling: Bodik et al. [10] infer appli-
cation performance models by applying machine learn-
ing techniques on statistics gathered by monitoring the
application execution. Thereska et al. [31] predict per-
formance across application configurations based on sta-
tistical models. IRONModel [32] corrects deviations be-
tween the performance of running systems and high fi-
delity models. In all cases, since application models are
tuned to specific cluster configurations, they are not di-
rectly applicable to alternative hardware configurations.

Stewart and Shen [30] build performance models of
multi-component applications to aid in the placement of
application components on a given cluster. Osogami
and Itoko [25] apply hill-climbing techniques to auto-
matically determine web-server parameters, and Liu et
al. [20] construct a queuing model for a three-tiered web
service to predict throughput and response times. Again,
all of these consider a fixed hardware configuration.

Application-specific cluster architectures: Applica-
tion developers have converged on a range of cluster

architectures for individual applications. Several web
services employ DRAM caches using distributed in-
memory storage systems [21, 26]. Applications such
as WER [16] use clusters that have separate sets of
machines for compute and storage. FAWN [6] and
Gordon [11] use SSDs to build performant yet power-
efficient distributed data processing systems. MR-
Perf [33] and Starfish [18] use an approach similar to
scc but focus solely on predicting cluster requirements
of MapReduce setups. scc not only infers these cost-
effective architectures for existing applications, but also
enables the inference of the right cluster architecture for
emerging applications.

Storage and computing services. There been a few
recent attempts [19, 15] at satisfying SLAs in the set-
ting of a compute and storage cluster shared across appli-
cations. Such multi-application environments have also
seen the recent emergence of virtual storage appliances.
scc is targeted at the still significantly more common sce-
nario of cluster deployments for a single application.

8 Conclusions

The thesis of our work is that deployment of applications
on clusters is more cost-effective if informed by charac-
terizations of application behavior and hardware proper-
ties. Towards this end, we presented how these inputs
can be specified, and we developed scc to compile these
inputs into cost-effective cluster configurations. Our ex-
periments in applying scc to a range of application work-
loads and storage options show that scc captures suffi-
cient detail to prescribe the right combination of storage
and server hardware at the right scale; modifying the ar-
chitecture or reducing the scale leads to significant per-
formance degradation. To meet application demands, scc
often predicts heterogeneous cluster architectures that re-
sult in significant cost savings compared to simply scal-
ing out homogeneous architectures. We plan to apply
scc to other popular applications to determine more fine-
grained characteristics from which it could benefit, and
use scc’s application specification to select appropriate
CPUs and optimize network costs. We also plan to de-
velop tools to make it easier to put together hardware and
application specifications.

Acknowledgments

We thank the anonymous reviewers and our shepherd
Lakshmi Bairavasundaram for their feedback on previ-
ous versions of this paper. We also thank Brian Cooper,
Khaled Elmeleegy, Garth Goodson, and Kaladhar Voru-
ganti for their input at various stages of this project. This
research was partially supported by a NetApp Faculty
Fellowship.

13

296 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Amazon EC2 instance types. http://aws.

amazon.com/ec2/instance-types.

[2] M. Abd-El-Malek, W. V. Courtright II, C. Cra-
nor, G. R. Ganger, J. Hendricks, A. J. Klosterman,
M. Mesnier, M. Prasad, B. Salmon, R. R. Sambasi-
van, S. Sinnamohideen, J. D. Strunk, E. Thereska,
M. Wachs, and J. J. Wylie. Ursa minor: Versatile
cluster-based storage. In FAST, 2005.

[3] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. CACM,
1988.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity, data center network architecture.
In SIGCOMM, 2008.

[5] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,
R. A. Becker-Szendy, R. A. Golding, A. Merchant,
M. Spasojevic, A. C. Veitch, and J. Wilkes. Min-
erva: An automated resource provisioning tool for
large-scale storage systems. ACM Transactions on
Computer Systems, 2001.

[6] D. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan. FAWN: A fast
array of wimpy nodes. In SOSP, 2009.

[7] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. C. Veitch. Hippodrome: Running
circles around storage administration. In FAST,
2002.

[8] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using Magpie for request extraction and workload
modelling. In OSDI, 2004.

[9] N. Belaramani, J. Zheng, A. Nayate, R. Soul,
M. Dahlin, and R. Grimm. PADS: A policy archi-
tecture for data replication systems. In NSDI, 2009.

[10] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jor-
dan, and D. A. Patterson. Automatic exploration
of datacenter performance regimes. In Proc. of the
1st workshop on Automated control for datacenters
and clouds, 2009.

[11] A. M. Caulfield, L. M. Grupp, and S. Swanson.
Gordon: Using flash memory to build fast, power-
efficient clusters for data-intensive applications. In
ASPLOS, 2009.

[12] C. Chekuri and S. Khanna. On multi-dimensional
packing problems. SIAM Journal on Computing,
2004.

[13] Cloudera. Cloudera´s support team shares some ba-
sic hardware recommendations. http://www.
cloudera.com/blog/2010/03/.

[14] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
D. Burger, B. Lee, and D. Coetzee. Better I/O
through byte-addressable, persistent memory. In
SOSP, 2009.

[15] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwin-
ski, S. Shenker, and I. Stoica. Dominant resource
fairness: Fair allocation of multiple resource types.
In NSDI, 2011.

[16] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and
G. Hunt. Debugging in the (very) large: Ten years
of implementation and experience. In SOSP, 2009.

[17] Google Merchant Center. http://www.
google.com/merchants.

[18] H. Herodotou and S. Babu. Profiling, what-if anal-
ysis, and cost-based optimization of MapReduce
programs. In VLDB, 2011.

[19] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource shar-
ing in the data center. In NSDI, 2011.

[20] X. Liu, J. Heo, and L. Sha. Modeling 3-tiered web
applications. In MASCOTS, 2005.

[21] Memcached. http://memcached.org.

[22] D. A. Menascé, V. A. F. Almeida, and L. W.
Dowdy. Capacity planning and performance mod-
eling: from mainframes to client-server systems.
Prentice-Hall, Inc., 1994.

[23] NetApp Inc. Microsoft Exchange 2007 de-
ployment for 2,000 to 5,000 users integrated
with high availability, backups, and disaster
recovery. http://media.netapp.com/
documents/ra-0001-0509.pdf.

[24] NetApp Inc. Oracle database dev/test reference
architecture using data guard and SnapManager
for Oracle deployment guide. http://media.
netapp.com/documents/ra-0002.pdf.

[25] T. Osogami and T. Itoko. Finding probably better
system configurations quickly. In SIGMETRICS,
2006.

14

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 297

[26] J. K. Ousterhout, P. Agrawal, D. Erickson,
C. Kozyrakis, J. Leverich, D. Mazières, S. Mi-
tra, A. Narayanan, M. Rosenblum, S. M. Rum-
ble, E. Stratmann, and R. Stutsman. The case for
RAMClouds: Scalable high-performance storage
entirely in DRAM. SIGOPS OSR, 2009.

[27] A. Phanishayee, E. Krevat, V. Vasudevan, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and S. Se-
shan. Measurement and analysis of TCP through-
put collapse in cluster-based storage systems. In
FAST, 2008.

[28] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file system.
ACM Transactions on Computer Systems, 1992.

[29] Sort benchmark home page. http:
//sortbenchmark.org/.

[30] C. Stewart and K. Shen. Performance modeling
and system management for multi-component on-
line services. In NSDI, 2005.

[31] E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel.
Practical performance models for complex, popular
applications. In SIGMETRICS, 2010.

[32] E. Thereska and G. R. Ganger. IRONModel: Ro-
bust performance models in the wild. In SIGMET-
RICS, 2008.

[33] G. Wang, A. R. Butt, P. Pandey, and K. Gupta. A
simulation approach to evaluating design decisions
in mapreduce setups. In MASCOTS, 2009.

[34] J. Wilkes. Traveling to Rome: QoS specifica-
tions for automated storage system management. In
IWQoS, 2001.

15

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 299

iDedup: Latency-aware, inline data deduplication for primary storage

Kiran Srinivasan, Tim Bisson, Garth Goodson, Kaladhar Voruganti

NetApp, Inc.
{skiran, tbisson, goodson, kaladhar}@netapp.com

Abstract
Deduplication technologies are increasingly being de-
ployed to reduce cost and increase space-efficiency in
corporate data centers. However, prior research has not
applied deduplication techniques inline to the request
path for latency sensitive, primary workloads. This is
primarily due to the extra latency these techniques intro-
duce. Inherently, deduplicating data on disk causes frag-
mentation that increases seeks for subsequent sequential
reads of the same data, thus, increasing latency. In addi-
tion, deduplicating data requires extra disk IOs to access
on-disk deduplication metadata. In this paper, we pro-
pose an inline deduplication solution, iDedup, for pri-
mary workloads, while minimizing extra IOs and seeks.

Our algorithm is based on two key insights from real-
world workloads: i) spatial locality exists in duplicated
primary data; and ii) temporal locality exists in the access
patterns of duplicated data. Using the first insight, we se-
lectively deduplicate only sequences of disk blocks. This
reduces fragmentation and amortizes the seeks caused by
deduplication. The second insight allows us to replace
the expensive, on-disk, deduplication metadata with a
smaller, in-memory cache. These techniques enable us
to tradeoff capacity savings for performance, as demon-
strated in our evaluation with real-world workloads. Our
evaluation shows that iDedup achieves 60-70% of the
maximum deduplication with less than a 5% CPU over-
head and a 2-4% latency impact.

1 Introduction

Storage continues to grow at an explosive rate of over
52% per year [10]. In 2011, the amount of data will sur-
pass 1.8 zettabytes [17]. According to the IDC [10], to
reduce costs and increase storage efficiency, more than
80% of corporations are exploring deduplication tech-
nologies. However, there is a huge gap in the current ca-
pabilities of deduplication technology. No deduplication

systems exist that deduplicate inline with client requests
for latency sensitive primary workloads. All prior dedu-
plication work focuses on either: i) throughput sensitive
archival and backup systems [8, 9, 15, 21, 26, 39, 41];
or ii) latency sensitive primary systems that deduplicate
data offline during idle time [1, 11, 16]; or iii) file sys-
tems with inline deduplication, but agnostic to perfor-
mance [3, 36]. This paper introduces two novel insights
that enable latency-aware, inline, primary deduplication.

Many primary storage workloads (e.g., email, user di-
rectories, databases) are currently unable to leverage the
benefits of deduplication, due to the associated latency
costs. Since offline deduplication systems impact la-
tency the least, they are currently the best option; how-
ever, they are inefficient. For example, offline systems
require additional storage capacity to absorb the writes
prior to deduplication, and excess disk bandwidth to per-
form reads and writes during deduplication. This ad-
ditional disk bandwidth can impact foreground work-
loads. Additionally, inline compression techniques also
exist [5, 6, 22, 38] that are complementary to our work.

The challenge of inline deduplication is to not increase
the latency of the already latency sensitive, foreground
operations. Reads are affected by the fragmentation
in data layout that naturally occurs when deduplicating
blocks across many disks. As a result, subsequent se-
quential reads of deduplicated data are transformed into
random IOs resulting in significant seek penalties. Most
of the deduplication work occurs in the write path; i.e.,
generating block hashes and finding duplicate blocks. To
identify duplicates, on-disk data structures are accessed.
This leads to extra IOs and increased latency in the write
path. To address these performance concerns, it is nec-
essary to minimize any latencies introduced in both the
read and write paths.

We started with the realization that in order to improve
latency a tradeoff must be made elsewhere. Thus, we
were motivated by the question: Is there a tradeoff be-
tween performance and the degree of achievable dedu-

300 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

plication? While examining real-world traces [20], we
developed two key insights that ultimately led to an an-
swer: i) spatial locality exists in the duplicated data; and
ii) temporal locality exists in the accesses of duplicated
data. The first observation allows us to amortize the
seeks caused by deduplication by only performing dedu-
plication when a sequence of on-disk blocks are dupli-
cated. The second observation enables us to maintain an
in-memory fingerprint cache to detect duplicates in lieu
of any on-disk structures. The first observation mitigates
fragmentation and addresses the extra read path latency;
whereas, the second one removes extra IOs and lowers
write path latency. These observations lead to two con-
trol parameters: i) the minimum number of sequential
duplicate blocks on which to perform deduplication; and
ii) the size of the in-memory fingerprint cache. By ad-
justing these parameters, a tradeoff is made between the
capacity savings of deduplication and the performance
impact to the foreground workload.

This paper describes the design, implementation and
evaluation of our deduplication system (iDedup) built to
exploit the spatial and temporal localities of duplicate
data in primary workloads. Our evaluation shows that
good capacity savings are achievable (between 60%-70%
of maximum) with a small impact to latency (2-4% on
average). In summary, our key contributions include:
• Insights on spatial and temporal locality of dupli-

cated data in real-world, primary workloads.
• Design of an inline deduplication algorithm that

leverages both spatial and temporal locality.
• Implementation of our deduplication algorithm in an

enterprise-class, network attached storage system.
• Implementation of efficient data structures to reduce

resource overheads and improve cacheability.
• Demonstration of a viable tradeoff between perfor-

mance and capacity savings via deduplication.
• Evaluation of our algorithm using data from real-

world, production, enterprise file system traces.
The remainder of the paper is as follows: Section 2

provides background and motivation of the work; Sec-
tion 3 describes the design of our deduplication system;
Section 4 describes the system’s implementation; Sec-
tion 5 evaluates the implementation; Section 6 describes
related work, and Section 7 concludes.

2 Background and motivation

Thus far, the majority of deduplication research has tar-
geted improving deduplication within the backup and
archival (or secondary storage) realm. As shown in Ta-
ble 1, very few systems provide deduplication for latency
sensitive primary workloads. We believe that this is due
to the significant challenges in performing deduplication

Type Offline Inline

Primary, NetApp ASIS [1],
latency EMC Celerra [11], iDedup
sensitive StorageTank [16], (This paper)

Secondary, EMC DDFS [41],
throughput EMC Cluster [8]
sensitive DeepStore [40],

(No motivation NEC HydraStor [9],
for systems in Venti [31], SiLo [39],
this category) Sparse Indexing [21],

ChunkStash [7],
Foundation [32],
Symantec [15],
EMC Centera [24],
GreenBytes [13]

Table 1: Table of related work:. The table shows how this pa-
per, iDedup, is positioned relative to some other relevant work.
Some primary, inline deduplication file systems (like ZFS [3])
are omitted, since they are not optimized for latency.

without affecting latency, rather than the lack of benefit
deduplication provides for primary workloads. Our sys-
tem is specifically targeted at this gap.

The remainder of this section further describes the dif-
ferences between primary and secondary deduplication
systems and describes the unique challenges faced by
primary deduplication systems.

2.1 Classifying deduplication systems
Although many classifications for deduplication systems
exist, they are usually based on internal implementation
details, such as the fingerprinting (hashing) scheme or
whether fixed sized or variable sized blocks are used. Al-
though important, these schemes are usually orthogonal
to the types of workloads their system supports. Similar
to other storage systems, deduplication systems can be
broadly classified as primary or secondary depending on
the workloads they serve. Primary systems are used for
primary workloads. These workloads tend to be latency
sensitive and use RPC based protocols, such as NFS [30],
CIFS [37] or iSCSI [35]. On the other hand, secondary
systems are used for archival or backup purposes. These
workloads process large amounts of data, are throughput
sensitive and are based on streaming protocols.

Primary and secondary deduplication systems can be
further subdivided into inline and offline deduplication
systems. Inline systems deduplicate requests in the write
path before the data is written to disk. Since inline dedu-
plication introduces work into the critical write path, it
often leads to an increase in request latency. On the other
hand, offline systems tend to wait for system idle time to
deduplicate previously written data. Since no operations
are introduced within the write path; write latency is not
affected, but reads remain fragmented.

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 301

Content addressable storage (CAS) systems (e.g., [24,
31]) naturally perform inline deduplication, since blocks
are typically addressed by their fingerprints. Both
archival and CAS systems are sometimes used for pri-
mary storage. Likewise, a few file systems that perform
inline deduplication (e.g., ZFS [3] and SDFS [36]) are
also used for primary storage. However, none of these
systems are specifically optimized for latency sensitive
workloads while performing inline deduplication. Their
design for maximum deduplication introduces extra IOs
and does not address fragmentation.

Primary inline deduplication systems have the follow-
ing advantages over offline systems:
1. Storage provisioning is easier and more efficient: Of-

fline systems require additional space to absorb the
writes prior to deduplication processing. This causes
a temporary bloat in storage usage leading to inaccu-
rate space accounting and provisioning.

2. No dependence on system idle time: Offline sys-
tems use idle time to perform deduplication without
impacting foreground requests. This is problematic
when the system is busy for long periods of time.

3. Disk-bandwidth utilization is lower: Offline systems
use extra disk bandwidth when reading in the staged
data to perform deduplication and then again to write
out the results. This limits the total bandwidth avail-
able to the system.

For good reason, the majority of prior deduplication
work has focused on the design of inline, secondary
deduplication systems. Backup and archival workloads
typically have a large amount of duplicate data, thus
the benefit of deduplication is large. For example, re-
ports of 90+% deduplication ratios are not uncommon
for backup workloads [41], compared to the 20-30% we
observe from our traces of primary workloads. Also,
since backup workloads are not latency sensitive, they
are tolerant to delays introduced in the request path.

2.2 Challenges of primary deduplication

The almost exclusive focus on maximum deduplication
at the expense of performance has left a gap for la-
tency sensitive workloads. Since primary storage is usu-
ally the most expensive, any savings obtained in primary
systems has high cost advantages. Due to their higher
cost ($/GB), deduplication is even more critical for flash
based systems; nothing precludes our techniques from
working with these systems. In order for primary, in-
line deduplication to be practical for enterprise systems,
a number of challenges must be overcome:
• Write path: The metadata management and IO re-

quired to perform deduplication inline with the write
request increases write latency.

a) Fragmentation with random seeks

b) Sequences, with amortized seeks
Figure 1: a) Increase in seeks due to increased fragmenta-
tion. b) The amortization of seeks using sequences. This figure
shows the amortization of seeks between disk tracks by using
sequences of blocks (threshold=3).

• Read path: The fragmentation of otherwise sequen-
tial writes increases the number of disk seeks re-
quired during reads. This increases read latency.

• Delete path: The requirement to check whether a
block can be safely deleted increases delete latency.

All of these penalties, due to deduplication, impact the
performance of foreground workloads. Thus, primary
deduplication systems only employ offline techniques to
avoid interfering with foreground requests [1, 11, 16].

Write path: For inline, primary deduplication, write
requests deduplicate data blocks prior to writing those
blocks to stable storage. At a minimum, this involves
fingerprinting the data block and comparing its signature
within a table of previously written blocks. If a match
is found, the metadata for the block, e.g., the file’s block
pointer, is updated to point to the existing block and no
write to stable storage is required. Additionally, a ref-
erence count on the existing block is incremented. If a
match is not found, the block is written to stable storage
and the table of existing blocks is updated with the new
block’s signature and its storage location. The additional
work performed during write path deduplication can be
summarized as follows:

• Fingerprinting data consumes extra CPU resources.
• Performing fingerprint table lookups and managing

the table persistently on disk requires extra IOs.
• Updating a block’s reference count requires an up-

date to persistent storage.

As one can see, the management of deduplication meta-
data, in memory, and on persistent storage, accounts for
the majority of write path overheads. Even though much
previous work has explored optimizing metadata man-
agement for inline, secondary systems (e.g., [2, 15, 21,
39, 41]), we feel that it is necessary to minimize all extra
IO in the critical path for latency sensitive workloads.

3

302 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Read path: Deduplication naturally fragments data that
would otherwise be written sequentially. Fragmentation
occurs because a newly written block may be dedupli-
cated to an existing block that resides elsewhere on stor-
age. Indeed, the higher the deduplication ratio, the higher
the likelihood of fragmentation. Figure 1(a) shows the
potential impact of fragmentation on reads in terms of the
increased number seeks. When using disk based storage,
the extra seeks can cause a substantial increase in read
latency. Deduplication can convert sequential reads from
the application into random reads from storage.

Delete path: Typically, some metadata records the us-
age of shared blocks. For example, a table of reference
counts can be maintained. This metadata must be queried
and updated inline to the deletion request. These actions
can increase the latency of delete operations.

3 Design

In this section, we present the rationale that led to our so-
lution, the design of our architecture, and the key design
challenges of our deduplication system (iDedup).

3.1 Rationale for solution

To better understand the challenges of inline deduplica-
tion, we performed data analysis on real-world enterprise
workloads [20]. First, we ran simulations varying the
block size to see its effect on deduplication. We observed
that the drop in deduplication ratio was less than linear
with increasing block size. This implies duplicated data
is clustered, thus indicating spatial locality in the data.
Second, we ran simulations varying the fingerprint table
size to determine if the same data is written repeatedly
close in time. Again, we observed the drop in deduplica-
tion ratio was less than linear with decreasing table size.
This implies duplicated data exhibits notable temporal
locality, thus making the fingerprint table amenable to
caching. Unfortunately, we could not test our hypothe-
sis on other workloads due to the lack of traces with data
duplication patterns.

3.2 Solution overview

We use the observations of spatial and temporal locality
to derive an inline deduplication solution.

Spatial locality: We leverage the spatial locality to per-
form selective deduplication, thereby mitigating the extra
seeks introduced by deduplication for sequentially read
files. To accomplish this, we examine blocks at write
time and attempt to only deduplicate full sequences of
file blocks if and only if the sequence of blocks are i)

sequential in the file and ii) have duplicates that are se-
quential on disk. Even with this optimization, sequential
reads can still incur seeks between sequences. However,
if we enforce an appropriate minimum sequence length
for such sequences (the threshold), the extra seek cost
is expected to be amortized; as shown by Figure 1(b).
The threshold is a configurable parameter in our system.
While some schemes employ a larger block size to lever-
age spatial locality, they are limited as the block size rep-
resents both the minimum and the maximum sequence
length. Whereas, our threshold represents the minimum
sequence length and the maximum sequence length is
only limited by the file’s size.

Inherently, due to our selective approach, only a sub-
set of blocks are deduplicated, leading to lower capacity
savings. Therefore, our inline deduplication technique
exposes a tradeoff between capacity savings and perfor-
mance, which we observe via experiments to be reason-
able for certain latency sensitive workloads. For an op-
timal tradeoff, the threshold must be derived empirically
to match the randomness in the workload. Additionally,
to recover the lost savings, our system does not preclude
executing other offline techniques.

Temporal locality: In all deduplication systems, there
is a structure that maps the fingerprint of a block and its
location on disk. We call this the deduplication meta-
data structure (or dedup-metadata for short). Its size is
proportional to the number of blocks and it is typically
stored on disk. Other systems use this structure as a
lookup table to detect duplicates in the write path; this
leads to extra, expensive, latency-inducing, random IOs.

We leverage the temporal locality by maintaining
dedup-metadata as a completely memory-resident, LRU
cache, thereby, avoiding extra dedup-metadata IOs.
There are a few downsides to using a smaller, in-memory
cache. Since we only cache mappings for a subset of
blocks, we might not deduplicate certain blocks due to
lack of information. In addition, the memory used by the
cache reduces the file system’s buffer cache size. This
can lead to a lower buffer cache hit rate, affecting la-
tency. On the other hand, the buffer cache becomes more
effective by caching deduplicated blocks [19]. These ob-
servations expose another tradeoff between performance
(hit rate) and capacity savings (dedup-metadata size).

3.3 Architecture

In this subsection, we provide an overview of our archi-
tecture. In addition, we describe the changes to the IO
path to perform inline deduplication.

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 303

NVRAM log (written blocks)

iDedup
Algorithm

Client IOs
(Reads + Writes)

Dedup
Metadata
(Cache)

Disk

De-stage

Log Structured File System

Network Attached Storage System

Figure 2: iDedup Architecture. Non-deduplicated blocks (dif-
ferent patterns) in NVRAM buffer are deduplicated by the iD-
edup algorithm before writing them to disk via the file system.

3.3.1 Storage system overview

An enterprise-class network-attached storage (NAS) sys-
tem (as illustrated in Figure 2) is used as the reference
system to build iDedup. For primary workloads, the sys-
tem supports the NFS [30] and CIFS [37] RPC-based
protocols. As seen in Figure 2, the system uses a log-
structured file system [34] combined with non-volatile
RAM (NVRAM) to buffer client writes to reduce re-
sponse latency. These writes are periodically flushed to
disk during the destage phase. Allocation of new disk
blocks occur during this phase and is performed succes-
sively for each file written. Individual disk blocks are
identified by their unique disk block numbers (DBNs).
File metadata, containing the DBNs of its blocks, is
stored within an inode structure. Given our objective to
perform inline deduplication, the newly written (dirty)
blocks need to be deduplicated during the destage phase.
By performing deduplication during destage, the system
benefits by not deduplicating short-lived data that is over-
written or deleted while buffered in NVRAM. Adding in-
line deduplication modifies the write path significantly.

3.3.2 Write path flow

Compared to the normal file system write path, we add
an extra layer of deduplication processing. As this layer
consumes extra CPU cycles, it can prolong the total time
required to allocate dirty blocks and affect time-sensitive
file system operations. Moreover, any extra IOs in this
layer can interfere with foreground read requests. Thus,
this layer must be optimized to minimize overheads. On
the other hand, there is an opportunity to overlap dedu-
plication processing with disk write IOs in the destage

phase. The following steps take place in the write path:
1. For each file, the list of dirty blocks is obtained.
2. For each dirty block, we compute its fingerprint (hash

of the block’s content) and perform a lookup in the
dedup-metadata structure using the hash as the key.

3. If a duplicate is found, we examine adjacent blocks,
using the iDedup algorithm (Section 3.4), to deter-
mine if it is part of a duplicate sequence.

4. While examining subsequent blocks, some duplicate
sequences might end. In those cases, the length of the
sequence is determined, if it is greater than the con-
figured threshold, we mark the sequence for dedupli-
cation. Otherwise, we allocate new disk blocks and
add the fingerprint metadata for these blocks.

5. When a duplicate sequence is found, the DBN of
each block in the sequence is obtained and the file’s
metadata is updated and eventually written to disk.

6. Finally, to maintain file system integrity in the face of
deletes, we update reference counts of the duplicated
blocks in a separate structure on disk.

3.3.3 Read path flow

Since iDedup updates the file’s metadata as soon as dedu-
plication occurs, the file system cannot distinguish be-
tween a duplicated block and a non-duplicated one. This
allows file reads to occur in the same manner for all files,
regardless of whether they contain deduplicated blocks.
Although sequential reads may incur extra seeks due to
deduplication, having a minimum sequence length helps
amortize this cost. Moreover, if we pick the threshold
closer to the expected sequentiality of a workload, then
the effects of those seeks can be hidden.

3.3.4 Delete path flow

As mentioned in the write path flow, deduplicated blocks
need to be reference counted. During deletion, the ref-
erence count of deleted blocks is decremented and only
blocks with no references are freed. In addition to updat-
ing the reference counts, we also update the in-memory
dedup-metadata when a block is deleted.

3.4 iDedup algorithm
The iDedup deduplication algorithm has the following
key design objectives:
1. The algorithm should be able to identify sequences of

file blocks that are duplicates and whose correspond-
ing DBNs are sequential.

2. The largest duplicate sequence for a given set of file
blocks should be identified.

3. The algorithm should minimize searches in the
dedup-metadata to reduce CPU overheads.

5

304 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

4. The algorithm execution should overlap with disk IO
during the destage phase and not prolong the phase.

5. The memory and CPU overheads caused by the algo-
rithm should not prevent other file system processes
from accomplishing their tasks in a timely manner.

6. The dedup-metadata must be optimized for lookups.

More details of the algorithm are presented in Sec-
tion 4.2. Next, we describe the design elements that en-
able these objectives.

3.4.1 Dedup-metadata cache design

The dedup-metadata is maintained as a cache with one
entry per block. Each entry maps the fingerprint of a
block to its DBN on disk. We use LRU as the cache
replacement policy; other replacement policies did not
perform better than the simpler LRU scheme.

The choice of the fingerprint influences the size of the
entry and the number of CPU cycles required to compute
it. By leveraging processor hardware assists (for e.g.,
Intel AES [14]) to compute stronger fingerprints (like
SHA-2, SHA-256 [28], etc.), the CPU overhead can be
greatly mitigated. However, longer, 256-bit fingerprints
increase the size of each entry. In addition, a DBN of
32-bits to 64-bits must also be kept within the entry, thus
making the minimum entry size 36 bytes. Given a block
size of 4 KB (typical of many file systems), the cache
entries comprise an overhead of 0.8% of the total size.
Since we keep the cache in memory, this overhead is sig-
nificant as it reduces the number of cached blocks.

In many storage systems, memory not reserved for
data structures is used by the buffer cache. Hence, the
memory used by the dedup-metadata cache comes at the
expense of a larger buffer cache. Therefore, the effect
of the dedup-metadata cache on the buffer cache hit ratio
needs to be evaluated empirically to size the cache.

3.4.2 Duplicate sequence processing

This subsection describes some common design issues in
duplicate sequence identification.

Sequence identification: The goal is to identify the
largest sequence among the list of potential sequences.
This can be done in multiple ways:

• Breadth-first: Start by scanning blocks in order; con-
currently track all possible sequences; and decide on
the largest when a sequence terminates.

• Depth-first: Start with a sequence and pursue it
across the blocks until it terminates; make multiple
passes until all sequences are probed; and then pick
the largest. Information gathered during one pass can
be utilized to make subsequent passes more efficient.

Figure 3: Overlapped sequences. This figure shows an exam-
ple of how the algorithm works with overlapped sequences.

In practice, we observed long chains of blocks during
processing (order of 1000s). Since multiple passes is too
expensive, we use the breadth-first approach.
Overlapped sequences: Choosing between a set of over-
lapped sequences can prove problematic. An example of
how overlapping sequences are handled is illustrated in
Figure 3. Assume a threshold of 4. Scanning from left
to right, multiple sequences match the set of file blocks.
As we process the 7th block, one of the sequences ter-
minates (S1) with a length 6. But, sequences S2 and
S3 have not yet terminated and have blocks overlapping
with S1. Since S1 is longer than the threshold (4), we can
deduplicate the file blocks matching those in S1. How-
ever, by accepting S1, we are rejecting the overlapped
blocks from S2 or S3; this is the dilemma. It is possi-
ble that either S2 or S3 could potentially lead to a longer
sequence going forward, but it is necessary to make a de-
cision about S1. Since it is not possible to know the best
outcome, we use the following heuristic: we determine
if the set of non-overlapped blocks is greater than thresh-
old, if so, we deduplicate them. Otherwise, we defer to
the unterminated sequences, as they may grow longer.
Thus, in the example, we reject S1 for this reason.

3.4.3 Threshold determination

The minimum sequence threshold is a workload property
that can only be derived empirically. The ideal threshold
is one that most closely matches the workload’s natural
sequentiality. For workloads with more random IO, it is
possible to set a lower threshold because deduplication
should not worsen the fragmentation. It is possible to
have a real-time, adaptive scheme that sets the thresh-
old based on the randomness of the workload. Although
valuable, this investigation is beyond this paper’s scope.

4 Implementation

In this section, we present the implementation and op-
timizations of our inline deduplication system. The im-

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 305

plementation consists of two subsystems: i) the dedup-
metadata management; and ii) the iDedup algorithm.

4.1 Dedup-metadata management
The dedup-metadata management subsystem is com-
prised of several components:
1. Dedup-metadata cache (in RAM): Contains a pool of

block entries (content-nodes) that contain deduplica-
tion metadata organized as a cache.

2. Fingerprint hash table (in RAM): This table maps a
fingerprint to DBN(s).

3. DBN hash table (in RAM): This table maps a DBN
to its content-node; used to delete a block.

4. Reference count file (on disk): Maintains reference
counts of deduplicated file system blocks in a file.

We explore each of them next.

4.1.1 Dedup-metadata cache

This is a fixed-size pool of small entries called content-
nodes, managed as an LRU cache. The size of this pool
is configurable at compile time. Each content-node rep-
resents a single disk block and is about 64 bytes in size.
The content-node contains the block’s DBN (a 4 B in-
teger) and its fingerprint. In our prototype, we use the
MD5 checksum (128-bit) [33] of the block’s contents as
its fingerprint. Using a stronger fingerprint (like SHA-
256) would increase the memory overhead of each entry
by 25%, thus leading to fewer blocks cached. Other than
this effect, using MD5 is not expected to alter other ex-
perimental results.

All the content-nodes are allocated as a single global
array. This allows the nodes to be referenced by their
array index (a 4 byte value) instead of by a pointer. This
saves 4 bytes per pointer in 64-bit systems. Each content-
node is indexed by three data structures: the fingerprint
hash table, the DBN hash table and the LRU list. This
adds two pointers per index (to doubly link the nodes in
a list or tree), thus totaling six pointers per content-node.
Therefore, by using array indices instead of pointers we
save 24 bytes per entry (37.5%).

4.1.2 Fingerprint hash table

This hash table contains content-nodes indexed by their
fingerprint. It enables a block’s duplicates to be identi-
fied by using the block’s fingerprint. As shown in Fig-
ure 4, each hash bucket contains a single pointer to the
root of a red-black tree containing the collision list for
that bucket. This is in contrast to a traditional hash ta-
ble with a doubly linked list for collisions at the cost of
two pointers per bucket. The red-black tree implemen-
tation is an optimized, left-leaning, red-black tree [12].

Hash
Buckets

Collision Tree

Content-node

Duplicates Tree
(dup-tree)

Duplicate
Content-nodes

DBN:110 DBN:205

FP: foo

Figure 4: Fingerprint Hash Table. The fingerprint hash ta-
ble with hash buckets as pointers to collision trees. Content-
node with fingerprint ‘foo’ has duplicate content-nodes in a tree
(dup-tree) with DBNs 205 and 110.

With uniform distribution, each hash bucket is designed
to hold 16 entries, ensuring an upper-bound of 4 searches
within the collision tree (tree search cost is O(logN)). By
reducing the size of the pointers and the number of point-
ers per bucket, the per-bucket overhead is reduced, thus
providing more buckets for the same memory size.

Each collision tree content-node represents a unique
fingerprint value in the system. For thresholds greater
than one, it is possible for multiple DBNs to have the
same fingerprint, as they can belong to different dupli-
cate sequences. Therefore, all the content-nodes that rep-
resent duplicates of a given fingerprint are added to an-
other red-black tree, called the dup-tree (see Figure 4).
This tree is rooted at the first content-node that maps to
that fingerprint. There are advantages to organizing the
duplicate content-nodes in a tree, as explained in the iD-
edup algorithm section (Section 4.2).

4.1.3 DBN hash table

This hash table indexes content-nodes by their DBNs.
Its structure is similar to the fingerprint hash table with-
out the dup-tree. It facilitates the deletion of content-
nodes when the corresponding blocks are removed from
the system. During deletion, blocks can only be identi-
fied by their DBNs (otherwise the data must be read and
hashed). The DBN is used to locate the corresponding
content-node and delete it from all dedup-metadata.

4.1.4 Reference count file

The refcount file stores the reference counts of all dedu-
plicated blocks on disk. It is ordered by DBN and main-
tains a 32-bit counter per block. When a block is deleted,
its entry in the refcount file is decremented. When the
reference count reaches zero, the block’s content-node
is removed from all dedup-metadata and the block is

7

306 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Figure 5: Identification of sequences. This figure shows how
sequences are identified.

marked free in the file system’s metadata. The refcount
file is also updated when a block is written. By dedu-
plicating sequential blocks, we observe that refcount
updates are often collocated to the same disk blocks,
thereby amortizing IOs to the refcount file.

4.2 iDedup algorithm
For each file, the iDedup algorithm has three phases:
1. Sequence identification: Identify duplicate block se-

quences for file blocks.
2. Sequence pruning: Process duplicate sequences

based on their length.
3. Sequence deduplication: Deduplicate sequences

greater than the configured threshold.
We examine these phases next.

4.2.1 Sequence identification

In this phase, a set of newly written blocks, for a particu-
lar file, are processed. We use the breadth-first approach
for determining duplicate sequences. We start by scan-
ning the blocks in order and utilize the fingerprint hash
table to identify any duplicates for these blocks. We fil-
ter the blocks to pick only data blocks that are complete
(i.e., of size 4 KB) and that do not belong to special or
system files (e.g., the refcount file). During this pass, we
also compute the MD5 hash for each block.

In Figure 5, the blocks B(n) (n = 1,2,3....) and the
corresponding fingerprints H(n) (n = 1,2,3...) are shown.
Here, n represents the block’s offset within the file (the
file block number or FBN). The minimum length of a du-
plicate sequence is two; so, we examine blocks in pairs;
i.e., B(1) and B(2) first, B(2) and B(3) next and so on.
For each pair, e.g., B(n) and B(n+1) (see Figure 5), we
perform a lookup in the fingerprint hash table for H(n)
and H(n+1), if neither of them is a match, we allocate the
blocks on disk normally and move to the next pair. When
we find a match, the matching content-nodes may have

1

10

25

67

D1
[DBNs for B(n)]

11

38

64

65

68

D2
[DBNs for B(n+1)]

nsearch(11)=> 11 nsearch(12)
 => 38

nsearch(37)=>67

nsearch(68)=> 68

Figure 6: Sequence identification example. Sequence identi-
fication for blocks with multiple duplicates. D1 represents the
dup-tree for block B(n) and D2 the dup-tree for B(n+1).

more than one duplicate (i.e., a dup-tree) or just a single
duplicate (i.e., just an single DBN). Accordingly, to de-
termine if a sequence exists across the pair, we have one
of four conditions. They are listed below in increasing
degrees of difficulty; they are also illustrated in Figure 5.

1. Both H(n) and H(n+1) match a single content-node:
Simplest case, if the DBN of H(n) is b, and DBN of
H(n+1) is (b+1), then we have a sequence.

2. H(n) matches a single content-node, H(n+1) matches
a dup-tree content-node: If the DBN of H(n) is b;
search for (b+1) in the dup-tree of H(n+1).

3. H(n) matches a dup-tree, H(n+1) matches a single
content-node: Similar to the previous case with H(n)
and H(n+1) swapped.

4. Both H(n) and H(n+1) match dup-tree content-nodes:
This case is the most complex and can lead to multi-
ple sequences. It is discussed in greater detail below.

When both H(n) and H(n+1) match entries with dup-
trees, we need to identify all possible sequences that
can start from these two blocks. The optimized red-
black tree used for the dup-trees has a search primitive,
nsearch(x), that returns ‘x’ if ‘x’ is found; or the next
largest number after ‘x’; or error if ‘x’ is already the
largest number. The cost of nsearch is the same as that
of a regular tree search (O(log N)). We use this primitive
to quickly search the dup-trees for all possible sequences.
This is illustrated via an example in Figure 6.

In our example, we show the dup-trees as two sorted
list of DBNs. First, we compute the minimum and max-
imum overlapping DBNs between the dup-trees (i.e., 10
and 68 in the figure), all sequences will be within this
range. We start with 10, since this is in D1, the dup-
tree of H(n). We then perform a nsearch(11) in D2,
the dup-tree of H(n+1), which successfully leads to a se-

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 307

quence. Since the numbers are ordered, we perform a
nsearch(12) in D2 to find the next largest potential se-
quence number; the result is 38. Next, to pair with 38,
we perform nsearch(37) in D1. However, it results in
67 (not a sequence). Similarly, since we obtained 67 in
D1, we perform nsearch(68) in D2, thus, yielding an-
other sequence. In this fashion, with a minimal number
of searches using the nsearch primitive, we are able to
glean all possible sequences between the two blocks.

It is necessary to efficiently record, manage, and iden-
tify the sequences that are growing and those that have
terminated. For each discovered sequence, we manage it
via a sequence entry: the tuple 〈Last FBN of sequence,
Sequence Size, Last DBN of sequence〉. Suppose, B(n)
and B(n+1) have started a sequence with sequence entry
S1. Upon examining B(n+1) and B(n+2), we find that
S1 grows and a new sequence, S2, is created. In such
a scenario, we want to quickly search for S1 and update
its contents and create a new entry for S2. Therefore,
we maintain the sequence entries in a hash table indexed
by a combination of the tuple fields. In addition, as we
process the blocks, to quickly determine terminated se-
quences, we keep two lists of sequence entries: one for
sequences that include the current block and another for
sequences of the previous block. After sequence identi-
fication for a block completes, if a sequence entry is not
in the current block’s list, then it has terminated.

4.2.2 Sequence pruning

Once we determine the sequences that have terminated,
we process them according to their sizes. If a sequence
is larger than the threshold, we check for overlapping
blocks with non-terminated sequences using the heuris-
tic mentioned in Section 3.4.2, and only deduplicate the
non-overlapped blocks if they form a sequence greater
than the threshold. For sequences shorter than the thresh-
old, the non-overlapped blocks are allocated by assigning
them to new blocks on disk.

4.2.3 Deduplication of blocks

For each deduplicated block, the file’s metadata is up-
dated with the original DBN at the appropriate FBN lo-
cation. The appropriate block in the refcount file is re-
trieved (a potential disk IO) and the reference count of
the original DBN is incremented. We expect the refcount
updates to be amortized across the deduplication of mul-
tiple blocks for long sequences.

5 Experimental evaluation

In this section, we describe the goals of our evaluation
followed by details and results of our experiments.

5.1 Evaluation objectives

Our goal is to show that a reasonable tradeoff exists be-
tween performance and deduplication ratio that can be
exploited by iDedup for latency sensitive, primary work-
loads. In our system, the two major tunable parameters
are: i) the minimum duplicate sequence threshold, and ii)
the in-memory dedup-metadata cache size. Using these
paramaters we evaluate the system by replaying traces
from two real-world, enterprise workloads to examine:
1. Deduplication ratio vs. threshold: We expect a drop

in deduplication rate as threshold increases.
2. Disk fragmentation profile vs. threshold: We expect

the fragmentation to decrease as threshold increases.
3. Client read response time vs. threshold: We expect

the client read response time characteristics to follow
the disk fragmentation profile.

4. System CPU utilization vs. threshold: We expect the
utilization to increase slightly with the threshold.

5. Buffer cache hit rate vs. dedup-metadata cache size:
We expect the buffer cache hit ratio to decrease as the
metadata cache size increases.

We describe these experiments and their results next.

5.2 Experimental setup

All evaluation is done using a NetApp R© FAS 3070 stor-
age system running Data ONTAP R© 7.3 [27]. It consists
of: 8 GB RAM; 512 MB NVRAM; 2 dual-core 1.8 GHz
AMD CPUs; and 3 10K RPM 144 GB FC Seagate Chee-
tah 7 disk drives in a RAID-0 stripe. The trace replay
client has a 16-core, Intel R© Xeon R© 2.2 GHz CPU with
16 GB RAM and is connected by a 1 Gb/s network link.

We use two, real-world, CIFS traces obtained from
a production, primary storage system that was collected
and made available by NetApp [20]. One trace contains
Corporate departments’ data (MS Office, MS Access,
VM Images, etc.), called the Corporate trace; it con-
tains 19,876,155 read requests (203.8 GB total read) and
3,968,452 write requests (80.3 GB total written). The
other contains Engineering departments’ data (user home
dirs, source code, etc.), called the Engineering trace; it
contains 23,818,465 read requests (192.1 GB total read)
and 4,416,026 write requests (91.7 GB total written).
Each trace represents ≈ 1.5 months of activity. They are
replayed without altering their data duplication patterns.

We use three dedup-metadata cache sizes: 1 GB,
0.5 GB and 0.25 GB, that caches block mappings for ap-
proximately 100%, 50% and 25% of all blocks written
in the trace respectively. For the threshold, we use refer-
ence values of 1, 2, 4, and 8. Larger thresholds produce
insignificant deduplication savings to be feasible.

Two key comparison points are used in our evaluation:

9

308 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 4 8

D
e
d
u
p
lic

a
ti
o
n
 r

a
ti
o
 (

%
)

Threshold

.25 GB
.5 GB
1 GB

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 4 8

D
e

d
u

p
lic

a
ti
o

n
 r

a
ti
o
 (

%
)

Threshold

.25 GB
.5 GB
1 GB

Figure 7: Deduplication ratio vs. Threshold. Deduplication
ratio versus threshold for the different cache sizes for Corporate
(top) and Engineering (bottom) traces.

1. The Baseline values represent the system without the
iDedup algorithm enabled (i.e., no deduplication).

2. The Threshold-1 values represent the highest dedu-
plication ratio for a given metadata cache size. Since
a 1 GB cache caches all block mappings, Threshold-1
at 1 GB represents the maximum deduplication pos-
sible (with a 4 KB block size) and is equivalent to a
static offline technique.

5.3 Deduplication ratio vs. threshold

Figure 7 shows the tradeoff in deduplication ratio
(dedup-rate) versus threshold for both the workloads and
different dedup-metadata sizes. For both the workloads,
as the threshold increases, the number of duplicate se-
quences decrease, correspondingly the dedup-rate drops;
there is a 50% decrease between Threshold-1 (24%) and
8 (13%), with a 1 GB cache. Our goal is to maxi-
mize the size of the threshold, while also maintaining
a high dedup-rate. To evaluate this tradeoff, we look
for a range of useful thresholds (> 1) where the drop in
dedup-rate is not too steep; e.g., the dedup-rates between
Threshold-2 and Threshold-4 are fairly flat. To minimize

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 8 16 24 32 40

P
e
rc

e
n
ta

g
e
 o

f
T

o
ta

l
R

e
q
u
e
s
ts

Request Sequence Size (Blocks)

Baseline (Mean=12.8)
Threshold-1 (Mean=9.7)
Threshold-2 (Mean=11.2)
Threshold-4 (Mean=11.5)
Threshold-8 (Mean=12.2)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 8 16 24 32 40

P
e

rc
e

n
ta

g
e

 o
f
T

o
ta

l
R

e
q
u
e
s
ts

Request Sequence Size (Blocks)

Baseline (Mean=15.8)
Threshold-1 (Mean=12.5)
Threshold-2 (Mean=14.8)
Threshold-4 (Mean=14.9)
Threshold-8 (Mean=15.4)

Figure 8: Disk fragmentation profile. CDF of number of se-
quential blocks in disk read requests for the Corporate (top)
and Engineering (bottom) traces with a 1G cache.

performance impact, we would pick the largest threshold
that shows the smallest loss in dedup-rate: Threshold-
4 from either graph. Moreover, we notice the drop in
dedup-rate from Threshold-2 to Threshold-4 is same for
0.5 GB and 0.25 GB (≈ 2%), showing a bigger percent-
age drop for smaller caches. For the Corporate work-
load, iDedup achieves a deduplication ratio between 66%
(at Threshold-4, 0.25 GB) and 74% (at Threshold-4,
1 GB) of the maximum possible (≈ 24% at Threshold-
1, 1 GB). Similarly, with the Engineering workload, we
achieve between 54% (at Threshold-4, 0.25 GB) and
62% (at Threshold-4, 1 GB) of the maximum (≈ 23%
at Threshold-1, 1 GB).

5.4 Disk fragmentation profile

To assess disk fragmentation due to deduplication, we
gather the number of sequential blocks (request size) for
each disk read request across all the disks and plot them
as a CDF (cumulative distribution function). All CDFs
are based on the average over three runs. Figure 8 shows
the CDFs for both Corporate and Engineering workloads
for a dedup-metadata cache of 1 GB. Other cache sizes

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 309

show similar patterns. Since the request stream is the
same for all thresholds, the difference in disk IO sizes,
across the different thresholds, reflects the fragmentation
of the file system’s disk layout.

As expected, in both the CDFs, the Baseline shows the
highest percentage of longer request sizes or sequential-
ity; i.e., the least fragmentation. Also, it can observed
that the Threshold-1 line shows the highest amount of
fragmentation. For example, there is a 11% increase in
the number of requests smaller or equal to 8, between
the Baseline and Threshold-1 for the Corporate workload
and 12% for the Engineering workload. All the remain-
ing thresholds (2, 4, 6, 8) show progressively less frag-
mentation, and have CDFs between the Baseline and the
Threshold-1 line; e.g., a 2% difference between Baseline
and Threshold-8 for the Corporate workload. Hence, to
optimally choose a threshold, we suggest the tradeoff is
made after empirically deriving the dedup-rate graph and
the fragmentation profile. In the future, we envision en-
abling the system to automatically make this tradeoff.

5.5 Client response time behavior
Figure 9 (top graph) shows a CDF of client response
times taken from the trace replay tool for varying thresh-
olds of the Corporate trace at 1 GB cache size. We use
response time as a measure of latency. For thresholds of
8 or larger, the behavior is almost identical to the Base-
line (an average difference of 2% for Corporate and 4%
for Engineering at Threshold 8) , while Threshold-2 and
4 (not shown) fall in between. We expect the client re-
sponse time to reflect the fragmentation profile. How-
ever, the impact on client response time is lower due to
the storage system’s effective read prefetching.

As can be seen, there is a slowly shrinking gap
between Threshold-1 and Baseline for larger response
times (> 2ms) comprising ≈ 10% of all requests. The
increase in latency of these requests is due to the frag-
mentation effect and it affects the average response time.
To quantify this better, we plot the difference between the
two curves in the CDF (bottom graph of Figure 9) against
the response time. The area under this curve shows the
total contribution to latency due to the fragmentation ef-
fect. We find that it adds 13% to the average latency and
a similar amount to the total runtime of the workload,
which is significant. The Engineering workload has a
similar pattern, although the effect is smaller (1.8% for
average latency and total runtime).

5.6 System CPU utilization vs. threshold
We capture CPU utilization samples every 10 seconds
from all the cores and compute the CDF for these val-
ues. Figure 10 shows the CDFs for our workloads with a

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f
R

e
q
u
e
s
ts

Response Time (ms)

Baseline
Threshold-1
Threshold-8

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 20 40 60 80 100

P
e

rc
e

n
ta

g
e

 d
if
fe

re
n
c
e

Response Time (ms)

Figure 9: Client response time CDF. CDF of client response
times for Corporate with a 1 GB cache (top); we highlight
the region where the curves differ. The difference between the
Baseline and Threshold of 1 CDFs (bottom).

1 GB dedup-metadata cache. We expect Threshold-8 to
consume more CPU because there are potentially more
outstanding, unterminated sequences leading to more se-
quence processing and management. As expected, com-
pared to the Baseline, the maximum difference in mean
CPU utilization occurs at Threshold-8, but is relatively
small: ≈ 2% for Corporate and ≈ 4% for Engineering.
However, the CDFs for the thresholds exhibit a longer
tail, implying a larger standard deviation compared to
the Baseline, this is evident in the Engineering case but
less so for Corporate. However, given that the change
is small (< 5%), we feel that the iDedup algorithm has
little impact on the overall utilization. The results are
similar across cache sizes, we chose the maximal 1 GB
one, since that represents maximum work in sequence
processing for the iDedup algorithm.

5.7 Buffer cache hit ratio vs. metadata size

We observed the buffer cache hit ratio for different sizes
of the dedup-metadata cache. The size of the dedup-
metadata cache (and threshold) had no observable ef-

11

310 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

P
e
rc

e
n
ta

g
e
 o

f
C

P
U

 S
a
m

p
le

s

CPU Utilization (%)

Baseline (Mean=10.8%)
Threshold-1 (Mean=11.1%)
Threshold-4 (Mean=12.0%)
Threshold-8 (Mean=12.5%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

P
e

rc
e

n
ta

g
e

 o
f
C

P
U

 S
a
m

p
le

s

CPU Utilization (%)

Baseline (Mean=13.2%)
Threshold-1 (Mean=15.0%)
Threshold-4 (Mean=16.6%)
Threshold-8 (Mean=17.1%)

Figure 10: CPU Utilization CDF. CDF across all the cores for
varying thresholds for Corporate (top) and Engineering (bot-
tom) workloads with a 1 GB cache. Threshold-2 is omitted,
since it almost fully overlaps Threshold-4.

fect on the buffer cache hit ratio for two reasons: i) the
dedup-metadata cache size (max of 1 GB) is relatively
small compared to the total memory (8 GB); and ii) the
workloads’ working sets fit within the buffer cache. The
buffer cache hit ratio was steady for the Corporate (93%)
and Engineering (96%) workloads. However, workloads
with working sets that do not fit in the buffer cache would
be impacted by the dedup-metadata cache.

6 Related work

Data storage efficiency can be realized via various com-
plementary techniques such as thin-provisioning (not all
of the storage is provisioned up front), data deduplica-
tion, and compression. As shown in Table 1 and as de-
scribed in Section 2, deduplication systems can be clas-
sified as primary or secondary (backup/archival). Pri-
mary storage is usually optimized for IOPs and latency
whereas secondary storage systems are optimized for
throughput. These systems either process duplicates in-
line, at ingest time, or offline, during idle time.

Another key trade-off is with respect to the deduplica-

tion granularity. In file level deduplication (e.g., [18, 21,
40]), the potential gains are limited compared to dedupli-
cation at block level. Likewise, there are algorithms for
fixed-sized block or variable-sized (e.g., [4, 23]) block
deduplication. Finally, there are content addressable sys-
tems (CAS) that reference the object or block directly by
its content hash; inherently deduplicating them [24, 31].

Although, we are unaware of any prior primary, inline
deduplication systems, offline systems do exist. Some
are block-based [1, 16], while others are file-based [11].

Complementary research has been done on inline
compression for primary data [6, 22, 38]. Burrows et.
al [5] describe an on-line compression technique for pri-
mary storage using a log-structured file system. In addi-
tion, offline compression products also exist [29].

The goals for inline secondary or backup deduplica-
tion systems are to provide high throughput and high
deduplication ratio. Therefore, to reduce the amount
of in-memory dedup-metadata footprint and the number
of metadata IOs, various optimizations have been pro-
posed [2, 15, 21, 39, 41]. Another inline technique, by
Lillibridge et al. [21], leverages temporal locality with
sampling to reduce dedup metadata size in the context of
backup streams.

Deduplication systems have also leveraged flash stor-
age to minimize the cost of metadata IOs [7, 25]. Clus-
tered backup storage systems have been proposed for
large datasets that cannot be managed by a single backup
storage node [8].

7 Conclusion

In this paper, we describe iDedup, an inline deduplica-
tion system specifically targeting latency-sensitive, pri-
mary storage workloads. With latency sensitive work-
loads, inline deduplication has many challenges: frag-
mentation leading to extra disk seeks for reads, dedupli-
cation processing overheads in the critical path, and extra
latency caused by IOs for dedup-metadata management.

To counter these challenges, we derived two insights
by observing real-world, primary workloads: i) there is
significant spatial locality on disk for duplicated data,
and ii) temporal locality exists in the accesses of dupli-
cated blocks. First, we leverage spatial locality to per-
form deduplication only when the duplicate blocks form
long sequences on disk, thereby, avoiding fragmentation.
Second, we leverage temporal locality by maintaining
dedup-metadata in an in-memory cache to avoid extra
IOs. From our evaluation, we see that iDedup offers sig-
nificant deduplication with minimal resource overheads
(CPU and memory). Furthermore, with careful threshold
selection, a good compromise between performance and
deduplication can be reached, thereby, making iDedup
well suited to latency sensitive workloads.

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 311

References

[1] C. Alvarez. NetApp deduplication for FAS and
V-Series deployment and implementation guide.
Technical Report TR-3505, NetApp, 2011.

[2] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lil-
libridge. Extreme binning: Scalable, parallel dedu-
plication for chunk-based file backup. In Pro-
ceedings of the 17th International Symposium on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS ’09),
pages 1–9, Sept. 2009.

[3] J. Bonwick. Zfs deduplication. http://blogs.

oracle.com/bonwick/entry/zfs_dedup, Nov.
2009.

[4] S. Brin, J. Davis, and H. Garcia-Molina. Copy de-
tection mechanisms for digital documents. In Pro-
ceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pages 398–
409, May 1995.

[5] M. Burrows, C. Jerian, B. Lampson, and T. Mann.
On-line data compression in a log-structured file
system. In Proceedings of the 5th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASP-
LOS), pages 2–9, Boston, MA, Oct. 1992.

[6] C. Constantinescu, J. S. Glider, and D. D. Cham-
bliss. Mixing deduplication and compression on
active data sets. In Proceedings of the 2011 Data
Compression Conference, pages 393–402, Mar.
2011.

[7] B. Debnath, S. Sengupta, and J. Li. Chunkstash:
speeding up inline storage deduplication using flash
memory. In Proceedings of the 2010 USENIX
Annual Technical Conference, pages 16–16, June
2010.

[8] W. Dong, F. Douglis, K. Li, R. H. Patterson,
S. Reddy, and P. Shilane. Tradeoffs in scalable data
routing for deduplication clusters. In Proceedings
of the Ninth USENIX Conference on File and Stor-
age Technologies (FAST), pages 15–29, Feb. 2011.

[9] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk,
W. Kilian, P. Strzelczak, J. Szczepkowski, C. Un-
gureanu, and M. Welnicki. Hydrastor: A scalable
secondary storage. In Proceedings of the Seventh
USENIX Conference on File and Storage Technolo-
gies (FAST), pages 197–210, Feb. 2009.

[10] L. DuBois, M. Amaldas, and E. Sheppard. Key
considerations as deduplication evolves into pri-
mary storage. White Paper 223310, Mar. 2011.

[11] EMC. Achieving storage efficiency through EMC
Celerra data deduplication. White paper, Mar.
2010.

[12] J. Evans. Red-black tree implementation. http:

//www.canonware.com/rb, 2010.

[13] GreenBytes. GreenBytes, GB-X series. http://

www.getgreenbytes.com/products.

[14] S. Gueron. Intel advanced encryption standard
(AES) instructions set. White Paper, Intel, Jan.
2010.

[15] F. Guo and P. Efstathopoulos. Building a high-
performance deduplication system. In Proceedings
of the 2011 USENIX Annual Technical Conference,
pages 25–25, June 2011.

[16] IBM Corporation. IBM white paper: IBM Storage
Tank – A distributed storage system, Jan. 2002.

[17] IDC. The 2011 digital universe study. Technical
report, June 2011.

[18] N. Jain, M. Dahlin, and R. Tewari. Taper: Tiered
approach for eliminating redundancy in replica
synchronization. In Proceedings of the Fourth
USENIX Conference on File and Storage Technolo-
gies (FAST), pages 281–294, Dec. 2005.

[19] R. Koller and R. Rangaswami. I/O deduplication:
Utilizing content similarity to improve I/O perfor-
mance. In Proceedings of the Eight USENIX Con-
ference on File and Storage Technologies (FAST),
pages 211–224, Feb. 2010.

[20] A. W. Leung, S. Pasupathy, G. Goodson, and E. L.
Miller. Measurement and analysis of large-scale
network file system workloads. In Proceedings of
the 2008 USENIX Annual Technical Conference,
pages 213–226, June 2008.

[21] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deo-
lalikar, G. Trezis, and P. Camble. Sparse index-
ing: Large scale, inline deduplication using sam-
pling and locality. In Proceedings of the Seventh
USENIX Conference on File and Storage Technolo-
gies (FAST), pages 111–123, Feb. 2009.

[22] LSI. LSI WarpDrive SLP-300. http://www.lsi.
com/products/storagecomponents/Pages/

WarpDriveSLP-300.aspx, 2011.

13

312 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[23] U. Manber. Finding similar files in a large file sys-
tem. In Proceedings of the Winter 1994 USENIX
Technical Conference, pages 1–10, Jan. 1994.

[24] T. McClure and B. Garrett. EMC Centera: Optimiz-
ing archive efficiency. Technical report, Jan. 2009.

[25] D. Meister and A. Brinkmann. dedupv1: Improving
deduplication throughput using solid state drives
(ssd). In Proceedings of the 26th IEEE Sympo-
sium on Massive Storage Systems and Technolo-
gies, pages 1–6, June 2010.

[26] D. T. Meyer and W. J. Bolosky. A study of prac-
tical deduplication. In Proceedings of the Ninth
USENIX Conference on File and Storage Technolo-
gies (FAST), pages 1–13, Feb. 2011.

[27] Network Appliance Inc. Introduction to Data ON-
TAP 7G. Technical Report TR 3356, Network Ap-
pliance Inc.

[28] NIST. Secure hash standard SHS. Federal Informa-
tion Processing Standards Publication FIPS PUB
180-3, Oct. 2008.

[29] Ocarina. Ocarina networks. http://www.

ocarinanetworks.com/, 2011.

[30] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS version 3: Design
and implementation. In Proceedings of the Summer
1994 USENIX Technical Conference, pages 137–
151, 1994.

[31] S. Quinlan and S. Dorward. Venti: A new ap-
proach to archival storage. In Proceedings of the
2002 Conference on File and Storage Technologies
(FAST), pages 89–101, Monterey, California, USA,
2002. USENIX.

[32] S. C. Rhea, R. Cox, and A. Pesterev. Fast, inexpen-
sive content-addressed storage in Foundation. In
Proceedings of the 2008 USENIX Annual Techni-
cal Conference, pages 143–156, June 2008.

[33] R. Rivest. The MD5 message-digest algorithm. Re-
quest For Comments (RFC) 1321, IETF, Apr. 1992.

[34] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file sys-
tem. ACM Transactions on Computer Systems,
10(1):26–52, Feb. 1992.

[35] J. Satran. Internet small computer systems inter-
face (iSCSI). Request For Comments (RFC) 3720,
IETF, Apr. 2004.

[36] S. Silverberg. http://opendedup.org, 2011.

[37] Storage Networking Industry Association. Com-
mon Internet File System (CIFS) Technical Refer-
ence, 2002.

[38] StorWize. Preserving data integrity assurance while
providing high levels of compression for primary
storage. White paper, Mar. 2007.

[39] W. Xia, H. Jiang, D. Feng, and Y. Hua. Silo: a
similarity-locality based near-exact deduplication
scheme with low ram overhead and high through-
put. In Proceedings of the 2011 USENIX Annual
Technical Conference, pages 26–28, June 2011.

[40] L. L. You, K. T. Pollack, and D. D. E. Long. Deep
Store: An archival storage system architecture. In
Proceedings of the 21st International Conference
on Data Engineering (ICDE ’05), Tokyo, Japan,
Apr. 2005. IEEE.

[41] B. Zhu, K. Li, and H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file
system. In Proceedings of the Sixth USENIX Con-
ference on File and Storage Technologies (FAST),
pages 269–282, Feb. 2008.

NetApp, the NetApp logo, Go further, faster, and Data
ONTAP are trademarks or registered trademarks of Net-
App, Inc. in the United States and/or other countries.
Intel and Xeon are registered trademarks of Intel Cor-
poration. All other brands or products are trademarks
or registered trademarks of their respective holders and
should be treated as such.

14

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 313

Caching less for better performance: Balancing cache size and update cost

of flash memory cache in hybrid storage systems

Yongseok Oh1, Jongmoo Choi2, Donghee Lee1, and Sam H. Noh3

1University of Seoul, Seoul, Korea, {ysoh, dhl express}@uos.ac.kr
2Dankook University, Gyeonggi-do, Korea, choijm@dankook.ac.kr

3Hongik University, Seoul, Korea, http://next.hongik.ac.kr

Abstract

Hybrid storage solutions use NAND flash memory based

Solid State Drives (SSDs) as non-volatile cache and tra-

ditional Hard Disk Drives (HDDs) as lower level stor-

age. Unlike a typical cache, internally, the flash memory

cache is divided into cache space and over-provisioned

space, used for garbage collection. We show that bal-

ancing the two spaces appropriately helps improve the

performance of hybrid storage systems. We show that

contrary to expectations, the cache need not be filled with

data to the fullest, but may be better served by reserving

space for garbage collection. For this balancing act, we

present a dynamic scheme that further divides the cache

space into read and write caches and manages the three

spaces according to the workload characteristics for op-

timal performance. Experimental results show that our

dynamic scheme improves performance of hybrid stor-

age solutions up to the off-line optimal performance of a

fixed partitioning scheme. Furthermore, as our scheme

makes efficient use of the flash memory cache, it re-

duces the number of erase operations thereby extending

the lifetime of SSDs.

1 Introduction

Conventional Hard Disk Drives (HDDs) and state-of-the-

art Solid State Drives (SSDs) each has strengths and lim-

itations in terms of latency, cost, and lifetime. To alle-

viate limitations and combine their advantages, hybrid

storage solutions that combine HDDs and SSDs are now

available for purchase. For example, a hybrid disk that

comprises the conventional magnetic disk with NAND

flash memory cache is commercially available [30]. We

consider hybrid storage that uses NAND flash memory

based SSDs as a non-volatile cache and traditional HDDs

as lower level storage. Specifically, we tackle the issue

of managing the flash memory cache in hybrid storage.

The ultimate goal of hybrid storage solutions is pro-

Figure 1: Balancing data in cache and update cost for

optimal performance

viding SSD-like performance at HDD-like price, and

achieving this goal requires near-optimal management

of the flash memory cache. Unlike a typical cache, the

flash memory cache is unique in that SSDs require over-

provisioned space (OPS) in addition to the space for nor-

mal data. To make a clear distinction between OPS and

space for normal data, we refer to the space in flash mem-

ory cache used to keep normal data as the caching space.

The OPS is used for garbage collection operations per-

formed during data updates. It is well accepted that given

a fixed capacity SSD, increasing the OPS size brings

about two consequences [11, 15, 26]. First, it reduces

the caching space resulting in a smaller data cache. Less

data caching results in decreased overall flash memory

cache performance. Note Figure 1 (not to scale) where

the x-axis represents the OPS size and the y-axis repre-

sents the performance of the flash memory cache. The

dotted line with triangle marks shows that as the OPS

size increases, caching space decreases and performance

degrades.

In contrast, with a larger OPS, the update cost of data

in the cache decreases and, consequently, performance

of the flash memory cache improves. This is represented

as the square marked dotted line in Figure 1. Note that

as the two dotted lines cross, there exists a point where

314 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

performance of the flash memory cache is optimal. The

goal of this paper is to find this optimal point and use it

in managing the flash memory cache.

To reiterate, the main contribution of this paper is in

presenting a dynamic scheme that finds the workload de-

pendent optimal OPS size of a given flash memory cache

such that the performance of the hybrid storage system

is optimized. Specifically, we propose cost models that

are used to determine the optimal caching space and OPS

sizes for a given workload. In our solution, the caching

space is further divided into read and write caches, and

we use cost models to dynamically adjust the sizes of the

three spaces, that is, the read cache, write cache, and the

OPS according to the workload for optimal hybrid stor-

age performance. These cost models form the basis of

the Optimal Partitioning Flash Cache Layer (OP-FCL)

flash memory cache management scheme that we pro-

pose.

Experiments performed on a DiskSim-based hybrid

storage system using various realistic server workloads

show that OP-FCL performs comparatively to the off-

line optimal fixed partitioning scheme. The results indi-

cate that caching as much data as possible is not the best

solution, but caching an appropriate amount to balance

the cache hit rate and the garbage collection cost is most

appropriate. That is, caching less data in the flash mem-

ory cache can bring about better performance as the gains

from reduced overhead for data update compensates for

losses from keeping less data in cache. Furthermore, our

results indicate that as our scheme makes efficient use

of the flash memory cache, OP-FCL can significantly re-

duce the number of erase operations in flash memory.

For our experiments, this results in the lifetime of SSDs

being extended by as much as three times compared to

conventional uses of SSDs.

The rest of the paper is organized as follows. In the

next section, we discuss previous studies that are rele-

vant to our work with an emphasis on the design of hy-

brid storage systems. In Section 3, we start off with a

brief review of the HDD cost model. Then, we move on

and describe cost models for NAND flash memory stor-

age. Then, in Section 4, we derive cost models for hy-

brid storage and discuss the existence of optimal caching

space and OPS division. We explain the implementation

issues in Section 5 and then, present the experimental re-

sults in Section 6. Finally, we conclude with a summary

and directions for future work.

2 Related Work

Numerous hybrid storage solutions that integrate HDDs

and SSDs have been suggested [8, 11, 14, 29]. Kgil et

al. propose splitting the flash memory cache into sep-

arate read and write regions taking into consideration

the fact that read and write costs are different in flash

memory [11]. Chen et al. propose Hystor that integrates

low-cost HDDs and high-speed SSDs [4]. To make bet-

ter use of SSDs, Hystor identifies critical data, such as

metadata, keeping them in SSDs. Also, it uses SSDs as

a write-back buffer to achieve better write performance.

Pritchett and Thottethodi observe that reference patterns

are highly skewed and propose a highly-selective caching

scheme for SSD cache [26]. These studies try to reduce

expensive data allocation and write operations in flash

memory storage as writes are much more expensive than

reads. They are similar to ours in that flash memory stor-

age is being used as a cache in hybrid storage solutions

and that some of them split the flash memory cache into

separate regions. However, our work is unique in that it

takes into account the trade-off between caching benefit

and data update cost as determined by the OPS size.

The use of the flash memory cache with other objec-

tives in mind have been suggested. As SSDs have lower

energy consumption than HDDs, Lee et al. propose an

SSD-based cache to save energy of RAID systems [18].

In this study, an SSD is used to keep recently referenced

data as well as for write buffering. Similarly, to save en-

ergy, Chen et al. suggest a flash memory based cache

for caching and prefetching data of HDDs [3]. Saxena

et al. use flash memory as a paging device for the vir-

tual memory subsystem [28] and Debnath et al. use it

as a metadata store for their de-duplication system [5].

Combining SSDs and HDDs in the opposite direction has

also been proposed. A serious concern of flash mem-

ory storage is its relatively short lifetime and, to extend

SSD lifetime, Soundararajan et al. suggest a hybrid stor-

age system called Griffin, which uses HDDs as a write

cache [32]. Specifically, they use a log-structured HDD

cache, periodically destaging data to SSDs so as to re-

duce write requests and, consequently, to increase the

lifetime of SSDs.

There have been studies that concentrate on finding

cost-effective ways to employ SSDs in systems. To sat-

isfy high-performance requirements at a reasonable cost

budget, Narayanan et al. look into whether replacing disk

based storage with SSDs may be cost effective; they con-

clude that replacing disks with SSDs is not yet so [22].

Kim et al. suggest a hybrid system called HybridStore

that combines both SSDs and HDDs [15]. The goal of

this study is in finding the most cost-effective configura-

tion of SSDs and HDDs.

Besides studies on flash memory caches, there are

many buffer cache management schemes that use the

idea of splitting caching space. Kim et al. present a

buffer management scheme called Unified Buffer Man-

agement (UBM) that detects sequential and looping ref-

2

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 315

erences and stores those blocks in separate regions in the

buffer cache [13]. Park et al. propose CRAW-C (Clock

for Read And Write considering Compressed file system)

that allocates three memory areas for read, write, and

compressed pages, respectively [24]. Shim et al. suggest

an adaptive partitioning scheme for the DRAM buffer in

SSDs. This scheme divides the DRAM buffer into the

caching and mapping spaces, dynamically adjusting their

sizes according to the workload characteristics [31]. This

study is different from ours in that the notion of OPS is

necessary for flash memory updates, while for DRAM, it

is not.

3 Flash Memory Cache Cost Model

In this section, we present the cost models for SSDs

and HDDs [35]. HDD reading and writing are char-

acterized by seek time and rotational delay. Assume

that CD RPOS and CD W POS are sums of the average seek

time and the average rotational delay for HDD reads and

writes, respectively. Let us also assume that P is the

data size in bytes and B is the bandwidth of the disk.

Then, the data read and write cost of a HDD is derived

as CDR =CD RPOS +
P
B

and CDW =CD WPOS +
P
B

, respec-

tively. (Detailed derivations are referred to Wang [35].)

Before moving on to the cost model of flash mem-

ory based SSDs, we give a short review of NAND flash

memory and the workings of SSDs. NAND flash mem-

ory, which is the storage medium of SSDs, consists of a

number of blocks and each block consists of a number

of pages. Reads are done in page units and take con-

stant time. Writes are also done in page units, but data

can be written to a page only after the block contain-

ing the page becomes clean, that is, after it is erased.

This is called the erase-before-write property. Due to

this property, data update is usually done by relocating

new data to a clean page of an already erased block

and most flash memory storage devices employ a so-

phisticated software layer called the Flash Translation

Layer (FTL) that relocates modified data to new loca-

tions. The FTL also provides the same HDD interface

to SSD users. Various FTLs such as page mapping

FTL [7, 34], block mapping FTL [12], and many hy-

brid mapping FTLs [10, 17, 19, 23] have been proposed.

Among them, the page mapping FTL is used in many

high-end commercial SSDs that are used in hybrid stor-

age solutions. Hence, in this paper, we focus on the page

mapping FTL. However, the methodology that follows

may be used with block and hybrid mapping FTLs as

well. The key difference would be in deriving garbage

collection and page write cost models appropriate for

these FTLs.

As previously mentioned, the FTL relocates modified

(c)

(a)

Copy valid pages

Reserved for GC

Reserved for GC

Victim for GC

Clean Valid Invalid Write pointer

(b)

Cache Space OPS

Figure 2: Garbage collection in flash memory storage

data to a clean page, and pages with old data become

invalid. The FTL recycles blocks with invalid pages by

performing garbage collection (GC) operations. For data

updates and subsequent GCs, the FTL must always pre-

serve some number of empty blocks. As data updates

consume empty blocks, the FTL must produce more

empty blocks by performing GCs that collect valid pages

scattered in used blocks to an empty block, marking the

used blocks as new empty blocks. The worst case and

average GC costs are determined by the ratio of the ini-

tial OPS to the total storage space. It has been shown

that the worst case and average GC costs become lower

as more over-provisioned blocks are reserved [9].

If we assume that the FTL selects the block with the

minimum number of valid pages for a GC operation,

then the worst case GC occurs when all valid (or invalid)

pages are evenly distributed to all flash memory blocks

except for an empty block that is preserved for GC op-

erations. For now, let us assume that u is the worst case

utilization determined from the initial number of over-

provisioned blocks and data blocks. Then, in Fig. 2(a),

where there are 3 data blocks containing cached data and

4 initial over-provisioned blocks, the worst case u is cal-

culated as 3/(3+4−1). (We subtract 1 because the FTL

must preserve one empty block for GC as marked by the

arrow in Fig. 2(b).) From u, the maximum number of

valid pages in the block selected for GC can be derived

as ⌈u ·NP⌉, where NP is the number of pages in a block.

Then, the worst case GC cost for a given utilization u

can be calculated from the following equation, where NP

is the number of pages in a block, C
E

is the erase cost

(time) of a flash memory block, and CCP is the page copy

cost (time). (We assume that the copyback operation is

3

316 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

being used. For flash memory chips that do not support

copyback, CCP may be expanded to a sequence of read,

CPR , and write, CPROG, operations.)

CGC(u) = ⌈u ·NP⌉ ·CCP +CE (1)

That is, as seen in Fig. 2(b) and (c), a GC opera-

tion erases an empty block with cost CE and copies all

valid pages from the block selected for GC to the erased

empty block with cost ⌈u ·NP⌉ ·CCP. Then, the garbage-

collected block becomes an empty block that may be

used for the next GC. The remaining clean pages in the

previously empty block are used for subsequent write re-

quests. If all those clean pages are consumed, then an-

other GC operation will be performed.

After GC, in the worst case, there are ⌊(1− u) ·NP⌋

clean pages in what was previously an empty block (for

example, the right-most block in Fig. 2(c)) and write re-

quests of that number can be served in the block. Let

us assume that CPROG is the page program time (cost)

of flash memory. (Note that “page program” and “page

write” are used interchangeably in the paper.) By divid-

ing GC cost and adding it to each write request, we can

derive, CPW (u), the page write cost for worst case utiliza-

tion u as follows.

CPW (u) =
CGC(u)

⌊(1− u) ·NP⌋
+CPROG (2)

Equation 2 is the worst case page update cost of flash

memory storage assuming valid data (or invalid data)

are evenly distributed among all the blocks. Typically,

however, the number of valid pages in a block will

vary. For example, the block marked “Victim for GC”

in Fig. 2(b) has a smaller number of valid pages than the

other blocks. Therefore, in cases where the FTL selects a

block with a small number of valid pages for the GC op-

eration, then utilization of the garbage-collected block,

u′, would be lower than the worst case utilization, u. Pre-

vious LFS and flash memory studies derived and used the

following relation between u′ and u [17, 20, 35].

u =
u′ − 1

ln u′

Let U(u) be the function that translates u to u′. (In

our implementation, we use a table that translates u to

u′.) Then the average page update cost can be derived

by applying U(u) for u in Equation 1 and 2 leading to

Equation 3 and 4.

CGC(u) =U(u) ·NP ·CCP +CE (3)

CPW (u) =
CGC(u)

(1−U(u)) ·NP

+CPROG (4)

4 Hybrid Storage Cost Model

In the previous section, the garbage collection and page

update cost of flash memory storage was derived. In

this section, we derive the cost models for hybrid stor-

age systems, which consist of a flash memory cache and

a HDD. Specifically, the cost models determine the op-

timal size of the caching space and OPS minimizing the

overall data access cost of the hybrid storage system. In

our derivation of the cost models, we first derive the read

cache cost model and then, derive the read/write cache

cost model used to determine the read cache size, write

cache size and OPS size. Our models assume that the

cache management layer can measure the hit and miss

rates of read/write caches as well as the number of I/O

requests. These values can be easily measured in real

environments.

4.1 Read cache cost model

On a read request the storage examines whether the re-

quested data is in the flash memory cache. If it is, the

storage reads it and transfers it to the host system. If it

is not in the cache, the system reads it from the HDD,

stores it in the flash memory cache and transfers it to the

host system. If the flash memory cache is already full

with data (as will be the case in steady state), it must in-

validate the least valuable data in the cache to make room

for the new data. We use the LRU (Least Recently Used)

replacement policy to select the least valuable data. In

the case of read caching, the selected data need only be

invalidated, which can be done essentially for free. (We

discuss the issue of accommodating other replacement

policies in Section 5.)

Let us assume that HR(u) is the cache read hit rate for a

given cache size, which is determined by the worst case

utilization u, as we will see later. With rate HR(u), the

system reads the requested data from the cache with cost

CPR, the page read operation cost (time) of flash memory,

and transfers it to the host system. With rate 1−HR(u),

the system reads data from disk with cost CDR and, after

invalidating the least valuable data selected by the cache

replacement policy, stores it in the flash memory cache

with cost CPW (u), which is the cost of writing new data

to cache including the possible garbage collection cost.

Then, CHR, the read cost of the hybrid storage system

with a read cache, is as follows.

CHR(u) = HR(u) ·CPR+

(1−HR(u)) · (CDR +CPW (u)) (5)

Let us now take the flash memory cache size into con-

sideration. For a given flash memory cache size, SF ,

the read cache size, SR and the OPS size SOPS can be

4

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 317

(a) Read hit rate (b) Read cost

Figure 3: (a) Read hit rate curve generated using the

numpy.random.zipfPython function (Zipfian distribution

with α = 1.2 and range = 120%) and (b) the hybrid stor-

age read cost graph for this particular hit rate curve, with

optimal point at 92%.

approximated from u such that SOPS ≈ (1− u) · SF and

SR ≈ u ·SF . These sizes are approximated values as they

do not take into account the empty block reserved for

GC. (Recall the empty block in Fig. 2.) Though calcu-

lating the exact size is possible by considering the empty

block, we choose to use these approximations as these

are simpler, and their influence is negligible relative to

the overall performance estimation.

Let us now take an example. Assume that we have a hit

rate curve HR(u) for read requests as shown in Fig. 3(a),

where the x-axis is the cache size and the y-axis is the

hit rate. Then, with Equation 5, we can redraw the hit

rate curve with u on the x-axis, and consequently, the

access cost graph of the hybrid storage system becomes

Fig. 3(b). The graph shows that the overall access cost

becomes lower as u increases until u reaches 92%, where

the access cost becomes minimal. Beyond this point, the

access cost suddenly increases, because even though the

caching benefit is still high the data update cost soars as

the OPS shrinks. Once we find u with minimum cost, the

read cache size and OPS size can be found from SOPS ≈

(1−u) ·SF and SR ≈ u ·SF .

4.2 Read and write cache cost model

Previous studies have shown that due to their difference

in costs, separating read and write requests in flash mem-

ory storage has a significant effect on performance [11].

Hence, we now incorporate write cost to the model by

dividing the flash caching space into two areas, namely

a write cache and a read cache. The read cache, whose

cost model was derived in the previous subsection, con-

tains data that has recently been read but never written

back while the write cache keeps data that has recently

been written, but not yet destaged. Therefore, data in the

write cache are dirty and they must be written to the HDD

when evicted from the cache. When a write is requested

to data in the read cache, we regard it as a write miss.

In this case, we invalidate the data in the read cache and

write the new data in the write cache. We consider the

case of reading data in the write cache later.

In the following cost model derivation, we assume

write-back policy for the write cache. This choice is

more efficient than the write-through policy without any

loss in consistency as the flash cache is also non-volatile.

If the write-through policy must be used, our model

needs to be modified to reflect the additional write to

HDD that is incurred for each write to the flash cache.

This will result in a far less efficient hybrid storage sys-

tem.

There can be three types of requests to the flash write

cache. The first is a write hit request, which is a write re-

quest to existing data in the write cache. In this case, the

old data becomes invalidated and the new data is writ-

ten to the write cache with cost CPW (u). The second

is a write miss request, which is a write request to data

that does not exist in the write cache. In this case, the

cache replacement policy selects victim data that should

be read from the write cache and destaged to the HDD

with cost CPR +CDW to make room for the newly re-

quest data. (Note we are assuming the system is in steady

state.) After evicting the data, the hybrid storage system

writes the new data to the write cache with cost CPW (u).

The last type of request is a read hit request, which is a

read request to existing (and possibly dirty) data in the

write cache. This happens when a read request is to data

that is already in the write cache. In this case, the request

can be satisfied with cost CPR, that is, the flash memory

page read cost. Note that there is no read miss request to

the write cache because read requests to data not in cache

are handled by the read cache.

Now we introduce a parameter r, which is the read

cache size ratio within the caching space, where 0 ≤ r ≤

1. Naturally, 1− r is the ratio of the write cache size. If

r is 1, all caching space is used as a read cache and, if it

is 0, all caching space is used as a write cache. Let SC

denote the total size of the caching space. Then, we can

calculate the read cache size, SR, and write cache size,

SW , from SC such that SR = SC · r and SW = SC · (1− r).

Note that SC is calculated from u such that SC ≈ u · SF .

Then, SR and SW are determined by u and r.

Let us assume that the cache management layer can

measure the read hit rates of the read cache and draw

HR(u,r), the read cache hit rate curve, which now has

two parameters u and r. (We will show that the hit rate

curve can be obtained by using ghost buffers in the next

section.) Then, the read cost of the hybrid storage system

is now modified as follows.

CHR(u,r) = (1−HR(u,r)) · (CDR +CPW (u))

+HR(u,r) ·CPR

Let us also assume that we can measure the write hit,

the write miss, and the read hit rates of the write cache

5

318 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

(a) Read hit rate (b) Write hit rate

(c) Expected access cost

Figure 4: (a) Read and (b) write hit rate curves gener-

ated using the numpy.random.zipf Python function ((a)

Zipfian distribution with α = 1.2 and range = 120%, (b)

Zipfian distribution with α = 1.4 and range = 220%) and

(c) the hybrid storage access cost graph for these hit rate

curves.

and draw the hit rate curves. For the moment, let us

regard the read hit in the write cache as being part of

the write hit. Assume that HW (u,r) is the write cache

hit rate for a given write cache size, and it has two

parameters that determine the cache size. Then, with

rate HW (u,r), a write request finds its data in the write

cache, and the cost of this action is HW (u,r) ·CPW (u).

Otherwise, with rate of 1−HW (u,r), the write request

does not find data in the write cache. Servicing this

request requires reading and evicting existing data and

writing new data to the write cache. Hence, the cost is

(1−HW (u,r)) · (CPR +CDW +CPW (u)). In summary, the

write cost of the hybrid storage system can be given as

follows.

CHW (u,r) = (1−HW (u,r))

· (CPR +CDW +CPW (u))

+HW (u,r) ·CPW (u)

Now let us consider the read hit case within the write

cache. Although it is possible to maintain separate read

hit and write hit curves for the write cache, this makes the

cost model more complex without much benefits, espe-

cially in terms of implementation. Therefore, we devise a

simple approximation method for incorporating the read

hit case in the write cache. Assume that h′ is the read

hit rate in the write cache. (Then, naturally, 1−h′ is the

write hit rate in the write cache.) Then, with rate h′, the

read hit is satisfied with cost CPR and with rate 1− h′,

the write hit is satisfied with cost CPW (u). Now we can

calculate the average cost for both read hit and write hit

such that CW H = (1−h′) ·CPW (u)+h′ ·CPR. By assum-

ing HW (u,r) is the hit rate including both read and write

hits, the write cost of the hybrid storage system now can

be given as follows.

CHW (u,r) = (1−HW (u,r))

· (CPR +CDW +CPW (u))

+HW (u,r) ·CWH

Now, let IOR and IOW , respectively, be the rate served

in the read and write caches among all requests. For ex-

ample, of a total of 100 requests, if 70 requests are served

in the read cache and 30 requests are served in the write

cache, then IOR is 0.7 and IOW is 0.3. Then we can de-

rive, CHY (u,r), the overall access cost of the hybrid stor-

age system that has separate read and write caches and

OPS as follows.

CHY (u,r) =CHR(u,r) · IOR+

CHW (u,r) · IOW (6)

Let us take an example. Assume that, at a certain time,

the hybrid storage system finds IOR, IOW , h′ to be 0.2,

0.8, and 0.2, respectively, and the read and write hit rate

curves are estimated as shown in Fig. 4(a) and (b). In the

graph, both read and write hit rates increase as caches be-

come larger but slowly saturate beyond some point. As

the read and write cache sizes are determined by u and r,

we can obtain the read and write cache hit rates for given

u and r values from the hit rate curves. Then, with the

cost model of Equation 6, we can draw the overall access

cost graph of the system as in Fig. 4(c). In the graph, the

x-axis is u and the y-axis is r. These two parameters de-

termine the read and write cache sizes as well as the OPS

size. In Fig. 4(c), darker shades reflect lower access cost

and we pinpoint the lowest access cost with the diamond

mark pointed to by the arrow.

Specifically, the minimum overall access cost of the

hybrid storage system is when u is 0.64 and r is 0.25 for

this particular configuration. For a 4GB flash memory

cache, this translates to the read cache size of 0.64GB,

the write cache size of 1.92GB, and an OPS size of

1.44GB.

5 Implementation Issues of Flash Cache

Layer

In this section, we describe some implementation is-

sues related to our flash memory cache management

scheme, which we refer to as OP-FCL (Optimal Parti-

tioning of Flash Cache Layer). Fig. 5(a) shows the over-

all structure of the hybrid storage system that we envi-

sion. The storage system has a HDD serving as main

6

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 319

storage and an SSD, which we also refer to as the flash

cache layer (FCL), that is used as a non-volatile cache

keeping recently read/written data as previous studies

have done [4, 11, 15]. As is common on SSDs, it has

DRAM for buffering I/O data and storing data struc-

tures used by the SSD. The space at the flash cache layer

is divided into three regions: the read cache area, the

write cache area, and the over-provisioned space (OPS)

as shown in Fig. 5(b). OP-FCL measures the read and

write cache hit and miss rates and the I/O rates. Then,

it periodically calculates the optimal size of these cache

spaces and progressively adjusts their sizes during the

next period.

To accurately simulate the operations and measure the

costs of the hybrid storage system, we use DiskSim [2]

to emulate the HDD and DiskSim’s MSR SSD exten-

sion [1] to emulate the SSD. Specifically, the simula-

tor mimics the behaviour of Maxtor’s Atlas 10K IV disk

whose average read and write latency is 4.4ms and 4.9ms,

respectively, with transfer speed of 72MB/s. Also, the

SSD simulator emulates SLC NAND flash memory chip

operations, and it takes 25us to read a page, 200us to

write a page, 1.5ms to erase a block, and 100us to trans-

fer data to/from a page of flash memory through the bus.

The page and block unit size is 4KB and 256KB, respec-

tively, and the flash cache layer manages data in 4KB

units.

In the simulator, we modified the SSD management

modules and implemented additional features as well as

the OP-FCL. OP-FCL consists of several components,

namely, the Page Replacer, Sequential I/O Detector,

Workload Tracker, Partition Resizer, and Mapping Man-

ager.

The Page Replacer has two LRU lists, one each for

the read and write caches, and maintains LRU ordering

of data in the caches. In steady state when the cache is

full, the LRU data is evicted from the cache to accom-

modate newly arriving data. For the read cache, cache

eviction simply means that the data is invalidated, while

for write cache, it means that data must be destaged, in-

curring a flash cache layer read and a disk write oper-

ation. In the actual implementation, the Page Replacer

destages several dirty data altogether to minimize seek

distance by applying the elevator disk scheduling algo-

rithm. However, we do not consider group destaging in

our cost model as it has only minimal overall impact.

This is because the number of data destaged as a group

is relatively small compared to the total number of data

in the write cache.

Previous studies have taken notice of the impact of

sequential references on cache pollution and thus, have

tried to detect and treat them separately [13]. The Se-

quential I/O Detector monitors the reference pattern and

HDD

Sequential I/O
Detector

Page
Replacer

Workload Tracker

Partition
Resizer

Mapping Manager

SSD

Miss Hit

File System

OP-FCL

Write
Area

OPS

Read
Area

(a) Main Architecture (b) SSD Logical Layout

File I/O

Figure 5: OP-FCL architecture

detects sequential references. In our current implemen-

tation, consecutive I/O requests greater than 128KB are

regarded as sequential references, and those requests by-

pass the flash cache layer and are sent directly to disk to

avoid cache pollution.

Besides the Page Replacer that manages the cached

data, the Workload Tracker maintains LRU lists of ghost

buffers to simultaneously measure hit rates of various

cache sizes, following the method proposed by Patter-

son et al. [25]. Ghost buffers maintain only logical ad-

dresses, not the actual data and, thus, memory overhead

is minimal requiring roughly 1% of the total flash mem-

ory cache. Part of the ghost buffer represents data in

cache and others represent data that have already been

evicted from the cache. Keeping information of evicted

data in the ghost buffer makes it possible to measure the

hit rate of a cache larger than the actual cache size. To

simulate various cache sizes simultaneously, we use N-

segmented ghost buffers. In other words, we divide the

ghost buffer into N-segments corresponding to N cache

sizes and thus, hit rates of N cache sizes can be obtained

by combining the hit rates of the segments. From the hit

rates of N cache sizes, we obtain the read/write hit rate

curves by interpolating the missing cache sizes.

Note that though we use the LRU cache replacement

policy for this study, our model can accommodate any

replacement policy so long as they can be implemented

in the flash cache and the ghost buffer management lay-

ers. Different replacement policies will generate dif-

ferent read/write hit rate curves and, in the end, affect

the results. However, a replacement policy only affects

the read/write hit rate curves, and thus, our overall cost

model is not affected.

These hit rate curves are obtained per period. In the

current implementation, a period is the logical time to

process 65536 (216) read and write requests. When the

period ends, new hit rate curves are generated, while a

7

320 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 1 Optimal Partitioning Algorithm

1: procedure OPTIMAL PARTITIONING

2: step ← segment size/total cache size

3: INIT PARMS(op cost, op u, op r)

4: for u ← step; u < 1.0; u ← u+ step do

5: for r ← 0.0; r ≤ 1.0; r ← r+ step do

6: cur cost ← C
HY

(u, r) ⊲ Call Eq. 6

7: if cur cost < op cost then

8: op cost ← cur cost

9: op u ← u, op r ← r

10: end if

11: end for

12: end for

13: ADJUST CACHE SIZE(op u, op r)

14: end procedure

new period starts. Then, with the hit rate curves gen-

erated by the Workload Tracker in the previous period,

the Partition Resizer gradually adjusts the sizes of the

three spaces, that is, the read and write cache space and

the OPS for the next period. To make the adjustment,

the Partition Resizer determines the optimal u and r as

described in Section 4, and those optimal values in turn

decide the optimal size of the three spaces.

To obtain the optimal u and r, we devise an iterative al-

gorithm presented in Algorithm 1. Starting from u=step,

the outer loop iterates the inner loop increasing u in ‘step’

increments while u is less than 1.0. The two extreme

configurations that we do not consider are where OPS is

0% and 100%. These are unrealistic configurations as

OPS must be greater than 0% to perform garbage collec-

tion, while OPS being 100% would mean that there is no

space to cache data. The inner loop starting from r=0

iterates, calculating the access cost of the hybrid stor-

age system as derived in Equation 6, while increasing r

in ‘step’ increments until r becomes greater or equal to

1.0. The ‘step’ value can be calculated as the segment

size divided by the total cache size, as shown in the sec-

ond line of Algorithm 1. The nested loop iterates N ×M

times to calculate the costs, where N is the outer loop

count, 1/step-1, and M is the inner loop count, 1/step+1.

A single cost calculation consists of 10 ADD, 4 SUB, 11

MUL, and 4 DIV operations. Finer ‘step’ values may be

used resulting in finer u and r values, but with increased

cost calculation overhead. However, computational over-

head for executing this algorithm is quite small because

they run once every period and the calculations are just

simple arithmetic operations.

Once the optimal u and r and, in turn, the optimal sizes

are determined, the Partition Resizer starts to progres-

sively adjust the sizes of the three spaces. To increase

OPS size, it gradually evicts data in the read or write

caches. To increase cache space, that is, decrease OPS,

GC is performed to produce empty blocks. These empty

blocks are then used by the read and/or write caches.

The key role of our Mapping Manager is translating

the logical address to a physical location in the flash

cache layer. For this purpose, it maintains a mapping ta-

ble that keeps the translation information. In our imple-

mentation, we keep the mapping information at the last

page of each block. As we consider flash memory blocks

with 64 pages, the overhead is roughly 1.6%. Moreover,

we implement a crash recovery mechanism similar to

that of LFS [27]. If a power failure occurs, it searches

for the most up-to-date checkpoint and goes through a

recovery procedure to return to the checkpoint state.

6 Performance Evaluation

In this section, we evaluate OP-FCL. For comparison, we

also implement two other schemes. The first is the Fixed

Partition-Flash Cache Layer (FP-FCL) scheme. This is

the simplest scheme where the read and write cache is

not distinguished, but unified as a single cache. The OPS

is available with a fixed size. This scheme is used to

mimic a typical SSD of today that may serve as a cache

in a hybrid storage system. Normally, the SSD would not

distinguish read and write spaces and it would have some

OPS, whose size would be unknown. We evaluate this

scheme as we vary the percentage of the caching space

set aside for the (unified) cache. The best of these results

will represent the most optimistic situation in real life

deployment.

The other scheme is the Read and Write-Flash Cache

Layer (RW-FCL) scheme. This scheme is in line with the

observation made by Kgil et al. [11] in that read and write

caches are distinguished. This scheme, however, goes a

step further in that while the sum of the two cache sizes

remain constant, the size between the two are dynami-

cally adjusted for best performance according to the cost

models described in Section 4. For this scheme, the OPS

size would also be fixed as the total read and write cache

size is fixed. We evaluate this scheme as we vary the per-

centage of the caching space set aside for the combined

read and write cache. Initial, all three schemes start with

an empty data cache. For OP-FCL, the initial OPS size

is set to 5% of the total flash memory size.

The experiments are conducted using two sets of

traces. We categorize them based on the size of requests.

The first one, ‘Small Scale’, are workloads that request

less than 100GBs of total data. The other set, ‘Large

Scale’, are workloads with over 100GBs of data requests.

Details of the characteristics of these workloads are in

Table 1.

The first two subsections discuss the performance as-

pects of the two class of workloads. Then, in the next

8

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 321

Type Workload

Working Avg. Req. Request

Read RatioSet Size (GB) Size (KB) Amount (GB)

Total Read Write Read Write Read Write

Small Scale

Financial [33] 3.8 1.2 3.6 5.7 7.2 6.9 28.8 0.19

Home [6] 17.2 13.5 5.0 22.2 3.9 15.3 66.8 0.18

Search Engine [33] 5.4 5.4 0.1 15.1 8.6 15.6 0.001 0.99

Large Scale
Exchange [22] 79.35 74.12 23.29 9.89 12.4 114.36 131.69 0.46

MSN [22] 37.98 30.93 23.03 11.48 11.12 107.23 74.01 0.59

Table 1: Characteristics of I/O workload traces

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(a) Financial

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(b) Home

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(c) Search Engine

Figure 6: Mean response time of hybrid storage

Type Description Config. 1 Config. 2

OP-FCL

NP 64

CPROG 300us

CPR 125us

CCP 225us

CE 1.5ms

CD RPOS 4.5ms

CD WPOS 4.9ms

B 72MB/s

P 4KB

segment size 256MB

SSD

Total Capacity 4GB 16GB

No. of Packages 1 4

Blocks Per Package 16384

Planes Per Package 1

Cleaning Policy Greedy

GC Threshold 1%

Copyback On

HDD
Model Maxtor Atlas 10K IV

No. of Disks 1 3

Table 2: Configuration of Hybrid Storage System

subsection, we present the effect of OP-FCL on the life-

time of SSDs. In the final subsection, we present a sen-

sitivity analysis of two parameters that needs to be deter-

mined for our model.

6.1 Small scale workloads

The experimental setting is as given in Fig. 5 described

in Section 5. The specific configuration of the HDD and

SSD used in these experiments is shown in Table 2 de-

noted as ‘Config. 1’. All other parameters not explicitly

mentioned are set to default values. We assume a single

SSD is employed as the flash memory cache and a single

HDD as the main storage. This configuration is similar

to that of a real hybrid drive [30].

For small scale workloads we use three traces, namely,

Financial, Home, and Search Engine that have been used

in numerous previous studies [7, 11, 15, 16, 17]. The Fi-

nancial trace is a random write intensive I/O workload

obtained from an OLTP application running at a finan-

cial institutions [33]. The Home trace is a random write

intensive I/O workload obtained from an NFS server that

keeps home directories of researchers whose activities

are development, testing, and plotting [6]. The Search

Engine trace is a random read intensive I/O workload ob-

tained from a web search engine [33]. The Search Engine

trace is unique in that 99% of the requests are reads while

only 1% are writes.

Fig. 6 shows the results of the cache partitioning

schemes, where the measure is the response time of the

hybrid storage system. The x-axis here denotes the ratio

of caching space (unified or read and write combined) for

the FP-FCL and RW-FCL schemes. For example, 60 in

the x-axis means that 60% of the flash memory capacity

is used as caching space and 40% is used as OPS. The

y-axis denotes the average response time of the read and

write requests. In the figure, the response times of FP-

FCL and RW-FCL schemes vary according to the ratio

of the caching space. In contrast, the response time of

OP-FCL is drawn as a horizontal line because it reports

9

322 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100

G
C

 T
im

e
 (

s
e

c
)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(a) Financial

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100

G
C

 T
im

e
 (

s
e

c
)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(b) Home

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

G
C

 T
im

e
 (

s
e

c
)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(c) Search Engine

Figure 7: Cumulative garbage collection time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

H
it
 R

a
te

Cachng Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(a) Financial

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

H
it
 R

a
te

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(b) Home

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

H
it
 R

a
te

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(c) Search Engine

Figure 8: Hit rate

only one response time regardless of the ratio of caching

space as it dynamically adjusts the three spaces accord-

ing to the workload.

Let us first compare FP-FCL and RW-FCL in Fig. 6. In

cases of the Financial and Home traces, we see that RW-

FCL provides lower response time than FP-FCL. This is

because RW-FCL is taking into account the different read

and write costs in the flash memory cache layer. This re-

sult is in accord with previous studies that considered dif-

ferent read and write costs of flash memory [11]. How-

ever, in the case of the Search Engine trace, discriminat-

ing read and write requests has no effect because 99% of

the requests are reads. Naturally, FP-FCL and RW-FCL

show almost identical response times.

Now let us turn our focus to the relationship between

the size of caching space (or OPS size) and the response

time. In Fig. 6(a) and (b), we see that the response time

decreases as the caching space increases (or OPS de-

creases) until it reaches the minimal point, and then in-

creases beyond this point. Specifically, for FP-FCL and

RW-FCL, the minimal point is at 60% for the Financial

trace and at 50% for the Home trace for both schemes. In

contrast, for the Search Engine trace, response time de-

creases continuously as the cache size increases and the

optimal point is at 95%. The reason behind this is that

the trace is dominated by read requests with rare modi-

fications to the data. Thus, the optimal configuration for

this trace is to keep as large a read cache as possible with

only a small amount of OPS and write cache.

For the FP-FCL and RW-FCL schemes, the response

time at the optimal point can be regarded as the off-line

optimal value because it is obtained after exploring all

possible configurations of the scheme. Let us now com-

pare the response time of OP-FCL and the off-line opti-

mal results of RW-FCL. In all traces, OP-FCL has almost

the same response time as the off-line optimal value of

RW-FCL. This shows that the cost model based dynamic

adaptation technique of OP-FCL is efficient in determin-

ing the optimal OPS and the read and write cache sizes.

We now discuss the trade-off between garbage collec-

tion (GC) cost and the hit rate at the flash cache layer.

Fig. 7 and 8 depict these results. In Fig. 7, we see that

for all traces, GC cost increases, that is, performance de-

grades, continuously as caching space increases. The hit

rate, on the other hand, increases, thus improving perfor-

mance as caching space increases for all the traces as we

can see in Fig. 8. For clear comparisons, we report the

sum of the read and write hit rates for RW-FCL and OP-

FCL. Note that both schemes measure read and write hit

rates separately.

These results show the existence of two contradicting

effects as caching space is increased, that is, increasing

cache hit rate, which is a positive effect, and increasing

GC cost, which is a negative effect. The interaction of

these two contradicting effects leads to an optimal point

where the overall access cost of the hybrid storage sys-

tem becomes minimal.

To investigate how well OP-FCL adjusts the caching

10

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 323

 0

 1

 2

 3

 4
C

a
c
h

e
 S

iz
e

 (
G

B
)

Logical Time

Caching Space Size
Read Cache

(a) Financial

 0

 1

 2

 3

 4

C
a

c
h

e
 S

iz
e

 (
G

B
)

Logical Time

Caching Space Size
Read Cache

(b) Home

 0

 1

 2

 3

 4

C
a

c
h

e
 S

iz
e

 (
G

B
)

Logical Time

Caching Space Size
Read Cache

(c) Search Engine

Figure 9: Dynamic size adjustment of read and write caches and OPS

space and OPS sizes, we continuously monitor their sizes

as the experiments are conducted. Fig. 9 shows these re-

sults. In the figure, the x-axis denotes logical time that

elapses upon each request and the y-axis denotes the to-

tal (read + write) caching space size and the read cache

size. For the Financial and Home traces, we see that

the caching space size increases and decreases repeat-

edly according to the reference pattern of each period as

the cost models maneuver the caching space and OPS

sizes. Notice that out of the 4GB of flash memory cache

space, only 2 to 2.5GBs are being used for the Financial

trace and less than half is used for the Home trace. Even

though cache space is available, using less of it helps per-

formance as keeping space to reduce garbage collection

time is more beneficial. Note, though, that for the Search

Engine trace, most of the 4GB are being allotted to the

caching space, in particular, to the read cache. This is a

natural consequence as reads are dominant, garbage col-

lection rarely happens. Also note that it is taking some

time for the system to stabilize to the optimal allocation

setting.

6.2 Large scale workloads

Our experimental setting for large scale workloads is as

shown in Fig. 5 with the configuration summarized as

‘Config. 2’ in Table 2. In this configuration the SSD

is 16GBs employing four packages of flash memory and

the HDD consists of three 10K RPM drives.

To test our scheme for large scale enterprise work-

loads, we use the Exchange and MSN traces that have

been used in previous studies [15, 21, 22]. The Exchange

trace is a random I/O workload obtained from the Mi-

crosoft employee e-mail server [22]. This trace is com-

posed of 9 volumes of which we select and use traces

of volumes 2, 4, and 8, and each volume is assigned to

each HDD. The MSN trace is extracted from 4 RAID-10

volumes on an MSN storage back-end file store [22]. We

choose and use the traces of volumes 0, 1, and 4, each as-

signed to one HDD. The characteristics of the two traces

are summarized in Table 1.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

M
e
a
n
 R

e
s
p
.
T

im
e
 (

m
s
)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(a) Exchange

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

M
e
a
n
 R

e
s
p
.
T

im
e
 (

m
s
)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(b) MSN

Figure 10: Response time of hybrid storage

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

G
C

 T
im

e
 (

h
o
u
r)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(a) Exchange

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

G
C

 T
im

e
 (

h
o
u
r)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(b) MSN

Figure 11: Cumulative garbage collection time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

H
it
 R

a
te

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(a) Exchange

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

H
it
 R

a
te

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(b) MSN

Figure 12: Hit rate

 0

 2

 4

 6

 8

 10

 12

 14

 16

C
a
c
h
e
 S

iz
e
 (

G
B

)

Logical Time

Caching Space Size
Read Cache

(a) Exchange

 0

 2

 4

 6

 8

 10

 12

 14

 16

C
a
c
h
e
 S

iz
e
 (

G
B

)

Logical Time

Caching Space Size
Read Cache

(b) MSN

Figure 13: Dynamic size adjustment of read and write

caches and OPS

11

324 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

A
v
e
ra

g
e
 E

ra
s
e
 C

o
u
n
t

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(a) Financial

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

A
v
e
ra

g
e
 E

ra
s
e
 C

o
u
n
t

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(b) Home

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100

A
v
e
ra

g
e
 E

ra
s
e
 C

o
u
n
t

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(c) Search Engine

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

A
v
e
ra

g
e
 E

ra
s
e
 C

o
u
n
t

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(d) Exchange

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

A
v
e
ra

g
e
 E

ra
s
e
 C

o
u
n
t

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

(e) MSN

Figure 14: Average erase count of flash memory blocks

Fig. 10, which depicts the response time for the two

large scale workloads, show similar trends that we ob-

served with the small scale workloads, in that, as caching

space increases, response time decreases to a minimal

point, and then increases again. The response time of

OP-FCL, which is shown as a horizontal line in the fig-

ure, is close to the smallest response times of FP-FCL

and RW-FCL. From these results, we confirm again that

a trade-off between GC cost and hit rate exists at the flash

cache layer.

Specifically, for the Exchange trace shown in

Fig. 10(a), the minimal point for FP-FCL is at 70%,

while it is at 80% for RW-FCL. The reason behind this

difference can be found in Fig. 11 and Fig. 12. Fig. 12(a)

shows that RW-FCL has a higher hit rate than FP-FCL

at cache size 80%. On the other hand, Fig. 11(a) shows

that for cache size of 70% to 80% the GC cost increase is

steeper for FP-FCL than for RW-FCL. These results im-

ply that, for RW-FCL, the positive effect of caching more

data is greater than the negative effect of increased GC

cost at 80% cache size, and vice versa for FP-FCL. These

differences in positive and negative effect relations for

FP-FCL and RW-FCL result in different minimal points.

From the results of the MSN trace shown in

Fig. 10(b), we observe that FP-FCL and RW-FCL have

almost identical response times. This is because they

have almost the same hit rate curves, which means that

discriminating read and write requests has no perfor-

mance benefit for the MSN trace. The minimal points

for FP-FCL and RW-FCL are at cache size 80% for this

trace.

As with the small scale workloads, Fig. 13 shows how

OP-FCL adjusts the cache and OPS sizes according to

the reference pattern for the large scale workloads. Ini-

tially, the cache size starts to increase as we start with

an empty cache. Then, we see that the scheme stabilizes

with OP-FCL dynamically adjusting the caching space

and OPS sizes to their optimal values.

6.3 Effect on lifetime of SSDs

Now let us turn our attention to the effect of OP-FCL

on the lifetime of SSDs. Generally, block erase count,

which is affected by the wear-levelling technique used by

the SSDs, directly corresponds to SSD lifetime. There-

fore, we measure the average erase counts of flash mem-

ory blocks for all the workloads, and the results are

shown in Fig. 14. With the exception of the Search En-

gine, we see that, for FP-FCL and RW-FCL, the aver-

age erase count is low when caching space is small. As

caching space becomes larger, the average erase count

increases only slightly until the caching space reaches

around 70%. Beyond that point, the erase count increases

sharply as OPS size becomes small and GC cost rises. In

contrast, OP-FCL has a low average erase count drawn

as a horizontal line in Fig. 14.

In contrast to the other traces, the average erase count

for the Search Engine trace is rather unique. First, the

overall average erase count is noticeably lower than that

of the other traces. Also, instead of a sharp increase ob-

served for the other traces, we first see a noticeable drop

as the cache size approaches 80%, before a sharp in-

crease. The reason behind this is that 99% of the Search

Engine trace are read requests and the footprint is so

12

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 325

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4 16 32 64 128 256 512

N
o

rm
a

liz
e

d
 T

im
e

Size of Sequential Unit (KB)

Financial
Home

Search Engine
Exchange

MSN

(a) Effect of sequential unit size

 0

 1

 2

 3

 12 14 16 18 20

N
o

rm
a

liz
e

d
 T

im
e

Length of Period (2
n
)

Financial
Home

Search Engine
Exchange

MSN

(b) Effect of period length

Figure 15: Sensitivity analysis of sequential unit size and

period length on OP-FCL performance

huge that the cache hit rate continuously increases al-

most linearly with larger caches as shown in Fig. 8(c).

This continuous increase in hit rate continuously reduces

new writes resulting in reduced garbage collection, and

then eventually to reduced block erases. Beyond the 80%

point, block erases increase because GC cost increases

sharply as the OPS becomes smaller.

6.4 Sensitivity analysis

In this subsection, we present the effect on the choice

of the sequential unit size and the length of the period on

the performance of OP-FCL. The results for all the work-

loads are reported relative to the parameter settings used

for all the results presented in the previous subsections:

the sequential unit size of 128 and period length of 216.

Recall that the sequential unit size determines the con-

secutive request size that the Sequential I/O Detector re-

gards as being sequential, and that these requests are sent

directly to the HDD. Fig. 15(a) show the effect of the se-

quential unit size. When the sequential unit size is 4 KB,

OP-FCL performs very poorly. This is because too many

requests are being considered to be sequential and are

sent directly to the HDD. However, when the sequential

unit size is between 16 KB ∼ 512 KB, OP-FCL shows

similar performance showing that performance is rela-

tively insensitive to the parameter of choice.

Fig. 15(b) shows the performance of OP-FCL as the

length of the period is varied from 212 to 220 requests.

Overall, the performance is stable. The Home trace per-

formance deteriorates somewhat for periods of 214 and

below, with worse performance as the period shortens.

The reason behind this is that the workload changes fre-

quently as observed in Fig. 9. As a result, by the time

OP-FCL adapts to the results of the previous period, the

new adjustment becomes stale, resulting in performance

reduction. We also see that performance is relatively

consistent and best for periods between 214 to 216. For

periods beyond 218, OP-FCL performance deteriorates

slightly. As the period increases to 220, performance of

the Exchange and MSN traces start to degrade. This is

because the change in the workload spans a relatively

large range compared to those of small scale workloads

as shown in Fig. 13. For this reason, OP-FCL of longer

periods is not dynamic enough to reflect these workload

changes effectively. Overall though, we find that for a

relatively broad range of periods performance is consis-

tent.

7 Conclusions

NAND flash memory based SSDs are being used as non-

volatile caches in hybrid storage solutions. In flash based

storage systems, there exists a trade-off between increas-

ing the benefits of caching data and increasing the ben-

efit of reducing the update cost as garbage collection

cost is involved. To increase the former, caching space,

which is cache space that holds normal data, must be

increased, while to increase the latter, over-provisioned

space (OPS) must be increased. In this paper, we showed

that balancing the caching space and OPS sizes has a sig-

nificant impact on the performance of hybrid storage so-

lutions. For this balancing act, we derived cost models

to determine the optimal caching space and OPS sizes,

and proposed a scheme that dynamically adjusts sizes of

these spaces. Through experiments we show that our dy-

namic scheme performs comparatively to the off-line op-

timal fixed partitioning scheme. We also show that the

lifetime of SSDs may be extended considerably as the

erase count at SSDs may be reduced.

Many studies on non-volatile cache have focussed on

cache replacement and destaging policies. As a miss at

the flash memory cache leads to HDD access, it is criti-

cal that misses be reduced. When misses do occur at the

write cache, intelligent destaging should help ameliorate

miss effects. Hence, we are currently focusing our ef-

forts on developing better cache replacement and destag-

ing policies, and in combining these policies with our

cache partitioning scheme. Another direction of research

that we are pursuing is managing the flash memory cache

layer to tune SSDs to trade-off between performance and

lifetime.

13

326 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

8 Acknowledgments

We would like to thank our shepherd Margo Seltzer and

anonymous reviewers for their insight and suggestions

for improvement. This work was supported in part by

the National Research Foundation of Korea (NRF) grant

funded by the Korea government (MEST) (No. R0A-

2007-000-20071-0), by the Korea Science and Engineer-

ing Foundation (KOSEF) grant funded by the Korea gov-

ernment (MEST) (No. 2009-0085883), and by Basic Sci-

ence Research Program through the National Research

Foundation of Korea(NRF) funded by the Ministry of

Education, Science and Technology(2010-0025282).

References

[1] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,

J. D., MANASSE, M., AND PANIGRAHY, R. Design Tradeoffs

for SSD Performance. In Proc. of USENIX ATC (2008), pp. 57–

70.

[2] BUCY, J. S., SCHINDLER, J., SCHLOSSER, S. W., AND

GANGER, G. R. DiskSim 4.0.

http://www.pdl.cmu.edu/DiskSim/ .

[3] CHEN, F., JIANG, S., AND ZHANG, X. SmartSaver: Turning

Flash Drive into a Disk Energy Saver for Mobile Computers. In

Proc. of ISLPED (2006), pp. 412–417.

[4] CHEN, F., KOUFATY, D. A., AND ZHANG, X. Hystor: Making

the Best Use of Solid State Drives in High Performance Storage

Systems. In Proc. of ICS (2011), pp. 22–32.

[5] DEBNATH, B., SENGUPTA, S., AND LI, J. ChunkStash: Speed-

ing Up Inline Storage Deduplication using Flash Memory. In

Proc. of ATC (2010).

[6] FIU TRACE REPOSITORY.

http://sylab.cs.fiu.edu/projects/iodedup.

[7] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: A Flash

Translation Layer Employing Demand-Based Selective Caching

of Page-Level Address Mappings. In Proc. of ASPLOS (2009),

pp. 229–240.

[8] HONG, S., AND SHIN, D. NAND Flash-Based Disk Cache Us-

ing SLC/MLC Combined Flash Memory. In Proc. of SNAPI

(2010), pp. 21–30.

[9] HU, X.-Y., ELEFTHERIOU, E., HAAS, R., ILIADIS, I., AND

PLETKA, R. Write Amplification Analysis in Flash-based Solid

State Drives. In Proc. of SYSTOR (2009).

[10] KANG, J.-U., JO, H., KIM, J.-S., AND LEE, J. A Superblock-

based Flash Translation Layer for NAND Flash Memory. In Proc.

of EMSOFT (2006), pp. 161–170.

[11] KGIL, T., ROBERTS, D., AND MUDGE, T. Improving NAND

Flash Based Disk Caches. In Proc. of ISCA (2008), pp. 327–338.

[12] KIM, J., KIM, J. M., NOH, S. H., MIN, S. L., AND CHO, Y. A

Space-Efficient Flash Translation Layer for CompactFlash Sys-

tems. IEEE Trans. on Consumer Electronics 48, 2 (2002), 366–

375.

[13] KIM, J. M., CHOI, J., KIM, J., NOH, S. H., MIN, S. L., CHO,

Y., AND KIM, C. S. A Low-Overhead High-Performance Uni-

fied Buffer Management Scheme that Exploits Sequential and

Looping References. In Proc. of OSDI (2000).

[14] KIM, S.-H., JUNG, D., KIM, J.-S., AND MAENG, S. Hetero-

Drive: Reshaping the Storage Access Pattern of OLTP Workload

Using SSD. In Proc. of IWSSPS (2009), pp. 13–17.

[15] KIM, Y., GUPTA, A., URGAONKAR, B., BERMAN, P., AND

SIVASUBRAMANIAM, A. HybridStore: A Cost-Efficient, High-

Performance Storage System Combining SSDs and HDDs. In

Proc. of MASCOTS (2011), pp. 227–236.

[16] KOLLER, R., AND RANGASWAMI, R. I/O Deduplication: Uti-

lizing Content Similarity to Improve I/O Performance. In Proc.

of FAST (2010).

[17] KWON, H., KIM, E., CHOI, J., LEE, D., AND NOH, S. H.

Janus-FTL: Finding the Optimal Point on the Spectrum Between

Page and Block Mapping Schemes. In Proc. of EMSOFT (2010),

pp. 169–178.

[18] LEE, H. J., LEE, K. H., AND NOH, S. H. Augmenting RAID

with an SSD for Energy Relief. In Proc. of HotPower (2008).

[19] LEE, S.-W., PARK, D.-J., CHUNG, T.-S., LEE, D.-H., PARK,

S., AND SONG, H.-J. A Log Buffer-Based Flash Translation

Layer Using Fully-Associative Sector Translation. ACM Trans.

on Embedded Computer Systems 6, 3 (2007).

[20] MENON, J. A Performance Comparison of RAID-5 and Log-

Structured Arrays. In Proc. of HPDC (1995).

[21] NARAYANAN, D., DONNELLY, A., THERESKA, E., ELNIKETY,

S., AND ROWSTRON, A. Everest: Scaling Down Peak Loads

Through I/O Off-Loading. In Proc. of OSDI (2008), pp. 15–28.

[22] NARAYANAN, D., THERESKA, E., DONNELLY, A., ELNIKETY,

S., AND ROWSTRON, A. Migrating Server Storage to SSDs:

Analysis of Tradeoffs. In Proc. of EuroSys (2009), pp. 145–158.

[23] PARK, C., CHEON, W., KANG, J., ROH, K., CHO, W., AND

KIM, J.-S. A Reconfigurable FTL (Flash Translation Layer) Ar-

chitecture for NAND Flash-Based Applications. ACM Trans. on

Embedded Computer Systems 7, 4 (2008).

[24] PARK, J., LEE, H., HYUN, S., KOH, K., AND BAHN, H.

A Cost-aware Page Replacement Algorithm for NAND Flash

Based Mobile Embedded Systems. In Proc. of EMSOFT (2009),

pp. 315–324.

[25] PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOL-

SKY, D., AND ZELENKA, J. Informed Prefetching and Caching.

In Proc. of SOSP (1995), pp. 79–95.

[26] PRITCHETT, T., AND THOTTETHODI, M. SieveStore: A Highly-

Selective, Ensemble-level Disk Cache for Cost-Performance. In

Proc. of ISCA (2010), pp. 163–174.

[27] ROSENBLUM, M., AND OUSTERHOUT, J. K. The Design and

Implementation of a Log-Structured File System. ACM Trans. on

Computer Systems 10, 1 (1992), 26–52.

[28] SAXENA, M., AND SWIFT, M. M. FlashVM: Virtual Memory

Management on Flash. In Proc. of ATC (2010).

[29] SCHINDLER, J., SHETE, S., AND SMITH, K. A. Improving

throughput for small disk requests with proximal I/O. In Proc. of

FAST (2011).

[30] SEAGATE MOMETUS R©XT.

http://www.seagate.com/www/en-us/products/laptops/laptop-

hdd.

[31] SHIM, H., SEO, B.-K., KIM, J.-S., AND MAENG, S. An Adap-

tive Partitioning Scheme for DRAM-based Cache in Solid State

Drives. In Proc. of MSST (2010).

[32] SOUNDARARAJAN, G., PRABHAKARAN, V., BALAKRISHNAN,

M., AND WOBBER, T. Extending SSD Lifetimes with Disk-

Based Write Caches. In Proc. of FAST (2010).

[33] UMASS TRACE REPOSITORY.

http://traces.cs.umass.edu.

[34] UNDERSTANDING THE FLASH TRANSLATION LAYER (FTL)

SPECICATION. Intel Corporation, 1998.

[35] WANG, W., ZHAO, Y., AND BUNT, R. HyLog: A High Per-

formance Approach to Managing Disk Layout. In Proc. of FAST

(2004), pp. 145–158.

14

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 327

Lifetime Management of Flash-Based SSDs Using

Recovery-Aware Dynamic Throttling

Sungjin Lee, Taejin Kim, Kyungho Kim∗, and Jihong Kim

Seoul National University, Korea

{chamdoo, taejin1999, jihong}@davinci.snu.ac.kr
∗Samsung Electronics, Korea

kyungho21.kim@samsung.com

Abstract

NAND flash-based solid-state drives (SSDs) are increas-

ingly popular in enterprise server systems because of

their advantages over hard disk drives such as higher

performance and lower power consumption. How-

ever, the limited and unpredictable lifetime of SSDs

remains to be a serious obstacle to wider adoption of

SSDs in enterprise systems. In this paper, we pro-

pose a novel recovery-aware dynamic throttling tech-

nique, called READY, which guarantees the SSD life-

time required by the enterprise market while exploiting

the self-recovery effect of floating-gate transistors. Un-

like a static throttling technique, the proposed technique

makes throttling decisions dynamically based on the pre-

dicted future write demand of a workload so that the

required SSD lifetime can be guaranteed with less per-

formance degradation. The proposed READY technique

also considers the self-recovery effect of floating-gate

transistors which improves the endurance of SSDs, en-

abling to guarantee the required lifetime with less write

throttling. Our experimental results show that the pro-

posed READY technique can improvewrite performance

by 4.4x with less variations on the write time over the ex-

isting static throttling technique while guaranteeing the

required SSD lifetime.

1 Introduction

NAND flash memory has been widely used in mobile

embedded systems like mobile phones, MP3 players, and

laptop computers because of its low-power consump-

tion, high mobility, and high performance. Recently,

as the price-per-byte of NAND flash memory is falling,

NAND flash-based solid-state drives (SSDs) are increas-

ingly popular in enterprise servers as well, replacing

hard disk drives. However, the poor write endurance of

NAND flash memory is still regarded as a main barrier

for a wide adoption of flash-based SSDs in the enterprise

market. In order for SSDs to be broadly adopted in the

enterprise environment, two key problems on the SSD

lifetime need to be addressed properly.

The first problem is that the endurance of flash de-

vices is rapidly decreasing. The endurance of flash-based

SSDs is directly related to the number of program/erase

(P/E) cycles allowed to memory cells, which are made

from floating-gate transistors. Due to the charge trapping

characteristic of a floating-gate transistor [1, 2], NAND

flash memory is gradually impaired as the number of

P/E cycles increases and becomes unreliable beyond a

maximum number of P/E cycles. As the semiconductor

process is scaled down and with multi-level cell (MLC)

technology, the endurance of a floating-gate transistor is

significantly degraded. For example, the maximum num-

ber of P/E cycles of single-level cell (SLC) flash memory

fabricated in a 70 nm process is about 100K P/E cycles.

For 2-bitMLC flash memory fabricated in the 2x nm pro-

cess, the maximumnumber of P/E cycles decreases to 3K

P/E cycles [3, 4, 5] while, for 3-bit MLC flash memory,

this number is only a few hundred cycles [6].

The second problem is the unpredictable lifetime of

flash devices. Since the endurance of SSDs is dependent

upon the number of P/E cycles, the SSD lifetime is de-

termined by extra data written by garbage collection and

wear-leveling as well as by the number of bytes written

by applications. This means that, unlike HDDs, the SSD

lifetime is a function of a workload. Therefore, even if

the endurance of SSDs seems sufficient, the lifetime of

SSDs strongly depends on the write intensiveness of the

workload. For example, SSDs may achieve the required

lifetime if a small number of write requests are required

from applications. On the other hand, the same SSDs

will fail much earlier if they are used in a write inten-

sive environment. In particular, as cost-effective MLC-

based SSDs are becoming popular in the enterprise mar-

ket where write requests are intensive [7, 8], it is a chal-

lenge to guarantee a minimum SSD lifetime of 3-5 years,

which enterprise customers often require [9].

328 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

In this paper, we overcome these technical difficulties

by proposing a recovery-aware dynamic throttling tech-

nique, called READY. A basic concept of READY is to

throttle write performance by adding throttling delays to

write requests, so as to guarantee the required SSD life-

time. With dynamic throttling, the IOPS and bandwidth

of SSDs is reduced to a certain extent. From the appli-

cation prospective, applications’ execution times are in-

creased as if they run on top of a slower device. As a

result, the amount of write traffic sent to a storage device

is reduced, lessening the wearing-rate of SSDs.

The dynamic throttling technique inevitably reduces

the overall write performance. In order to mitigate per-

formance degradation, we carefully determine throttling

delay by predicting future write demands and distribute

the predicted delay over the entire SSD lifetime so that

better write response time can be obtained with less

variations on the response time. In addition, the pro-

posed dynamic throttling technique takes into account

the self-recovery characteristic of a floating-gate transis-

tor. Because of the physical characteristics of NAND

flash memory, the damage caused by repetitive P/E cy-

cles can be partially recovered during the idle period

between two consecutive P/E cycles, improving the en-

durance of a floating-gate transistor [1, 2, 10, 11, 12].

By considering the endurance improvement by the self-

recovery effect, the proposed READY technique can be

more optimistic on the total number of data written,

thus employing a smaller throttling delay. Our evalua-

tion results show that the proposed throttling technique

improves the average write response time by 4.4x with

less variations over an existing static throttling technique

while guaranteeing the SSD lifetime.

This paper is organized as follows. In Section

2, we briefly explain the endurance characteristics of

NAND flash memory. Section 3 describes the proposed

recovery-aware dynamic throttling technique in detail. In

Section 4, we evaluate the effectiveness of the proposed

recovery-aware dynamic throttling technique using en-

terprise benchmarks. Section 5 describes related work

on improving the SSD endurance. Finally, Section 6 con-

cludes with summary and directions for future work.

2 Endurance Characteristics of Flash

Memory

In NAND flash memory, program/erase (P/E) opera-

tions inevitably cause damage to floating-gate transis-

tors, reducing the overall endurance of memory cells.

At the device level, memory cells are gradually worn

out as charges get trapped in the interface and oxide

layers of a floating-gate transistor during P/E cycles.

This charge trapping increases the threshold voltage of

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
c
h
ie

v
a
b
le

 P
/E

 c
y
c
le

s

Idletime (second)

Figure 1: The achievable number of P/E cycles depend-

ing on the different idle times.

a floating-gate, which indicates a logical bit value of a

cell, and the cell becomes unreliable when the thresh-

old voltage is higher than a certain voltage margin, e.g.,

0.65V for MLC flash memory [1]. According to [1, 10],

the increase, δVtrap, in a threshold voltage because of

charge trapping approximately scales with P/E cycles in

a power-law fashion as follows:

δVtrap = Ait ·N
0.62 +Bot ·N

0.3
, (1)

where N is the number of P/E cycles. Ait and Bot are

constant and set to 2.97 × 10−3 and 2.0 × 10−2, re-

spectively. Usually, NAND flash memory vendors do

not reveal important parameters for their recent products.

Thus, in this work, Ait and Bot for 20 nm MLC flash

memory are obtained by scaling up values for 90 nm

MLC flash memory, which are available to the public,

so that the number of P/E cycles approximately matches

3K at the point where δVtrap is 0.65V.

A floating-gate transistor also has a self-recovery

property which heals the damage of a cell by detrapping

charges captured in the oxide of a cell. This recovery (or

detrapping) process occurs during the idle time between

P/E cycles on the same cell, and its effect in general in-

creases as the logarithm of the idle time, i.e., detrapping

∝ ln(t), where t is the length of the idle time. Accord-

ing to [1, 10, 13], the decrease, δVdetrap, in a threshold

voltage due to charge detrapping can be expressed as fol-

lows:

δVdetrap = Ce · δVtrap · ln(
t

t0
), (2)

where Ce is a recovery efficiency and set to 5.63× 10−2

according to [2]. t0 is 1 hour.

Besides the length of the idle time, there are other fac-

tors that affect the cell recovery, such as an external tem-

perature and a programmed threshold voltage. In this

work, the temperature is assumed to be a room temper-

ature 25◦C because the external ambient temperature of

a storage device is typically maintained at the room tem-

perature [14]. The programmed threshold voltage is not

taken into account in this study because its effect on the

damage recovery is relatively negligible.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 329

(a) No throttling

(b) Static throttling

(c) Recovery-aware dynamic throttling

Figure 2: A comparison of three difference throttling

policies: no throttling, static throttling, and recovery-

aware dynamic throttling.

According to [1], the effective increase, δVth, in a

threshold voltage can be expressed as follows:

δVth = δVtrap − δVdetrap. (3)

Based on Eq. (3), we have plotted the achievable P/E

cycles of 20 nm MLC flash memory in Figure 1, de-

pending on the average idle times between two consec-

utive P/E cycles on the same block. The maximum P/E

cycles without the recovery effect are 3K. As expected,

the achievable P/E cycles are gradually increased in pro-

portional to the length of the idle time. Note that re-

cent studies that measured the effective P/E cycles of

real NAND flash parts also reported that the endurance

of NAND flash memory is higher than P/E cycles in

datasheets [15, 16].

The detrapping phenomenon of a floating-gate transis-

tor has a positive effect on improving the endurance (or

increasing P/E cycles) of flash-based SSDs. However,

most studies use a fixed number of P/E cycles, e.g., 3K

P/E cycles, provided by flash manufacturers as a primary

factor to manage the lifetime of SSDs. Therefore, the

benefit of the damage recovery is not fully utilized. Un-

like other studies, our recovery-aware dynamic throttling

technique takes advantage of the self-recovery effect in

managing the lifetime of SSDs to lessen the performance

penalty caused by write throttling.

3 Recovery-Aware Dynamic Throttling

In this section, we describe the proposed recovery-aware

dynamic throttling technique. We first introduce the need

for dynamic throttling in flash-based SSDs using a sim-

ple motivational example and then explain the main func-

tions of the proposed throttling technique in detail.

3.1 Basic Idea

Figure 2 shows a motivational example of dynamic throt-

tling in SSDs. The maximum number, Cssd, of bytes

that can be written to the SSD is proportional to the SSD

capacity and the number of P/E cycles allowed to each

block. Cssd is thus easily calculated with the following

equation: SSD capacity× P/E cycles [17]. For example,

if the SSD capacity is 128 GB and the number of P/E

cycles is 3K, Cssd becomes 375 TB. Suppose that a life-

time, Tssd, to be guaranteed is 1.5768 ·108 seconds, i.e.,
5 years. In the example of Figure 2(a) which does not use

write throttling, the required lifetime cannot be satisfied

because the number,Wwork, of bytes written to the SSD

exceeds Cssd before Tssd.

To ensure the lifetime warranty of the SSD, some

SSD vendors recently have started to adopt static throt-

tling [18, 19], which is shown in Figure 2(b). Static

throttling guarantees the required lifetime by limiting the

maximum bandwidth of the SSD to a certain fixed value,

which is denoted by Bstatic. Static throttling determines

the value ofBstatic based on the assumption of the worst

case scenario where the number of bytes written per sec-

ond is always larger thanCssd/Tssd. In this case,Bstatic

must be fixed to Cssd/Tssd to ensure the required life-

time. The drawback of this approach is that it is likely

to underutilize the maximum endurance of the SSD, i.e.,

Wwork < Cssd at Tssd, because of its assumption that

the SSD must provide the Bstatic bandwidth although

actual workloads may not be that intensive all the time.

In addition, due to this conservative assumption, the I/O

response time is degraded with static throttling.

In order to overcome the limitation of the static throt-

tling technique, we propose a recover-aware dynamic

throttling technique, READY, which is depicted in Fig-

ure 2(c). By dynamically throttling write requests ac-

cording to the characteristics of a workload and the re-

maining SSD lifetime, the proposed READY technique

fully utilizes the given endurance of the SSD up to the

maximum, while minimizing performance degradation.

READY is also aware of the endurance improvement by

the self-recovery characteristic of memory cells. There-

fore, the data that can be written to the SSD increase by

∆Cssd, so the maximum number of writable bytes be-

comes C
′

ssd (= Cssd + ∆Cssd). This allows us to guar-

antee the required lifetime with less throttling overheads.

In designing a dynamic throttling policy, we focus on

two aspects of the design requirements of SSDs. The

first is to determine a throttling delay as low as possible

so that Wwork is close to C
′

ssd at the time of Tssd. If

Wwork = C
′

ssd before Tssd, we cannot guarantee the re-

quired lifetime as shown in Figure 2(a). If Wwork <

C
′

ssd at Tssd, write performance significantly deterio-

rates, underutilizing the available endurance of the SSD

330 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

Figure 3: Three main functions of READY.

like static throttling as depicted in Figure 2(b). The sec-

ond is to distribute a throttling delay over every write

request as evenly as possible. Otherwise, response time

variations can be large, thus lowering the quality of the

user experience significantly.

To effectively deal with these design issues, the pro-

posed dynamic throttling technique has been designed

with three main functions as shown in Figure 3. The

write demand predictor is in charge of predicting future

write demands, which indicate the number of bytes that is

written to SSDs, by monitoring previous write demands.

Once the future demand for writes has been predicted,

the throttling delay estimator determines a throttling de-

lay by considering both the future write demand and the

remaining lifetime of SSDs. The epoch-capacity regu-

lator throttles write performance by applying a throttling

delay to each write request so that the target SSD lifetime

will be reached.

3.2 Estimation of Future Write Demands

In designing a dynamic throttling policy, it is important

to estimate the number of bytes that will be written to the

SSD in advance because the SSD performance must be

throttled properly if the write demand is expected to be

too high. The role of the write demand predictor is to

predict future write demands by monitoring the previous

write demands of a workload.

For this purpose, in READY, the entire lifetime, Tssd,

of the SSD is divided into epochs. At the beginning

of each epoch, the write demand predictor estimates the

number of bytes that is to be written during the epoch

based on the number of bytes actually written to the

SSD during the latest epoch. If the data of wi−1 have

been written during the (i − 1)-th epoch, the write de-

mand predictor predicts that the same number of bytes

will be written to the SSD during the i-th epoch. That

is, wi ≈ wi−1. This approach is motivated by previous

observations [20] that showed that enterprise workloads

often exhibit cyclic behavior with periods between sev-

eral minutes and several days. Although that work did

not address I/O demands in storage devices, it showed

that a strong cyclical behavior is frequently observed in

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 70 80 90 100+C
u
m

u
la

ti
v
e
 D

e
n
s
it
y
 F

u
n
c
ti
o
n
 (

C
D

F
)

Write Demand Difference (%)

1 Minute
30 Minutes

1 Hour
2 Hours

(a) exchange

 0.8

 0.85

 0.9

 0.95

 1

10 20 30 40 50 60 70 80 90 100+C
u
m

u
la

ti
v
e
 D

e
n
s
it
y
 F

u
n
c
ti
o
n
 (

C
D

F
)

Write Demand Difference (%)

1 Minute
30 Minutes

1 Hour
2 Hours

(b) proxy

Figure 4: Write demand differences with different epoch

lengths for exchange and proxy.

enterprise applications. This means that if the length of

an epoch is properly decided to include the cyclic period

of a workload, the write demand observed in the latest

epoch can be used as a factor that indicates future write

demands.

To confirm our hypothesis, we have analyzed the char-

acteristic of write demands using enterprise traces. We

have compared the difference in write demands between

two consecutive epochs while varying the length of an

epoch from 1 minute to 2 hours. Our analysis has been

performed with several enterprise traces from the MSR-

Cambridge and MS-Production traces [21, 22]. Figure 4

shows our investigation results for the two traces, proxy

and exchange. Here, the X-axis represents the write

demand difference between the predicted write demand

and the actual one in percentage. For example, if the pre-

dicted demand is 100 MB and the actual one is 95 MB,

the write demand difference between them is 5%. The

Y-axis is the cumulative density function (CDF) of the

write demand difference of the epochs. The smaller the

difference, the better the accuracy of future write demand

prediction is.

As shown in Figure 4, when the length of an epoch

is decided properly, it is possible to achieve high accu-

racy in predicting future write demands. In the case of

exchange, for about 85% of the epochs, the write de-

mand difference of less than 30% is obtained with the

epoch length of 30 minutes. For proxy, the epoch

length of 30 minutes shows the best accuracy in estimat-

ing future write demands. This result clearly shows that

the epoch-based write demand prediction is useful to es-

timate future write demands. Note that other methods,

such as a moving average, are also applicable for esti-

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 331

(a) wi > ci

(b) wi < ci

Figure 5: A change in a throttling delay.

mating future write demands.

Since the best epoch length may be different depend-

ing on a workload and its characteristic (which changes

with time), the proposed READY technique selects the

epoch length dynamically adapting to a changing work-

load. We will discuss this issue in Section 3.5.

3.3 Calculation of Throttling Delay

The throttling delay estimator adaptively changes a throt-

tling delay at every epoch by monitoring the write de-

mand and the remaining SSD lifetime. At the first epoch,

i.e., the 0-th epoch, a throttling delay, t
delay
0 , is set to 0.

Then, at the beginning of each i-th epoch, the delay es-

timator increases or decreases a throttling delay, t
delay
i ,

based on the expected write demand and the capacity of

each epoch. The expected write demand indicates the

number,wi, of bytes that is supposed to be written during

the i-th epoch. The capacity of an epoch is the number,

ci, of bytes allowed to be written during the i-th epoch.

In this work, wi is equal to the number, wi−1, of bytes

written during the (i− 1)-th epoch under the assumption

of wi ≈ wi−1. The capacity, ci, of the i-th epoch is de-

termined by dividing the remaining capacity, Cr, of the

SSD by the number of remaining epochs. Here, the re-

maining capacity,Cr, represents the number of bytes that

can be written to the SSD until it becomes unreliable.

Ifwi is equal to ci, we don’t need to change a throttling

delay for the i-th epoch. Therefore, t
delay
i is the same

as t
delay
i−1 , which is the throttling delay of the (i − 1)-

th epoch. However, if wi is larger than ci as shown in

Figure 5(a), it is necessary to increase a throttling delay

because the data to be written to the SSD are expected to

be larger than the capacity allocated to the epoch. The

increase, ∆t
delay
i , in a throttling delay can be expressed

as follows:

∆t
delay
i = tepoch ·

(
wi

ci

− 1
)/

n if wi > ci, (4)

where n is the number of pages allowed to be written

to the SSD during the i-th epoch, i.e., ci/page size, and

tepoch is the epoch length. To make the data written dur-

ing the i-th epoch equal to ci, (wi − ci) of the data must

be delayed to the next epoch as shown in Figure 5(a).

The total time required to delay (wi − ci) of the data can

be approximated as tepoch · (wi/ci − 1). In our dynamic

throttling policy, a throttling delay is equally distributed

to each page write (refer to Section 3.4), so ∆t
delay
i can

be obtained by dividing the total throttling delay by n.

Finally, a throttling delay, t
delay
i , for the i-th epoch is

determined as follows: t
delay
i = t

delay
i−1 +∆t

delay
i .

If wi is smaller than ci as shown in Figure 5(b), it

means that the write requests were not intensive enough

to wear out the device before the required lifetime or they

were too throttled during the previous epoch. Therefore,

the throttling delay may be reduced so that more data can

be written to the SSD. The decrease,∆t
delay
i , in a throt-

tling delay can be expressed as follows:

∆t
delay
i = tepoch ·

(
ci

wi

− 1
)/

n if wi < ci. (5)

To increase the number of bytes to be written to the

SSD by (ci − wi) during the i-th epoch, a throttling

delay, t
delay
i , for the i-th epoch is reduced by ∆t

delay
i

as follows: t
delay
i = t

delay
i−1 − ∆t

delay
i . In the case of

t
delay
i−1 < ∆t

delay
i , t

delay
i is 0. This means that it is not

necessary to apply a throttling delay because the required

lifetime can be guaranteed without write throttling.

Until now, we assumed that the number of P/E cycles

is fixed to a certain number. The achievable P/E cycles,

however, can be increased depending on the amount of

the idle time between two consecutive P/E cycles in a

certain block because of the self-recovery effect of mem-

ory cells. In order to exploit this endurance improve-

ment, the throttling delay estimator first estimates the

number of achievable P/E cycles at the beginning of each

epoch, using the damage and recovery model mentioned

in Section 2. In this work, the number of achievable P/E

cycles is estimated, using the average idle time of ev-

ery block in the SSD. The idle time is actually some-

what different among blocks. However, this difference

is not significant because the wear-leveler of the SSD

makes the P/E cycles of all available blocks evenly dis-

tributed. Therefore, the average idle time can be used

as a useful parameter to estimate the overall endurance

improvement of the SSD. The estimator then calculates

the remaining capacity, Cr, based on the achievable P/E

cycles and distributes it to the remaining epochs. Since

the number of P/E cycles is increased due to the recovery

effect, the capacity, ci, of each epoch is also increased,

allowing more data to be written to the SSD with less

throttling delays.

332 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

(a) Without epoch-capacity

enforcement

(b) With pessimistic epoch-

capacity enforcement

Figure 6: An example of epoch-capacity enforcement. A

solid line indicates the unused capacity forwarded to the

next period and a dashed line represents the data delayed

to the next period or epoch.

3.4 Enforcement of Epoch Capacity

Once a throttling delay is decided, we throttle SSD per-

formance by distributing throttling delays across every

write as evenly as possible. This regulation policy is ben-

eficial in minimizing response time variations, but it can-

not guarantee the required lifetime if write demand pre-

diction fails and unexpectedly high write traffic comes

from the host. To resolve this problem, it is necessary

to adopt an epoch-capacity enforcement policy, which

prevents more data than the epoch capacity from being

written to the SSD.

One of the easiest ways to enforce the epoch capac-

ity is to stop writing if the epoch capacity is likely to be

exhausted before the epoch ends. We call such a reg-

ulation strategy the pessimistic epoch-capacity enforce-

ment policy. The pessimistic policy divides one epoch

into periods whose lengths are 1 second each and then

distributes the capacity of an epoch to all periods evenly.

If more data than the period capacity were requested to

write, the epoch-capacity regulator stops writing so that

overflowed requests are to be written in the next period.

If there is an unused capacity in the current period, the

regulator reallocates it to the next period so that it can

be used during the next period. This period-based capac-

ity regulation allows us to maintain the minimum write

throughput when there is unexpectedly high write traffic.

If we stop writing after the epoch capacity is exhausted,

the SSD cannot write any data until the epoch ends with

significant performance degradation. Figure 6 compares

the situations where no epoch-capacity enforcement pol-

icy is used and the pessimistic policy is used. Here, we

assume that the epoch capacity is 4 MB and the number

of periods is 4. As shown in Figure 6(a), the 4.2 MB data

are written to the SSD without epoch-capacity enforce-

ment. With pessimistic epoch-capacity enforcement, the

maximum number of bytes written to the SSD is limited

to 4.0 MB as shown in Figure 6(b).

The weakness of the pessimistic policy is that it does

(a) With pessimistic epoch-

capacity enforcement

(b) With optimistic epoch-

capacity enforcement

Figure 7: A comparison of the pessimistic and opti-

mistic epoch-capacity enforcement policies when the 4

MB data are written during the period p0.

not efficiently handle a bursty I/O pattern which writes a

large number of data within a relatively short period. Fig-

ure 7(a) shows how the pessimistic policy behaves under

a bursty write request. We assume that the capacity of an

epoch is 4 MB and the number of periods is 4. Consider

that the 4 MB data are requested during the period p0

while no write requests are issued during the periods p1,
p2, and p3. In this example, the pessimistic policy throt-

tles write requests for every period except for p3 because

the requested data always exceed the maximum capacity

of the period. However, since the total number of bytes

written during the epoch is equal to 4 MB, throttling for

the periods, p0, p1, and p2, is, in fact, unnecessary.

We resolve this overly restrictive throttling behavior

for bursty write requests by proposing the optimistic

epoch-capacity enforcement policy. Our optimistic pol-

icy maintains a relatively small amount of the spare ca-

pacity for each epoch and forcibly throttles write perfor-

mance only when both the capacity of a period and the

spare capacity are exhausted. Figure 7(b) shows an ex-

ample of the optimistic policy with the same scenario

shown in Figure 7(a). Here, we assume that the spare

capacity is set to 4 MB. As shown in Figure 7(b), un-

necessary throttling can be completely avoided with the

optimistic epoch-capacity enforcement policy.

The spare capacity must be carefully chosen. Suppose

that the spare capacity is unlimited and there is unexpect-

edly high write traffic. In that case, READY borrows as

much capacity as possible from future epochs without

limitation and then uses it up. If unexpected write de-

mands frequently occur and write demands are gradually

increasing, the SSD is worn out before the required life-

time. On the other hand, if the spare capacity is too small,

unnecessary throttling with a bursty I/O pattern would be

frequently observed due to the lack of spare capacity. In

this work, the spare capacity is empirically set to 10%

of the remaining capacity, Cr, of the SSD. This capac-

ity is sufficient enough to avoid unnecessary throttling in

real-world traces. Furthermore, since the spare capacity

is limited to 10% of Cr, the worn-out of SSDs before the

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 333

Figure 8: Reconstruction of write demand distribution.

target lifetime never occurs.

Suppose that the spare capacity is 10% and there are

n epochs. The capacity of each epoch is c0, ..., cn−1,

respectively. Note that c0 = ... = cn−1 = Cr/n as

mentioned in Section 3.3. The spare capacity for the

0-th epoch is (c1 + ... + cn−1) · 0.1, and thus the to-

tal capacity that can be written during the 0-th epoch is

c0 + (c1 + ...+ cn−1) · 0.1. If n is 3 and Cr is 3 MB, c0
is 1 MB and the spare capacity is 0.2 MB. If the data of

less than c0 have been written during the 0-th epoch, the

remaining capacity, Cr, of the SSD after the 0-th epoch

is equally distributed to the remaining epochs and then

the spare capacity is determined by (c2+ ...+ cn−1) ·0.1
for the 1-st epoch. If the spare capacity, however, is par-

tially used during the 0-th epoch, then c1, ... , cn−1 are

reduced to 90% of their original capacities and only the

unallocated capacity is used as the spare capacity. For

example, in the above example, if the data of 1.1 MB

have been written during the 0-th epoch, c1 and c2 are 0.9

MB and the spare capacity becomes 0.1 MB in the 1-st

epoch. This capacity assignment policy makes the throt-

tling delay estimator slightly increase a throttling delay

with a smaller epoch capacity. The overused capacity is

accordingly reclaimed during the remaining epochs. If

the spare capacity is used up during the 0-th epoch, the

pessimistic policy is used with the reduced epoch capac-

ity, i.e., 0.9 MB, and no spare capacity. This means that

performance degradation caused by the depletion of the

spare capacity is 10% in the worst case.

3.5 Epoch Length Selection

The length of an epoch must be carefully decided. If

the epoch length is chosen improperly, the difference in

write demands between epochs becomes large. Since a

throttling delay is determined by the write demand of the

previous epoch, the incorrect epoch length can make a

large fluctuation in the overall I/O response time of the

SSD. To determine the proper epoch length, we monitor

write demands of a workload and find repeated cycles

that show similar write demands. We then choose that

cycle as the epoch length.

Figure 9: An overall procedure of epoch length selection.

To realize this in READY, we collect information

about write demands, i.e., the number of bytes written

per unit-time window, at runtime. The write demands

collected here, however, include throttling delays that

distort the actual write demands of applications. There-

fore, it is necessary to reconstruct write demand distri-

bution when throttling is not applied. We estimate this

original write demands by rebuilding unit-time windows

without throttling delays as shown in Figure 8.

To find the proper epoch length, we use a simple ap-

proach that attempts to find the best epoch candidate,

which exhibits the smallest fluctuation in write demands,

by creating and evaluating several candidate epochs with

different lengths. Figure 9 shows our approach in choos-

ing an epoch length. We first create a candidate epoch

whose length, k, is one unit-time window, i.e., k = 1. We

then calculate the write-demand difference ratio of two

consecutive epochs i and i+1with the same length. The

write-demand difference ratio, rk(i,i+1), is defined as fol-

lows:

r
k
(i,i+1) =

|dki+1 − d
k
i |

d
k
i

, (6)

where dki and d
k
i+1 are the number of bytes written dur-

ing the epochs i and i + 1, respectively. For example,

in the example of Figure 9, d10 and d
1
1 are 3 MB and 6

MB, respectively, and thus r1(0,1) = 1.0. We calculate the

average write-demand difference ratio, µk
r , for all avail-

able pairs of two consecutive epochs. In the example of

Figure 9, µ1
r for r

1
(0,1), ..., r

1
(2,3) becomes 1.0.

We then increase the length of a candidate epoch by

one unit-time window and calculate µk+1
r . We repeat this

until the number of epochs with the same length becomes

one. Finally, the length of a candidate epoch whose aver-

age write-demand difference ratio is the smallest is cho-

sen as the epoch length, tepoch. For example, in Figure 9,

µ
k
r is the smallest when k is 2, and thus the new epoch

length becomes the length of two unit-timewindows. Af-

ter choosing the new epoch length, READY recalculates

a throttling delay using Eq.(4) if dynamic throttling is

necessary. The new epoch length is determined under

the assumption that there are no throttling delays. The

epoch length, tepoch, is thus increased to tepoch · (wi/ci)

334 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

to include delays caused by throttling.

Finding the epoch length may take a relatively long

time. To mitigate the computational overhead caused by

epoch length selection, the epoch length is recalculated

when the write-demand difference ratio between the pre-

dicted write demand and the actual one is higher than

0.25 and it occurs three times successively. The length

of a unit-time window is also set to 10 minutes to fur-

ther reduce the computational overhead. In this work,

0.25 is chosen empirically by considering both compu-

tational overhead and the accuracy of write demand pre-

diction. However, this number can be further optimized

in several ways. For example, the write-demand differ-

ence ratio that triggers epoch length recalculation can be

adaptively changed depending on the characteristics of a

workload. If the difference ratio is always smaller than

0.25, we can reduce this number, e.g., 0.15, to find a bet-

ter epoch length. On the other hand, if the difference ra-

tio is much larger than 0.25 all the time, it may be better

to reduce this number, e.g., 0.35, to avoid useless com-

putational overhead.

4 Experimental Results

In this section, we first describe our experimental settings

and explain enterprise benchmarks used for the evalua-

tions in detail. We then analyze the benefit of the pro-

posed READY technique over the static throttling tech-

nique in terms of SSD lifetime, response time, and re-

sponse time variations.

4.1 Experimental Settings

To evaluate the effectiveness of the proposed READY

technique, we have performed our evaluations using the

DiskSim-based SSD simulator [23]. The flash memory

used for the evaluations was based on 2-bit MLC NAND

flash memory, and each block was composed of 64 4 KB

pages. The page read time and the page write time were

50 µs and 600 µs, respectively, and the block erasure

time was 2 ms. The number of P/E cycles allowed to a

block was initially set to 3K, but it was changed depend-

ing on the length of the idle time based on our recovery

model. The target lifetime of the SSD was set to 5 years.

We have implemented the static and dynamic throt-

tling techniques in the SSD simulator, along with the

damage and recovery model described in Section 2. The

throttling module was implemented between the host in-

terface, e.g., SATA, and the flash translation layer (FTL).

The throttlingmodule interceptedwrite requests destined

for the FTL and then applied a throttling delay if it was

required for the lifetime guarantee. The FTL employed

a page-level address mapping algorithm with a greedy

garbage collection policy and used a hot-cold swapping

Trace Duration
Data written

WAF
SSD

per hour (GB) capacity (GB)

proxy 1 week 4.94 1.93 32
proj 1 week 2.08 1.62 32

exchange 1 day 20.61 2.24 128
map 1 day 23.82 1.68 128

msnfs 6 hours 18.19 2.26 128

Table 1: A summary of traces used for evaluations.

algorithm for wear-leveling [23]. Note that there were no

changes at the FTL level for throttling because the throt-

tling module has been designed to operate independently

regardless of the underlying FTL algorithms.

We compared the performance of five SSD config-

urations: NT, ST, DT, READYPES, and READYOPT.

NT does not use write throttling, so it cannot guaran-

tee the target SSD lifetime if write traffic is very in-

tensive. ST and DT use static throttling and dynamic

throttling, respectively. Note that DT uses the optimistic

epoch-capacity enforcement policy by default. Both

READYPES and READYOPT are different from other

configurations in that they take into account the self-

recovery effect of memory cells. READYPES uses the

pessimistic epoch-capacity enforcement policy, whereas

READYOPT employs the optimistic policy.

4.2 Benchmarks

We have chosen two enterprise traces, proxy and

proj from the MSR-Cambridge benchmark [21] and

have used three production traces, exchange, map,

and msnfs, from the MS-Production benchmark [22].

Table 1 summarizes the traces used for our evalua-

tions. proxy and proj were recorded for one week.

exchange and map contains 24-hour I/O activities,

while msnfs was collected for 6 hours. Because of the

limited duration of the traces, it was impossible to assess

the lifetime guarantee of 5 years with them. For this rea-

son, we performed our evaluations under the assumption

that the same I/O pattern is repeated for 5 years.

The write demand is very different depending on the

traces. proxy and proj exhibit a low write demand

in comparison with exchange, map, and msnfs. The

write amplification factor (WAF), which has a great ef-

fect on the write demand, ranges from 1.62 to 2.26 ac-

cording to the characteristic of I/O references [24]. For

the evaluations, the SSD capacity was configured differ-

ently depending on the traces so that the lifetime of the

SSD is to be a problem. For proxy and proj with a

low write demand, the SSD capacity was set to 32 GB.

For exchange, map, and msnfs with a high write de-

mand, the capacity of the SSD was set to 128 GB.

In practice, this capacity planning is carefully decided

by customers’ requirements. If customers are ready to

pay money to obtain a long lifetime and high perfor-

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 335

 0

 5

 10

 15

 20

 25

 30

 35

 40

proxy proj exchange map msnfs

E
ff
e
c
ti
v
e
 L

if
e
ti
m

e
 (

y
e
a
r)

NT
ST
DT

READYPES
READYOPT

Figure 10: A comparison of effective SSD lifetimes for

five traces with different SSD configurations.

mance, an over-provisioned configuration with a larger

capacity SSD is the best choice. If customers require a

low initial cost, but can manage a relatively high opera-

tional cost, a smaller capacity SSD with a shorter target

lifetime, i.e., 3 years, is preferred. For customers who

want reasonable performance with relatively lower cost

and a longer target lifetime, e.g., 5 years, the settings

shown in Table 1 may be a better choice.

All the traces used in this work were collected from

hard disk drives (HDDs) which exhibit much lower

I/O performance than SSDs. Since SSDs increase the

overall I/O rate of the storage subsystem by several

times [25, 26], the number of bytes written to a storage

device during the same time period will be largely in-

creased in comparison with HDDs. That is, ‘data written

per hour (GB)’ shown in Table 1 becomes larger, and

thus READY more aggressively throttles write perfor-

mance because of increased write traffic. Therefore, the

SSD capacity in Table 1 is set relatively conservative for

systems that use SSDs as a secondary storage device.

4.3 Lifetime Analysis

We first analyze the lifetime of the SSD for five respec-

tive traces. Figure 10 shows the effective lifetime of the

SSD with different SSD configurations. Here, the effec-

tive lifetime is the lifetime which is estimated based on

the assumption that the I/O activities of the traces are

repeated for 5 years. Note that the self-recovery effect

of memory cells is taken into account in estimating the

SSD lifetime. As shown in Figure 10, NT cannot guar-

antee the required lifetime of the SSD for all the traces,

except for proj. In our observation, the write demand

of proj is not intensive, and thus the SSD can achieve

the lifetime more than 5 years without write throttling.

ST and DT do not consider the self-recovery effect of

floating-gate transistors, and therefore they throttle write

performance based on the fixed 3K P/E cycles. Since the

P/E cycles of the SSD are increased due to the effect of

self-recovery, the effective SSD lifetimes with ST andDT

are much longer than the required lifetime. This means

that ST and DT excessively throttle write performance,

underutilizing available P/E cycles of the SSD. This ex-

Trace
SSD

Cssd(TB) C
′

ssd
(TB) Wwork (TB)configuration

proj

NT

93.75

312.6 144.4
ST 403.4 54.2
DT 346.9 93.7

READYPES 312.8 141.0
READYOPT 312.8 141.0

exchange

NT

375

949.3 1918.8
ST 1415.3 348.2
DT 1387.3 374.4

READYPES 1077.8 1077.2
READYOPT 1077.8 1065.6

Table 2: The amount of data written for 5 years for two

traces, proj and exchange.

cessive throttling results in poor write performance in

comparison with READYPES and READYOPT. In par-

ticular, DT dynamically decides a throttling delay in re-

sponse to a changing workload. Therefore, DT maxi-

mizes the utilization of P/E cycles within 3K unlike ST.

We will discuss this issue in detail with Table 2.

READYPES takes advantage of the self-recovery ef-

fect of memory cells. Therefore, it throttles write perfor-

mance so that the effective lifetime of the SSD is close

to the required lifetime for all the traces. Figure 10 also

shows that READYOPT guarantees the required SSD life-

time even though it uses the capacity borrowed from fu-

ture epochs in advance. This clearly shows that the opti-

mistic epoch-capacity enforcement policy properly man-

ages overused epoch capacity so that the given lifetime

is to be satisfied.

Table 2 analyzes the lifetime of the SSD from the

perspective of written data for two traces, proj and

exchange. As mentioned in Section 2, Cssd repre-

sents the number of bytes that can be written to the

SSD according to the NAND flash memory specification,

whereas C
′

ssd is the total number of writable bytes when

the recovery effect is taken into account. Wwork is the

total number of bytes written to the SSD for 5 years.

As expected, ST and DT throttle write performance so

that Wwork becomes close to Cssd. In particular, in the

case of ST, Wwork is about 43% and 8% smaller than

Cssd for proj and exchange, respectively. This is be-

cause ST excessively throttles write performance, assum-

ing that write requests are always intensive. Unlike ST,

DT dynamically changes a throttling delay according to

the write demands of a workload and the remaining life-

time so that Wwork is close to Cssd, allowing more data

to be written to the SSD.

READYPES and READYOPT fully utilize the en-

durance improvement offered by the self-recovery effect,

making Wwork close to C
′

ssd at the target SSD lifetime.

In the case of proj, since the endurance of the SSD is

sufficient enough to guarantee the required 5-year life-

time, throttling is not performed in most cases.

336 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Response Time (usec)

ST
DT

READYPES
READYOPT

(a) proxy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Response Time (usec)

ST
DT

READYPES
READYOPT

(b) proj

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000 2500 3000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Response Time (usec)

ST
DT

READYPES
READYOPT

(c) exchange

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000 2500 3000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Response Time (usec)

ST
DT

READYPES
READYOPT

(d) map

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000 2500 3000 3500

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Response Time (usec)

ST
DT

READYPES
READYOPT

(e) msnfs

Figure 12: Cumulative distribution functions (CDFs) of write response times.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

proxy proj exchange map msnfsA
v
g

.
R

e
s
p

o
n

s
e

 T
im

e
 (

m
ic

ro
s
e

c
o

n
d

)

NT
ST
DT

READYPES
READYOPT

Figure 11: A comparison of average write response times

for five traces with different SSD configurations.

4.4 Performance Analysis

To evaluate the performance benefit of the proposed

READY technique, we measured the average response

time of a page write while running five traces with dif-

ferent SSD configurations. Figure 11 shows the our eval-

uation results. As expected, NT exhibits the best I/O re-

sponse time among all of the evaluated configurations,

but it cannot guarantee the target lifetime as shown in

Figure 10 because it does not throttle write performance.

The average write response time of NT is close to the

page access time, i.e., 600 µsec, with little variation.

Both READYPES and READYOPT throttle write re-

quests to meet the required lifetime, so their performance

is worse than that of NT; they exhibit 1.0x to 2.13x

higher write response time than NT. In the case of proj,

READYPES and READYOPT do not reduce write per-

formance because the required lifetime can be satisfied

without throttling. Therefore, little performance degra-

dation, which is less than 1.9%, is observed in proj.

READYPES and READYOPT achieve 2.57x better perfor-

mance than DT on average. This performance benefit

mainly comes from the increased P/E cycles of the SSD.

Since READYPES and READYOPT are aware of the im-

provement in SSD endurance, they can assign more ca-

pacity to epochs, reducing throttling delays.

DT exhibits 1.7x faster response time over ST on av-

erage. DT determines the epoch capacity periodically

based on the remaining lifetime of the SSD and changes

a throttling delay so that write requests are properly de-

layed in response to future write demands. This epoch

capacity assignment and throttling delay distribution pol-

icy allows us to fully utilize the available endurance of

the SSD. On the other hand, ST neither considers the re-

maining lifetime of the SSD nor the characteristic of a

workload in making a throttling decision. Instead, ST

simply throttles write performance by limiting the maxi-

mum bandwidth of the SSD. Therefore, ST causes many

unnecessary throttling delays.

The response time variation is one of the important

design issues that must be taken into account in design-

ing throttling algorithms. We compared response time

variations between different SSD configurations. Fig-

ure 12 shows the cumulative density functions (CDFs)

of write response times for five traces. As shown in Fig-

ure 12, ST shows significant response time variations for

all the traces because it forcibly stops writing if throt-

tling is needed. On the other hand, by distributing throt-

tling delays to write requests as evenly as possible, NT,

READYPES, and READYOPT greatly reduce variations

on the write response time.

For exchange, msnfs, and map, READYPES incurs

relatively high I/O response time variations in compari-

son with READYOPT. READYPES must stop writing data

when there are a large number of writes within a short

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 337

Traces proxy proj exchange map msnfs

Accuracy of write
99.9 33.9 80.5 50.9 100

demand prediction (%)

Table 3: Accuracy of write demand prediction.

period. On the other hand, READYOPT uses the opti-

mistic epoch-capacity enforcement policy, so they handle

a bursty I/O pattern more efficiently without compulso-

rily write throttling.

The write response time of DT ranges from 600 µsec

to several thousand seconds in map and proj unlike

proxy, exchange, and msnfs. The write patterns

of map and proj change greatly with time, and thus

the difference in write demands between two consecu-

tive epochs is relatively large. Since a throttling delay

for a certain epoch is determined by the write demand

of the previous epoch, the difference between throttling

delays is accordingly increased in map and proj. Nev-

ertheless, the response time of DT is more stable than

ST.

We evaluated the accuracy of our epoch length selec-

tion method in predicting future write demands. Table 3

shows our evaluation results for five traces. We assume

that epoch length detection is accurate if the difference

between the prediction write demand and the actual one

is smaller than 25%. As shown in Table 3, our method

achieves high accuracy for proxy, exchange, and

msnfs. The accuracy of write demand prediction, how-

ever, is reduced to 50.9% and 33.9% for map and proj,

respectively, due to a high fluctuation in write requests.

We expect that the accuracy of epoch length detection

may be improved with traces recorded for a longer time.

To evaluate the effect of the epoch length selection

method on the SSD response time, we compared the

changes in throttling delays when the fixed epoch length

is used and the epoch length is dynamically determined

according to a workload. For the evaluation, we executed

the exchange trace, which is a 24-hour trace, repeat-

edly. Figure 13 shows our evaluation result. In this fig-

ure, FIXED represents READYOPT with the fixed epoch

length and DYNAMIC is the SSD configuration when

READYOPT uses the proposed epoch length detection

method. The fixed epoch length was set to 10 minutes.

As shown in Figure 13, even though READYOPT gen-

erally works well with exchange, some variations on

throttling delays are observed with FIXED. DYNAMIC

also exhibits variations on response times at the begin-

ning of the execution, but it becomes stable after repeated

write demands are detected as shown in Figure 13(b).

4.5 Detailed Analysis

We performed a detailed analysis of different SSD con-

figurations. Figure 14 represents the throughput of the

 0

 100

 200

 300

 400

 500

 600

 0 20000 40000 60000 80000 100000T
h
ro

tt
lin

g
 d

e
la

y
 (

m
ic

ro
s
e
c
o
n
d
)

Second

FIXED
DYNAMIC

(a) 0-100K seconds

 0

 100

 200

 300

 400

 500

 600

 500000 520000 540000 560000 580000 600000T
h
ro

tt
lin

g
 d

e
la

y
 (

m
ic

ro
s
e
c
o
n
d
)

Second

FIXED
DYNAMIC

(b) 500K-600K seconds

Figure 13: A comparison of throttling delays when the

fixed epoch length is used and the epoch length is dy-

namically determined in the exchange trace.

SSD with the different throttling schemes when intense

I/Os are being served. As mentioned several times be-

fore, ST limits the maximum bandwidth of the SSD by

a certain level, 2.49 MB/s in map. The overall through-

put of the SSD is thus greatly deteriorated with ST as

shown in Figure 14(a). DT works better than ST. Due

to the limited write endurance of the SSD, however,

significant performance degradation cannot be avoided

with DT as depicted in Figure 14(b). READYPES and

READYOPT exhibit much higher performance than ST

and DT by exploiting the improved write endurance of

the SSD benefited from the self-recovery effect of mem-

ory cells. In particular, READYOPT performs better than

READYPES when a large number of data are being writ-

ten to the SSD, e.g., a period of 200 to 350 second in

Figure 14(d). Even when write requests are intensively

issued, READYOPT writes the requested data to the SSD

rather than forcibly throttling the bandwidth of the SSD

by using the spare capacity borrowed from future epochs.

This allows READYOPT to exhibit better write response

time for the traces like map which exhibit a great fluctu-

ation in write requests.

5 Related Work

There have been a lot of studies on improving the en-

durance of flash-based SSDs. Many existing garbage

collection and wear-leveling techniques [27, 28, 29, 30,

31, 32, 33, 34] are designed to improve the lifetime of

SSDs by avoiding useless data migration during a block

recycling process or by distributing P/E cycles of flash

blocks as evenly as possible.

As the endurance of flash memory continuously dete-

338 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
(M

B
)

Time (second)

ST

(a) ST

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
(M

B
)

Time (second)

DT

(b) DT

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
(M

B
)

Time (second)

READYPES

(c) READYPES

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
(M

B
)

Time (second)

READYOPT

(d) READYOPT

Figure 14: A detailed analysis of four SSD configura-

tions with the map trace.

riorates, several endurance enhancement techniques that

aggressively reduce the number of data written to SSDs

have been proposed. Data de-duplication [26, 35, 36]

and data compression [37, 38] are representative exam-

ples of these policies. Data de-duplication detects du-

plicate data blocks that already exist in a storage device

and then eliminates redundant writes to SSDs for such

blocks. Data compression eliminates repeated bit pat-

terns within a data block, reducingwrites to SSDs. These

techniques are useful in improving the lifetime of SSDs,

but they have some limitations in that none of them guar-

antee the SSD lifetime or make use of the recovery effect

of a memory cell.

More recently, the approaches that exploit the recov-

ery effect of flash devices have received considerable at-

tention. This paper is an improved version of our pre-

liminary work [39]. Mohan et al. investigated the ef-

fect of the damage recovery on the lifetime of SSDs for

enterprise servers [1]. They claimed that the endurance

of NAND flash memory was durable enough even for

I/O intensive enterprise applications because of its recov-

ery ability. However, their investigations were limited

to 90 nm SLC and MLC flash memories which exhibit

good endurance properties. They also did not exploit the

benefit of the recovery effect in ensuring the lifetime of

SSDs. Wu et al. presented an endurance enhancement

technique that boosts recovery speed by heating a flash

chip worn out under high temperature [10]. By leverag-

ing the temperature-accelerated recovery, it improved the

endurance of SSDs up to five times. However, one of the

major drawbacks of this approach is that it requires ex-

tra energy consumption to heat flash chips, lowering the

energy efficiency of a storage device. Unlike Wu’s work,

our study considers the endurance improvement of SSDs

at the room temperature and exploits this benefit to guar-

antee the lifetime of SSDs with less throttling overhead.

6 Conclusions

In this paper, we proposed a recovery-aware dynamic

throttling technique, READY, to overcome two main

problems in realizing the adoption of SSDs in enterprise

server systems: the continuously decreasing endurance

and unpredictable lifetime problems. READY throttles

write performance so that the required lifetime of SSDs

is to be satisfied. In order to guarantee the SSD life-

time with less throttling overhead, READY exploits the

recovery effect of a floating-gate transistor which effec-

tively increases the number of effective P/E cycles of

SSDs. Our evaluation results showed that the proposed

throttling technique guarantees a lifetime warranty, while

achieving a relatively small reduction in write response

time and little response time variation over the static

throttling technique.

READY can be improved in several directions. The

stress and recovery model of this work is based on the

previous studies on the physical characteristics of flash

memory [1, 2, 10]. These studies carefully modeled

the stress and recovery characteristics of flash memory,

but their scopes were limited to NOR or NAND flash

memory fabricated in over 90 nm technology. To build

a more accurate stress and recovery model, we will

perform investigations using real NAND flash parts

which are fabricated in less than 30 nm technology. We

also plan to implement READY in a real SSD platform

to evaluate its effectiveness in real systems.

Acknowledgments

We would like to thank Daniel Peek, our shepherd, and

anonymous referees for valuable suggestions that greatly

improved the paper. This work was supported by the Na-

tional Research Foundation of Korea (NRF) grant funded

by the Korea government (MEST) (No. 20110020426,

No. R33-10095, and No. 2011-0020514). Samsung

Electronics partially supported our research and the ICT

at SNU provided research facilities for this study.

USENIX Association FAST ’12: 10th USENIX Conference on File and Storage Technologies 339

References

[1] V. Mohan, T. Siddiqua, S. Gurumurthi, and M.

Stan, “How I Learned to Stop Worrying and Love

Flash Endurance,” in Proceedings of the Workshop

on Hot Topics in Storage and File Systems, 2010.

[2] N. Mielke, H. Belgal, A. Fazio, Q. Meng, and N.

Righos, “Recovery Effects in the Distributed Cy-

cling of Flash Memories,” in Proceedings of the

IEEE International Reliability Physics Symposium,

2006.

[3] B. You and et. al, “A High Performance Co-design

of 26 nm 64 Gb MLC NAND Flash Memory us-

ing the Dedicated NAND Flash Controller,” Jour-

nal of Semiconductor Technology and Science, vol.

11, no. 2, pp. 121-129, 2011.

[4] N. Sommer, “Signal Processing and the Evolution

of NAND Flash Memory,” Embedded Computing

Design, vol. 8, no. 8, 2010.

[5] Y. Koh, “NAND Flash Memory Scaling Beyond

20 nm,” in Proceedings of the IEEE International

Memory Workshop, 2009.

[6] M. Goldman, K. Pangal, G. Naso, and A. Goda,

“25nm 64Gb 130mm2 3bpc NAND Flash Mem-

ory,” in Proceedings of the International Memory

Workshop, 2011.

[7] Micron Technology Inc., “An Enterprise-Focused

MLC SSD,” http://www.micron.com/

products/solid_state_storage/

enterprise_ssd/p400e.html, 2011.

[8] SandForce Inc., “SF-2500 & SF-2600 Enterprise

SSD Processors,” http://www.sandforce.

com/index.php?id=21&parentId=2,

2010.

[9] C. Black, “24 Months of Intel SSDs... What We’ve

Learned about MLC in the Enterprise...,” Intel

Open Port IT Community, 2011.

[10] Q. Wu, G. Dong, and T. Zhang, “Exploiting Heat-

Accelerated Flash Memory Wear-Out Recovery to

Enable Self-Healing SSDs,” in Proceedings of the

Workshop on Hot Topics in Storage and File Sys-

tems, 2011.

[11] R. Yamada, T. Sekiguchi, Y. Okuyama, J. Yugami,

and H. Kume, “A Novel Analysis Method of

Threshold Voltage Shift due to Detrap in a Multi-

Level Flash Memory,” in Proceedings of the Sym-

posium on VLSI Technology, 2001.

[12] H. Yang and et. al, “Reliability Issues and Models

of Sub-90nm NAND Flash Memory Cells,” in Pro-

ceedings of the International Conference on Solid-

State and Integrated Circuit Technology, 2006.

[13] Y. Pan, G. Dong, and T. Zhang, “Exploiting Mem-

ory Device Wear-Out Dynamics to Improve NAND

Flash Memory System Performance,” in Proceed-

ings of the USENIX Conference on File and Storage

Technologies, 2011.

[14] S. Gurumurthi, A. Sivasubramaniam, and V.

Natarajan, “Disk Drive Roadmap from the Thermal

Perspective: A Case for Dynamic Thermal Man-

agement,” in Proceedings of the International Sym-

posium on Computer Architecture, 2005.

[15] L. Grupp, A. Caulfield, J. Coburn, S. Swanson,

E. Yaakobi, P. Siegel, and J. Wolf, “Characteriz-

ing Flash Memory: Anomalies, Observations, and

Applications,” in Proceedings of the International

Symposium on Microarchitecture, 2009.

[16] S. Boboila and P. Desnoyers, “Write Endurance in

Flash Drives: Measurements and Analysis,” in Pro-

ceedings of the USENIX conference on File and

Storage Technologies, 2010.

[17] SanDisk, “Longterm Data Endurance (LDE)

for Client SSD,” http://www.sandisk.

com/Assets/File/pdf/oem/LDE/

WhitePaper.pdf, 2008.

[18] Silicon Graphics International, “Solid State

Disk Solutions,” http://www.sgi.com/

products/storage/ssd/endurance.

html.

[19] SMART Modular Technologies, “XceedIOPS

SATA SSD,” http://www.smartm.com/

products/storage/SSDs.asp.

[20] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper,

“Workload Analysis and Demand Prediction of En-

terprise Data Center Applications,” in Proceedings

of the IEEE International Symposium on Workload

Characterization, 2007.

[21] D. Narayanan, A. Donnelly, and A. Rowstron,

“Write Off-Loading: Practical Power Manage-

ment for Enterprise Storage,” in Proceedings of the

USENIX Conference on File and Storage Technolo-

gies, 2008.

[22] S. Kavalanekar, B. Worthington, Q. Zhang, and

V. Sharda, “Characterization of Storage Workload

Traces from Production Windows Servers,” in Pro-

ceedings of the International Symposium on Work-

load Characterization, 2008.

340 FAST ’12: 10th USENIX Conference on File and Storage Technologies USENIX Association

[23] N. Agrawal, V. Prabhakaran, and T. Wobber, “De-

sign Tradeoffs for SSD Performance,” in Proceed-

ings of the USENIX Annual Technical Conference,

2008.

[24] X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R.

Pletka, “Write Amplification Analysis in Flash-

based Solid State Drives,” in Proceedings of the Is-

raeli Experimental Systems Conference, 2009.

[25] Fusion-io Inc., “MySpace Uses Fusion Pow-

ered I/O to Drive Greener and Better Data

Centers,” http://www.fusionio.com/

case-studies/myspace-case-study.

pdf, 2010.

[26] Q. Yang and J. Ren, “I-CASH: Intelligently Cou-

pled Array of SSD and HDD,” in Proceedings of

the International Symposium on High Performance

Computer Architecture, 2011.

[27] J. Kim, J.-M. Kim, S.-H. Noh, S.-L. Min, and Y.

Cho, “A Space-Efficient Flash Translation Layer

for Compact Flash Systems,” IEEE Transactions on

Consumer Electronics, vol. 48, no. 2, pp. 366-375,

2002.

[28] S.-W. Lee, D.-J. Park, T.-S. Chung,W.-K. Choi, D.-

H. Lee, S.-W. Park, and H.-J. Song, “A Log Buffer

Based Flash Translation Layer Using Fully Asso-

ciative Sector Translation,” ACM Transactions on

Embedded Computing Systems, vol. 6, no. 3, 2007.

[29] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A

Superblock-Based Flash Translation Layer for

NAND Flash Memory,” in Proceedings of the Inter-

national Conference on Embedded Software, 2006.

[30] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST:

Locality-Aware Sector Translation for NAND

Flash Memory-Based Storage Systems,” ACM

SIGOPS Operating Systems Review, 2008.

[31] H. Kim and S. Lee, “A New Flash Memory Man-

agement for Flash Storage System,” in Proceedings

of the Computer Software and Applications Confer-

ence, 1999.

[32] M.-L. Chiang, P.-H. Lee, and R.-C. Chang, “Clean-

ing Policies in Mobile Computers using Flash

Memory,” Journal of Systems and Software, 1999.

[33] L.-P. Chang, “On Efficient Wear Leveling for

Large-Scale Flash-Memory Storage Systems,” in

Proceedings of the ACM Symposium on Applied

Computing, 2007.

[34] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J.

Lee, “A Group-BasedWear-Leveling Algorithm for

Large-Capacity Flash Memory Storage Systems,”

in Proceedings of the International Conference on

Compilers, Architecture, and Synthesis for Embed-

ded Systems, 2007.

[35] F. Chen, T. Luo, and X. Zhang, “CAFTL: A

Content-Aware Flash Translation Layer Enhancing

the Lifespan of Flash Memory Based Solid State

Drives,” in Proceedings of the USENIX Conference

on File and Storage Technologies, 2011.

[36] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Siva-

subramaniam, “Leveraging Value Locality in Opti-

mizing NAND Flash-Based SSDs,” in Proceedings

of the 9th USENIX Conference on File and Storage

Technologies, 2011.

[37] K. Yim, H. Bahn, and K. Koh, “A Flash Compres-

sion Layer for Smartmedia Card Systems,” IEEE

Transactions on Consumer Electronics, 2004.

[38] T. Park and J.-S. Kim, “Compression Support for

Flash Translation Layer,” in Proceedings of the

International Workshop on Software Support for

Portable Storage, 2010.

[39] S. Lee, T. Kim, K. Kim, and J. Kim, “Guarantee-

ing the Lifetime of SSDs Using Recovery-Aware

Dynamic Throttling,” in Proceedings of the Inter-

national Memory Architecture and Organization

Workshop, 2011.

	fast12_cover
	fast12_fm
	fast12_toc
	fast12_message
	fast12_papers
	fast12_1a
	fast12_1b
	fast12_1c
	fast12_1d
	fast12_2a
	fast12_2b
	fast12_2d
	fast12_3a
	fast12_3b

