
Disk Reconstruction and Degraded Reads

Device failures are common at such large scales, so data
recovery is frequently needed. Two operations emerge out
of this need:

Analysis

Rotated Reed Solomon Codes
● Derived from standard Reed-Solomon codes.
● Optimized for recovery from single disk failures
●  Performance  compared  against  standard  Reed-Solomon  Codes,  which  use  matrix  inversion  to 
recover  from  failures  (equivalent  to  reading  from  the  parity  drive  P,  in  terms  of  the  number  of 
symbols read)

Disk Reconstruction Example

Performance Comparison

Algorithm to minimize recovery I/O

Degraded Reads

Figure: Average over all (k = 6) data disks
failing and over all kr potential starting points
in the stripe

● Rotated Reed-Solomon codes better than
optimally sparse and minimum density codes

● Recovery for single symbol requests requires
all codes to read k symbols.

● Degraded reads of entire stripes incur no
penalty as read request already contains symbols
needed for recovery

Sealed Block Size

Figure: Recovery performance measured as a
function of varying symbol sizes (and
indirectly, sealed block sizes)

● Trad i t iona l recovery per formance o f
Generalized RDP and Liber8tion codes is
compared with the optimized versions

● At larger symbol sizes (> 4 MB), recovery with
the optimized version is faster than the P drive
based streaming recovery rate

Disk Reconstruction

Figure: Number of symbols read during
recovery using our algorithm as a percentage
of standard recovery

● Best reconstruction performance given by
Liber8tion codes (m = 2), and Generalized RDP
(m = 3)

● Standard (Cauchy) Reed-Solomon codes have
high recovery cost in cloud storage systems

Degraded Read Example

● Read request of 4 symbols starting at d5,0
● Penalty = # of symbols read - read size

● A decoding equation is a set of symbols whose corresponding rows in the matrix sum to zero.

● Enumerate all valid decoding equations for each failed symbol
● Construct a directed graph where:

- nodes are bit strings
- edges denote equations
- child's bit string = bitwise OR of parent's bit string and equation on incoming edge

● Shortest path through graph gives set of equations which would minimize recovery I/O
● Traversing a level is equivalent to recovering a failed symbol

Example

● Suppose R0 and R1 fail.
● Enumerate the decoding equations for each symbol

● Construct the graph on the right
● The edges along the shortest path are
highlighted in bold (3 + 2 = 5 symbols)
● May have more than one shortest path

● Disk reconstruction: failed disk is reconstructed in its entirety
● Degraded read: read request has a failed disk within its span,
so retrieves missing data using the erasure code

It is to be noted that nodes can go down not just due to device
failures, but also due to rolling software updates.

What is the problem?

Existing erasure codes were not designed with recovery I/O
optimization in mind. So we need:

● To optimize existing codes for these operations
● New codes which are intrinsically designed to optimize these
operations

Rethinking Erasure Codes for Cloud File Systems:
Minimizing I/O for Recovery and Degraded Reads

Osama Khan and Randal Burns, Johns Hopkins University, James Plank and William Pierce, University of Tennessee
Cheng Huang, Microsoft Research

Growing storage demands make
replication too expensive

The data explosion phenomenon has led people to consider using
erasure coding in place of replication. Erasure coding offers similar
fault tolerance as replication but at a much lower storage cost.

Erasure Coded Storage Systems

Cloud file systems use large block sizes. When full, each block is
sealed, erasure coded, and distributed to storage nodes. Data is
encoded in units of stripes, using a generator matrix, and is
parameterized by k, m and r. Within a stripe, data is broken up into
symbols.

Sealed Block

r row
s

(m)(k)

!" #" $" %" &" '" !" #" $"

Data Disks Coding Disks

⊕ {R0, R2, R4} is a
decoding equation
 and is represented

 by 10101000

1 0 0 0

0 0 1 0

1 0 0 0

0 0 0 0

1
0
1
0
1
0
0
0

Recovery
options
for R0

Recovery
options
for R1

Equations from
 E0 applied

 to each node

Grayed out
 edges/nodes cut
due to pruning

(shortest path of
length 5 already found)

Works for

any XOR

based code!!

A standard
Reed-Solomon Code

A rotated
Reed-Solomon Code

Using
Rotated

Reed
Solomon

Disk 5 failed

Disk 0 failed

Coding symbol not read Data symbol not read Coding symbol read Data symbol read

Stripe

The sum is all zeros,
 therefore this is a valid

 decoding equation for any
 one of R0, R2, or R4

weight of each edge
 is the difference in

number of 1s between
 parent and child

Equations from
 E1 applied

 to each node

Starting node

Using
P Drive

Using P Drive

Disk Reconstruction cost Degraded Read penalty
16 symbols readUsing Rotated Reed Solomon 2 symbols

24 symbols read 5 symbols

Conclusions

● Generally, optimally sparse and minimum
density codes perform best

● Rotated Reed-Solomon codes are a better
alternative to standard Reed-Solomon
codes for cloud storage

● Traditional RAID configurations (small
sealed blocks) do not yield good recovery
performance with cloud based storage
systems due to seek penalty

● Our algorithm is effective only for large
symbols. Although HDFS and others already
use a default size of 64MB, even larger
sized sealed blocks are recommended (at
least 100 MB, preferably > 500MB)

● Minimizing the number of symbols needed
for recovery does result in lower I/O cost

