

CASE: Exploiting Content Redundancy for Improving Space Efficiency and Benchmarking Accuracy in Storage Emulation Lei Tian, Hong Jiang

University of Nebraska-Lincoln

# INTRODUCTION

Timing-Accurate Storage Emulation

Memulator: Pioneer work

## MOTIVATION STUDY

Study the impact of data content on benchmarking accuracy

1. Compress three bitmap images

wolf animation white

#### Space-Efficient Storage Emulation

David: saves space by omitting file data but storing file metadata only

**Content-Retained and Space-Efficient Storage Emulation** CASE: incorporates data deduplication to eliminate redundancy



#### 2. Use blktrace to trace IOs during saving compressed files



#### 3. Observations and Implications

- > I/O patterns significantly differentiate from each other
- Prone to either overestimating or underestimating the real performance without storing the exact data contents

## APPROACH & ARCHITECTURE

CASE: a flexible content-aware and space-efficient storage emulator for benchmarking

Idea: deploying data deduplication in storage emulation

#### Goals

> Timing accuracy

> Space efficiency through redundancy elimination

 $\succ$  No modification to FS, DB and interfaces

### Design

> Request Handler: receives and forwards IOS

Timing Service: Computes the response time for every IO

> Storage Service

- -Fingerprint Store: a RAM-resident index facility
- Mapping Table: LBA <==> PBA
- Data Store: stores and retrieves data chunks



|         | Implementatio                                                         | on          |                  |                 |                                                                 |  |
|---------|-----------------------------------------------------------------------|-------------|------------------|-----------------|-----------------------------------------------------------------|--|
| ents    | Fixed-size chunking, a user-space and pure block-level implementation |             |                  |                 | SSD ( RAM ( Spec. ) ( Spec. )                                   |  |
|         |                                                                       |             |                  |                 |                                                                 |  |
|         |                                                                       |             |                  | PRELIMINARY     | RESULTS                                                         |  |
|         | T                                                                     |             |                  |                 | Real-world workload-based Evaluation                            |  |
|         | Trace-ariven evaluation                                               |             |                  |                 | NGUL-WVILU WVINLUU-DUJEU EVULUUIIVII                            |  |
|         | Saves space by 2 orders of magnitude                                  |             |                  |                 | Saves space by up to 33% if we copy both VM images              |  |
|         | Trace                                                                 | FS Size(MB) | CASE Storage(MB) | Storage Savings | 1800000 -<br>1600000 -<br>1600000 -<br>14000000 -<br>14000000 - |  |
|         | web-vm                                                                | 71,680      | 720.4            | 99.0%           |                                                                 |  |
| 2.5e+06 | mail                                                                  | 512,000     | 1148.1           | 99.8%           |                                                                 |  |
|         | homes                                                                 | 481,280     | 1451.0           | 99.7%           |                                                                 |  |
|         |                                                                       |             |                  |                 | 5<br>400000<br>200000<br>0<br>amd64<br>i386<br>amd64+i386       |  |
|         |                                                                       |             |                  |                 | VM Image                                                        |  |

Acknowledgements: This work was supported by the US NSF under Grants IIS-0916859, CCF-0937993, CNS-1016609, and CNS-1116606. Contacts: Lei Tian: tian@cse.unl.edu Hong Jiang? jiang@cse.unl.edu