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Abstract
As NAND Flash technology continues to scale down and
more bits are stored in a cell, the raw reliability of NAND
Flash memories degrades inevitably. To meet the reten-
tion capability required for a reliable storage system, we
see a trend of longer write latency and more complex
ECCs employed in an SSD storage system. These greatly
impact the performance of future SSDs. In this paper, we
present the first work to improve SSD performance via
retention relaxation. NAND Flash is typically required
to retain data for 1 to 10 years according to industrial
standards. However, we observe that many data are over-
written in hours or days in several popular workloads in
datacenters. The gap between the specification guarantee
and actual programs’ needs can be exploited to improve
write speed or ECCs’ cost and performance. To exploit
this opportunity, we propose a system design that allows
data to be written in various latencies or protected by dif-
ferent ECC codes without hampering reliability. Simula-
tion results show that via write speed optimization, we
can achieve 1.8–5.7× write response time speedup. We
also show that for future SSDs, retention relaxation can
bring both performance and cost benefits to the ECC ar-
chitecture.

1 Introduction
For the past few years, NAND Flash memories have been
widely used in portable devices such as media players
and mobile phones. Due to their high density, low power
and high I/O performance, in recent years, NAND Flash
memories begun to make the transition from portable de-
vices to laptops, PCs and datacenters [6, 35]. As the
semiconductor industry continues scaling memory tech-
nology and lowering per-bit cost, NAND Flash is ex-
pected to replace the role of hard disk drives and funda-
mentally change the storage hierarchy in future computer
systems [14, 16].

A reliable storage system needs to provide a retention
guarantee. Therefore, Flash memories have to meet the
retention specification in industrial standards. For exam-
ple, according to the JEDEC standard JESD47G.01 [19],
NAND Flash blocks cycled to 10% of the maximum
specified endurance must retain data for 10 years, and
blocks cycled to 100% of the maximum specified en-

durance have to retain data for 1 year. As NAND Flash
technology continues to scale down and more bits are
stored in a cell, the raw reliability of NAND Flash de-
creases substantially. To meet the retention specifica-
tion for a reliable storage system, we see a trend of
longer write latency and more complex ECCs required in
SSDs. For example, comparing recent 2-bit MLC NAND
Flash memories with previous SLC ones, page write la-
tency increased from 200 µs [34] to 1800 µs [39], and
the required strength of ECCs went from single-error-
correcting Hamming codes [34] to 24-error-correcting
Bose-Chaudhuri-Hocquenghem (BCH) codes [8,18,28].
In the near future, more complex ECC codes such as low-
density parity-check (LDPC) [15] codes will be required
to reliably operate NAND Flash memories [13, 28, 41].

To overcome the design challenge for future SSDs, in
this paper, we present retention relaxation, the first work
on optimizing SSDs via relaxing NAND Flash’s reten-
tion capability. We observe that in typical datacenter
workloads, e.g., proxy and MapReduce, many data writ-
ten into storage are updated quite soon, thereby, requir-
ing only days or even hours of data retention, which is
much shorter than the retention time typically specified
for NAND Flash. In this paper, we exploit the gap be-
tween the specification guarantee and actual programs’
needs for SSD optimization. We make the following con-
tributions:

• We propose a NAND Flash model that captures the
relationship between raw bit error rates and reten-
tion time based on empirical measurement data. This
model allows us to explore the interplay between re-
tention capability and other NAND Flash parameters
such as the program step voltage for write operations.

• A set of datacenter workloads are characterized for
their retention time requirements. Since I/O traces are
usually gathered in days or weeks, to analyze reten-
tion time requirements in a time span beyond the trace
period, we present a retention time projection method
based on two characteristics obtained from the traces,
the write amount and the write working set size. Char-
acterization results show that for 15 of the 16 traces
analyzed, 49–99% of writes require less than 1-week
retention time.

• We explore the benefits of retention relaxation for
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Figure 1: Incremental step pulse programming (ISPP) for programming NAND Flash

speeding up write operations. We increase the pro-
gram step voltage so that NAND Flash memories are
programmed faster but with shorter retention guaran-
tees. Experimental results show that 1.8–5.7× SSD
write response time speedup is achievable.

• We show how retention relaxation can benefit ECC
designs for future SSDs which require concatenated
BCH-LDPC codes. We propose an ECC architecture
where data are encoded by variable ECC codes based
on their retention requirements. In our ECC architec-
ture, time-consuming LDPC is removed from the crit-
ical performance path. Therefore, retention relaxation
can bring both performance and cost benefits to the
ECC architecture.

The rest of the paper is organized as follows. Sec-
tion 2 provides background about NAND Flash. Sec-
tion 3 presents our NAND Flash model and the benefits
of retention relaxation. Section 4 analyzes data reten-
tion requirements in real-world workloads. Section 5 de-
scribes the proposed system designs. Section 6 presents
evaluation results regarding the designs in the previous
section. Section 7 describes related work, and Section 8
concludes the paper.

2 Background
NAND Flash memories comprise an array of floating
gate transistors. The threshold voltage (Vth) of the tran-
sistors can be programmed to different levels by injecting
different amounts of charge on the floating gates. Differ-
ent Vth levels represent different data. For example, to
store N bits data in a cell, its Vth is programmed to one of
its 2N different Vth levels.

To program Vth to the desired level, the incremen-
tal step pulse programming (ISPP) scheme is commonly
used [26, 37]. As shown in Figure 1, ISPP increases the
Vth of NAND Flash cells step-by-step by a certain volt-

age increment (i.e., ∆VP) and stops once Vth is greater
than the desired threshold voltage. Because NAND Flash
cells have different starting Vth, the resulting Vth spreads
across a range, which determines the precision of cells’
Vth distributions. The smaller ∆VP is, the more precise the
resulting Vth is. On the other hand, smaller ∆VP means
more steps are required to reach the target Vth, thereby,
resulting in longer write latency [26].

NAND Flash memories are prone to errors. That is,
the Vth level of a cell may be different from the intended
one. The fraction of bits which contain incorrect data is
referred to as the raw bit error rate (RBER). Figure 2(a)
shows measured RBER of 63–72nm 2-bit MLC NAND
Flash memories under room temperature following 10K
program/erase (P/E) cycles [27]. The RBER at reten-
tion time = 0 is attributed to write errors. Write errors
have been shown mostly caused by cells with higher Vth
than intended because the causes of write errors, such
as program disturb and random telegraph noise, tend to
over-program Vth. The increment of RBER after writing
data (retention time > 0) is attributed to retention errors.
Retention errors are caused by charge losses which de-
crease Vth. Therefore, retention errors are dominated by
cells with lower Vth than intended. Figure 2(b) illustrates
these two error sources: write errors mainly correspond
to the tail at the high-Vth side; retention errors correspond
to the tail at the low-Vth side. In Section 3.1, we model
NAND Flash considering these error characteristics.

A common approach to handle NAND Flash errors is
to adopt ECCs (error correction codes). ECCs supple-
ment user data with redundant parity bits to form code-
words. With ECC protection, a codeword with a certain
amount of bits corrupted can be reconstructed. There-
fore, ECCs can greatly reduce the bit error rate. We refer
to the bit error rate after applying ECCs as the uncor-
rectable bit error rate (UBER). The following equation
gives the relationship between UBER and RBER [27]:
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(a) Measured RBER(t) and fitting to power-law trends for
63–72 nm 2-bit MLC NAND Flash. Data are aligned to t = 0.
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Figure 2: Bit error rate in NAND Flash memories

UBER =

NCW
∑

n=t+1

(NCW
n

)
·RBERn · (1−RBER)(NCW−n)

NUser
(1)

Here, NCW is the number of bits per codeword, NUser is
the number of user data bits per codeword, and t is the
maximum number of error bits the ECC code can correct
per codeword.

UBER is an important reliability metric for storage
systems and is typically required to be under 10−13 to
10−16 [27]. As mentioned earlier, NAND Flash’s RBER
increases with time due to retention errors. Therefore, to
satisfy both the retention and reliability specifications in
storage systems, ECCs must be strong enough to tolerate
not only write errors presenting in the beginning but also
retention errors accumulating over time.

3 Retention Relaxation for NAND Flash
The key observation we make in this paper is that since
retention errors increase over time, if we could relax the
retention capability of NAND Flash memories, fewer re-
tention errors need to be tolerated. These error mar-
gins can then be utilized to improve other performance
metrics. In this section, we first present a Vth distribu-
tion modeling methodology which captures the RBER of
NAND Flash. Based on the model, we elaborate on the
strategies to exploit the benefits of retention relaxation in
detail.

3.1 Modeling Methodology
We first present the base Vth distribution model for
NAND Flash. Then we present how we extend the model
to capture the characteristics of different error causes.
Last, we determine the parameters of the model by fitting
the model to the error-rate behavior of NAND Flash.

3.1.1 Base Vth Distribution Model

The Vth distribution is critical to NAND Flash. It de-
scribes the probability density function (PDF) of Vth for
each data state. Given a Vth distribution, one can evaluate
the corresponding RBER by calculating the probability
that a cell contains incorrect Vth, i.e., Vth higher or lower
than the intended level.

Vth distributions have been modeled using bell-shape
functions in previous studies [23, 42]. For MLC NAND
Flash memories with q states per cell, q bell-shape func-
tions, Pk(v) where 0 ≤ k ≤ (q− 1), are employed in the
model as follows.

First, the Vth distribution of the erased state is modeled
as a Gaussian function, P0(v):

P0(v) = α0 · e
− (v−µ0)

2

2σ0
2 (2)

Here, σ0 is the standard deviation of the distribution and
µ0 is the mean. Because data are assumed to be in one of
the q states with equal probability, a normalization coef-
ficient, α0, is employed so that

∫
v P0(v) = 1

q .
Furthermore, the Vth distribution of each non-erased

state (i.e., 1 ≤ k ≤ (q−1)) is modeled as a combination
of a uniform distribution with width equal to ∆VP in the
middle and two identical Gaussian tails on both sides:

Pk(v) =


α · e−

(v−µk+0.5∆VP)2

2σ2 , v < µk− ∆VP
2

α · e−
(v−µk−0.5∆VP)2

2σ2 , v > µk +
∆VP

2
α, otherwise

(3)

Here, ∆VP is the voltage increment in ISPP, µk is the
mean of each state, σ is the standard deviation of the
two Gaussian tails, and α is again the normalization co-
efficient to satisfy the condition that

∫
v Pk(v) = 1

q for the
k−1 states.



Given the Vth distribution, the RBER can be evaluated
by calculating the probability that a cell contains incor-
rect Vth, i.e., Vth higher or lower than the intended read
voltage levels, using the following equation:

RBER =
q−1

∑
k=0

( ∫ VR,k

−∞

Pk(v)dv︸ ︷︷ ︸
Vth lower than intended

+
∫

∞

VR,(k+1)

Pk(v)dv︸ ︷︷ ︸
Vthhigher than intended

)
(4)

Here, VR,k is the lower bound of the correct read voltage
for the kth state and VR,k+1 is the upper bound as shown
in Figure 3.

ΔVP 

Vth VR,4 VR,1 VR,2 VR,3 μ0 

σ0 

σlow (t) σhigh 

State 0 State 1 State 2 State 3 

VR,0 μ1 μ2 μ3 

Figure 3: Illustration of model parameters

3.1.2 Model Extension

As mentioned in Section 2, the two tails of a Vth dis-
tribution are from different causes. The high-Vth tail of
a distribution is mainly caused by Vth over-programming
(i.e., write errors); the low-Vth tail is mainly due to charge
losses over time (i.e., retention errors) [27]. Therefore,
the two Gaussian tails may not be identical. To capture
this difference, we extend the base model by setting dif-
ferent standard deviations to the two tails as shown in
Figure 3.

The two standard deviations are set based on the ob-
servation in the previous study on Flash’s retention pro-
cess [7]. Under room temperature1, a small portion of
cells have a much larger charge-loss rate than others. As
such charge losses accumulate over time, the distribution
tends to form a wider tail at the low-Vth side. There-
fore, we extend the base model by setting the standard
deviation of the low-Vth tail to be a time-increasing func-
tion, σlow(t), but keeping σhigh time-independent. The
extended model is as follows:

Pk(v, t) =


α(t) · e

− (v−µk+0.5∆VP)2

2σlow(t)2 , v < µk− ∆VP
2

α(t) · e
− (v−µk−0.5∆VP)2

2σhigh
2

, v > µk +
∆VP

2
α(t), otherwise

(5)

Here, the normalization term becomes a function of time,
α(t), to keep

∫
v Pk(v, t) = 1

q .

1According to the previous study [32], in datacenters, HDDs’ av-
erage temperatures range between 18–51◦C and stay around 26–30◦C
most of the time. Since SSDs do not contain motors and actuators, we
expect SSDs should be in lower temperature than HDDs. Therefore,
we only consider room temperature in our current model.

We should note that keeping σhigh time-independent
does not imply that cells with high Vth are time-
independent and never leak charge. Since the integral
of PDF for each data state remains 1

q , the probability that
a cell belongs to the high-Vth tail drops as the low-Vth tail
widens over time. The same phenomenon happens to the
middle part, too.

Given the Vth distribution in the extended model,
RBER(t) can be evaluated using the following formula:

RBER(t) =
q−1

∑
k=0

( ∫ VR,k

−∞

Pk(v, t)dv︸ ︷︷ ︸
Vthlower than intended

+
∫

∞

VR,(k+1)

Pk(v, t)dv︸ ︷︷ ︸
Vthhigher than intended

)
(6)

3.1.3 Model Parameter Fitting

In the proposed Vth distribution model, ∆VP, VR,k, µk,
and σ0 are set to the values shown in Figure 4 according
to [9]. The two new parameters in the extended model,
σhigh and σlow(t), are determined through parameter fit-
ting such that the resulting RBER(t) follows the error-
rate behavior of NAND Flash. Below we describe the
parameter fitting procedure.

We adopt the power-law model [20] to describe the
error-rate behavior of NAND Flash:

RBER(t) = RBERwrite +RBERretention× tm (7)

Here, t is time, m is a coefficient, 1 ≤ m ≤ 2, RBERwrite
corresponds to the error rate at t = 0 (i.e., write errors),
and RBERretention is the incremental error rate per unit of
time due to retention errors.

We determine m in the power-law model based on the
curve-fitting values shown in Figure 2(a). In the figure,
the power-law curves fit the empirical error-rate data very
well with m equal to 1.08, 1.25, and 1.33. We consider
1.25 as the typical case of m and consider the other two
values as the corner cases.

The other two coefficients in the power-law model,
RBERwrite and RBERretention, can be solved given RBER
at t = 0 and RBER at the maximum retention time, tmax.
According to the JEDEC standard JESD47G.01 [19],
NAND Flash blocks cycled to the maximum specified
endurance have to retain data for 1 year, so we set tmax to
1 year. Moreover, recent NAND Flash requires 24-bit er-
ror correction for 1080-byte data [4, 28]. Assuming that
the target UBER(tmax) requirement is 10−16, by Equa-
tion (1), we have:

RBER(tmax) = 4.5×10−4 (8)

As shown in Figure 2(a), RBER(0) is typically orders
of magnitude lower than RBER(tmax). Tanakamaru et
al. [41] also show that write errors are between 150×
to 450× fewer than retention errors. This is because re-
tention errors accumulate over time and eventually dom-
inate. Therefore, we set RBERwrite accordingly:

RBERwrite = RBER(0) =
RBER(tmax)

Cwrite
(9)
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Figure 5: Modeling results

Here, Cwrite is the ratio of RBER(tmax) to RBER(0). We
set Cwrite to 150, 300, and 450, where 300 is considered
as the typical case and the other two are considered as
the corner cases.

We also have RBERretention as follows:

RBERretention =
(RBER(tmax)−RBER(0))

tmaxm (10)

We note that among write errors (i.e., RBERwrite), a
major fraction of them correspond to cells with higher
Vth than intended. This is because the root causes of
write errors tend to make Vth over-programmed. Mielke
et al. [27] show that this fraction is between 62% to about
100% for the NAND Flash devices in their experiments.
Therefore, we give the following equations:

RBERwrite high = RBERwrite×Cwrite high (11)

RBERwrite low = RBERwrite× (1−Cwrite high) (12)

Here, RBERwrite high and RBERwrite low correspond to
cells with Vth higher and lower than intended levels, re-
spectively. Cwrite high stands for the ratio of total write
errors to write errors which are higher than the intended
levels. We set Cwrite high to 62%, 81%, and 99%, where
81% is considered as the typical case and the other two
are considered as the corner cases.

Now we have the error-rate behavior of NAND Flash.
σhigh and σlow(0) are first determined so that the error
rate for Vth being higher and lower than intended equals
RBERwrite high and RBERwrite low, respectively. Then,
σlow(t) is determined by matching the RBER(t) derived

from the Vth model with NAND Flash’s error-rate behav-
ior described in Equations (7) to (10) at a fine time step.

Figure 5 shows the modeling results of the Vth distri-
bution for the typical-case NAND Flash. In this figure,
the solid line stands for the Vth distribution at t = 0; the
dashed line stands for the Vth distribution at t = 1 year.
We can see that the 1-year distribution is flatter than the
distribution at t = 0. We can also see that as the low-Vth
tail widens over a year, the probability of both the middle
part and the high-Vth tail drops correspondingly.

3.2 Benefits of Retention Relaxation
In this section, we elaborate on the benefits of reten-
tion relaxation from two perspectives — improving write
speed and improving ECCs’ cost and performance. The
analysis is based on NAND Flash memories cycled to
the maximum specified endurance (i.e., 100% wear-out)
with data retention capability set to 1 year [19]. Since
NAND Flash’s reliability typically degrades monotoni-
cally in terms of P/E cycles, considering such an extreme
case is conservative for the following benefit evaluation.
In other words, NAND Flash in its early lifespan has
more head room for optimization.

3.2.1 Improving Write Speed

As presented earlier, NAND Flash memories use the
ISPP scheme to incrementally program memory cells.
The Vth step increment, ∆VP, directly affects write speed
and data retention. Write speed is proportional to ∆VP
because with larger ∆VP, less steps are required during
the ISPP procedure. On the other hand, data retention
decreases as ∆VP gets larger because large ∆VP widens
Vth distributions and reduces the margin for tolerating re-
tention errors.

Algorithm 1 shows the procedure to quantitatively
evaluate the write speedup if data retention time require-
ments are reduced. The analysis is based on the extended
NAND Flash model presented in Section 3.1. For all
the typical and corner cases we consider, we first enlarge
∆VP by various ratios between 1× to 3×, thereby, speed-
ing up NAND Flash writes proportionately. For each ra-
tio, we test RBER(t) at different retention time from 0 to
1 year to find the maximum t such that RBER(t) is within
the base ECC strength.

Figure 6 shows the write speedup vs. data reten-
tion. Both the typical case (black line) and the corner
cases (gray dashed lines) we consider in Section 3.1 are
shown. For the typical case, if data retention is relaxed
to 10 weeks, 1.86× speedup for NAND Flash page write
is achievable; if data retention is relaxed to 2 weeks, the
speedup is 2.33×. Furthermore, the speedup for the cor-
ner cases are close to the typical case. This means the
speedup numbers are not very sensitive to the values of
the parameters we obtain using parameter fitting.
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Figure 7: Data retention capability of 24 error correc-
tion per 1080 bytes BCH codes

Algorithm 1 Write speedup vs. data retention
1: CBCH = 4.5×10−4

2: for all typical and corner cases do
3: for VoltageRatio = 1 to 3 step = 0.01 do
4: Enlarge ∆VP by VoltageRatio times
5: WriteSpeedUp = VoltageRatio
6: for Time t = 0 to 1 year step = δ do
7: Find RBER(t) according to σlow(t) and α(t)
8: end for
9: DataRetention = max{t:RBER(t) ≤CBCH}

10: plot (DataRetention,WriteSpeedUp)
11: end for
12: end for

3.2.2 Improving ECCs’ Cost and Performance

ECC design is emerging as a critical issue in SSDs.
Nowadays, NAND Flash-based systems heavily rely on
BCH codes to tolerate RBER. Unfortunately, BCH de-
grades memory storage efficiency significantly once the
RBER of NAND Flash reaches 10−3 [22]. Recent
NAND Flash has RBER around 4.5×10−4. As the den-
sity of NAND Flash memories continues to increase,
RBER will exceed the BCH limitation inevitably. There-
fore, BCH codes will become inapplicable in the near
future.

LDPC codes are promising ECCs for future NAND
Flash memories [13, 28, 41]. The main advantage of
LDPC is that they can provide correction performance
very close to the theoretical limits. However, LDPC
incurs much higher encoding complexity than BCH
does [21, 25]. For example, an optimized LDPC en-
coder [44] consumes 3.9 M bits of memory and 11.4 k
FPGA Logic Elements to offer 45 MB/s throughput. To
sustain write throughput of high-performance SSDs, e.g.,
1 GB/s ones [1], high-throughput LDPC encoders are re-
quired, otherwise the LDPC encoders may become the
throughput bottleneck. This leads to high hardware cost

because hardware parallelization is one basic approach to
increase the throughput of LDPC encoders [24]. In this
paper, we exploit retention relaxation to alleviate such
cost and performance dilemma. That is, with retention
relaxation, fewer retention errors need to be tolerated;
therefore, BCH codes could be still strong enough to pro-
tect data even if NAND Flash’s 1-year RBER soars.

Algorithm 2 analyzes the achievable data retention
time of BCH codes with 24 bits per 1080 bytes
error-correction capability under different NAND Flash
RBER(1 year) values. Here we assume that RBER(t) fol-
lows the power-law trend described in Section 3.1.3. We
vary RBER(1 year) from 4.5×10−4 to 1×10−1, and de-
rive the corresponding write error rate (RBERwrite) and
retention error increment per unit of time (RBERretention).
The achievable data retention time of the BCH codes is
the time when RBER exceeds the capability of the BCH
codes (i.e., 4.5×10−4).

Algorithm 2 Data retention vs. maximum RBER for
BCH (24-bit per 1080 bytes)

1: tmax = 1 year
2: CBCH = 4.5×10−4

3: for all typical and corner cases do
4: for RBER(tmax) = 4.5×10−4 to 1×10−1 step = δ do
5: RBERwrite =

RBER(tmax)
Cwrite

6: RBERretention =
(RBER(tmax)−RBERwrite)

tmax
m

7: RetentionTime = (CBCH−RBERwrite
RBERretention

)
1
m

8: plot (RBER(tmax),RetentionTime)
9: end for

10: end for

Figure 7 shows the achievable data retention time of
the BCH code given different RBER(1 year) values. The
black line stands for the typical case and the gray dashed
lines stand for the corner cases. As can be seen, for the
typical case, the baseline BCH code can retain data for
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10 weeks even if RBER(1 year) reach 3.5×10−3. Even
if RBER(1 year) reaches 2.2× 10−2, the baseline BCH
code can still retain data for 2 weeks. We can also see
similar trends for the corner cases.

4 Data Retention Requirements Analysis
In this section, we first analyze real-world traces from
enterprise datacenters to show that many writes into stor-
age require days or even shorter retention time. Since I/O
traces are usually gathered in days or weeks, to estimate
the percentage of writes with retention requirements be-
yond the trace period, we present a retention-time projec-
tion method based on two characteristics obtained from
the traces, the write amount and the write working set
size.

4.1 Real Workload Analysis
In this subsection, we analyze real disk traces to under-
stand the data retention requirements of real-world ap-
plications. The data retention requirement of a sector
written into a disk is defined as: the interval from the
time the sector is written to the time the sector is over-
written. Let’s take Figure 8 for example. The disk is
written by the address stream a, b, b, a, c, a, ... and
so on. The first write is to address a at time 0, and the
same address is overwritten at time 3; therefore, the data
retention requirement for the first write is (3− 0) = 3.
Usually disk traces only cover a limited period of time,
for those writes whose next write does not appear before
the observation ends, the retention requirements cannot
be determined. For example, for the write to address b at
time 2, the overwritten time is unknown. We denote its
retention requirement with ‘?’ as a conservative estima-
tion. It is important to note that we are focusing on data
retention requirements for data blocks in write streams
rather than that in the entire disk.

Table 1 shows the three sets of traces we analyze.
The first is from an enterprise datacenter in Microsoft
Research Cambridge (MSRC) [29]. This set covers 36
volumes from various servers and we select 12 of them
which have the largest write amounts. These traces span
1 week and 7 hours. We skip the first 7 hours which
do not form a complete day and use the remaining 1-
week part. The second set of traces is MapReduce which
has been shown to benefit from the increased bandwidth
and reduced latency of NAND Flash-based SSDs [11].
We use Hadoop [2] to run the MapReduce benchmark
on a cluster of two Core-i7 machines each of which has

Table 1: Workload summary

Category Name Description Span 

MSRC 

prn_0 

proj_0, proj_2 

prxy_0, prxy_1 

src1_0, src1_2 

src2_2 

usr_1, usr_2 

Print server 

Project directories 

Web proxy 

Source control 

Source control 

User home directories 

1 week 

MapReduce 
hd1 

hd2 
WordCount benchmark 1 day 

TPC-C 
tpcc1 

tpcc2 
OLTP benchmark 1 day 

8 GB RAM and a SATA hard disk and runs 64-bit Linux
2.6.35 with the ext4 filesystem. We test two MapRe-
duce usage models. In the first model, we repeatedly re-
place 140 GB text data in the Hadoop cluster and invoke
word counting jobs. In the second model, we interleave
performing word counting jobs on two sets of 140 GB
text data which have been pre-loaded in the cluster. The
third workload is the TPC-C benchmark. We use Ham-
merora [3] to generate the TPC-C workload on a MySql
server which has a Core-i7 CPU, 12 GB RAM, and a
SATA SSD and runs 64-bit Linux 2.6.32 with the ext4
filesystem. We configure the benchmarks as having 40
and 80 warehouses. Each warehouse has 10 users with
keying and thinking time. Both MapReduce and TPC-C
workloads span 1 day.

For each trace, we analyze the data retention require-
ment of every sector written into the disk. Figure 9 shows
the cumulative percentage of data retention requirements
less than or equal to the following values — a second,
a minute, an hour, a day, and a week. As can be seen,
the data retention requirements of the workloads are usu-
ally low. For example, more than 95% of sectors written
into the disk for proj 0, prxy 1, tpcc1, and tpcc2 need
less than 1-hour data retention. Furthermore, for all the
traces except proj 2, 49–99.2% of sectors written into
the disk need less than 1-week data retention. For tpcc2,
up to 44% of writes require less than 1-second retention.
This is because MySql’s storage engine, InnoDB, writes
data to a fixed-size log, called the doublewrite buffer, be-
fore writing to the data file to guard against partial page
writes; therefore, all writes to the doublewrite buffer are
overwritten very quickly.

4.2 Retention Requirement Projection
The main challenge of retention time characterization for
real-world workloads is that I/O traces are usually gath-
ered in a short period of time, e.g., days or weeks. To
estimate the percentage of writes with retention require-
ments beyond the trace period, we derive a projection
method based on two characteristics obtained from the
traces, the write amount and the write working set size.

We denote the percentage of writes with retention time
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Figure 9: Data retention requirement distribution

requirements less than X within a time period of Y as
SX ,Y %. We first formulate ST1,T1% in the write amount
and the write working set size, where T1 is the time span
of the trace. Let N be the amount of data sectors written
into the disk during T1 and W be the write working set
size (i.e., the number of distinct sector addresses being
written) during T1. We have the following formula (the
proof is similar to the pigeonhole principle):

ST1 ,T1 % =
N−W

N
= 1−W

N
(13)

With this formula, the first projection we make is the
percentage of writes that have retention time require-
ments less than T1 in an observation period of T2, where
T2 = k× T1, k ∈ N. The projection is based on the as-
sumption that for each T1 period, the write amount and
the write working set size remain N and W , respectively.
We derive the lower bound on ST1,T2% as follows:

ST1,T2 % =

k(N−W )+
k−1
∑

i=1
ui

kN
≥ ST1 ,T1 % (14)

where ui is the number of sectors whose lifetime is across
two periods and their retention time requirements are less
than T1. Equation (14) implies that we do not overesti-
mate the percentage of writes that have retention time
requirements less than T1 by characterizing a trace gath-
ered in a T1 period.

With the first projection, we can then derive the lower
bound on ST2,T2%. Clearly, ST2,T2%≥ ST1,T2%. Combined
with Equation (14), we have:

ST2 ,T2 %≥ ST1 ,T2 %≥ ST1 ,T1 % (15)

The lower bound on ST2,T2% also depends on disk ca-
pacity, A. During T2, the write amount is equal to k×N,
and the write working set size must be less than or equal
to the disk capacity, i.e, k×W ≤ A. By with Equa-
tion (13), we have:

ST2 ,T2 %≥ kN−A
kN

= 1− A
kN

(16)

Combining Equation (15) and (16), the lower bound
on ST2,T2% is given by:

ST2 ,T2 %≥ max(1− A
kN

, ST1,T1 %) (17)

Table 2 shows the data retention requirements anal-
ysis using the above equations. First, we can see that
the ST1,T1% obtained from Equation (13) matches Fig-
ure 9. Let’s take hd2 for example. There are a total
of 726 GB of writes in 1 day whose write working set
size is 313 GB. According to Equation (13), 57% of the
writes whose retention time requirements are less than
1 day. This is the case shown in Figure 9. Furthermore,
if we can observe the hd 2 workload for 1 week, more
than 86% of writes whose retention time requirements
are expected to be less than 1 weeks. This again shows
the gap between the specification guarantee and actual
programs’ needs in terms of data retention.

5 System Design
5.1 Retention-Aware FTL (Flash Transla-

tion Layer)
In this section, we present the SSD design which lever-
ages retention relaxation for improving either write
speed or ECCs’ cost and performance. Specifically, in
the proposed SSD, data written into NAND Flash mem-
ories could occur in variable write latencies or be en-
coded by different ECC codes, which provide different
levels of retention guarantees. We refer to the data writ-
ten by these different methods as in different “modes”.
In our design, data in a physical NAND Flash block
are in the same mode. To correctly retrieve data from
NAND Flash, we need to record the mode of each phys-
ical block. Furthermore, to avoid data losses due to a



Table 2: Data retention requirements analysis

Volume 

Name 

Disk 

Capacity (A)  

Write  

Amount (N) 

Write  

Working Set (W) 
S1d,1d S1w,1w S5w,5w 

GB GB GB % % % 

prn_0  66.3  44.2  12.1  72.6 ≧72.6 

prn_1  385.2  28.8  11.1  61.6 ≧61.6 

proj_0  16.2  143.8  1.6  98.9 ≧98.9 

proj_2  816.2  168.4  155.1  7.9 ≧7.9 

prxy_0  20.7  52.7  0.7  98.7 ≧98.7 

prxy_1  67.8  695.3  12.5  98.2 ≧98.2 

src1_0  273.5  808.6  114.1  85.9 ≧93.2 

src1_1  273.5  29.6  4.2  85.9 ≧85.9 

src1_2  8.0  43.4  0.7  98.5 ≧98.5 

src2_2  169.6  39.3  20.0  49.2 ≧49.2 

usr_1  820.3  54.8  24.5  55.2 ≧55.2 

usr_2  530.4  25.6  10.0  61.1 ≧61.1 

hd1 737.6  1564.9  410.1  73.8 ≧93.3 ≧98.7 

hd2 737.6  726.3  313.3  56.9 ≧85.5 ≧97.1 

tpcc1 149  310.3  3.1  99.0 ≧99.0 ≧99.0 

tpcc2 149  692.8  6.0  99.1 ≧99.1 ≧99.4 

1 The disk capacity of the MSRC traces are estimated using their max-
imum R/W address. The estimation results conform to the previous
study [30].
2 1d, 1w, and 5w stand for a day, a week, and 5 weeks, respectively.
3 GB stands for 230 bytes.

shortage of data retention capability, we have to monitor
the remaining retention capability of each NAND Flash
block. We implement the proposed retention-aware de-
sign in the Flash Translation Layer (FTL) in SSDs rather
than in OSes. FTL-based implementation requires mini-
mum OS/application modification, which we think is im-
portant for easy deployment and wide adoption of the
proposed scheme.

Figure 10 shows the block diagram of the proposed
FTL. The proposed FTL is based on the page-level
FTL [5] with two additional components, Mode Selec-
tor (MS) and Retention Tracker (RT). For writes, MS
sends different write commands to NAND Flash chips
or invokes different ECC encoders. As discussed in Sec-
tion 3.2.1, write speed could be improved by adopting
larger ∆VP. In current Flash chips, only one write com-
mand is supported. To support the proposed mechanism,
NAND Flash chips need to provide multiple write com-
mands with different ∆VP values. MS keeps the mode
of each NAND Flash block in memories so that during
reads, it can invoke the right ECC decoder to retrieve
data. RT is responsible for ensuring that every NAND
Flash block in the SSD does not run out of its retention
capability. RT uses one counter per NAND Flash block
to keep track of its remaining retention time. When the
first page of a block is written, the retention capability of
this write is stored in the counter. These retention coun-
ters are periodically updated. If a block is found to ap-
proach its data retention limit, RT schedules background
operations to move valid data in this block to another new
block and then invalidates the old one.

One main parameter in the proposed SSD design is
how many write modes we should employ in the SSD.
The optimal setting depends on retention time varia-

Mode
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Retention
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Address 
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Cleaning

NAND Flash Interface

Disk Interface

FTL

Blk.
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Logical
Addr.
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I/O Command

Physical
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Background 
I/O Data

Disk I/O 
Request

Command

NAND Flash Memories

NAND RequestsNAND Requests

Logical Addr.,
I/O Command

Figure 10: Proposed retention-aware FTL

tion in workloads and the cost for supporting multiple
write modes. In this work, we present a coarse-grained
management method. There are two kinds of NAND
Flash writes in SSD systems: host writes and background
writes. Host writes correspond to write requests sent
from the host to the SSDs; background writes comprise
cleaning, wear-leveling, and data movement internal to
the SSDs. Performance is usually important to the host
writes. Moreover, host writes usually require short data
retention as shown in Section 4. In contrast, background
writes are less sensitive to performance and usually in-
volve data which have been stored in the storage for a
long time; therefore, their data are expected to remain
for a long time in the future (commonly referred to as
cold data). Based on this observation, we propose to em-
ploy two levels of retention guarantees for the two kinds
of writes. For host writes, retention-relaxed writes are
used to exploit their high probability of short retention
requirements and gain performance benefits; for back-
ground writes, normal writes are employed to preserve
the retention guarantee.

In the proposed two-level framework, to optimize
write performance, host writes occur in fast write speed
with reduced retention capability. If data are not over-
written within their retention guarantee, background
writes with normal write speed are issued. To optimize
ECCs’ cost and performance, a new ECC architecture
is proposed. As mentioned earlier, NAND Flash RBER
will soon exceed BCH’s limitation (i.e., RBER ≥ 10−3);
therefore, advanced ECC designs will be required for fu-
ture SSDs. Figure 11 shows such an advanced ECC de-
sign for future SSDs which employs multi-layer ECCs
with code concatenations: the inner code is BCH, and
the outer code is LDPC. Concatenating BCH and LDPC
exploits the advantages of both [43]: LDPC greatly im-
proves the maximum correcting capability, while BCH
complements LDPC for eliminating LDPC’s error floor.
The main issue with this design is since every write needs
to be encoded in LDPC, a high-throughput LDPC en-
coder is required to prevent the LDPC encoder from be-
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ing the bottleneck. In the proposed ECC architecture
shown in Figure 12, host writes are protected by BCH
only since they tend to have short retention requirements.
If data are not overwritten within the retention guaran-
tee provided by BCH, background writes are issued. All
background writes are protected by LDPC. In this way,
the LDPC encoder is kept out of the critical performance
path. Its benefits are two-fold. First, write performance
is improved since host writes do not go through time-
consuming LDPC encoding. Second, since BCH filters
out short-lifetime data and LDPC encoding can be amor-
tized in the background, the throughput requirements of
LDPC are less than the baseline design. Therefore, the
LDPC hardware cost can be reduced.

We present two specific implementation of retention
relaxation. The first one relaxes the retention capabil-
ity of host writes to 10 weeks and periodically checks
the remaining retention capability of each NAND Flash
block at the end of every 5 weeks. Therefore, FTL al-
ways has another 5 weeks at least to reprogram those
data which have not been overwritten in the past period
and can amortize the re-programming task in the back-
ground over the 5 weeks without causing burst writes.
We set the period of invoking the reprogramming tasks
to 100 ms. The second one is similar to the first one ex-
cept that the retention capability and checking period are
2 weeks and 1 week, respectively. These two designs are
referred to as RR-10week and RR-2week in this paper.

5.2 Overhead Analysis
Memory Overhead

The proposed mechanism requires extra memory re-
sources to store write modes and retention time infor-
mation for each block. Since we only have two write
modes, i.e., the normal mode and the retention-relaxed
one, each block requires only a 1-bit flag to record its
write mode. As for the size of the counter for keeping
track of the remaining retention time, both RR-2week
and RR-10week require only a 1-bit counter per block
because all retention-relaxed blocks written in the nth pe-
riod are reprogrammed during the (n+ 1)th period. For
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Figure 15: Wear-out overhead of retention relaxation

an SSD having 128 GB NAND Flash with 2 MB block
size, the memory overhead is 16 KB .

Reprogramming Overhead

In the proposed schemes, data that are not overwrit-
ten in the guaranteed retention time need to be repro-
grammed. These extra writes affect both the performance
and the life time of SSDs. To analyze its performance
impact, we estimate reprogramming amounts per unit of
time based on the projection method described in Sec-
tion 4.2. Here, we let T2 be the checking period in the
proposed schemes. For example, for RR-10week, T2
equals 5 weeks. Therefore, at the end of each period, the
total write amount is kN, the percentage of writes which
require reprogramming is at most (1−ST2,T2%), and the
reprogramming tasks can be amortized over the upcom-
ing period of T2. The reprogramming amounts per unit
of time are as follows:

(1−ST2 ,T2 %)× k×N
T2

(18)

The results show that the amount of reprogramming
tasks range between 1.13 kB/s to 1.25 MB/s for RR-
2week, and between 1.13 kB/s to 0.26 MB/s for RR-
10week. Since each NAND Flash plane can provide
6.2 MB/s write throughput (i.e., writing a 8 kB page in
1.3 ms), we anticipate that reprogramming does not lead
to high performance overhead. In Section 6, we evaluate
its actual performance impact.

To quantify the wear-out effect caused by reprogram-
ming, we show extra writes per cell per year assuming
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Figure 13: SSD write response time speedup
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Figure 14: SSD overall response time speedup

perfect wear-leveling. We first give the upper bound on
this metric. Let’s take RR-2week for example. In the ex-
treme case, RR-2week reprograms the entire disk every
week, which leads to 52.1 extra writes per cell per year.
Similarly, RR-10week causes 10.4 extra writes per cell
per year at most. These extra writes are not significant
compared to NAND Flash’s endurance which is usually
a few thousands P/E cycles. Therefore, even in the worst
case, the proposed mechanism does not cause significant
wear-out effect. For real workloads, the wear-out over-
head is usually smaller than the worst case as shown in
Figure 15. The wear-out overhead for each workload is
evaluated based on the disk capacity and the reprogram-
ming amounts per unit of time presented above.

6 System Evaluation
We conduct simulation-based experiments using
SSDsim [5] and Disksim-4.0 [10] to evaluate the RR-
10week and RR-2week designs. SSDs are configured to
have 16 channels. Detailed configurations and parame-
ters are listed in Table 3. Eleven of the 16 traces listed in
Table 2 are used and simulated for the whole trace. We
omit prxy 1 because the simulated SSD can not sustain
its load, and prn 1, src1 1, usr 1, usr 2 are also omitted
because they contain write amounts less than 15% of the
total raw NAND Flash capacity. SSD write speedup and
ECCs’ cost and performance improvement are evaluated
separately. The reprogramming overhead described in
Section 5.2 are considered in the experiments.

Figure 13 shows the speedup of write response time
for different workloads if we leverage retention relax-
ation to improve write speed. We can see that RR-
10week and RR-2week typically achieve 1.8–2.6× write
response time speedup. hd1 and hd2 show up to
3.9–5.7× speedup. These two workloads have high
queuing delay due to high I/O throughput. With reten-
tion relaxation, the queuing time is greatly reduced, be-
tween 3.7× to 6.1×. Moreover, for all workloads, RR-
2week gives about 20% extra performance gain over RR-
10week. Figure 14 shows the speedup in terms of overall
response time. The overall response time is mainly deter-

Table 3: NAND Flash and SSD configurations
Parameter Value 

Over-provisioning 15% 

Cleaning threshold 5% 

Page size 8 KB 

Pages per block 256 

Blocks per plane 2000 

Planes per die 2 

Dies per channel 1~8 

Number of channel 16 

Mapping policy Full stripe 

Parameter Value 

Page read latency 75 μs 

Page write latency 1.3 ms 

Block erase latency 3.8 ms 

NAND bus bandwidth 200 MB/s 

Trace Name Dies per Disk Exported Capacity (GB) 

prn_0, proj_0, prxy_0, src1_2 16 106 

src2_2 32 212 

src1_0 64 423 

proj_2, hd1, hd2, tpcc1, tpcc2 128 847 

mined by write requests due to the significant amount of
write requests in the tested workloads and the long write
latency. Therefore, we can see that the speedup trend is
similar to that of write response time.

To show how retention relaxation benefits ECC design
in future SSDs, we consider SSDs comprising NAND
Flash whose 1-year RBER approaches 2.2× 10−2. We
compare the proposed RR-2week design with the base-
line design which employs concatenated BCH-LDPC
codes. The LDPC encoder is modeled as a FIFO and its
throughput is chosen among 5, 10, 20, 40, 80, 160, 320,
and ∞ MB/s. Since the I/O queue of the simulated SSDs
could saturate if LDPC’s throughput is insufficient, we
first report the minimum required throughput configura-
tions without causing saturation in Figure 16. As can be
seen, for the baseline ECC architecture, throughput up
to 160 MB/s is required. In contrast, for RR-2week, the
lowest throughput configuration (i.e., 5MB/s) is enough
to sustain the write rates in all tested workloads. Fig-
ure 17 shows the response time of the baseline and RR-
2week under various LDPC throughput configurations.
The response time reported in this figure is the average
of the response time normalized to that with unlimited
LDPC throughput:

1
N

N

∑
i=1

(
ResponseTimei

IdealResponseTimei

)
(19)
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where N is the number of workloads which do not in-
cur I/O queue saturation given specific LDPC through-
put. In the figure, the curve of the baseline presents
a zigzag appearance between 5 MB/s to 80 MB/s be-
cause several traces are excluded due to the saturation
in the I/O queue. This may inflate the performance of the
baseline. Even so, we see RR-2week outperforms the
baseline significantly with the same LDPC throughput
configuration. For example, with 10MB/s throughput,
RR-2week performs 43% better than the baseline. Only
when the LDPC throughput approaches infinite does RR-
2week perform a bit worse than the baseline due to re-
programming overhead. We can also see that with a
20 MB/s LDPC, RR-2week already approaches the per-
formance of unlimited LDPC throughput, while the base-
line requires 160 MB/s to achieve the similar level. Be-
cause hardware parallelization is one basic approach to
increase the throughput of a LDPC encoder [24], in this
point of view, retention relaxation can reduce the hard-
ware cost of LDPC encoders by 8×.

7 Related Work
Access frequencies are usually considered in storage op-
timization. Chiang et al. [12] propose to cluster data
with similar write frequencies together to increase SSDs’
cleaning efficiency. Pritchett and Thottethodi [33] ob-
serve the skewness of disk access frequencies in datacen-
ters and propose novel ensemble-level SSD-based disk
caches. In contrast, we focus on the time interval be-
tween two successive writes to the same address which
defines the data retention requirement.

Several device-aware optimizations for NAND Flash-
based SSDs were proposed recently. Grupp et al. [17]
exploit the variation in page write speed in MLC NAND
Flash to improve SSDs’ responsiveness. Tanakamaru et
al. [40] propose wear-out-aware ECC schemes to im-
prove the ECC capability. Xie et al. [42] improve write
speed through compressing user data and employing
stronger ECC codes. Pan et al. [31] improve write speed
and defect tolerance using wear-out-aware policies. Our

work considers the retention requirements of real work-
loads and relaxes NAND Flash’s data retention to op-
timize SSDs, which is orthogonal to the above device-
aware optimization.

Smullen et al. [36] and Sun et al. [38] improve energy
and latency of STTRAM-based CPU caches through re-
designing STTRAM cells with relaxed non-volatility. In
contrast, we focus on NAND Flash memories used in
storage systems.

8 Conclusions
We present the first work on optimizing SSDs via re-
laxing NAND Flash’s data retention capability. We de-
velop a NAND Flash model to evaluate the benefits if
NAND Flash’s original multi-year data retention can
be reduced. We also demonstrate that in real systems,
write requests usually require days or even shorter re-
tention times. To optimize the write speed and ECCs’
cost and performance, we design SSD systems which
handle host writes with shortened retention time while
handling background writes as usual and present corre-
sponding retention tracking schemes to guarantee that no
data loss happens due to a shortage of retention capa-
bility. Simulation results show that the proposed SSDs
achieve 1.8–5.7× write response time speedup. We also
show that for future SSDs, retention relaxation can bring
both performance and cost benefits to the ECC architec-
ture. We leave simultaneously optimizing write speed
and ECCs as our future work.
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