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Abstract
Storage for cluster applications is typically provisioned
based on rough, qualitative characterizations of applica-
tions. Moreover, configurations are often selected based
on rules of thumb and are usually homogeneous across a
deployment; to handle increased load, the application is
simply scaled out across additional machines and storage
of the same type. As deployments grow larger and stor-
age options (e.g., disks, SSDs, DRAM) diversify, how-
ever, current practices are becoming increasingly ineffi-
cient in trading off cost versus performance.

To enable more cost-effective deployment of cluster
applications, we develop scc—a storage configuration
compiler for cluster applications. scc automates clus-
ter configuration decisions based on formal specifica-
tions of application behavior and hardware properties.
We study a range of storage configurations and iden-
tify specifications that succinctly capture the trade-offs
offered by different types of hardware, as well as the
varying demands of application components. We ap-
ply scc to three representative applications and find that
scc is expressive enough to meet application Service
Level Agreements (SLAs) while delivering 2–4.5× sav-
ings in cost on average compared to simple scale-out
options. scc’s advantage stems mainly from its ability
to configure heterogeneous—rather than conventional,
homogeneous—cluster architectures to optimize cost.

1 Introduction
Today, application providers can choose from a range of
storage choices to provision the infrastructure for cluster-
based applications. Storage technologies as diverse as
DRAM, solid state drives (SSDs), and hard disks present
complex trade-offs in cost, capacity, performance (along
multiple dimensions), and power consumption. New
storage technologies such as phase change memory [14]
will soon further complicate the space.

Provisioning, however, is based largely on rules of
thumb and best practices. Applications are broadly cat-

egorized as storage, compute, or memory intensive and
are typically deployed on homogeneous clusters heavy
on the corresponding resource. As application load in-
creases, deployments are “scaled out” by simply adding
more storage and compute in the same configuration.
Not only does this state of affairs fail to take full ad-
vantage of the diversity of available storage choices, but
the increasing scale of deployments makes such ineffi-
ciencies worse; inefficiencies multiplied over thousands
of servers can have substantial costs. In the scale-out
model, a poor initial choice can greatly inflate expenses.

In this paper, we pursue an alternate approach—the
automated selection of cluster storage configurations
based on formal specifications of applications, hardware,
and workloads. Initially, such an approach places signif-
icant burden on those developing and deploying applica-
tions to characterize applications and workloads. How-
ever, the resultant savings in cost necessary to satisfy Ser-
vice Level Agreements (SLAs) can be substantial.

Our primary contributions in implementing this ap-
proach are two-fold. First, we determine how the charac-
teristics of applications, workloads, and hardware should
be specified in order to automate the selection of cluster
configurations. To do so, we study several representative
deployment scenarios and identify a parsimonious yet
sufficiently expressive set of parameters that capture the
trade-offs offered by different types of storage devices
and the varying demands across application components.
Though others have pursued a similar approach of for-
mally specifying workloads and hardware [5, 7, 34], we
extend this approach to account for various types of stor-
age media (e.g., disk, SSD, and DRAM) and to jointly
capture storage and compute requirements of applica-
tions. We show that it is feasible to concisely summarize
the most salient parameters that determine the resource
requirements of specific application deployments, thus
minimizing the burden of formal specification.

Second, we develop scc, a storage configuration com-
piler that takes specifications of applications, workloads,

1



Resource MB/s IOPS Watts Cost
7.2K Disk 90 (R) 125 (R)

5 $213
(500 GB) 90 (W) 125 (W)
15K Disk 150 (R) 285 (R)

2.3 $296
(146 GB) 150 (W) 285 (W)

SSD 250 (R) 2500 (R)
2.4 $456

(32 GB) 80 (W) 1000 (W)
DRAM 12.8K (R) 1.6B (R)

3.5 $35
(1 GB) 12.8K (W) 1.6B (W)

CPU core - - 20 $137

Server type Resource Limits Cost
Server1 4 cores, 1 Gbps network $1400

12GB DRAM, 4 SAS slots
Server2 16 cores, 10 Gbps network $1850

48GB DRAM, 16 SAS slots
Server3 32 cores, 10 Gbps network $11000

512GB DRAM, 16 SAS slots

Table 1: Example set of cluster building blocks input to scc.
Cost is price plus energy costs for 3 years. scc takes read and
write gap parameters as input rather than IOPS.

and hardware as input, automates the navigation of the
large space of storage configurations, and zeroes in on
the configuration that meets application SLAs at mini-
mum cost. To evaluate scc, we experiment with three
distributed applications with distinctly different work-
load characteristics: 1) ProductSearch, a product search
webservice modeled on Google Merchant Center [17], 2)
Terasort, a MapReduce job to sort large tuple collections,
and 3) PhotoShare, a photo-sharing Web service modeled
on Flickr. By deploying these applications on a range of
cluster configurations and measuring application perfor-
mance on these configurations, we present empirical ev-
idence that scc is expressive enough to capture the needs
of a range of applications.

In developing scc and applying it to diverse applica-
tion workloads, we make three key observations. First,
the right choice of storage configuration depends not
only on the storage capacity and I/O needs of the ap-
plication, but also on the application’s compute require-
ments and on the types of server configurations available.
When an application performs a set of operations in se-
quence, the resources assigned to serve each of these op-
erations must be jointly optimized to satisfy the perfor-
mance bound on the sequence of operations at minimum
cost. For example, in an application that performs an
I/O operation on some data followed by some compu-
tation, the storage type assigned to the data depends on
the amount of computation. When the computation con-
sumes significant time, the data may need to be stored
on fast storage like SSDs to meet performance bounds,
whereas when compute time is low, there is greater slack
in performing the I/O and hence, slower cheaper storage
like disk may suffice.
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Figure 1: Overview of scc.

Second, we find that clusters with heterogeneity—
rather than conventional homogeneity—across servers
are necessary to optimize cost. The resources required
differ across application components because of varying
ratios of capacity, compute, and I/O throughput needs
across components. For example, in a deployment of the
photo-sharing Web service, it may be cheaper to store
photos on disk and cache thumbnails in DRAM; stor-
ing both on disk or both in DRAM may result in higher
cost due to higher I/O throughput needs from thumbnails
or higher storage capacity needs of photos, respectively.
As a result, scc’s suggested configuration meets perfor-
mance SLAs at low cost. For example, in experiments
with Terasort, we find that scc meets performance re-
quirements at 15–20% lower cost than a homogeneous
configuration recommended based on best practices.

Finally, we also find that the most cost-effective clus-
ter architecture depends not only on the application be-
ing provisioned but also on the workload and perfor-
mance requirements. Data that was initially capacity-
bound may become I/O-bound at higher loads, calling
for shifts from high capacity but slow storage, e.g., disks,
to low capacity but fast storage, e.g., SSDs. As a result,
cluster configurations output by scc for ProductSearch
and PhotoShare result in 2x–4.5x average savings in cost
compared to similarly performant scale-out options.

2 Problem setting and overview
Identifying an appropriate cluster architecture to host a
large-scale service is often not straightforward. For ex-
ample, given a set of resources to choose from (e.g., as
shown in Table 1), an application provider has to answer
several questions. What storage technologies should be
employed, and how should data be partitioned across
them? Where should caching be employed? What types
of servers should be chosen to house the selected storage
units? In addition, even if the application’s implemen-
tation is efficient and there is coarse-grained parallelism
in the underlying workload, how will algorithmic shifts
in the application or variations in workload affect the ap-
propriate cluster architecture? Our goal is to automate
the process of answering these questions, rather than re-
lying solely on human judgment.
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Problem setting. In developing scc, our focus is
on the typical scenario where a cluster is dedicated to
a specific application, rather than large-scale data cen-
ters (e.g., Google, Microsoft) that host a mix of applica-
tions. scc caters to the common case where an applica-
tion provider either acquires hardware or uses third-party
infrastructure to deploy an application. In such cases, the
question we seek to answer is: what information from
the infrastructure provider and from the application de-
veloper is necessary to determine a cost-effective cluster
configuration that meets performance goals?

Overview of scc. As shown in Figure 1, scc takes
three inputs: i) a model of application behavior, speci-
fied by the application’s developer, ii) characteristics of
available hardware building blocks specified by the in-
frastructure provider, and iii) application performance
metrics, i.e., a parameterized service level agreement
(SLA). Given these inputs, scc computes how cluster
cost varies as a function of SLA and outputs a low-cost
cluster configuration that meets the SLA at each point
in the space. For example, a webservice SLA might
specify a peak query rate per second. For each poten-
tial SLA value (e.g., 1000 queries per second), scc de-
termines a cost-effective cluster architecture capable of
satisfying the SLA. scc’s output cost vs. SLA value dis-
tribution helps administrators decide what performance
can be supported cost effectively.

Our focus in developing scc is to show how to system-
atically exploit storage diversity; i.e, select among differ-
ent physical media, local and remote storage, and various
caching strategies. In the future, we plan to extend scc
to tailor network configurations and choose among CPU
types. Here, we assume the cluster network can deliver
uniform bandwidth between all pairs of servers [4] and
do not address incast-like scenarios [27] that arise due to
limited packet buffers. Instead, we assume network stor-
age access is limited only by network adapter speeds.

3 Inputs to scc
We now describe how we represent the three inputs to
scc—SLA specifications, properties of cluster building
blocks, and application models. Rather than model the
intricate complexities of algorithms and hardware, scc
captures aggregate high level statistics that are relevant to
application and hardware scaling behavior over a broad
range of scenarios. Towards this end, we identify a key
set of elements that comprise each of scc’s inputs and the
corresponding attributes required to describe these ele-
ments. Figure 2 depicts examples of scc’s three inputs;
our implementation encodes them in XML.

3.1 Specifying SLAs

We consider throughput-based SLAs for two distinct ap-
plication classes: batch and interactive; we defer sup-

<sla task=“photoview” rate=“300”> </sla>
<sla task=“photoupload” rate=“100”> </sla>
<sla task=“tagview” rate=“100”> </sla>

(a)
<resources>

<storage unit name=“7.2KDisk” capacity=“500GB” bus=“SAS”
rateR=“90MBps” gapR=“8ms” rateW=“90MBps” gapW=“8ms”
volatile=“0” price=“200” power=“5W”> </storage unit>

<storage unit name=“SSD” capacity=“32GB” bus=“SAS”
rateR=“250MBps” gapR=“0.4ms” rateW=“80MBps” gapW=“1ms”
volatile=“0” price=“450” power=“2.4W”> </storage unit>

<storage unit name=“DRAM” capacity=“1GB” bus=“DDR3-1333”
rateR=“12.8GBps” gapR=“0.6ns” rateW=“12.8GBps” gapW=“0.6ns”
volatile=“1” price=“25” power=“3.5W”> </storage unit>

.. . additional storage units . . .
<cpu price=“85” power=“20W”> </cpu>
<server name=“HP DL380 G6” price=“1400” cpus=“4” BW=“1Gbps”>

<bus name=“SAS” slots=“4” BW=“6Gbps”> </bus>
<bus name=“DDR3-1333” slots=“12” BW=“21.3GBps”> </bus>

</server>
.. . additional servers . . .

</resources>

(b)
<application>

<dataset name=“tables repository” size=“150GB” persistent=“1”
remote=“1”> </dataset>

<dataset name=“hot ratingsdata” size=“1.6GB” persistent=“*”
remote=“0”> </dataset>

<dataset name=“cold ratingsdata” size=“6.4GB” persistent=“*”
remote=“0”> </dataset>

.. . additional datasets . . .
<task name=“worker” phase=“exec” memory=“1GB”>

<io op=“R” dataset=“tables repository” record size=“800MB”
num records=“1” blocking=“0”> </io>

.. . additional I/O operations . . .
<compute time=“2.2s” blocking=“1”> </compute>
<dependency task=“queryprocessor” num invocations=“1”

parallel=“1” blocking=“1”> </dependency>
</task>
<task name=“queryprocessor” phase=“exec” memory=“200MB”>

<io op=“R” dataset=“hot ratingsdata” probability=“0.8”
num records=“40K” record size=“4KB” blocking=“0”> </io>

<io op=“R” dataset=“cold ratingsdata” probability=“0.2”
num records=“40K” record size=“4KB” blocking=“0”> </io>

<compute time=“0.65s” blocking=“1”> </compute>
</task>

</application>

(c)

Figure 2: Example specifications of (a) SLAs for PhotoShare,
(b) hardware resources, and (c) application behavior for a par-
ticular deployment of ProductSearch.

porting latency-based SLAs to future work. For batch
applications, the SLA has two attributes—the job size
and the required execution time, e.g., for a MapReduce
job, the SLA specifies the number of records to be pro-
cessed and the total run time for doing so. scc is more ap-
plicable for provisioning a new set of VMs for every job
than for provisioning a shared cluster used for running
jobs with varying I/O and compute characteristics. For
interactive applications run as services, each type of re-
quest is associated with its own performance-based SLA
that describes its required sustained processing rate. For
example, in the case of a photo sharing Web service, the
rates of photo uploads, photo views, and album views
are each specified as a separate SLA. scc’s SLAs spec-
ify peak rather than average case throughput. We discuss

3



how scc accounts for temporal variation in Section 6.3.

3.2 Cluster building blocks

scc’s second input is a characterization of the set of build-
ing blocks available for assembling the cluster. We ac-
count for three types of elements—storage units, CPU
cores, and servers. To ensure our approach is not tied to
the characteristics of any particular technology, we em-
ploy abstract features such as I/O bandwidth and number
of processor slots as the attributes for these elements. Ta-
ble 1 lists sample building blocks used in our evaluation.

3.2.1 Storage

Storage resources come in discrete units, e.g., 1 disk
or 1 stick of DRAM. To differentiate between different
kinds of storage technologies such as disk, SSDs and
DRAM, we characterize each unit based on two prop-
erties: capacity and I/O throughput. Capacity is simply
the amount of available storage measured in bytes. Rep-
resenting I/O throughput is more complex; we capture it
with four attributes—the average rate at which I/O re-
quests are served and the average latency gap between
serving successive I/O requests, accounting for both sep-
arately for reads and writes. The gap parameter captures
overheads involved with non-sequential I/O, e.g., seeks
on disks and block erasure on SSDs. We define read
(write) gap for a particular storage device as the latency
incurred on average between successive reads (writes) to
random logical addresses on the device. The latency to
serve a read (write) request for a chunk of size bytes is
thus ( size

rate + gap). We consider gap rather than the com-
monly used IOPS metric because gap enables us to better
capture the range of I/O performance regions from small
to large records. For example, characterizing read per-
formance on a 7.2K-RPM disk based on IOPS and rate
works well for 4 KB and 10 MB reads, but fails to cap-
ture the read throughput with 200 KB reads. In our eval-
uation, we find that these four attributes—rate and gap
for reads and writes—suffice to capture the I/O perfor-
mance of multiple disk types and SSDs. Furthermore,
we believe these attributes are expressive enough to cap-
ture the characteristics of phase change memory (PCM)
and other emerging storage technologies.

The application-visible performance of a storage
medium is also influenced by how the chosen file system
places data. For example, a disk can deliver significantly
higher write throughput when written to in a log for-
mat [28]. Therefore, when an application stores a dataset
on a storage or file system, we measure I/O rates and gaps
of each storage unit when using that system to read/write
data. Further, for each storage unit, we consider two
other attributes: storage persistence (i.e., whether it pro-
vides non-volatile storage) and I/O bus type (e.g., SAS
vs. PCIe).

3.2.2 Servers and compute

Servers impose constraints on how storage can be packed
into a physical box. For each kind of server, we consider
its memory capacity as well as the properties of its I/O
controllers. For each I/O controller, we consider the total
number of units it can support and its maximum avail-
able I/O bandwidth. For example, a serial attached SCSI
(SAS) controller permits up to 128 connected disks, yet
supports a maximum I/O bandwidth of only 6 Gbps, less
than the total sequential I/O throughput that can be ob-
tained from 128 disks. Similarly, throughput for remote
storage is limited by a server’s network interface speed.

As our focus is on storage complexity in cluster archi-
tectures, we consider only a single CPU type, ignoring
trade-offs in compute per unit power [6, 11]. Instead, we
vary the number of cores per server to extract the level of
parallelism needed to maximize storage utilization.

3.2.3 Costs

Finally, an additional attribute for every element in the
resource specification is the amortized cost per hard-
ware unit including both capital and operational outlays.
In our current implementation, the latter subsumes en-
ergy costs, ignoring data center costs and administrator
salaries, and we consider total cluster cost to be a linear
sum of individual components, which may not necessar-
ily be true for large quantities. We leave for future work
discounting the growth of expenses with cluster size and
accounting for increased operational costs with a higher
diversity of server configurations in the cluster.

3.3 Characterizing applications

Our characterization of applications accounts for two
aspects—its implementation and the workload in its
planned deployment. However, unlike previous attempts
at formally specifying workloads [34], simply account-
ing for storage capacity needs and the application’s
stream of I/O operations does not suffice for our pur-
pose. Instead, to capture an application’s implementa-
tion, we first ask the application’s developer to describe
its decomposition into compute and storage components,
and the interaction between them. For example, Fig-
ure 3 depicts the components, and the interaction be-
tween them, for one of the three applications we con-
sider later in our evaluation—a photo sharing Web ser-
vice, PhotoShare. Though our approach places the onus
on application developers to go through the process of
formally specifying the components of their application,
an application’s specification is reusable across deploy-
ments. Some of the characteristics of several applications
are already captured today [23, 24].

Second, we enable those who deploy an application
to annotate the specification of the application’s archi-
tecture with properties of the expected workload in their

4



Tasks Datasets

Photo Upload

Thumbnail
Conversion

Photos

(Tag, Photos)
Mapping

Thumbnails

Viewing
Photos

Viewing
Tags

Writing Tags

1 x 200KB

1 x 200KB

10 x 4KB

1 x 4KB

1 x 1KB

10 x 1KB10 x 1KB

remote,persistent
(1 TB)

remote,persistent
(20 GB)
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Figure 3: Interaction between tasks and datasets in example
application PhotoShare. Edges between tasks and datasets rep-
resent I/O with direction differentiating input and output. Dot-
ted edges indicate task dependencies.

deployment. To do so, we require that the compute
and I/O characteristics of an application’s components,
when subjected to the target workload, be determined
by running small-scale application benchmarks. Extract-
ing these properties requires tracing the application’s
execution—now standard practice in resource-intensive
performance-critical applications. In the absence of
built-in tracing support, systems like Magpie [8] can be
leveraged.

3.3.1 Tasks and datasets

scc’s application specification separates the applica-
tion’s compute and storage requirements into tasks and
datasets. A task is a specific application functional unit;
all threads/processes that perform the same function to-
gether constitute a single task. A dataset is a collection of
records of the same type with similar I/O access patterns.

Execution of tasks. To account for how compute time
and I/O wait time are distributed across a task’s execu-
tion, we represent each task by its execution path; dif-
ferent tasks in an application will have different execu-
tion paths. A task in an interactive application executes
its execution path for each incoming request, whereas in
batch applications, a task’s execution path is executed as
many times as necessary to consume its input. Further,
since batch jobs can go through multiple phases of exe-
cution, we require the application developer to tag each
task with the phase to which it belongs. The cluster can
thus be provisioned to support the maximal resource re-
quirement across phases.

We characterize the execution path of a task as a se-
quence of three types of operations—compute, I/O, and
invocations of other tasks. Each of these can be marked
as either blocking or non-blocking. Compute operations
are characterized by the amount of time spent perform-
ing computation on a particular type of CPU. While this
value can of course vary, we have found that a represen-

tative average is sufficient to inform scc; we show later
in Section 6.1 that scc can help evaluate the sensitivity
of its output to the input values. I/O operations are at-
tributed with the dataset on which the operation is being
performed and whether it is a read or write operation.
Similarly, every task dependency is annotated with the
invoked task.

The operations in a task’s execution path may not be
completely deterministic. For example, an I/O operation
may hit the cache in some cases but not all, or a remote
task may need to be invoked only based on the results of
prior task invocations. To capture such non-determinism,
every operation has an additional attribute—the proba-
bility of its execution. This, for example, enables us to
capture developer knowledge of typical working set sizes
for individual datasets and the hit rate on the working set.

Lastly, we also require that each task node be tagged
with its memory requirements. While some applications
may use all available memory and garbage collect on de-
mand, we consider required memory to be the amount
necessary to maintain performance. Note that this spec-
ifies memory that scc must allocate for computation be-
yond any additional DRAM scc provisions as RAM disks
to store datasets.

Representing datasets. Next, we account for datasets
in terms of their I/O bandwidth and capacity require-
ments. The I/O requirements from a dataset are deter-
mined by all the I/O operations performed on it, across
the execution paths of all tasks. We ask that each I/O
operation be tagged with three attributes—the number
of records read or written, the number of bytes in each
record, and whether records are read in parallel. The
last of these three properties can be specified by the ap-
plication developer, while the other two depend on the
workload for which the application is being deployed.
Again, we find that average values suffice for our tar-
get throughput-based SLAs. Describing I/O in terms of
records accounts for the overhead seen between succes-
sive read/write operations on storage media such as disks
and SSDs, e.g., from disk seeks. We similarly annotate
task dependencies with three attributes—the number of
invocations being performed, whether they are in par-
allel, and whether the whole dependency is blocking or
non-blocking.

Lastly, we account for a dataset’s capacity require-
ments by requiring that it be tagged with three additional
attributes: its size, whether it must be persistent, and
whether the dataset is local or remote. This last attribute
differentiates between data assumed in the application’s
implementation to be on a storage unit local to the task
accessing it as opposed to data that may be stored on a
storage unit on a different machine in the cluster. Though
a remote file can be made to appear local by use of sys-
tems such as NFS, we capture the application developer’s
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assumption of local storage, since remote access leads to
higher access latencies. scc leverages this distinction in
two ways. For a remote dataset, scc explicitly accounts
for network load resulting from I/O requests and some
CPU requirements for the machines hosting the dataset.
Conversely, task-local storage constrains the amount of
parallelism available on a single machine due to the stor-
age bandwidth and number of storage unit slots available
on the node.

Figure 2(c) presents an example (for another of the
applications we use in our evaluation, ProductSearch,
a product search Web service) of the precise format in
which such an application characterization is specified
as input to scc.

4 Implementation of scc
Next, we describe how scc processes its inputs to gener-
ate cost-effective cluster configurations.

4.1 Overview

scc determines the cost versus SLA distribution for a
given application deployment by considering the config-
uration for each point in the distribution independently.
To compute the cluster configuration for a target SLA,
scc needs to answer two questions. First, it needs to de-
termine the architecture of the cluster—for each dataset
of the application, it must determine the type of media on
which the dataset should be stored and how to pack the
storage units into servers. This packing is constrained by
the number and location of CPUs available to assign to
the compute tasks that access each dataset. Second, scc
needs to identify the scale at which this architecture must
be instantiated to meet the SLA—scale is determined by
the number of servers, storage units, and CPUs, as well
as the level of parallelism of each application task.

Guiding Principles. Two key principles help scc
identify the right cluster configuration. First, the archi-
tecture and scale for every application component can be
determined independently when all operations are per-
formed asynchronously, but not when some operations
are synchronous. The SLA for any task only specifies
the rate at which a task’s execution path must run. In
the typical case where a task’s execution path contains
some operations that block others, scc needs to deter-
mine the “division of labor” across these operations that
minimizes cost. For example, in a task that reads from
an input dataset and then writes to an output dataset, in
order to meet the task’s SLA, it may suffice to provision
fast storage for any one of the two datasets; provision-
ing fast storage for both datasets may unnecessarily re-
sult in higher cost due to storage capacity requirements,
whereas slow storage for both may incur higher costs
in satisfying I/O throughput needs. Hence, scc jointly
determines resource requirements across all application

Configuration state: S = (S1, . . . ,Sn), where
Si = storage type assigned to ith dataset

for every remote dataset di
compute Ui = no. of units of Si to meet capacity and
I/O needs from di

for every task ti
Ri = average runtime of ti
Pi (parallelism of task ti) = SLA(ti) × Ri
for every dataset d j local to ti,

compute no. of units of S j to meet capacity and
I/O needs from d j for one instance of ti

Linear integer program to choose servers
Variables:

1. booleans for whether kth server is of jth type
2. ∀ remote dataset di, no. of units of Si in kth server
3. ∀ task ti, no. of instances on kth server

Constraints:
Per-server constraints:
1. On each I/O controller, (no. of storage units < no. of

slots) and (I/O throughput < bus bandwidth)
2. (I/O throughput on remote datasets and local datasets

accessed remotely) < network bandwidth
3. no. of CPUs < no. of CPU slots
Per-dataset and per-task constraints:
1. ∀ dataset di, (no. of units across all servers = Ui)
2. ∀ task ti, (no. of instances across all servers = Pi)

Objective:
Minimize cost of (servers + storage units + CPUs)

Figure 4: Summary of scc’s procedure for determining a cost-
effective cluster configuration that satisfies target SLAs, given
a particular assignment of storage types to datasets.

components.
Second, since scc is provisioning for peak load, it pre-

vents over-provisioning by ensuring that at least one re-
source is bottlenecked on every server at peak load. (If
the application provider desires to run the cluster at lower
peak utilization, that can be specified as input.) Based on
our characterization of hardware, there are four possible
bottlenecks on each server—1) the number of slots or
2) the bandwidth on an I/O controller, 3) the number of
CPU cores, or 4) network bandwidth.

Algorithm. Driven by the need for joint optimization
across components, scc represents each point in the state
space of configurations by the assignment of storage unit
types to datasets. As a result, if S is the number of stor-
age choices and D is the number of datasets, scc has to
search through a space of O(SD) configurations; for each
dataset, scc can choose any one of the S storage options.

In cases where the configuration space is too large to
perform an exhaustive search, scc performs a repeated
gradient descent search: We start with a randomly cho-
sen configuration. In each step, we consider all neigh-
boring configurations—those which differ in exactly one
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dataset’s storage-type assignment—and move to the con-
figuration that still meets the SLA with the maximum de-
crease in cost. We repeat this step until we find a configu-
ration where all neighbors have higher cost. Since gradi-
ent descent can lead to a local minimum, we repeat this
procedure multiple times with different randomly cho-
sen initial configurations and settle on the minimum cost
output across the multiple attempts. In our evaluation, we
have found that repeating the gradient descent 10 times is
typically sufficient to find a solution close to the global
minimum. Therefore, even when determining the con-
figuration to satisfy workloads of tens of thousands of
queries per second, scc’s running time for any particular
SLA is within a minute.

At the heart of scc’s search of the configuration space
is a procedure—summarized in Figure 4—that, given
any particular assignment of storage types to datasets,
determines a cost-effective set of resources to meet the
target SLAs. In this procedure, scc first determines for
each remote dataset, i.e., not local to any task, the num-
ber of storage units required of the type assigned to the
dataset in the configuration state. Second, scc determines
the number of CPUs required by every task and the num-
ber of storage units of the assigned type needed by the
task’s local datasets. Finally, it determines the types of
servers and number of each kind required to minimize
overall cluster cost. We describe these three steps using
examples from illustrative applications.

4.2 Resources for datasets

A dataset’s storage resources need to satisfy two require-
ments: capacity and I/O throughput. To determine the
cheapest storage solution that satisfies both, scc com-
putes the number of storage units required to satisfy each
requirement independently and chooses the maximum of
the two. When the former (latter) is more expensive,
we call the dataset capacity (I/O) bound. A capacity-
bound dataset requires storage equal to the dataset’s size
irrespective of the medium used. Determining the stor-
age required by a I/O-bound dataset is more involved.
Though the total capacity of the storage units allocated
to the dataset need only be equal to the dataset’s size,
we may need more units—under-utilizing the capacity
on each of them—to meet throughput demands.

We compute I/O requirements as follows. As de-
scribed in Section 3.3, the application characterization
specifies the record size and the number of records
read/written in every I/O operation. scc computes the
overall number of I/O operations that a particular storage
unit can support based on its rate and gap parameters.
The SLA combined with the probability attributed to an
I/O operation fully specifies the required frequency of the
operation, which in turn determines the number of stor-
age units required to deliver the performance in parallel.

For example, when serving requests to view photos in
PhotoShare, one photo of size 200 KB on average is read
from the photos dataset on every photo view. If the pho-
tos dataset were assigned to 15K-RPM disk (Table 1),
which offers a read rate of 150 MBps and a read gap
of 3.5 ms, it will be able to serve 200 KB-sized reads at
the throughput of 200KB

200KB
150MBps +3.5ms

, approximately 40 MBps.

Therefore, if the SLA specifies 1000 photo views per
second, 200KB×1000/s

40MBps = 5 units of 15K-RPM disks are
required to satisfy the I/O throughput requirement.

4.2.1 Task phases

Not all tasks in an application execute concurrently, e.g.,
the Map and Reduce tasks run in different phases of a
MapReduce job. Since datasets are subject to I/O opera-
tions only from tasks executing in a particular phase, scc
computes the storage needed to meet I/O requirements in
each phase independently. The storage requirements for
a dataset during a particular execution phase are com-
puted as the sum of storage needs across all the I/O op-
erations made on the dataset by the tasks that run in that
phase. scc computes the overall I/O-mandated storage
requirement as the maximum over all phases.

4.2.2 Caching for higher I/O

When a dataset is I/O-bound, storing it across units of
a single type may not always be the cheapest solution.
I/O throughput of persistent datasets can be improved by
introducing a second type of storage unit as a caching
layer. For example, when considering a single storage
type to service the entire load, the SSD is the most cost-
effective option for the tags dataset in the PhotoShare ap-
plication. However, a cheaper solution is to store the per-
sistent copy of the tags on a 7.2K-RPM disk and to serve
reads from a cached copy in DRAM.

scc assumes write-through caching. Persistent storage
units handle all writes and maintain a persistent copy.
Units of another type, with higher I/O rates, handle all
reads. To ensure durability, every write is committed
to both copies and by default, scc provisions enough
storage to cache the entire dataset. However, devel-
oper knowledge of the application’s working set size—
encoded into the application specification as different ca-
pacity requirements for the dataset and for the cache—
can also be used to determine what fraction of the dataset
is to be cached. To evaluate whether such a solution is
cost effective, scc computes the costs of both copies of
the dataset separately and computes their sum.

4.3 Task Resources

scc next determines the resource requirements of each
compute task in three steps. First, it determines the CPU
utilization of the task. Second, it computes the degree of
parallelism—i.e., the number of threads/processes of the
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task—required to meet the SLA. Finally, it determines
the number of storage units required per instance of the
task for each of the task’s local datasets.

A task’s CPU utilization is the fraction of its run time
spent performing computation. scc translates a task’s
CPU utilization into the corresponding CPU resources
required by computing the level of parallelism required
to meet the SLA: if a task’s execution path is to be exe-
cuted with frequency F and the task’s average run time
is R, then (F ·R) instances of the task are required. The
value of F for a task is computed from the SLA for that
task and other tasks that depend on it; R is computed by
appropriately summing up the times for compute, I/O,
and task invocation operations in the task’s execution
path, taking into account, for each operation, its prob-
ability and whether it is blocking or non-blocking.

scc calculates each task’s storage requirements for its
local datasets based on capacity and I/O throughput re-
quirements. scc also computes the task’s memory re-
quirements and the network bandwidth needed for I/O
accesses to remote storage. scc determines each of these
three requirements—local storage, memory, and network
bandwidth—per instance of the task and linearly extrap-
olates to a target level of parallelism.

4.4 Optimizing server costs

Finally, scc optimizes cluster cost by minimizing the
cost of required servers. Determining the servers re-
quired to host storage and CPU resources reduces to
the multi-dimensional vector bin packing problem [12].
Each server type is associated with a cost and a vector
of resource limits, such as the I/O bandwidth of each I/O
controller and the maximum number of CPUs that the
server can accommodate. Respecting these resource lim-
its, CPUs and storage units required by tasks and datasets
must be placed across servers, while minimizing total
cost. scc solves this bin-packing problem with a linear
integer program.

5 Evaluation

Next, we demonstrate that scc achieves the right cost ver-
sus performance tradeoff. Unfortunately, it is difficult to
select appropriate comparisons. Though there exists a
large body of work on capacity planning [22], all of it re-
volves around the question: “Given a cluster architecture
for an application, how many servers of each type in the
architecture are necessary?” In contrast, scc minimizes
cost by determining not only the right scale, but also the
architecture most suited for a given application deploy-
ment. Moreover, conversations with major infrastructure
providers reveal that existing approaches for provision-
ing cluster applications used in practice are ad-hoc—the
primary motivation for our work.

5.1 Methodology

We apply scc to three distributed applications with
disparate workload characteristics to identify the cost-
versus-SLA tradeoff in each case. To keep the discus-
sion simple, we fix capacity requirements while vary-
ing the SLA. For each application, we validate the cost-
effectiveness of scc’s output for one particular target
SLA. Though scc readily outputs cluster configurations
on the scale of tens of thousands of servers, we focus on
smaller scales for validation so that we can instantiate the
configurations with hardware we have on hand. Note that
even at the scale of a few servers, the combination of type
and quantity for storage, compute, and servers results in
a very large configuration space. For example, with 5
servers of type Server1, over 1014 cluster configurations
are feasible using the building blocks in Table 1.

In the absence of prior approaches for principled de-
termination of cluster architectures, our evaluation com-
pares configurations output by scc with all possible alter-
native assignments of datasets to storage types; for each
alternative, we consider those quantities of hardware re-
sources to make cost comparable to scc. Here, we present
results from alternate architectures that come closest to
matching scc with respect to satisfaction of SLAs. In
some cases, we also consider alternative architectures at
the scale required to meet input SLAs and show that they
incur higher costs than scc. For each experiment, we
physically provision clusters composed of the building
blocks provided as input to scc.

Table 1 summarizes the resources provided as input to
scc, represented formally as in Figure 2(b). We construct
our specification for cluster building blocks based on HP
ProLiant DL380 G6 servers interconnected by a Gigabit
Ethernet network. In each server (Server1), we consider
the resource limitations to be one quad-core Intel Xeon
processor, four SAS slots, and up to 12 GB of DRAM.
Each of the SAS slots can support a 7.2K-RPM disk, a
15K-RPM disk, or an Intel SSD. To evaluate the perfor-
mance of a given configuration, we turn off CPU cores
and/or use only a subset of the SAS and DIMM slots.

For each of the resources, we consider the cost to be
the amount we paid, excluding support, plus energy costs
computed based on power usage numbers from product
data sheets (we assume $0.10/kWh over a three year de-
ployment). Though the power drawn by any unit can vary
from its specification, we study the robustness of our re-
sults (Section 6.1) and find that they remain unchanged
even if energy costs increase by a factor of two.

5.2 Photo sharing

Our first application, PhotoShare, is an interactive photo
sharing application. It allows users to upload tagged
photos, to view thumbnails for photos associated with
a given tag, and to view the photos. PhotoShare is a
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Figure 5: Validation of cluster output by scc for particular
SLA values in the three application cases.

C++ FastCGI application hosted on lighttpd webservers.
Uploaded images are thumbnailed and stored, whereas
tag updates are made via RPCs. Data is kept in a dis-
tributed log-based key-value storage system. Image, tag,
and thumbnail views translate to fetches from the store.
The three SLA metrics are the simultaneous rates for up-
loading photos, viewing photos, and viewing thumbnails
associated with tags. Our input workload has, on aver-
age, 200-KB images that convert to 4-KB thumbnails,
and an average of 10 photos/tag and 10 tags/photo.

We apply scc to study the cost as a function SLA by
fixing the ratio of the rates for uploads, photo views, and
tag views at 1:3:1. Figure 6 shows this cost distribu-

Figure 6: Cost versus SLA distribution output by scc for Pho-
toShare. Note log scale on y axis.

tion for a range of SLA values. Perhaps surprisingly,
no huge spikes are observed in this distribution; this is
because scc balances costs across the kind of storage,
the number of CPUs, and the number of machines provi-
sioned. Rather than adding more machines of the same
type, the cluster architecture transitions to faster storage
as the SLA becomes more stringent, with transitions in
storage type for different datasets seen at different SLA
values. Table 2 highlights these transitions. Note that the
quantity in which different types of resources are provi-
sioned varies within each architecture regime specified
by every row in the table.

We further compare the cost output by scc with the
cost associated with a scale-out approach. We compare
the scc configuration to the cases where the building
block is based around: 1) storage servers with four 7.2K-
RPM disks (the cost-optimal storage type for all datasets
at the lowest SLA), and 2) servers with four 15K-RPM
disks. In either case, more storage servers are added as
the required rates increase. Figure 6 shows that the costs
in both cases are significantly greater than with scc, in-
curring between 3 and 4.5 times more cost (note the loga-
rithmic y axis). Thus, simply scaling out a homogeneous
configuration that is cost-effective at low loads can result
in significant cost inflation at higher loads.

To verify the performance of scc’s suggested configu-
ration, we focus on one particular SLA: 100 uploads/s,
300 photo views/s, and 100 tag views/s. The fraction of
the SLA satisfied is the minimum fraction of sustained
request rates across uploads, photo views, and tag views.
scc determines the following cluster configuration for
this SLA: one machine, with 4 CPU cores and 2 GB of
DRAM hosts the webserver; a second machine stores the
photos across four 15K-RPM disks; and a third machine
hosts one SSD for thumbnails, and 1 GB of DRAM and
one 7.2K-RPM disk for tags. Each of the two storage
machines have 2 CPU cores and an additional 1 GB of
DRAM, as required by the key-value storage system.

Figure 5(a) shows that this configuration meets
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Uploads/s Storage unit type
Photos Thumbnails Tags

≤ 5 Disk Disk Disk
5–25 Disk Disk Disk + DRAM

25–330 Disk SSD Disk + DRAM
330–930 SSD Disk + DRAM Disk + DRAM
930–10k Disk + DRAM Disk + DRAM Disk + DRAM

Table 2: Different regimes based on SLA requirements in the
cost-effective architecture for PhotoShare.

the SLA; in fact, the configuration is slightly over-
provisioned. It also shows the configuration is near a
minimum: removing a core from the webserver (Alt1),
replacing the thumbnail’s SSD with a cheaper 15K-RPM
disk (Alt2), removing one of the photo disks (Alt3), or re-
placing the thumbnail’s SSD with two 7.2K-RPM disks
(Alt4) all result in SLA misses. A scale-out architecture
extending Alt4 with more 7.2K-RPM drives (Alt5) incurs
30%-higher cost to meet the SLA.

5.3 Product search

Our second application is a multi-merchant product
search and comparison service, which we call Product-
Search. We store product tables, which include product
serial numbers, types, descriptions, and costs, along with
product type field indices in a Hadoop Distributed File
System (HDFS). In addition, user rating data is stored
in a separate database table. Worker processes running
across the cluster process queries for the cheapest prod-
uct of a given type with a minimum user-specified rating.
Each worker maintains a local copy of the ratings table
as well as an index on the product serial number field;
the ratings table and index are hence, specified as local
datasets in the application’s specification. To execute a
query, a worker fetches the relevant product table and
index from HDFS and then performs a join with the rat-
ings table on the product serial number field, selecting
for rows with the specified product type.

In our deployment, we build product tables with an av-
erage of 200K products, each with an average of 200 rat-
ings. This translates to 8 GB for the ratings and roughly
800 MB for each product table. The SLA for this appli-
cation specifies the required query rate.

We apply scc to determine system cost as a function
of the SLA value. As with PhotoShare, the architec-
ture of the cost-effective cluster changes significantly
across different regimes of the SLA. At low query rates,
scc recommends disks for both HDFS and local stor-
age of workers. As the required query rate increases,
scc transitions to using faster storage or provisioning
more machines to handle the increased load. Figure 7
illustrates one particular transition between query rate
regimes. Also, in this case as well, scc’s configurations
yield significant cost savings compared to simple scale-

Network

HDFS

1x CPU2x CPUs
2x 7.2K disks 4x SSDs

Worker Processes

3 Servers

Network 1x CPU

6 Servers

8 GB DRAM
1x 7.2K disk

Config1

Config2

2x CPUs
2x 7.2K disks

2 Servers

2 Servers

Figure 7: Transition in scc’s output for ProductSearch from
Config1 at 12 queries/minute to Config2 at 13 queries/minute.

out options—roughly 3× and 2× savings on average in
comparison to the scaling out of homogeneous configu-
rations with 7.2K-RPM and 15K-RPM disks, which are
cost-optimal at low loads.

We validate scc with an SLA of 12 queries per minute.
scc’s cluster output for this case has two parts. First,
the HDFS repository is stored across two machines, each
with one CPU and two 7.2K-RPM disks. Second, 12
worker processes are spread across three machines, each
with one CPU and four SSDs. We run this configuration
for 15 minutes. Figure 5(b), which plots the fraction of
required queries completed during the experiment, shows
that this configuration is able to meet the SLA.

Next, we compare scc’s output with alternative config-
urations. First, we consider clusters with alternative lo-
cal storage for the workers—Alt1 and Alt2 use 15K-RPM
drives, and Alt3 uses 7.2K-RPM disks with DRAM.
In each case, we consider the number of workers and
servers to keep cost comparable to scc. In both Alt1 and
Alt2, the disk’s lower random read throughput inflates
query processing times and, hence, aggregate through-
put falls well below the SLA. The performance of Alt3
comes close to the SLA, but still falls short. Second,
when we place all four disks underlying HDFS into one
machine (Alt4), the 1 Gbps network becomes a bottle-
neck relative to the aggregate read throughput from four
7.2K-RPM drives. As a result, download times increase,
leading to SLA violations.

We also use this example application to test scc’s abil-
ity to capture knowledge of working set sizes. We again
apply scc to satisfy the SLA of 12 queries per minute, but
this time with the additional input that 20% of product
types receive 80% of queries (the application specifica-
tion for this case is shown in Figure 2(c)). In this case,
scc outputs an alternate architecture where 12 worker
processes, previously run on three machines each with
four SSDs, are now instead run on three machines each
with four 15K-RPM disks and 10 GB of DRAM. Queries
to “hot” products are served from DRAM and those to
“cold” data are served from the disks. This configuration
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meets the SLA with 7%-lower cost than the case where
access patterns were assumed to be uniform.

5.4 Sorting binary tuples

Our final application, Terasort [29], is a MapReduce job
that sorts collections of 100-byte tuples, each consist-
ing of a 10-byte key and a 90-byte value. A Mapper
reads tuples from a local input file and sends them over
the network to appropriate Shuffle processes. Each Shuf-
fler writes the tuples it receives to a set of intermediate,
sorted local files. Once the Mappers and Shufflers are
done, the Shuffle processes transform into the role of Re-
ducers. Each Reducer merges the tuples in the local files
into an output file of sorted tuples. For this application,
the SLA is the total runtime of the MapReduce job.

We use scc to determine the cost of clusters capable of
sorting 50 GB for a range of runtimes. Note that though
we put together clusters of individual servers here, we
envision that scc will be used for such jobs to provision
a set of virtual machines in a virtualized infrastructure.
Unlike PhotoShare and ProductSearch, we see no signif-
icant architecture changes over different runtimes. scc
uses the basic building block of provisioning Mappers
on machines with four cores and one 7.2K-RPM disk and
Shufflers/Reducers on machines with four cores and two
7.2K-RPM disks. scc provisions more machines for both
components to meet more stringent SLAs. Faster storage
has no benefits because the job is CPU bound.

Next, we verify the performance of the cluster output
by scc for an SLA that requires 50 GB to be sorted in
25 minutes—an average sorting rate of 2 GB per minute.
The scc cluster consists of 8 Mappers and 16 Reducers
spread across two and four machines respectively with
the above-mentioned building blocks. We run the appli-
cation on this cluster to sort 50 GB of input data. Fig-
ure 5(c) plots the SLA-specified runtime divided by the
observed runtime and shows that the scc cluster meets
the SLA.

To evaluate the cost-effectiveness of scc’s output, we
also sort 50 GB of data on several alternative architec-
tures. A few such alternatives include Alt1 and Alt2,
which reduce the number of cores from 4 to 3 on the
Mapper machines and on the Reducer machines, respec-
tively. Alt3 substitutes the two 7.2K-RPM disks on each
of the four Reducer machines with one 15K-RPM disk
shared between the intermediate and output data. Fig-
ure 5(c) shows that the runtime of the Terasort job misses
the SLA by at least 10% in every case. The figure also
shows that two other alternatives—Alt4 and Alt5—which
have similar cost to scc’s output but trade off compute re-
sources for more or faster storage, also fall short.

Unlike our other two example applications, compute-
intensive MapReduce jobs have a cluster configuration
recommended by best practices. We modify the cluster

Attribute Range with same architecture
Lowest Input Highest
value value value

Avg. photo size 50 KB 200 KB 850 KB
Avg. thumbnail size 1 KB 4 KB 30 KB

SSD unit price $200 $450 $900

(a)

Dataset Most sensitive to what change
in hardware costs?

Photos 20% drop in $ of 7.2K-RPM disk
Thumbnails 92% drop in $ of DRAM

Tags 31% drop in $ of 15K-RPM disk

(b)

Table 3: Determining robustness of scc’s output with respect
to its input: (a) robustness of cluster configuration with re-
spect to input values for a sample set of attributes, and (b) the
change in hardware costs to which scc’s storage decision for
each dataset is most sensitive.

architecture to be six machines each with four cores and
two 7.2K-RPM disks—a setup recommended by Cloud-
era for a “Balanced Compute Configuration” [13]. Also,
we configure every node in the cluster to run a fixed num-
ber of Mappers and Reducers. We evaluate three differ-
ent combinations of Mappers and Reducers per node (the
“2M 2R”, “2M 3R”, and “1M 3R” points in Figure 5(c)),
and interestingly, we find that the recommended MapRe-
duce configurations deliver lower performance than scc
for similarly priced clusters. While all three alternatives
meet the SLA when scaled out to an additional machine,
e.g., the “2M 2R+” point in the figure, this results in
16%-higher cost than scc’s recommendation.

6 Discussion
In this section, we discuss the robustness of scc’s output,
its utility in planning application implementation archi-
tectures, and its extensibility on other fronts.

6.1 Robustness of scc’s output

scc’s output cluster configuration for a target SLA is a
function of both the SLA and the exact values specified
for the various attributes in the application and hardware
specifications. In practice, a user of scc may not have
precise values for all attributes due to incomplete knowl-
edge of the application workload, uncertainty of hard-
ware costs, or measurement inaccuracy in benchmarking.

scc is naturally built to cope with such uncertainty.
For every attribute in the input specifications, scc varies
the value of the attribute in the neighborhood of the ini-
tially specified value. For each attribute, it then outputs
the range of values for that attribute wherein the cost-
effective cluster architecture, i.e., the types of resources
assigned to different application components, remains
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unchanged; variance of the attribute’s value within this
range can be handled by simply adding more resources
of the same type. Outside of that range, the cluster will
need to be revamped with a different type of resource for
some application component, a significantly more cum-
bersome undertaking. For example, we again consider
PhotoShare with an SLA of 100 uploads/s, 300 photo
views/s, and 100 tag views/s. Table 3(a) shows the value
ranges output by scc for a few attributes, within which
the cluster architecture is robust to change. For exam-
ple, we see that as long as average photo size remains
between 50 KB and 850 KB, the cluster architecture re-
mains the same as that obtained with the input value of
200KB.

Furthermore, scc can also evaluate the sensitivity of
its choice of storage configuration for every dataset in
the application. For example, consider PhotoShare again
with the same input SLA as above. Based on current
hardware costs, scc determines that photos be stored on
15K-RPM disks, thumbnails be stored on SSDs, and tags
be stored persistently on 7.2K-RPM disks and cached
in DRAM, in order to meet the SLA at minimum cost.
However, these recommendations are likely to change as
prices for storage units drop. scc can determine how ro-
bust are its choice of storage options to such changes in
hardware prices. To do so, it varies the price of every
type of storage unit from its input value down to 0, and
notes the inflection points at which the optimal storage
choice for some dataset changes. Based on this analysis,
it can determine, for every dataset, that change in hard-
ware price to which the current storage choice for the
dataset is most sensitive. Table 3(b) shows the output of
this analysis for the three datasets in PhotoShare. While
the storage choices for photos and tags are sensitive to
relatively small reductions in the prices for 7.2K-RPM
and 15k-RPM disks, scc’s recommendation of storing
thumbnails on SSDs is very robust to price fluctuations.

6.2 Informing application development

Thus far, we assumed a fixed application implementa-
tion. However, scc can also help determine the best ap-
plication architecture. For instance, in the case of Tera-
sort, there is a fundamental performance tradeoff be-
tween a cluster configuration with sufficient DRAM to
store all data to be sorted and one that must stage por-
tions of the data into memory from secondary storage.
The former case requires one read and one write of all the
data while the latter requires two reads and two writes of
the data [3].

To explore cost–performance tradeoffs for the two ap-
plication architectures, we must consider the benefits of
servers with more network bandwidth (so remote stor-
age does not become a bottleneck) and more memory (to
allow for storing the entire dataset in memory). In Ta-

ble 1, Server2 is the same HP ProLiant DL380 G6 server
as Server1, but with more resources per server and a 10-
Gigabit Ethernet (10GigE) NIC. Server3 is the HP Pro-
Liant DL785 G5 Server, which accommodates more pro-
cessors and DRAM, again with a 10GigE NIC.

We use scc to determine the cluster configuration nec-
essary to sort 100 TB in the time required to read/write
the whole data from/to disks twice at the read/write rate
of the 7.2K-RPM disk. This cluster costs $239K and
completes sort in 10,000 seconds. For the alternative im-
plementation where all data fits in DRAM, we apply scc
to satisfy the SLA of sorting the complete dataset in half
the SLA of the baseline implementation. The cheapest
cluster configuration determined in this case costs $5.6M
and sorts 100 TB in 5,000 seconds. Thus, according to
scc, the latter implementation provides a 2× speedup at
24× the cost. The application designer can decide if the
faster processing is worth it.

6.3 Extensibility of scc

Our approach of determining cost-effective cluster con-
figurations with scc is extensible in several ways.

Less flexible infrastructure services. Though we re-
strict our attention in this paper to flexible infrastructure
services that permit arbitrary mixing and matching of
compute and storage resources on a per-server or per-
VM basis, scc can also be readily applied to less flexible
services that offer only certain combinations of proces-
sor, storage, and memory configurations, e.g., Amazon’s
EC2 service [1]. In such cases, each combination of re-
sources offered by the infrastructure service can be pro-
vided as input to scc as a separate server type, and the
cost of each server will subsume the costs of all the re-
sources that come with it.

Accounting for availability. Though we have fo-
cused on performance requirements of applications thus
far, performance and availability SLAs need to be con-
sidered in unison. For example, a cheap disk type may
be an attractive option for a capacity-bound dataset but
the degree of replication necessary to meet availability
goals may make the option cost-prohibitive. scc can be
extended to pick for each dataset that combination of
storage type and associated replication factor that meets
the combination of performance, availability, and consis-
tency requirements at minimum cost.

Load variation and incremental growth. Our cur-
rent implementation of scc provisions applications for
peak load. However, when the distribution of load across
time is available, scc can leverage the information in two
ways. First, scc can estimate energy costs more accu-
rately. Second, when pricing for resources is “elastic”,
i.e., a user can provision resources on-demand and pay
for what she uses, scc can make incremental reconfigu-
ration decisions, determining when to simply scale-out
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and when to switch between architectures. scc’s distinc-
tion between remote persistent datasets and local tran-
sient datasets enables it to capture the costs associated
with data redistribution.

Network configuration and CPU diversity. scc’s
specification of application behavior can be used to in-
fer the communication pattern among the application’s
components, and thus inform configuration of the clus-
ter’s network. For example, in the case of ProductSearch,
scc can infer from the application specification that the
workers communicate only with the HDFS repository but
not among themselves. scc can then use this information
to recommend a bi-partite network with servers hosting
HDFS on one side and servers hosting workers on the
other side. scc can also be readily extended to choose
among a range of CPUs; the application specification
simply needs to include for every compute operation the
time required for that operation on each type of CPU.

7 Related work
Our work builds upon and shares some similarities with
several lines of prior work.

Tuning storage: Minerva [5], Hippodrome [7], and
Rome [34] automate the provisioning of disk arrays with
a similar approach of characterizing workloads and stor-
age. Ursa Minor [2] varies erasure coding parameters
depending on an application’s availability requirements.
PADS [9] is configurable to build a wide range of replica-
tion systems with varying consistency semantics. In con-
trast to all of these efforts, we consider an application’s
storage and compute requirements in unison. Moreover,
we choose among different storage media such as disk,
SSD, and DRAM to minimize cost, with multiple media
possibly being used for the same application.

Application modeling: Bodik et al. [10] infer appli-
cation performance models by applying machine learn-
ing techniques on statistics gathered by monitoring the
application execution. Thereska et al. [31] predict per-
formance across application configurations based on sta-
tistical models. IRONModel [32] corrects deviations be-
tween the performance of running systems and high fi-
delity models. In all cases, since application models are
tuned to specific cluster configurations, they are not di-
rectly applicable to alternative hardware configurations.

Stewart and Shen [30] build performance models of
multi-component applications to aid in the placement of
application components on a given cluster. Osogami
and Itoko [25] apply hill-climbing techniques to auto-
matically determine web-server parameters, and Liu et
al. [20] construct a queuing model for a three-tiered web
service to predict throughput and response times. Again,
all of these consider a fixed hardware configuration.

Application-specific cluster architectures: Applica-
tion developers have converged on a range of cluster

architectures for individual applications. Several web
services employ DRAM caches using distributed in-
memory storage systems [21, 26]. Applications such
as WER [16] use clusters that have separate sets of
machines for compute and storage. FAWN [6] and
Gordon [11] use SSDs to build performant yet power-
efficient distributed data processing systems. MR-
Perf [33] and Starfish [18] use an approach similar to
scc but focus solely on predicting cluster requirements
of MapReduce setups. scc not only infers these cost-
effective architectures for existing applications, but also
enables the inference of the right cluster architecture for
emerging applications.

Storage and computing services. There been a few
recent attempts [19, 15] at satisfying SLAs in the set-
ting of a compute and storage cluster shared across appli-
cations. Such multi-application environments have also
seen the recent emergence of virtual storage appliances.
scc is targeted at the still significantly more common sce-
nario of cluster deployments for a single application.

8 Conclusions

The thesis of our work is that deployment of applications
on clusters is more cost-effective if informed by charac-
terizations of application behavior and hardware proper-
ties. Towards this end, we presented how these inputs
can be specified, and we developed scc to compile these
inputs into cost-effective cluster configurations. Our ex-
periments in applying scc to a range of application work-
loads and storage options show that scc captures suffi-
cient detail to prescribe the right combination of storage
and server hardware at the right scale; modifying the ar-
chitecture or reducing the scale leads to significant per-
formance degradation. To meet application demands, scc
often predicts heterogeneous cluster architectures that re-
sult in significant cost savings compared to simply scal-
ing out homogeneous architectures. We plan to apply
scc to other popular applications to determine more fine-
grained characteristics from which it could benefit, and
use scc’s application specification to select appropriate
CPUs and optimize network costs. We also plan to de-
velop tools to make it easier to put together hardware and
application specifications.
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