
NCCloud: Applying Network Coding for the Storage Repair in a

Cloud-of-Clouds

Yuchong Hu†, Henry C. H. Chen†, Patrick P. C. Lee†, Yang Tang‡

†The Chinese University of Hong Kong, ‡Columbia University

ychu@inc.cuhk.edu.hk, {chchen,pclee}@cse.cuhk.edu.hk, ty@cs.columbia.edu

Abstract

To provide fault tolerance for cloud storage, recent stud-

ies propose to stripe data across multiple cloud vendors.

However, if a cloud suffers from a permanent failure and

loses all its data, then we need to repair the lost data from

other surviving clouds to preserve data redundancy. We

present a proxy-based system for multiple-cloud storage

called NCCloud, which aims to achieve cost-effective re-

pair for a permanent single-cloud failure. NCCloud is

built on top of network-coding-based storage schemes

called regenerating codes. Specifically, we propose

an implementable design for the functional minimum-

storage regenerating code (F-MSR), which maintains the

same data redundancy level and same storage require-

ment as in traditional erasure codes (e.g., RAID-6), but

uses less repair traffic. We implement a proof-of-concept

prototype of NCCloud and deploy it atop local and com-

mercial clouds. We validate the cost effectiveness of F-

MSR in storage repair over RAID-6, and show that both

schemes have comparable response time performance in

normal cloud storage operations.

1 Introduction

Cloud storage provides an on-demand remote backup so-

lution. However, using a single cloud storage vendor

raises concerns such as having a single point of failure

[3] and vendor lock-ins [1]. As suggested in [1, 3], a

plausible solution is to stripe data across different cloud

vendors. While striping data with conventional erasure

codes performs well when some clouds experience short-

term failures or foreseeable permanent failures [1], there

are real-life cases showing that permanent failures do oc-

cur and are not always foreseeable [23, 14, 20].

This work focuses on unexpected cloud failures.

When a cloud fails permanently, it is important to ac-

tivate storage repair to maintain the level of data re-

dundancy. A repair operation reads data from existing

surviving clouds and reconstructs the lost data in a new

cloud. It is desirable to reduce the repair traffic, and

hence the monetary cost, due to data migration.

Recent studies (e.g., [6, 8, 16, 25]) propose regener-

ating codes for distributed storage. Regenerating codes

are built on the concept of network coding [2]. They aim

to intelligently mix data blocks that are stored in existing

storage nodes, and then regenerate data at a new storage

node. It is shown that regenerating codes reduce the data

repair traffic over traditional erasure codes subject to the

same fault-tolerance level. Despite the favorable prop-

erty, regenerating codes are mainly studied in the theo-

retical context. It remains uncertain regarding the prac-

tical performance of regenerating codes, especially with

the encoding overhead incurred in regenerating codes.

In this paper, we propose NCCloud, a proxy-based

system designed for multiple-cloud storage. We pro-

pose the first implementable design for the functional

minimum-storage regenerating code (F-MSR) [8], and in

particular, we eliminate the need of performing encoding

operations within storage nodes as in existing theoretical

studies. Our F-MSR implementation maintains double-

fault tolerance and has the same storage cost as in tra-

ditional erasure coding schemes based on RAID-6, but

uses less repair traffic when recovering a single-cloud

failure. On the other hand, unlike most erasure coding

schemes that are systematic (i.e., original data chunks are

kept), F-MSR is non-systematic and stores only linearly

combined code chunks. Nevertheless, F-MSR is suited

to rarely-read long-term archival applications [6].

We show that in a practical deployment setting, F-

MSR can save the repair cost by 25% compared to

RAID-6 for a four-cloud setting, and up to 50% as the

number of clouds further increases. In addition, we con-

duct extensive evaluations on both local cloud and com-

mercial cloud settings. We show that our F-MSR imple-

mentation only adds a small encoding overhead, which

can be easily masked by the file transfer time over the

Internet. Thus, our work validates the practicality of F-

MSR via NCCloud, and motivates further studies of re-

alizing regenerating codes in large-scale deployments.

2 Motivation of F-MSR

We consider a distributed, multiple-cloud storage setting

from a client’s perspective, such that we stripe data over

multiple cloud vendors. We propose a proxy-based de-

sign [1] that interconnects multiple cloud repositories, as

shown in Figure 1(a). The proxy serves as an interface

between client applications and the clouds. If a cloud

experiences a permanent failure, the proxy activates the

repair operation, as shown in Figure 1(b). That is, the

Cloud 2

Cloud 1

Cloud 3

Cloud 4

Cloud 2

Cloud 1

Cloud 3

Cloud 4

(a) Normal operation (b) Repair operation

Cloud 5

Proxy Proxy

Figure 1: Proxy-based design for multiple-cloud stor-

age: (a) normal operation, and (b) repair operation when

Cloud node 1 fails. During repair, the proxy regenerates

data for the new cloud.

proxy reads the essential data pieces from other surviv-

ing clouds, reconstructs new data pieces, and writes these

new pieces to a new cloud. Note that this repair operation

does not involve direct interactions among the clouds.

We consider fault-tolerant storage based on maximum

distance separable (MDS) codes. Given a file object, we

divide it into equal-size native chunks, which in a non-

coded system, would be stored on k clouds. With cod-

ing, the native chunks are encoded by linear combina-

tions to form code chunks. The native and code chunks

are distributed over n > k clouds. When an MDS code is

used, the original file object may be reconstructed from

the chunks contained in any k of the n clouds. Thus, it

tolerates the failure of any n − k clouds. We call this

feature the MDS property. The extra feature of F-MSR

is that reconstructing a single native or code chunk may

be achieved by reading up to 50% less data from the sur-

viving clouds than reconstructing the whole file.

This paper considers a multiple-cloud setting that is

double-fault tolerant (e.g., RAID-6) and provides data

availability toward at most two cloud failures (e.g., a few

days of outages [7]). That is, we set k = n − 2. We

expect that such a fault tolerance level suffices in prac-

tice. Given that a permanent failure is less frequent but

possible, our primary objective is to minimize the cost of

storage repair for a permanent single-cloud failure, due

to the migration of data over the clouds.

We define the repair traffic as the amount of outbound

data being read from other surviving clouds during the

single-cloud failure recovery. Our goal is to minimize

the repair traffic for cost-effective repair. Here, we do not

consider the inbound traffic (i.e., the data being written

to a cloud), as it is free of charge in many cloud vendors

(see Table 1 in Section 5).

We now show how F-MSR saves the repair traffic via

an example. Suppose that we store a file of size M on

four clouds, each viewed as a logical storage node. Let

us first consider RAID-6, which is double-fault tolerant.

Here, we consider the RAID-6 implementation based on

Reed-Solomon codes [26], as shown in Figure 2(a). We

divide the file into two native chunks (i.e., A and B) of

size M /2 each. We add two code chunks formed by the

linear combinations of the native chunks. Suppose now

that Node 1 is down. Then the proxy must download

the same number of chunks as the original file from two

other nodes (e.g., B and A+ B from Nodes 2 and 3, re-

spectively). It then reconstructs and stores the lost chunk

A on the new node. The total storage size is 2M , while

the repair traffic is M .

We now consider the double-fault tolerant implemen-

tation of F-MSR in a proxy-based setting, as shown

in Figure 2(b). F-MSR divides the file into four na-

tive chunks, and constructs eight distinct code chunks

P1, · · · , P8 formed by different linear combinations of

the native chunks. Each code chunk has the same size

M /4 as a native chunk. Any two nodes can be used to re-

cover the original four native chunks. Suppose Node 1 is

down. The proxy collects one code chunk from each sur-

viving node, so it downloads three code chunks of size

M /4 each. Then the proxy regenerates two code chunks

P ′

1 and P ′

2 formed by different linear combinations of

the three code chunks. Note that P ′

1 and P ′

2 are still lin-

ear combinations of the native chunks. The proxy then

writes P ′

1 and P ′

2 to the new node. In F-MSR, the stor-

age size is 2M (as in RAID-6), but the repair traffic is

0.75M , which is 25% of saving.

To generalize F-MSR for n storage nodes, we divide a

file of size M into 2(n− 2) native chunks, and generate

4(n − 2) code chunks. Then each node will store two

code chunks of size M
2(n−2) each. Thus, the total storage

size is Mn
n−2 . To repair a failed node, we download one

chunk from each of n − 1 nodes, so the repair traffic is
M(n−1)
2(n−2) . In contrast, for RAID-6, the total storage size is

also Mn
n−2 , while the repair traffic is M . When n is large,

F-MSR can save the repair traffic by close to 50%.

Note that F-MSR keeps only code chunks rather than

native chunks. To access a single chunk of a file, we need

to download and decode the entire file for the particular

chunk. Nevertheless, F-MSR is acceptable for long-term

archival applications, whose read frequency is typically

low [6]. Also, to restore backups, it is natural to retrieve

the entire file rather than a particular chunk.

This paper considers the baseline RAID-6 implemen-

tation using Reed-Solomon codes. Its repair method is to

reconstruct the whole file, and is applicable for all era-

sure codes in general. Recent studies [18, 28, 29] show

that data reads can be minimized specifically for XOR-

based erasure codes. For example, in RAID-6, data reads

can be reduced by 25% compared to reconstructing the

whole file [28, 29]. Although such approaches are sub-

optimal (recall that F-MSR can save up to 50% of repair

traffic in RAID-6), their use of efficient XOR operations

can be of practical interest.

ANode 1

Proxy
BNode 2

A+BNode 3

A+2BNode 4

A
B

Object of size M

B

A+B
A

New node

A

Node 1

Proxy
Node 2

Node 3

Node 4

Object of size M

New node

A

B

C

D

P1

P2

P3

P4

P7

P8

P5

P6

P3

P5

P7

P1’

P2’

P1’

P2’

(a) RAID-6 (b) F-MSR

Figure 2: Examples of repair operations in RAID-6 and F-MSR with n = 4 and k = 2.

3 F-MSR Implementation

In this section, we present a systematic approach for im-

plementing F-MSR. We specify three operations for F-

MSR on a particular file object: (1) file upload; (2) file

download; (3) repair. A key difference of our imple-

mentation from prior theoretical studies is that we do

not require storage nodes to have encoding capabilities,

so our implementation can be compatible with today’s

cloud storage. Another key design issue is that instead of

simply generating random linear combinations for code

chunks (as assumed in [8]), we also guarantee that the

generated linear combinations always satisfy the MDS

property to ensure data availability, even after iterative

repairs. Here, we implement F-MSR as an MDS code

for general (n,k). We assume that each cloud repository

corresponds to a logical storage node.

3.1 File Upload

To upload a file F , we first divide it into k(n− k) equal-

size native chunks, denoted by (Fi)i=1,2,···,k(n−k). We

then encode these k(n− k) native chunks into n(n− k)
code chunks, denoted by (Pi)i=1,2,···,n(n−k). Each Pi

is formed by a linear combination of the k(n − k) na-

tive chunks. Specifically, we let EM = [αi,j] be an

n(n−k)×k(n−k) encoding matrix for some coefficients

αij (where i = 1, . . . , n(n−k) and j = 1, . . . , k(n−k))
in the Galois field GF(28). We call a row vector of

EM an encoding coefficient vector (ECV), which con-

tains k(n − k) elements. We let ECVi denote the ith

row vector of EM. We compute each Pi by the scalar

product of ECVi and the native chunk vector (Fi), i.e.,

Pi =
∑k(n−k)

j=1 αijFj for i = 1, 2, · · · , n(n − k), where

all arithmetic operations are performed over GF(28). The

code chunks are then evenly stored in the n storage

nodes, each having (n − k) chunks. Also, we store the

whole EM in a metadata object that is then replicated to

all storage nodes (see Section 4). There are many ways

of constructing EM, as long as it satisfies the MDS prop-

erty and the repair MDS property (see Section 3.3). Note

that the implementation details of the arithmetic opera-

tions in Galois Fields are extensively discussed in [15].

3.2 File Download

To download a file, we first download the correspond-

ing metadata object that contains the ECVs. Then we

select any k of the n storage nodes, and download the

k(n − k) code chunks from the k nodes. The ECVs of

the k(n−k) code chunks can form a k(n−k)×k(n−k)
square matrix. If the MDS property is maintained, then

by definition, the inverse of the square matrix must ex-

ist. Thus, we multiply the inverse of the square matrix

with the code chunks and obtain the original k(n − k)
native chunks. The idea is that we treat F-MSR as a stan-

dard Reed-Solomon code, and our technique of creating

an inverse matrix to decode the original data has been

described in the tutorial [22].

3.3 Iterative Repairs

We now consider the repair of F-MSR for a file F for a

permanent single-node failure. Given that F-MSR regen-

erates different chunks in each repair, one challenge is to

ensure that the MDS property still holds even after itera-

tive repairs. This is in contrast to regenerating the exact

lost chunks as in RAID-6, which guarantees the invari-

ance of the stored chunks. Here, we propose a two-phase

checking heuristic as follows. Suppose that the (r− 1)th

repair is successful, and we now consider how to operate

the rth repair for a single permanent node failure (where

r ≥ 1). We first check if the new set of chunks in all stor-

age nodes satisfies the MDS property after the rth repair.

In addition, we also check if another new set of chunks in

all storage nodes still satisfies the MDS property after the

(r + 1)th repair, should another single permanent node

failure occur (we call this the repair MDS property). We

now describe the rth repair as follows.

Step 1: Download the encoding matrix from a surviving

node. Recall that the encoding matrix EM specifies the

ECVs for constructing all code chunks via linear combi-

nations of native chunks. We use these ECVs for our later

two-phase checking heuristic. Since we embed EM in a

metadata object that is replicated, we can simply down-

load the metadata object from one of the surviving nodes.

Step 2: Select one random ECV from each of the n − 1
surviving nodes. Note that each ECV in EM corre-

sponds to a code chunk. We randomly pick one ECV

from each of the n − 1 surviving nodes. We call these

ECVs to be ECVi1 , ECVi2 , · · ·, ECVin−1
.

Step 3: Generate a repair matrix. We construct a (n −
k)× (n−1) repair matrix RM = [γi,j], where each ele-

ment γi,j (where i = 1, . . . , n−k and j = 1, . . . , n−1) is

randomly selected in GF(28). Note that the idea of gen-

erating a random matrix for reliable storage is consistent

with that in [24].

Step 4: Compute the ECVs for the new code chunks and

reproduce a new encoding matrix. We multiply RM

with the ECVs selected in Step 2 to construct n − k

new ECVs, denoted by ECV′

i =
∑n−1

j=1 γi,jECVij for

i = 1, 2, · · · , n− k. Then we reproduce a new encoding

matrix, denoted by EM
′, which is given by:

ith row vector of EM
′ =

{

ECVi, i is a surviving node,

ECV′

i, i is a new node.

Step 5: Given EM
′, check if both the MDS and repair

MDS properties are satisfied. Intuitively, we verify the

MDS property by enumerating all
(

n

k

)

subsets of k nodes

to see if each of their corresponding encoding matrices

forms a full rank. For the repair MDS property, we check

that for any failed node (out of n nodes), we can collect

any one out of n−k chunks from the other n−1 surviving

nodes and reconstruct the chunks in the new node, such

that the MDS property is maintained. The number of

checks performed for the repair MDS property is at most

n(n − k)n−1
(

n

k

)

. If n is small, then the enumeration

complexities for both MDS and repair MDS properties

are manageable. If either one phase fails, then we return

to Step 2 and repeat. We emphasize that Steps 1 to 5 only

deal with the ECVs, so their overhead does not depend

on the chunk size.

Step 6: Download the actual chunk data and regenerate

new chunk data. If the two-phase checking in Step 5

succeeds, then we proceed to download the n−1 chunks

that correspond to the selected ECVs in Step 2 from the

n − 1 surviving storage nodes to NCCloud. Also, using

the new ECVs computed in Step 4, we regenerate new

chunks and upload them from NCCloud to a new node.

Remark: We claim that in addition to checking the MDS

property, checking the repair MDS property is essential

for iterative repairs. We conduct simulations to justify

that checking the repair MDS property can make itera-

tive repairs sustainable. In our simulations, we consider

multiple rounds of permanent node failures for different

values of n. Specifically, in each round, we randomly

pick a node to permanently fail and trigger a repair. We

say a repair is bad if the loop of Steps 2 to 5 is repeated

over 10 times. We observe that without checking the re-

pair MDS property, we see a bad repair very quickly,

say after no more than 7 and 2 rounds for n = 8 and n

= 12, respectively. On the other hand, checking the re-

pair MDS property makes iterative repairs sustainable for

hundreds of rounds for different values of n, and we do

not yet find any bad repair after extensive simulations.

4 NCCloud Design and Implementation

We implement NCCloud as a proxy that bridges user

applications and multiple clouds. Its design is built on

three layers. The file system layer presents NCCloud as a

mounted drive, which can thus be easily interfaced with

general user applications. The coding layer deals with

the encoding and decoding functions. The storage layer

deals with read/write requests with different clouds.

Each file is associated with a metadata object, which is

replicated at each repository. The metadata object holds

the file details and the coding information (e.g., encoding

coefficients for F-MSR).

NCCloud is mainly implemented in Python, while the

storage schemes are implemented in C for better effi-

ciency. The file system layer is built on FUSE [12].

The coding layer implements both RAID-6 and F-MSR.

RAID-6 is built on zfec [30], and our F-MSR implemen-

tation mimics the optimizations made in zfec for a fair

comparison.

Recall that F-MSR generates multiple chunks to be

stored on the same repository. To save the request cost

overhead (see Table 1), multiple chunks destined for the

same repository are aggregated before upload. Thus,

F-MSR keeps only one (aggregated) chunk per file ob-

ject on each cloud, as in RAID-6. To retrieve a specific

chunk, we calculate its offset within the combined chunk

and issue a range GET request.

5 Evaluation

We now use our NCCloud prototype to evaluate RAID-6

(based on Reed-Solomon codes) and F-MSR in multiple-

cloud storage. In particular, we focus on the setting n =
4 and k = 2. We expect that using n = 4 clouds may

suffice for practical deployment. Based on this setting,

we allow data retrieval with at most two cloud failures.

The goal of our experiments is to explore the practi-

cality of using F-MSR in multiple-cloud storage. Our

evaluation consists of two parts. We first compare the

monetary costs of using RAID-6 and F-MSR based on

the price plans of today’s cloud vendors. We also em-

pirically evaluate the response time performance of our

NCCloud prototype atop a local cloud and also a com-

mercial cloud vendor.

5.1 Cost Analysis

Table 1 shows the monthly price plans for three major

vendors as of September 2011. For Amazon S3, we take

the cost from the first chargeable usage tier (i.e., storage

S3 RS Azure

Storage (per GB) $0.14 $0.15 $0.15

Data transfer in (per GB) free free free

Data transfer out (per GB) $0.12 $0.18 $0.15

PUT,POST (per 10K requests) $0.10 free $0.01

GET (per 10K requests) $0.01 free $0.01

Table 1: Monthly price plans (in US dollars) for Amazon

S3 (US Standard), Rackspace Cloud Files and Windows

Azure Storage, as of September, 2011.

usage within 1TB/month; data transferred out more than

1GB/month but less than 10TB/month).

From the analysis in Section 2, we can save 25% of

the download traffic during storage repair when n = 4.

The storage size and the number of chunks being gen-

erated per file object are the same in both RAID-6 and

F-MSR (assuming that we aggregate chunks in F-MSR

as described in Section 4). However, in the analysis,

we have ignored two practical considerations: the size

of metadata (Section 4) and the number of requests is-

sued during repair. We now argue that they are negligi-

ble and that the simplified calculations based only on file

size suffice for real-life applications.

Metadata size: Our implementation currently keeps the

F-MSR metadata size within 160B, regardless of the file

size. NCCloud aims at long-term backups (see Sec-

tion 2), and can be integrated with other backup applica-

tions. Existing backup applications (e.g., [27, 11]) typi-

cally aggregate small files into a larger data chunk in or-

der to save the processing overhead. For example, the de-

fault setting for Cumulus [27] creates chunks of around

4MB each. The metadata size is thus usually negligible.

Number of requests: From Table 1, we see that some

cloud vendors nowadays charge for requests. RAID-6

and F-MSR differ in the number of requests when re-

trieving data during repair. Suppose that we store a file

of size 4MB with n = 4 and k = 2. During repair,

RAID-6 and F-MSR retrieve two and three chunks, re-

spectively (see Figure 2). The cost overhead due to the

GET request for RAID-6 is at most 0.427%, and that for

F-MSR is at most 0.854%, a mere 0.427% increase.

5.2 Response Time Analysis

We deploy our NCCloud prototype in real environments.

We then evaluate the response time performance of dif-

ferent operations in two scenarios. The first part ana-

lyzes in detail the time taken by different NCCloud op-

erations, and is done on a local cloud storage in order

to lessen the effects of network fluctuations. The second

part evaluates how NCCloud actually performs in com-

mercial clouds. All results are averaged over 40 runs.

 0

 10

 20

 30

 40

 50

500 400 300 200 100 50 10 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
F-MSR

(a) File upload

 0
 2
 4
 6
 8

 10
 12

500 400 300 200 100 50 10 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
F-MSR

(b) File download

 0
 5

 10
 15
 20
 25
 30
 35

500 400 300 200 100 50 10 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6 (code chunk repair)
RAID-6 (native chunk repair)

F-MSR

(c) Repair

Figure 3: Response times of main NCCloud operations.

 0

 10

 20

 30

 40

 50

 60

R
A

ID
-6

F
-M

S
R

R
A

ID
-6

F
-M

S
R

R
6

 (c
o

d
e

)

R
6

 (n
a

tiv
e

)

F
-M

S
R

T
im

e
 t
a

k
e

n
 (

s
e

c
o

n
d

s
)

(a) Upload (b) Download (c) Repair

File I/O
Upload

Download
Encoding
Decoding

Figure 4: Breakdown of response time when dealing with

500MB file.

5.2.1 On a Local Cloud

The experiment on a local cloud is carried out on an

object-based storage platform based on OpenStack Swift

1.4.2 [21]. NCCloud is mounted on a machine with Intel

Xeon E5620 and 16GB RAM. This machine is connected

to an OpenStack Swift platform attached with a number

of storage servers, each with Intel Core i5-2400 and 8GB

RAM. We create (n+1) = 5 containers on Swift, so each

container resembles a cloud repository (one of them is a

spare node used in repair).

In this experiment, we test the response time of three

basic operations of NCCloud: (a) file upload; (b) file

download; (c) repair. We use eight randomly generated

files from 1MB to 500MB as the data set. We set the path

of a chosen repository to a non-existing location to simu-

late a node failure in repair. Note that there are two types

of repair for RAID-6, depending on whether the failed

node contains a native chunk or a code chunk.

 0
 1
 2
 3
 4
 5
 6

10 5 2 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
F-MSR

(a) File upload

 0
 0.5

 1
 1.5

 2
 2.5

 3

10 5 2 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6
F-MSR

(b) File download

 0
 1
 2
 3
 4
 5
 6
 7

10 5 2 1

R
e
s
p
o
n
s
e
 t
im

e
(s

e
c
o
n
d
s
)

File size (MB)

RAID-6 (code chunk repair)
RAID-6 (native chunk repair)

F-MSR

(c) Repair

Figure 5: Response times of NCCloud on Azure.

Figure 3 shows the response times of all three op-

erations (with 95% confidence intervals plotted), and

Figure 4 shows five key constituents of the response

time when dealing with a 500MB file. Figure 3 shows

that RAID-6 has less response time in file upload and

download. With the help of Figure 4, we pinpoint the

overhead of F-MSR over RAID-6. Due to having the

same MDS property, RAID-6 and F-MSR exhibit similar

data transfer time during upload/download. However, F-

MSR displays a noticeable encoding/decoding overhead

over RAID-6. When uploading a 500MB file, RAID-6

takes 1.490s to encode while F-MSR takes 5.365s; when

downloading a 500MB file, no decoding is needed in the

case of RAID-6 as the native chunks are available, but

F-MSR takes 2.594s to decode.

On the other hand, F-MSR has slightly less response

time in repair. The main advantage of F-MSR is that it

needs to download less data during repair. In repairing

a 500MB file, F-MSR spends 3.887s in download, while

the native-chunk repair of RAID-6 spends 4.832s.

Although RAID-6 generally has less response time

than F-MSR in a local cloud environment, we expect that

the encoding/decoding overhead of F-MSR can be easily

masked by network fluctuations over the Internet, as will

be shown next.

5.2.2 On a Commercial Cloud

The following experiment is carried out on a machine

with Intel Xeon E5530 and 16GB RAM running 64-bit

Ubuntu 9.10. We repeat the three operations in Sec-

tion 5.2.1 on four randomly generated files from 1MB to

10MB atop Windows Azure Storage. On Azure, we cre-

ate (n+1) = 5 containers to mimic different cloud repos-

itories. The same operation for both RAID-6 and F-MSR

are run interleaved to lessen the effect of network fluctu-

ation on the comparison due to different times of the day.

Figure 5 shows the results for different file sizes with

95% confidence intervals plotted. Note that although we

have used only Azure in this experiment, actual usage of

NCCloud should stripe data over different vendors and

locations for better availability guarantees.

From Figure 5, we do not see distinct response time

differences between RAID-6 and F-MSR in all opera-

tions. Furthermore, on the same machine, F-MSR takes

around 0.150s to encode and 0.064s to decode a 10MB

file (not shown in the figures). These constitute roughly

3% of the total upload and download times (4.962s and

2.240s respectively). Given that the 95% confidence in-

tervals for the upload and download times are 0.550s

and 0.438s respectively, network fluctuation plays a big-

ger role in determining the response time. Overall, we

demonstrate that F-MSR does not have significant per-

formance overhead over our baseline RAID-6 implemen-

tation.

6 Related Work

There are several systems proposed for multiple-cloud

storage. HAIL [5] provides integrity and availabil-

ity guarantees for stored data. DEPSKY [4] addresses

Byzantine Fault Tolerance by combining encryption and

erasure coding for stored data. RACS [1] uses erasure

coding to mitigate vendor lock-ins when switching cloud

vendors. It retrieves data from the cloud that is about

to be failed and moves the data to the new cloud. Un-

like RACS, NCCloud excludes the failed cloud in repair.

All the above systems are based on erasure codes, while

NCCloud considers regenerating codes with an emphasis

on storage repair.

Regenerating codes (see survey [9]) exploit the opti-

mal trade-off between storage cost and repair traffic. Ex-

isting studies mainly focus on theoretical analysis. Sev-

eral studies (e.g., [10, 13, 19]) empirically evaluate ran-

dom linear codes for peer-to-peer storage. However,

their evaluations are mainly based on simulations. NCFS

[17] implements regenerating codes, but does not con-

sider MSR codes that are based on linear combinations.

Here, we consider the F-MSR implementation, and per-

form empirical experiments in multiple-cloud storage.

7 Conclusions

We present NCCloud, a multiple-cloud storage file sys-

tem that practically addresses the reliability of today’s

cloud storage. NCCloud not only achieves fault tolerance

of storage, but also allows cost-effective repair when a

cloud permanently fails. NCCloud implements a practi-

cal version of the functional minimum storage regenerat-

ing code (F-MSR), which regenerates new chunks during

repair subject to the required degree of data redundancy.

Our NCCloud prototype shows the effectiveness of F-

MSR in accessing data, in terms of monetary costs and

response times. The source code of NCCloud is available

at http://ansrlab.cse.cuhk.edu.hk/software/nccloud.

8 Acknowledgments

We would like to thank our shepherd, James Plank, and

the anonymous reviewers for their valuable comments.

This work was supported by grant AoE/E-02/08 from the

University Grants Committee of Hong Kong.

References

[1] H. Abu-Libdeh, L. Princehouse, and H. Weather-

spoon. RACS: A Case for Cloud Storage Diversity.

In Proc. of ACM SoCC, 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Ye-

ung. Network Information Flow. IEEE Trans. on

Information Theory, 46(4):1204–1216, Jul 2000.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia. A View of

Cloud Computing. Communications of the ACM,

53(4):50–58, 2010.

[4] A. Bessani, M. Correia, B. Quaresma, F. André,

and P. Sousa. DEPSKY: Dependable and Secure

Storage in a Cloud-of-Clouds. In Proc. of ACM Eu-

roSys, 2011.

[5] K. D. Bowers, A. Juels, and A. Oprea. HAIL:

A High-Availability and Integrity Layer for Cloud

Storage. In Proc. of ACM CCS, 2009.

[6] B. Chen, R. Curtmola, G. Ateniese, and R. Burns.

Remote Data Checking for Network Coding-Based

Distributed Storage Systems. In Proc. of ACM

CCSW, 2010.

[7] CNNMoney. Amazon’s cloud is back, but still hazy.

http://money.cnn.com/2011/04/25/

technology/amazon_cloud/index.htm.

[8] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wain-

wright, and K. Ramchandran. Network Coding for

Distributed Storage Systems. IEEE Trans. on In-

formation Theory, 56(9):4539–4551, Sep 2010.

[9] A. G. Dimakis, K. Ramchandran, Y. Wu, and

C. Suh. A Survey on Network Codes for Dis-

tributed Storage. Proc. of the IEEE, 99(3):476–489,

Mar 2011.

[10] A. Duminuco and E. Biersack. A Practical Study of

Regenerating Codes for Peer-to-Peer Backup Sys-

tems. In Proc. of IEEE ICDCS, 2009.

[11] B. Escoto and K. Loafman. Duplicity. http://

duplicity.nongnu.org/.

[12] FUSE. http://fuse.sourceforge.net/.

[13] C. Gkantsidis and P. Rodriguez. Network coding

for large scale content distribution. In Proc. of IN-

FOCOM, 2005.

[14] GmailBlog. Gmail back soon for everyone. http:

//gmailblog.blogspot.com/2011/02/

gmail-back-soon-for-everyone.html.

[15] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz.

Optimizing Galois Field Arithmetic for Diverse

Processor Architectures and Applications. In Proc.

of IEEE MASCOTS, 2008.

[16] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Coop-

erative recovery of distributed storage systems from

multiple losses with network coding. IEEE JSAC,

28(2):268–276, Feb 2010.

[17] Y. Hu, C.-M. Yu, Y.-K. Li, P. P. C. Lee, and J. C. S.

Lui. NCFS: On the Practicality and Extensibility of

a Network-Coding-Based Distributed File System.

In Proc. of NetCod, 2011.

[18] O. Khan, R. Burns, J. Plank, and C. Huang. In

Search of I/O-Optimal Recovery from Disk Fail-

ures. In USENIX HotStorage, 2011.

[19] M. Martaló, M. Picone, M. Amoretti, G. Ferrari,

and R. Raheli. Randomized Network Coding in

Distributed Storage Systems with Layered Overlay.

In Information Theory and Application Workshop,

2011.

[20] E. Naone. Are We Safeguarding Social Data?

http://www.technologyreview.com/

blog/editors/22924/, Feb 2009.

[21] OpenStack Object Storage. http://www.

openstack.org/projects/storage/.

[22] J. S. Plank. A Tutorial on Reed-Solomon Coding

for Fault-Tolerance in RAID-like Systems. Soft-

ware - Practice & Experience, 27(9):995–1012,

Sep 1997.

[23] C. Preimesberger. Many data centers unpre-

pared for disasters: Industry group, Mar 2011.

http://www.eweek.com/c/a/IT-

Management/Many-Data-Centers-

Unprepared-for-Disasters-Industry-

Group-772367/.

[24] M. O. Rabin. Efficient Dispersal of Information

for Security, Load Balancing, and Fault Tolerance.

Journal of the ACM, 36(2):335–348, Apr 1989.

[25] K. V. Rashmi, N. B. Shah, P. V. Kumar, and

K. Ramchandran. Explicit Construction of Optimal

Exact Regenerating Codes for Distributed Storage.

In Proc. of Allerton Conference, 2009.

[26] I. Reed and G. Solomon. Polynomial Codes over

Certain Finite Fields. Journal of the Society for In-

dustrial and Applied Mathematics, 8(2):300–304,

1960.

[27] M. Vrable, S. Savage, and G. Voelker. Cumu-

lus: Filesystem backup to the cloud. In Proc. of

USENIX FAST, 2009.

[28] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding

for Array Codes in Distributed Storage Systems. In

IEEE GLOBECOM Workshops, 2010.

[29] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li.

A Hybrid Approach to Failed Disk Recovery Using

RAID-6 Codes: Algorithms and Performance Eval-

uation. ACM Trans. on Storage, 7(3):11, 2011.

[30] zfec. http://pypi.python.org/pypi/

zfec.

