Rethinking Erasure Codes for Cloud File Systems:
Minimizing I/O for Recovery and Degraded Reads

Osama Khan, Randal Burns
Department of Computer Science
Johns Hopkins University

James Plank, William Pierce

Dept. of Electrical Engineering and Computer Science

University of Tennessee

Cheng Huang
Microsoft Research

Abstract

To reduce storage overhead, cloud file systems are
transitioning from replication to erasure codes. This pro-
cess has revealed new dimensions on which to evalu-
ate the performance of different coding schemes: the
amount of data used in recovery and when performing
degraded reads. We present an algorithm that finds the
optimal number of codeword symbols needed for recov-
ery for any XOR-based erasure code and produces re-
covery schedules that use a minimum amount of data.
We differentiate popular erasure codes based on this cri-
terion and demonstrate that the differences improve I/O
performance in practice for the large block sizes used in
cloud file systems. Several cloud systems [15, 10] have
adopted Reed-Solomon (RS) codes, because of their gen-
erality and their ability to tolerate larger numbers of fail-
ures. We define a new class of rotated Reed-Solomon
codes that perform degraded reads more efficiently than
all known codes, but otherwise inherit the reliability and
performance properties of Reed-Solomon codes.

1 Introduction

Cloud file systems transform the requirements for era-
sure codes because they have properties and workloads
that differ from traditional file systems and storage ar-
rays. Our model for a cloud file system using era-
sure codes is inspired by Microsoft Azure [10]. It con-
forms well with HDFS [8] modified for RAID-6 [14]
and Google’s analysis of redundancy coding [15]. Some
cloud file systems, such as Microsoft Azure and the
Google File system, create an append-only write work-
load using a large block size. Writes are accumulated and
buffered until a block is full and then the block is sealed:
it is erasure coded and the coded blocks are distributed to
storage nodes. Subsequent reads to sealed blocks often
access smaller amounts data than the block size, depend-
ing upon workload [14, 46].

When examining erasure codes in the context of cloud
file systems, two performance critical operations emerge.
These are degraded reads to temporarily unavailable
data and recovery from single failures. Although era-
sure codes tolerate multiple simultaneous failures, single
failures represent 99.75% of recoveries [44]. Recovery
performance has always been important. Previous work
includes architecture support [13, 21] and workload op-
timizations for recovery [22, 48, 45]. However, it is par-
ticularly acute in the cloud owing to scale. Massive sys-
tems have frequent component failures so that recovery
becomes part of regular operation [16].

Frequent and temporary data unavailability in the
cloud results in degraded reads. In the period between
failure and recovery, reads are degraded because they
must reconstruct data from unavailable storage nodes us-
ing erasure codes. This is by necessity a slower opera-
tion than reading the data without reconstruction. Tem-
porary unavailability dominates disk failures. Transient
errors in which no data are lost account for more than
90% of data center failures [15], owing to network par-
titions, software problems, or non-disk hardware faults.
For this reason, Google delays the recovery of failed stor-
age nodes for 15 minutes. Temporary unavailability also
arises systematically when software upgrades take stor-
age nodes offline. In many data centers, software updates
are a rolling, continuous process [9].

Only recently have techniques emerged to reduce the
data requirements of recovering an erasure code. Two re-
cent research projects have demonstrated how the RAID-
6 codes RDP and EVENODD may recover from single
disk failures by reading significantly smaller subsets of
codeword symbols than the previous standard practice of
recovering from the parity drive [51, 49]. Our contribu-
tions to recovery performance generalize these results to
all XOR-based erasure codes, analyze existing codes to
differentiate them based on recovery performance, and
experimentally verify that reducing the amount of data
used in recovery translates directly into improved perfor-



mance for cloud file systems, but not for typical RAID
array configurations.

We first present an algorithm that finds the optimal
number of symbols needed for recovering data from an
arbitrary number of disk failures, which also minimizes
the amount of data read during recovery. We include an
analysis of single failures in RAID-6 codes that reveals
that sparse codes, such as Blaum-Roth [5], Liberation
[34] and LiberS8tion [35], have the best recovery proper-
ties, reducing data by about 30% over the standard tech-
nique that recovers each row independently. We also an-
alyze codes that tolerate three or more disk failures, in-
cluding the Reed-Solomon codes used by Google [15]
and Microsoft Azure [10].

Our implementation and evaluation of this algorithm
demonstrates that minimizing recovery data translates di-
rectly into improved I/O performance for cloud file sys-
tems. For large stripe sizes, experimental results track the
analysis and increase recovery throughput by 30%. How-
ever, the algorithm requires the large stripes created by
large sealed blocks in cloud file systems in order to amor-
tize the seek costs incurred when reading non-contiguous
symbols. This is in contrast to recovery of the smaller
stripes used by RAID arrays and in traditional file sys-
tems in which the streaming recovery of all data outper-
forms our algorithm for stripe sizes below 1 MB. Prior
work on minimizing recovery I/O [51, 49, 27] is purely
analytic, whereas our work incorporates measurements
of recovery performance.

We also examine the amount of data needed to perform
degraded reads and reveal that it can use fewer symbols
than recovery. An analysis of RAID-6 and three disk
failure codes shows that degraded read performance dif-
ferentiates codes that otherwise have the same recovery
properties. Reads that request less than a stripe of data
make the savings more acute, as much as 50%.

Reed-Solomon codes are particularly poor for de-
graded reads in that they must always read all data disks
and parity for every degraded read. This is problem-
atic because RS codes are popular owing to their gen-
erality and applicability to nearly all coding situations.
We develop a new class of codes, Rotated Reed-Solomon
codes, that exceed the degraded read performance of
all other codes, but otherwise have the encoding perfor-
mance and reliability properties of RS Codes. Rotated
RS codes can be constructed for arbitrary numbers of
disks and failures.

2 Related Work

Performance Metrics: FErasure codes have been eval-
vated historically on a variety of metrics, such as the
CPU impact of encoding and decoding [3, 11, 37], the
penalty of updating small amounts of data [5, 26, 52] and
the ability to reconfigure systems without re-encoding [3,

7, 26]. The CPU performance of different erasure codes
can vary significantly. However, for all codes that we
consider, encoding and decoding bandwidth is orders of
magnitude faster than disk bandwidth. Thus, the dom-
inant factor when sealing data is writing the erasure-
coded blocks to disk, not calculating the codes. Simi-
larly, when decoding either for recovery or for degraded
reads, the dominant factor is reading the data.

Updating small amounts of data is also not a con-
cern in cloud file systems—the append-only write pattern
and sealed blocks eliminate small writes in their entirety.
System reconfiguration refers to changing coding param-
eters: changing the stripe width or increasing/decreasing
fault tolerance. This type of reconfigurability is less im-
portant in clouds because each sealed block defines an
independent stripe group, spread across cloud storage
nodes differently than other sealed blocks. There is no
single array of disks to be reconfigured. If the need for
reconfiguration arises, each sealed block is re-encoded
independently.

There has been some work lowering I/O costs in
erasure-coded systems. In particular, WEAVER [19],
Pyramid [23] and Stepped Combination Codes [18] have
all been designed to lower I/O costs on recovery. How-
ever, all of these codes are non-MDS, which means that
they do not have the storage efficiency that cloud stor-
age systems demand. The REO RAID Engine [26] min-
imizes I/O in erasure-coded storage systems; however,
its focus is primarily on the effect of updates on storage
systems of smaller scale.

Cloud Storage Systems: The default storage policy in
cloud file systems has become triplication (triple repli-
cation), implemented in the Google File system [16] and
adopted by Hadoop [8] and many others. Triplication has
been favored because of its ease of implementation, good
read and recovery performance, and reliability.

The storage overhead of triplication is a concern, lead-
ing system designers to consider erasure coding as an al-
ternative. The performance tradeoffs between replication
and erasure coding are well understood and have been
evaluated in many environments, such as peer-to-peer file
systems [43, 50] and open-source coding libraries [37].

Investigations into applying RAID-6 (two fault toler-
ant) erasure codes in cloud file systems show that they
reduce storage overheads from 200% to 25% at a small
cost in reliability and the performance of large reads
[14]. Microsoft research further explored the cost/benefit
tradeoffs and expand the analysis to new metrics: power
proportionality and complexity [53]. For these reasons,
Facebook is evaluating RAID-6 and erasure codes in
their cloud infrastructure [47]. Our work supports this
trend, providing specific guidance as to the relative mer-
its of different RAID-6 codes with a focus on recover-
ability and degraded reads.



Ford et al. [15] have developed reliability models for
Google’s cloud file system and validated models against
a year of workload and failure data from the Google in-
frastructure. Their analysis concludes that data place-
ment strategies need to be aware of failure groupings and
failure bursts. They also argue that, in the presence of
correlated failures, codes more fault tolerant than RAID-
6 are needed to to reduce exposure to data loss; they con-
sider Reed-Solomon codes that tolerate three and four
disk failures. Windows Azure storage employs Reed-
Solomon codes for similar reasons [10]. The rotated RS
codes that we present inherit all the properties of Reed-
Solomon codes and improve degraded reads.

Recovery Optimization: Workload-based approaches
to improving recovery are independent of the choice of
erasure code and apply to minimum I/O recovery algo-
rithm and rotated RS codes that we present. These in-
clude: load-balancing recovery among disks [22], recov-
ering popular data first to decrease read degradation [48],
and only recovering blocks that contain live data [45].
Similarly, architecture support for recovery can be ap-
plied to our codes, such as hardware that minimizes data
copying [13] and parity declustering [21].

Reducing the amount of data used in recovery has only
emerged recently as a topic and the first results have
given minimum recovery schedules for EVENODD [49]
and row-diagonal parity [51], both RAID-6 codes. We
present an algorithm that defines the recovery I/O lower
bound for any XOR-based erasure code and allows mul-
tiple codes to be compared for I/O recovery cost.

Regenerating codes provide optimal recovery band-
width [12] among storage nodes. This concept is differ-
ent than minimizing I/O; each storage node reads all of
its available data and computes and sends a linear combi-
nation. Regenerating codes were designed for distributed
systems in which wide-area bandwidth limits recovery
performance. Exact regenerating codes [39] recover lost
data exactly (not a new linear combination of data). In
addition to minimizing recovery bandwidth, these codes
can in some cases reduce recovery I/O. The relationship
between recovery bandwidth and recovery data size re-
mains an open problem.

RAID systems suffer reduced performance during
recovery because the recovery process interferes with
workload. Tian et al. [48] reorder recovery so that fre-
quently read data are rebuilt first. This minimizes the
number of reads in degraded mode. Jin et al. [25] pro-
pose reconfiguring an array from RAID-5 to RAID-0
during recovery so that reads to strips of data that are
not on the failed disk do not need to be recovered. Our
treatment differs in that we separate degraded reads from
recovery; we make degraded reads more efficient by re-
building just the requested data, not the entire stripe.
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Figure 1: One stripe from an erasure coded storage sys-
tem. The parameters are k = 6, m = 3 and r = 4.

3 Background: Erasure Coded Storage

Erasure coded storage systems add redundancy for fault-
tolerance. Specifically, a system of n disks is partitioned
into k disks that hold data and m disks that hold coding
information. The coding information is calculated from
the data using an erasure code. For practical storage sys-
tems, the erasure code typically has two properties. First,
it must be Maximum Distance Separable (MDS), which
means that if any m of the n disks fails, their contents
may be recomputed from the % surviving disks. Second,
it must be systematic, which means that the k data disks
hold unencoded data.

An erasure coded storage system is partitioned into
stripes, which are collections of disk blocks from each of
the n disks. The blocks themselves are partitioned into
symbols, and there is a fixed number of symbols for each
disk in each stripe. We denote this quantity r. The stripes
perform encoding and decoding as independent units in
the disk system. Therefore, to alleviate hot spots that can
occur because the coding disks may require more activ-
ity than the data disks, one can rotate the disks’ identities
on a stripe-by-stripe basis.

For the purpose of our analysis, we focus on a sin-
gle stripe. There are k data disks labeled Dy, ..., Dy_1
and m coding disks labeled Cy, . .., C,,—1. There are nr
symbols in the stripe. We label the r symbols on data
disk ¢ as d;o0,d;i1,...,dir—1 and on coding disk j
as ¢j,0,Cj1,---,Cjr—1. We depict an example system
in Figure 1. In this example, £ = 6, m = 3 (and there-
fore n = 9) and r = 4.

Erasure codes are typically defined so that each sym-
bol is a w-bit word, where w is typically small, often
one. Then the coding words are defined as computations
of the data words. Thus for example, suppose an era-
sure code were defined in Figure 1 for w = 1. Then
each symbol in the stripe would be composed of one sin-
gle bit. While that eases the definition of the erasure
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Figure 2: Relationship between words, symbols and
sealed blocks.

code, it does not map directly to a disk system. In re-
ality, it makes sense for each symbol in a sealed block
to be much larger in size, on the order of kilobytes or
megabytes, and for each symbol to be partitioned into w-
bit words, which are encoded and decoded in parallel.
Figure 2 depicts such a partitioning, where each symbol
is composed of multiple words. When w = 1, this parti-
tioning is especially efficient, because machines support
bit operations like exclusive-or (XOR) over 64-bit and
even 128-bit words, which in effect perform 64 or 128
XOR operations on 1-bit words in parallel.

When w = 1, the arithmetic is modulo 2: addition
is XOR, and multiplication is AND. When w > 1,
the arithmetic employed is Galois Field arithmetic, de-
noted GF'(2"). In GF(2"), addition is still XOR; how-
ever multiplication is more complex, requiring a variety
of implementation techniques that depend on hardware,
memory, co-processing elements and w [17].

3.1 Matrix-Vector Definition

All erasure codes may be expressed in terms of a matrix-
vector product. An example is pictured in Figure 3. This
continues the example from Figure 1, where £ = 6,
m = 3 and r = 4; In this picture, the erasure code is de-
fined precisely. This is a Cauchy Reed-Solomon code [6]
optimized by the Jerasure library [38]. The word size, w
equals one, so all symbols are treated as bits and arith-
metic is composed solely of the XOR operation. The kr
symbols of data are organized as a kr-element bit vector.
They are multiplied by a nr x kr Generator matrix G7.!
The product is a vector, called the codeword, with nr el-
ements. These are all of the symbols in the stripe. Each
collection of r symbols in the vector is stored on a differ-
ent disk in the system.

Since the the top kr rows of G” compose an identity
matrix, the first kr symbols in the codeword contain the

IThe archetypical presentation of erasure codes [26, 29, 32] typi-
cally uses the transpose of this matrix; hence, we call this matrix GT.

data. The remaining mr symbols are calculated from the
data using the bottom mr rows of the Generator matrix.

When up to m disks fail, the standard methodolgy for
recovery is to select & surviving disks and create a de-
coding matrix B from the kr rows of the Generator ma-
trix that correspond to them. The product of B~! and
the symbols in the k& surviving disks yields the original
data [6, 20, 33].

There are many MDS erasure codes that apply to
storage systems. Reed-Solomon codes [40] are de-
fined for all values of k& and m. With a Reed-Solomon
code, r = 1, and w must be such that 2% > n. Gener-
ator matrices are constructed from a Vandermonde ma-
trix so that any k& x k subset of the Generator matrix
is invertible. There is quite a bit of reference material
on Reed-Solomon codes as they apply to storage sys-
tems [33, 36, 6, 41], plus numerous open-source Reed-
Solomon coding libraries [42, 38, 30, 31].

Cauchy Reed-Solomon codes convert Reed-Solomon
codes with = 1 and w > 1 to a code where r = w
and w = 1. In doing so, they remove the expensive
multiplication of Galois Fields and replace it with addi-
tional XOR operations. There are an exponential number
of ways to construct the Generator matrix of a Cauchy
Reed-Solomon code. The Jerasure library attempts to
construct a matrix with a minimal number of non-zero
entries [38]. It is these matrices that we use in our exam-
ples with Cauchy Reed-Solomon codes.

For m = 2, otherwise known as RAID-6, there
has been quite a bit of research on constructing codes
where w = 1 and the CPU performance is optimized.
EVENODD [3], RDP [11] and Blaum-Roth [5] codes all
require 7 + 1 to be a prime number such that & < r + 1
(EVENODD) or £ < r. The Liberation codes [34]
require r to be a prime number and £ < 7, and the
Liber8tion code [35] is defined for » = 8 and k <
r. The latter three codes (Blaum-Roth, Liberation and
Liber8tion) belong to a family of codes called Minimum
Density codes, whose Generator matrices have a prov-
ably minimum number of ones.

Both EVENODD and RDP codes have been extrapo-
lated to higher values of m [2, 4]. We call these Gen-
eralized EVENODD and RDP. With m = 3, the same
restrictions on r apply. For larger values of m, there are
additional restrictions on r. The STAR code [24] is an
instance of the generalized EVENODD codefor m = 3,
where recovery is performed without using the Generator
matrix.

All of the above codes have a convenient feature that
disk Cy is constructed as the parity of the data disks, as in
RAID-4/5. Thus, the r rows of the Generator matrix im-
mediately below the identity portion are composed of &
(r x r) identity matrices. To be consistent with these
RAID systems, we will refer to disk Cj as the “P drive.”
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Figure 3: The matrix-vector representation of an erasure code. The parameters are the same as Figure 1: k = 6, m = 3
and r = 4. Symbols are one bit (i.e. w = 1). This is a Cauchy Reed-Solomon code for these parameters.

4 Optimal Recovery of XOR-Based Era-
sure codes

When a data disk fails in an erasure coded disk array, it is
natural to reconstruct it simply using the P drive. Each
failed symbol is equal to the XOR of corresponding sym-
bols on each of the other data disks, and the parity sym-
bol on the P disk. We call this methodology “Reading
from the P drive.” It requires k£ symbols to be read from
disk for each decoded symbol.

Although it is straightforward both in concept and im-
plementation, in many cases, reading from the P drive
requires more I/O than is necessary. In particular, de-
pending on the erasure code, there are savings that can
be exploited when multiple symbols are recovered in the
same stripe. This effect was first demonstrated by Xiang
et al. in RDP systems in which one may reconstruct all
the failed blocks in a stripe by reading 25 percent fewer
symbols than reading from the P drive [51]. In this sec-
tion, we approach the problem in general.

4.1 Algorithm to Determine the Minimum
Number of Symbols for Recovery

We present an algorithm for recovering from a single
disk failure in any XOR-based erasure code with a mini-
mum number of symbols. The algorithm takes as input a
Generator matrix whose symbols are single bits and the
identity of a failed disk and outputs equations to decode
each failed symbol. The inputs to the equations are the
symbols that must be read from disk. The number of in-
puts is minimized.

The algorithm is computationally expensive — for the
systems evaluated for this paper, each instantiation took
from seconds to hours of compute-time. However, for
any realistic storage system, the number of recovery sce-
narios is limited, so that the algorithm may be run ahead

of time, and the results may be stored for when they are
required by the system.

We explain the algorithm by using the erasure code of
Figure 4 as an example. This small code, with k = m =
r = 2, is not an MDS code; however its simplicity facil-
itates our explanation. We label the rows of GT as R;,
0 < ¢ < nr. BEachrow R; corresponds to a data or coding
symbol, and to simplify our presentation, we will refer to
symbols using R; rather than d; ; or c; ;. Consider a set
of symbols in the codeword whose corresponding rows
in the Generator matrix sum to a vector of zeroes. One
example is { Ry, Ro, R4}. We call such a set of symbols
a decoding equation, because the fact their rows sum to
zero allows us to decode any one symbol in the set as
long as the remaining symbols are not lost.

Suppose that we enumerate all decoding equations for
a given Generator matrix, and suppose that some sub-
set F' of the codeword symbols are lost. For each sym-
bol R; € F, we can determine the set F; of decod-
ing equations for ;. Formally, an equation e; € FE; if
e;NF = {R;}. For example, the equation represented by
the set { Ry, R2, R4} may be a decoding equation in ey
so long as neither Ry nor Ry isin F'.

Rl1|/0]0]O % R,
RJlo|1]0]0 i.i R,
RlO|0]1]0 d/,o R,
Rl0|0]O]|1 _ ﬂi R,
Rl1|0]1]|0 - €0 R,
Rjo|1]0|1 €| Rs
Rl1|/0]0]|1 €14 R,
Rlol1]1]0 e, | R,

GT Codeword

Figure 4: An example erasure code to explain the algo-
rithm to minimize the number of symbols required to re-
cover from failures.



We can recover all the symbols in F' by selecting one
decoding equation e; from each set E;, reading the non-
failed symbols in e; and then XOR-ing them to produce
the failed symbol. To minimize the number of symbols
read, our goal is to select one equation e; from each E;
such that the number of symbols in the union of all e; is
minimized.

For example, suppose that a disk fails, and both Ry
and R; are lost. A standard way to decode the failed
bits is to read from the P drive and use coding sym-
bols Ry and Rs. In equation form, FF = {Ry, Ri}
€y = {Ro,R27R4} and e = {R17R3,R5}. Since €0
and e; have distinct symbols, their union is composed of
six symbols, which means that four must be read for re-
covery. However, if we instead use { Ry, R, R7} for ey,
then (ep U e1) has five symbols, meaning that only three
are required for recovery.

Thus, our problem is as follows: Given |F| sets of
decoding equations Ey, E1, ... Ejpj_1, we wish to se-
lect one equation from each set such that the size of the
union of these equations is minimized. Unfortunately,
this problem is NP-Hard in | F| and |E;|.> However, we
can solve the problem for practical values of | F'| and | E;|
(typically less than 8 and 25 respectively) by converting
the equations into a directed, weighted graph and finding
the shortest path through the graph. Given an instance of
the problem, we convert it to a graph as follows. First, we
represent each decoding equation in set form as an nr-
element bit string. For example, {Rg, Ra, R4} is repre-
sented by 10101000.

Each node in the graph is also represented by an nr-
element bit string. There is a starting node Z whose
string is all zeroes. The remaining nodes are partitioned
into |F| sets, labeled Sp, S1,...S|p|—1. For each equa-
tion eg € FEj, there is a node sg € Sy whose bit string
equals eq’s bit string. There is an edge from Z to each sg
whose weight is equal to the number of ones in sg’s bit
string.

For each node s; € S;, there is an edge that cor-
responds to each e;11 € FE;;;. This edge is to a
node s; 1 € S;y1 whose bit string is equal to the bitwise
OR of the bit strings of s; and e;4+1. The OR calculates
the union of the equations leading up to s; and e; 1. The
weight of the edge is equal to the difference between the
number of ones in the bit strings of s; and s;4;. The
shortest path from Z to any node in S|p|_; denotes the
minimum number of elements required for recovery. If
we annotate each edge with the decoding equation that
creates it, then the shortest path contains the equations
that are used for recovery.

To illustrate, suppose again that ' = { Ry, R; }, mean-
ing fo = Rp and f; = R;. The decoding equations

2Reduction from Vertex Cover.

for F and Iy are denoted by e; ; where i is the index of
the lost symbol in the set [’ and j is an index into the set
FE;. Ey and E; are enumerated below:

Eqy E,
€0.0=10101000 | €10=01010100
€0,1 = 10010010 | €31 =01101110
€0,2=10011101 | €32 =01100001
€0,3=10100111 | €;3=01011011

These equations may be converted to the graph de-
picted in Figure 5, which has two shortest paths of length
five: {ep0,€1,2} and {ep1,€1,0}. Both require three
symbols for recovery: {Ro, R4, R7} and {R3, R5, R¢}.

While the graph clearly contains an exponential num-
ber of nodes, one may program Dijkstra’s algorithm to
determine the shortest path and prune the graph drasti-
cally. For example, in Figure 5, the shortest path will be
discovered before the the dotted edges and grayed nodes
are considered by the algorithm. Therefore, they may be

pruned.

€2
2

CA11100111
Figure 5: The graph that results when Ry and R; are lost.

4.2 Algorithm for Reconstruction

When data disk ¢ fails, the algorithm is applied for F' =
{di,0y...,dir—1}. When coding disk j fails, I’ =
{¢j0,...,¢jr—1}. If a storage system rotates the iden-
tities of the disks on a stripe-by-stripe basis, then the av-
erage number of symbols for all failed disks multiplied
by the total number of stripes gives a measure of the sym-
bols required to reconstruct a failed disk.

4.3 Algorithm for Degraded Reads

To take maximum advantage of parallel I/O, we assume
that contiguous symbols in the file system are stored on



different disks in the storage system. In other words, if
one is reading three symbols starting with symbol dy o,
then those three symbols are dy o, d1,0 and ds o, coming
from three different disk drives.

To evaluate degraded reads, we assume that an appli-
cation desires to read B symbols starting at symbol d;,
and that data disk f has failed. We determine the penalty
of the failure to be the number of symbols required to
perform the read, minus B.

There are many cases that can arise from the differ-
ing values of B, f, x and y. To illustrate, first suppose
that B < k (which is a partial read case) and that none of
the symbols to be read reside on disk f. Then the failure
does not impact the read operation — it takes exactly B
symbols to complete the read, and the penalty is zero.

As a second case, consider when B = kr and d, ,, =
do,0. Then we are reading exactly one stripe in its en-
tirety. In this case, we have to read the (k—1)r non-failed
data symbols to fulfill the read request. Therefore, we
may recover very easily from the P drive by reading all
of its symbols and decoding. The read requires kr = B
symbols. Once again, the penalty is zero.

However, consider the case when B = k, f = 0, and
dz,y = dl"(). Symbols dl,() through dkfl’() are non-failed
and must be read. Symbol dp ; must also be read and it
is failed. If we use the P drive to recover, then we need
to read d;; through d;_1 0 and cp,;. The total symbols
read is 2k — 1: the failure has induced a penalty of k£ — 1
symbols.

In all of these cases, the degraded read is contained
by one stripe. If the read spans two stripes, then we
can calculate the penalty as the sum of the penalties of
the read in each stripe. If the read spans more than two
stripes, then we only need to calculate the penalties in the
first and last stripe. This is because, as described above,
whole-stripe degraded reads incur no penalty.

When we perform a degraded read within a stripe, we
modify our algorithm slightly. For each non-failed data
symbol that must be read, we set its bit in the state of the
starting node Z to one. For example, in Figure 4, sup-
pose we are performing a degraded read where B = 2,
f=0andd, , = doo. Thereis one failed bit: F' = dj .
Since dy,o0 = R must be read, the starting state Z of the
shortest path graph is labeled 00100000. The algorithm
correctly identifies that only ¢y ¢ needs to be read to re-
cover dg o and complete the read.

5 Rotated Reed-Solomon Codes

Before performing analyses of failed disk reconstruction
and degraded reads, we present two instances of a new
erasure code, called the Rotated Reed-Solomon code.
These codes have been designed to be MDS codes that
optimize the performance of degraded reads for single

disk failures. The general formulation and theoretical
evaluation of these codes is beyond the scope of this pa-
per; instead, we present instances for m € {2, 3}.

Data Disks Coding Disks
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Figure 6: A Reed-Solomon code for ¥ = 6 and m =
3. Symbols must be w-bit words such that w > 4, and
arithmetic is over GF(2").

The most intuitive way to present a Rotated Reed-
Solomon code is as a modification to a standard Reed-
Solomon code. We present such a code for m < 3 in
Equation 1. As with all Reed-Solomon codes, = 1.

k—1

for0<j <3, ¢ = Z (Qj)idi,o (1)
i=0

This is an MDS code so long as k, m, r and w adhere
to some constraints, which we detail at the end of this
section. This code is attractive because one may imple-
ment encoding with XOR and multiplication by two and
four in GF(2"), which are all very fast operations. For
example, the m = 2 version of this code lies at the heart
of the Linux RAID-6 coding engine [1].

We present the code pictorally in Figure 6. A chain
of circles denotes taking the XOR of d; ¢; a chain of tri-
angles denotes taking the XOR of 2'd; o, and a chain of
squares denotes taking the XOR of 47d; o. To convert this
code into a Rotated Reed-Solomon code, we allow r to
take on any positive value, and define the coding symbols
with Equation 2.

kj_

m k*l
o = > (@) prrur + Y (20 dis. )
=0 kj

=

Intuitively, the Rotated Reed-Solomon code converts
the one-row code in Figure 6 into a multi-row code,
and then the equations for coding disks 1 and 2 are
split across adjacent rows. We draw the Rotated Reed-
Solomon codes for k = 6 and m = {2,3} and r = 3 in
Figures 7 and 8.

These codes have been designed to improve the
penalty of degraded reads. Consider a RAID-6 system
that performs a degraded read of four symbols starting
at ds o when disk 5 has failed. If we reconstruct from
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Figure 7: A Rotated Reed-Solomon code for k = 6, m =
2and r = 3.

the P drive, we need to read dy o through d4 o plus co 0
to reconstruct ds o. Then we read the non-failed sym-
bols dy 1,d1,1 and ds ;1. The penalty is 5 symbols. With
Rotated Reed-Solomon coding, ds o, do,1, di,1 and da 1
all participate in the equation for c¢; g. Therefore, by
reading 1,0, do,1, d1,1, d2,1, d3,0 and d4 o, one both de-
codes ds,o and reads the symbols that were required to
be read. The penalty is only two symbols.

Data Disks Coding Disks
0 1 4 5 0 1 2
Ol | o LO pt
A %'-/&_A—— =
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O e
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Figure 8: A Rotated Reed-Solomon code for k = 6, m =
3andr = 3.

With whole disk reconstruction, when r is an even
number, one can reconstruct any failed data disk by read-
ing Z(k + [£7) symbols. The process is exemplified
for k = 6, m = 3 and r = 4 in Figure 9. The first data
disk has failed, and the symbols required to reconstruct
each of the failed symbols is darkened and annotated
with the equation that is used for reconstruction. Each
pair of reconstructed symbols in this example shares four
data symbols for reconstruction. Thus, the whole recon-
struction process requires a total of 16 symbols, as op-
posed to 24 when reading from the P Drive.

The process is similar for the other data drives. Re-
constructing failed coding drives, however does not have

Data Disks Coding Disks
0 1 2 3 4 5 0 1 2

Figure 9: Reconstructing disk O when it fails, using Ro-
tated Reed-Solomon coding for k = 6, m = 3, r = 4.

the same benefits. We are unaware at present of how
to reconstruct a coding drive with fewer than the maxi-
mum k7 symbols.

As an aside, when more than one disk fails, Rotated
Reed-Solomon codes may require much more computa-
tion to recover than other codes, due to the use of matrix
inversion for recovery. We view this property as less im-
portant, since multiple disk failures are rare occurrences
in practical storage systems, and computational overhead
is less important than the I/O impact of recovery.

5.1 MDS Constraints

The Rotated Reed-Solomon code specified above in Sec-
tion 5 is not MDS in general. In other words, there are
settings of k, m, w and r which cannot tolerate the fail-
ure of any m disks. Below, we detail ways to constrain
these variables so that the Rotated Reed-Solomon code
is MDS. Each of these settings has been verified by test-
ing all combinations of m failures to make sure that they
may be tolerated. They cover a wide variety of system
sizes, certainly much larger than those in use today.
The constraints are as follows:

m € {2,3}
k<36,andk+m <2¥ 41
w € {4,8,16}

r e {2,4,8,16,32)

Moreover, when w = 16, r may be any value less
than or equal to 48, except 15, 30 and 45. It is a matter of
future research to derive general-purpose MDS construc-
tions of Rotated Reed-Solomon codes.

6 Analysis of Reconstruction

We evaluate the minimum number of symbols required to
recover a failed disk in erasure coding systems with a va-
riety of erasure codes. We restrict our attention to MDS
codes, and systems with six data disks and either two or
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Figure 10: The minimum number of symbols required to
reconstruct a failed disk in a storage system when k = 6
and m € {2,3}.

three coding disks. We summarize the erasure codes that
we test in Table 1. For each code, if r has restrictions
based on k and m, we denote it in the table and include
the actual values tested in the last column. All codes,
with the exception of Rotated Reed-Solomon codes, are
XOR codes, and all without exception define the P drive
identically. Since there are a variety of Cauchy Reed-
Solomon codes that can be generated for any value of k,
m and r, we use the codes generated by the Jerasure cod-
ing library, which attempts to minimize the number of
non-zero bits in the Generator matrix [38].

Code m | Restrictionsonr | 7 tested
EVENODD [3] 2 r+ 1 prime > k 6
RDP [11] 2 r 4+ 1 prime > k 6
Blaum-Roth [5] 2 r 4+ 1 prime > k 6
Liberation [34] 2 r prime > k 7
Liber8tion [35] 2 r=8,r>k 8
STAR [24] 3 r 4 1 prime > k 6
Generalized RDP [2] 3 r 4+ 1 prime > k 6
Cauchy RS [6] 23 |1 2">n 3-8
Rotated 2,3 | None 6

Table 1: The erasure codes and values of r tested.

For each code listed in Table 1, we ran the algorithm
from section 4.1 to determine the minimum number of
symbols required to reconstruct each of the k 4+ m failed
disks in one stripe. The average number is plotted in
Figure 10. The Y-axis of these graphs are expressed
as a percentage of kr, which represents the number of
symbols required to reconstruct from the P drive. This
is also the number of symbols required when standard
Reed-Solomon coding is employed.

In both sides of the figure, the codes are ordered from
best to worst, and two bars are plotted: the average num-
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Figure 11: The density of the bottom mr rows of the
Generator matrices for the codes in Figure 10.

ber of symbols required when the failed disk is a data
disk, and when the failed disk can be either data or cod-
ing. In all codes, the performance of decoding data disks
is better than re-encoding coding disks. As mentioned in
Section 5, Rotated Reed-Solomon codes require kr sym-
bols to re-encode. In fact, the C'; drive in all the RAID-6
codes require kr symbols to re-encode. Regardless, we
believe that presenting the performance for data and cod-
ing disks is more pertinent, since disk identities are likely
to be rotated from stripe to stripe, and therefore a disk
failure will encompass all n decoding scenarios.

For the RAID-6 systems, the minimum density codes
(Blaum-Roth, Liberation and Liber8tion) as a whole ex-
hibit excellent performance, especially when data disks
fail. It is interesting that the Liber8tion code, whose con-
struction was the result of a theory-less enumeration of
matrices, exhibits the best performance.

Faced with these results, we sought to determine if
Generator matrix density has a direct impact on disk re-
covery. Figure 11 plots the density of the bottom mr
rows of the Generator matrices for each of these codes.
To a rough degree, density is correlated to recovery
performance of the data disks; however the correlation
is only approximate. The precise relationship between
codes and their recovery performance is a direction of
further research.

Regardless, we do draw some important conclusions
from the work. The most significant one is that reading
from the P drive or using standard Reed-Solomon codes
is not a good idea in cloud storage systems. If recovery
performance is a dominant concern, then the Liber8tion
code is the best for RAID-6, and Generalized RDP is the
best for three fault-tolerant systems.
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Figure 12: The penalty of degraded reads in storage sys-
tems with £ = 6.

7 Analysis of Degraded Reads

To evaluate degraded reads, we compute the average
penalty of degraded reads for each value of B from one
to 20. The average is over all k potential data disks fail-
ing and over all kr potential starting points for the read
(all potential d ). This penalty is plotted in Figure 12
as a factor of B, so that the impact of the penalty rela-
tive to the size of the read is highlighted. Since whole-
stripe reads incur no penalty, the penalty of all values
of B > kr are the same, which means that as B grows,
the penalty factor approaches one. Put another way, large
degraded reads incur very little penalty.

We plot only a few erasure codes because, with the
exception of Rotated Reed-Solomon codes, all perform
roughly the same. The Rotated Reed-Solomon codes,
which were designed expressly for degraded reads, re-
quire significantly fewer symbols on degraded reads.
This is most pronounced when B is between 5 and 10.
To put the results in context, suppose that symbols are 1
MB and that a cloud application is reading collections of
10 MB files such as MP3 files. If the system is in de-
graded mode, then using Rotated Reed-Solomon codes
with m = 3 incurs a penalty of 4.6%, as opposed to
19.6% using regular Reed-Solomon codes.

Combined with their good performance with whole-
disk recovery, the Rotated Reed-Solomon codes provide
a very good blend of properties for cloud storage sys-
tems. Compared to regular Reed-Solomon codes, or
to recovery strategies that employ only the P-drive for
single-disk failures, their improvement is significant.

8 Evaluation

We have built a storage system to evaluate the recov-
ery of sealed blocks. The goal of our experiments is to
determine the points at which the theoretical results of
sections 6 and 7 apply to storage systems configured as
cloud file system nodes.
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Figure 13: The I/O performance of RAID-6 codes recov-
ering from a single disk failure averaged over all disks
(data and parity).

Experimental Setup: All experiments are run on a 12-
disk array using a SATA interface running on a quad-core
Intel Xeon E5620 processor with 2GB of RAM. Each
disk is a Seagate ST3500413AS Barracuda with 500 GB
capacity and operates at 7200 rpm. The Jerasure v1.2
library was used for construction and manipulation of
the Generator matrices and for Galois Field arithmetic
in rotated Reed-Solomon coding [38]. All tests mirror
the configurations in Table 1, evaluating a variety of era-
sure codes for which k¥ = 6 and m € {2,3}. Each data
point is the average of twenty trials. Error bars denote a
standard deviation from the mean.

Evaluating Reconstruction: In these experiments, we
affix the symbol size at 16 MB, which results in sealed
blocks containing between 288 and 768 MB, depending
on the values of r and k. After creating a sealed block,
we measure the performance of reconstructing each of
the k + m disks when it fails. We plot the average per-
formance in Figures 13 and 14. Each erasure code con-
tains two measurements: the performance of recovering
from the P drive, and the performance of optimal recov-
ery. The data recovery rate is plotted. This is the speed of
recovering the lost symbols of data from the failed disk.
As demonstrated in Figure 13, for the RAID-6 codes,
optimal recovery improves performance by a factor of
15% to 30%, with Minimum-Density codes realizing the
largest performance gains. As the analysis predicts, the
Liber8tion code outperforms all other codes. In general,
codes with large r and less density have better perfor-
mance. Cauchy Reed-Solomon codes with » > 6 com-
pare well, but with » = 3, they give up about 10% of
recovery performance. The rotated RS code performs
roughly the same as Cauchy-RS codes with r = 8.
Figure 14 confirms that Generalized-RDP substan-
tially outperforms the other codes. Cauchy Reed-
Solomon codes have different structure for m = 3 than
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Figure 14: The I/O performance of m = 3 codes recov-
ering from a single disk failure.

m = 2, with smaller r offering better performance. This
result matches the analysis in Section 6, but is surprising
nonetheless, because the smaller r codes are denser.

The large block size in cloud file systems means that
data transfer dominates recovery costs. All of the codes
read data at about 120 MB/s on aggregate. The results in
Figures 13 and 14 match those in Figure 10 closely. We
explore the effect of the symbol size and, thus, the sealed
block size in the next experiment.

Size of Sealed Blocks: Examining the relationship be-
tween recovery performance and the amount of the data
underlying each symbol shows that optimal recovery
works effectively only for relatively large sealed blocks.
Figure 15 plots the recovery data rate as a function of
symbol size for GenRDP and Liber8tion with and with-
out optimal recovery. We chose these codes because
their optimized version uses the fewest recovery sym-
bols at m = 2 (Liber8tion) and m = 3 (GenRDP). Our
disk array recovers data sequentially at approximately 20
MB/s. This rate is realized for erasure codes with any
value of » when the code is laid out on an array of disks.
Recovery reads each disk in a sequential pass and re-
builds the data. Unoptimized GenRDP and Liber8tion
approach this rate with increasing symbol size. Full se-
quential performance is realized for symbols of size 16M
or more, corresponding to sealed blocks of size 768 MB
for Liber8tion and 576 MB for GenRDP.

We parameterize experiments by symbol size because
recovery performance scales with the symbol size. Op-
timal recovery determines the minimum number of sym-
bols needed and accesses each symbol independently, in-
curring a seek penalty for most symbols: those not adja-
cent to other needed symbols. For small symbols, this
recovery process is inefficient. There is some noise in
our data at for symbols of size 64K and 256K that comes
from disk track read-ahead and caching.

Optimal recovery performance exceeds the stream-
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Figure 15: Data recovery rate as a function of the code-

word symbol size.

ing recovery rate above 4M symbols, converging to the
throughput expected by analysis as disk seeks become
fully amortized. Sealed blocks using these parameters
can expect the recovery performance of distributed era-
sure codes to exceed that realized by disk arrays.

As symbols and stripes become too large, recovery re-
quires more memory than is available and performance
degrades. The 64 MB point for Liber8tion(Opt) with
r = 8 shows a small decline from 16 MB, because the
encoded stripe is 2.4 GB, larger than the 2G of memory
on our system.
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Figure 16: The throughput of degraded reads as a func-
tion of the number of symbols read.

Degraded Reads: Figure 16 plots the performance of
degraded reads as a function of the number of symbols
read with £ = 6 and 16 MB per symbol. We com-
pare Rotated Reed-Solomon codes with P Drive recov-
ery and with the best performing optimal recovery codes,
Liber8tion for m = 2 and GenRDP for m = 3. We
measure the degraded read performance of read requests
ranging from 1 symbol to 20 symbols. For each read
size, we measure the performance of starting at each of
the potential kr starting blocks in the stripe, and plot the
average speed of the read when each data disk fails. The
results match Figure 12 extremely closely. When reading
one symbol, all algorithms perform identically, because
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Figure 17: Relative cost of computation of XORs and
read I/O during recovery.

they all either read the symbol from a non-failed disk or
they must read six disks to reconstruct. When reading
eight symbols, Rotated Reed-Solomon coding shows the
most improvement over the others, reading 13% faster
than Liber8tion (m = 2) and Generalized RDP (m = 3).
As predicted by Figure 12, the improvement lessens as
the number of symbols read increases. The overall speed
of all algorithms improves as the number of symbols read
increases, because fewer data blocks are read for recov-
ery and then thrown away.

The Dominance of I/0O: We put forth that erasure
codes should be evaluated based on the the data used in
recovery and degraded reads. Implicit in this thesis is that
the computation for recovery is inconsequential to over-
all performance. Figure 17 shows the relative I/O costs
and processing time for recovery of a single disk failure.
A single stripe with a 1 MB symbol was recovered for
each code. Codes have different stripe sizes. Computa-
tion cost never exceeds 10% of overall costs. Further-
more, this computation can be overlapped with I/O when
recovering multiple sealed blocks.

9 Discussion

Our findings provide guidance as to how to deploy era-
sure coding in the cloud file systems with respect to
choosing a specific code and the size of sealed blocks.
Cloud file systems distribute the coded blocks from each
stripe (sealed block) on a different set of storage nodes.
This strategy provides load balance and incremental scal-
ability in the data center. It also prevents correlated fail-
ures from resulting in data loss and mitigates the effect
that any single failure has on a data set or application
[15]. However, it does mean that each stripe is recovered
independently from a different set of disks. To achieve
good recovery performance when recovering indepen-
dent stripes, codeword symbols need to be large enough
to amortize disk seek overhead. Our results recommend
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a minimum symbol size of 4 MB and prefer 16 MB. This
translates to a minimum sealed block size of 144 MB
and preferred size of 576 MB for RDP and GenRDP, for
example. Cloud file systems would benefit from increas-
ing the sealed blocks to these size from the 64 MB de-
fault. Increasing the symbol size has drawbacks as well.
It increases memory consumption during recovery and
increases the latency of degraded reads, because larger
symbols need to recover more data.

Codes differ substantially in recovery performance,
which demands a careful selection of code and parame-
ters for cloud file systems. Optimally-sparse, Minimum-
Density codes tend to perform best. The Liber8tion code
and Generalized RDP are preferred for m 2 and
m = 3 respectiveley. Reed-Solomon codes will con-
tinue to be popular for their generality. For some Reed-
Solomon codes, including rotated-RS codes, recovery
performance may be improved by more than 20%. How-
ever, the number of symbols per disk () has significant
impact. For k = 6 data disks, the best values are r = 7
form =2andr =4 form = 3.

Several open problems remain with respect to optimal
recovery and degraded reads. While our algorithm can
determine the minimum number of symbols needed for
recovery for any given code, it remains unknown how to
generate recovery-optimal erasure codes. We are pursu-
ing this problem both analytically and through a progra-
matic search of feasible generator matrixes. Rotated RS
codes are a first result in lowering degraded read costs.
Lower bounds for the number of symbols needed for de-
graded reads have not been determined.

‘We have restricted our treatment to MDS codes, since
they are used almost exclusively in practice because of
their optimal storage efficiency. However, some codes
with decreased storage efficiency have much lower re-
covery costs than MDS [27, 18, 28, 23, 19]. Exploring
non-MDS codes more thoroughly will help guide those
building cloud systems in the tradeoffs between storage
efficiency, fault-tolerance, and performance.

Acknowledgments

We thank Sayeed Choudhury, Timothy DilLauro and
other members of the Data Conservancy Project who
provided valuable guidance on the requirements of data
availablity in preservation enviroments. We also thank
Reza Curtmola, Ragib Hasan, John Griffin, Guiseppe
Ateniese and our peers at the Johns Hopkins Storage
Systems Lab for their technical input. This work was
supported by the National Science Foundation awards
CSR-1016636, CCF-0937810, OCI-0830876, and DUE-
0734862 as well as by NetApp and Microsoft Research.



References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(91

(10]

(11]

(12]

(13]

[14]

H. P. Anvin. The mathematics of RAID-6.
http://kernel.org/pub/linux/kernel/
people/hpa/raid6.pdf, 2009.

M. Blaum. A family of MDS array codes with minimal
number of encoding operations. In IEEE International
Symposium on Information Theory, September 2006.

M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:
An efficient scheme for tolerating double disk failures in
RAID architectures. [EEE Transactions on Computing,
44(2):192— 202, February 1995.

M. Blaum, J. Bruck, and A. Vardy. MDS array codes
with independent parity symbols. IEEE Transactions on
Information Theory, 42(2):529-542, February 1996.

M. Blaum and R. M. Roth. On lowest density MDS codes.
IEEE Transactions on Information Theory, 45(1):46-59,
January 1999.

J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby,
and D. Zuckerman. An XOR-based erasure-resilient cod-
ing scheme. Technical Report TR-95-048, International
Computer Science Institute, August 1995.

V. Bohossian and J. Bruck. Shortening array codes and
the perfect 1-Factorization conjecture. In IEEE Interna-
tional Symposium on Information Theory, pages 2799—
2803, 2006.

D. Borthakur. The Hadoop distributed file system: Archi-
tecture and design. http://hadoop.apache.org/
common/docs/current/hdfs—-design.html,
20009.

E. Brewer. Lessons from giant-scale services. Internet
Computing, 5(4), 2001.

B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agar-
wal, M. Fahim ul Haq, M. Ikram ul Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas. Windows Azure storage:
A highly available cloud storage service with strong con-
sistency. In Symposium on Operating Systems Principles,
2011.

P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar. Row diagonal parity for double
disk failure correction. In Conference on File and Storage
Technologies, March 2004.

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright,
and K. Ramchandran. Network coding for distributed
storage systems. [EEE Trans. Inf. Theor., 56(9):4539—
4551, September 2010.

A. L. Drapeau et al. RAID-II: A high-bandwidth network
file server. In International Symposium on Computer Ar-
chitecture, 1994.

B. Fan, W Tanisiriroj, L. Xiao, and G. Gibson. DiskRe-
duce: RAID for data-intensive scalable computing. In
Parallel Data Storage Workshop, 2008.

13

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

D. Ford, F. Labelle, F. .I. Popovici, M. Stokely, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan. Avail-
ability in globally distributed file systems. In Operating
Systems Design and Implementation, 2010.

S. Ghemawat, H. Gobioff, and S. Leung. The Google file
system. In ACM SOSP, 2003.

K. Greenan, E. Miller, and T. J. Schwartz. Optimizing
Galois Field arithmetic for diverse processor architectures
and applications. In Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, September

2008.

K. M. Greenan, X. Li, and J. J. Wylie. Flat XOR-based
erasure codes in storage systems: Constructions, efficient
recovery, and tradeoffs. Mass Storage Systems and Tech-
nologies, 2010.

J. L. Hafner. Weaver codes: Highly fault tolerant era-
sure codes for storage systems. In Conference on File
and Storage Technologies, 2005.

J. L. Hafner, V. Deenadhayalan, K. K. Rao, and J. A. Tom-
lin. Matrix methods for lost data reconstruction in erasure
codes. In Conference on File and Storage Technologies,
2005.

M. Holland and G. A. Gibson. Parity declustering for
continuous operation in redundant disk arrays. In Archi-
tectural Support for Programming Languages and Oper-
ating Systems. ACM, 1992.

R. Y. Hou, J. Menon, and Y. N. Patt. Balancing I/O re-
sponse time and disk rebuild time in a RAIDS disk array.
In Hawai’i International Conference on System Sciences,
1993.

C. Huang, M. Chen, and J. Li. Pyramid codes: Flexible
schemes to trade space for access efficiency in reliable
data storage systems. Network Computing and Applica-
tions, 2007.

C. Huang and L. Xu. STAR: An efficient coding scheme
for correcting triple storage node failures. IEEE Transac-
tions on Computers, 57(7):889-901, July 2008.

H. Jin, J. Zhang, and K. Hwang. A raid reconfiguration
scheme for gracefully degraded operations. EuroMicro
Conference on Parallel, Distributed, and Network-Based
Processing, 0:66, 1999.

D. Kenchammana-Hosekote, D. He, and J. L. Hafner.
REO: A generic RAID engine and optimizer. In Confer-
ence on File and Storage Technologies, pages 261-276,
2007.

O. Khan, R. Burns, J. S. Plank, and C. Huang. In search
of I/O-optimal recovery from disk failures. In Workshop
on Hot Topics in Storage Systems, 2011.

M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman,
and V. Stemann. Practical loss-resilient codes. In 29th
Annual ACM Symposium on Theory of Computing, pages
150-159, El Paso, TX, 1997. ACM.

F. J. MacWilliams and N. J. A. Sloane. The Theory of
Error-Correcting Codes, Part I. North-Holland Publish-
ing Company, 1977.



(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Onion Networks. Java FEC Library v1.0.3. Open source
code distribution: http://onionnetworks.com/
fec/javadoc/, 2001.

A. Partow. Schifra Reed-Solomon ECC Library. Open
source code distribution: http://www.schifra.
com/downloads.html, 2000-2007.

W. W. Peterson and E. J. Weldon, Jr. Error-Correcting
Codes, Second Edition. The MIT Press, 1972.

J. S. Plank. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Software—Practice &
Experience, 27(9):995-1012, 1997.

J. S. Plank. The RAID-6 Liberation codes. In Conference
on File and Storage Technologies, 2008.

J. S. Plank. The RAID-6 Liber8Tion code. Int. J. High
Perform. Comput. Appl., 23:242-251, August 2009.

J. S. Plank and Y. Ding. Note: Correction to the 1997
tutorial on Reed-Solomon coding. Software — Practice &
Experience, 35(2):189—-194, February 2005.

J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-
OHearn. A performance evaluation and examination of
open-source erasure coding libraries for storage. In Con-
ference on File and Storage Technologies, 2009.

J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure:
A library in C/C++ facilitating erasure coding for storage
applications - Version 1.2. Technical Report CS-08-627,
University of Tennessee, August 2008.

K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramachan-
dran. Explicit construction of optimal exact regenerating
codes for distributed storage. In Communication, Control,
and Computing, 2009.

L. S. Reed and G. Solomon. Polynomial codes over cer-
tain finite fields. Journal of the Society for Industrial and
Applied Mathematics, 8:300-304, 1960.

L. Rizzo. Effective erasure codes for reliable computer
communication protocols. ACM SIGCOMM Computer
Communication Review, 27(2):24-36, 1997.

L. Rizzo. Erasure codes based on Vander-
monde matrices. Gzipped tar file posted at
http://planete-bcast.inrialpes.fr/
rubrique.php3?id_rubrique=10, 1998.

R. Rodrigues and B. Liskov. High availability in DHTS:
Erasure coding vs. replication. In Workshop on Peer-to-
Peer Systems, 2005.

B. Schroeder and G. Gibson. Disk failures in the real
world: What does an MTTF of 1,000,000 mean to you?
In Conference on File and Storage Technologies, 2007.

M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Improving storage system avail-
ability with D-GRAID. In Conference on File and Stor-
age Technologies, 2004.

Apache Software. Pigmix. https://cwiki.
apache.org/confluence/display/PIG/
PigMix, 2011.

[47]

(48]

[49]

[50]

[51]

[52]

[53]

A. Thusoo, D. Borthakur, R. Murthy, Z. Shao, N. Jain,
H. Liu, S. Anthony, and J. S. Sarma. Data warehousing
and analytics infrastructure at Facebook. In SIGMOD,
2010.

L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen,
Z. Wang, and Z. Song. PRO: a popularity-based
multi-threaded reconstruction optimization for RAID-
structured storage systems. In Conference on File and
Storage Technologies, 2007.

Z. Wang, A. G. Dimakis, and J. Bruck. Rebuilding
for array codes in distributed storage systems. CoRR,
abs/1009.3291, 2010.

H. Weatherspoon and J. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. In Workshop on
Peer-to-Peer Systems, 2002.

L. Xiang, Y. Xu, J. C. S. Lui, and Q. Chang. Optimal re-
covery of single disk failure in RDP code storage systems.
In ACM SIGMETRICS, 2010.

L. Xu and J. Bruck. X-Code: MDS array codes with opti-
mal encoding. IEEE Transactions on Information Theory,
45(1):272-276, January 1999.

Z. Zhang, A. Deshpande, X. Ma, E. Thereska, and
D. Narayanan. Does erasure coding have a role to play
in my data center? Microsoft Technical Report MSR-
TR-2010-52, 2010.



