
vPFS: Performance Virtualization of Parallel Storage Systems
Yiqi Xu*, Dulcardo Arteaga*, Ming Zhao*, Yonggang Liu

†
, Renato Figueiredo

†
, Seetharami Seelam

¶

* Florida International University, {yxu006, darte003, ming}@cs.fiu.edu
†
University of Florida, {yonggang, renato}@acis.ufl.edu

¶
IBM T.J. Watson Research Center, sseelam@us.ibm.com

ABSTRACT

There remains an inadequacy in parallel file system

performance management approaches to support the

allocation of shared storage resources on a per-

application basis. We propose vPFS, which provide

existing parallel file systems the complementary

abilities to differentiate I/O requests from different

applications and meet per-application Quality of

Service (QoS) requirements. vPFS employs user-level

parallel file system proxies to interpose requests

between native parallel file system clients and servers

to schedule parallel I/Os from different applications

according to configurable bandwidth management

policies. The architecture of vPFS is designed to be

generic enough to support various scheduling

algorithms and apply to different parallel file systems.

Specifically, a prototype that virtualizes PVFS2 with

enhanced SFQ-based schedulers is implemented and

evaluated in this paper. Results obtained from typical

HPC benchmarks show that the vPFS approach can

achieve high utilization and good bandwidth isolation.

1. INTRODUCTION
The I/O bandwidth that an application gets from the

shared storage system in high-performance computing

(HPC) systems is critical to the application’s Quality of

Service (QoS). In a large HPC system, competing

applications may have distinct I/O characteristics and

demands that result in significant performance

interference. However, existing parallel storage systems

see only generic I/O requests arriving from the compute

nodes, and they are incapable of satisfying the

applications’ different I/O needs.

This paper presents a new approach — vPFS — which

addresses these challenges through the virtualization of

existing parallel file systems, in order to achieve

application-QoS-driven storage resource management.

With vPFS, various I/O scheduling algorithms can be

realized at the proxy-based virtualization layer for

different storage management objectives. Specifically,

this paper considers Start-Time Fair Queueing (SFQ)

[2] for proportional sharing of storage bandwidth

sharing guarantee. This paper further proposes and

evaluates synchronization improvements to SFQ

motivated by the unique characteristics (parallel striped

I/Os) and requirements (asymmetry of file layouts) of a

parallel storage system.

The proposed approach is implemented upon PVFS2

[1] and evaluated using typical parallel computing and

I/O benchmarks (IOR [5], NPB BTIO [6]). The results

show that this approach achieves good proportional

bandwidth sharing (at least 95% of the target sharing

ratio) for competing applications with diverse I/O

patterns.

2. APPROACH
To solve the architecture limitation on parallel storage

and realize schedulers for it, we designed the

architecture of the vPFS as shown in Figure 1. It is built

upon the typical HPC system architecture, where

applications access their data on a parallel storage

system that mainly consists of a parallel file system

(PFS) and its associated storage networks and devices.

A virtual PFS can be dynamically created for an

application by spawning a proxy on each involved

server which brokers the application’s I/Os. This

performance virtualization of parallel storage in an

HPC system is designed to be more knowledgeable

about application intricacies and more capable of

managing the QoS compared with the native storage

system. First, it is able to recognize different

applications’ I/Os instead of treating them as the same.

Second, it is also able to re-order the I/O requests at the

storage utility side for bandwidth management based on

the QoS specified by each application. Third, different

parallel I/O schedulers can be enabled upon the

virtualization layer.

To achieve proportional bandwidth sharing, vPFS

implements schedulers enhanced upon existing SFQ-

based algorithms [3][4] through cooperating proxies.

These proxies are responsible of not only scheduling

the requests serviced by its local data server but also

exchanging the local service information among one

another in order to achieve total-service proportional

sharing. Two complementary schemes are studied on

efficient synchronization of global scheduling

information across distributed proxies. In Scheme 1, the

proxies can reduce the frequency of synchronization by

batching the costs of a number of locally serviced

requests in a single synchronization message.

Furthermore, the synchronization frequency can be

adjusted in each time window based on a specified

threshold of serviced throughput. In Scheme 2, the cost

of synchronization can be further reduced from utilizing

the layout information of the files accessed by the

2

applications. The obtained layout information will be

used to re-construct the original application level

parallel I/O request representing the accurate global

service amount for use by global proportional sharing.

3. EVALUATION
The PVFS2-based vPFS prototype was implemented

and evaluated on a testbed consisting of two clusters,

one as compute nodes and the other as I/O nodes

running PVFS2 (version 2.8.2) servers. The compute

cluster has eight nodes each with two six-core 2.4GHz

AMD Opteron CPUs, 32GB of RAM, and one 500GB

7.2K RPM SAS disk. The server cluster has eight nodes

each with two six-core 2.4GHz Intel Xeon CPUs, 24GB

of RAM, and one 500GB 7.2K SAS disk. Both clusters

are connected to the same Gigabit Ethernet switch. All

the nodes run the Debian 4.3.5-4 Linux with the 2.6.32-

5-amd64 kernel and use EXT3 as the local file system.

IOR (2.10.3) [5] is used to generate synthetic sequential

and random I/Os. BTIO from the NAS Parallel

Benchmark (NPB) suite (MPI version 3.3.1) [6] is used

to represent a typical scientific application with

interleaved computation and I/O phases.

In Figure 2, each application occupies 4 separate

compute nodes exclusively and uses 32 processes on

each node. The layout of App1 is simple stripe on 4 I/O

nodes and the layout of App2 is simple stripe on all the

8 I/O nodes. The applied algorithm is layout-based

SFQ. App1 issues random reads and writes while App2

issues sequential writes. The figure shows that the

achieved throughput isolation (on the bars) between

two applications is within the 95% range of various

desired goals. Figure 3 compares the effectiveness in

restoring the throughput to the BTIO standalone mode

when using layout-based SFQ scheduler and its non-

work-conserving variation. X axis shows the scheduler

and its parameters used if both BTIO and IOR are in the

system. BTIO workload is collective and large, faced

with the same number of competing IORs (64 processes

with sequential writes). In contrast, BTIO has a bursty

access pattern and has limited concurrency. The layout-

based SFQ made an improvement to BTIO by 27% but

does not restore its throughput completely because of

intensive I/O interference from IOR with aggressive I/O

issue rates. Non-work-conserving layout-SFQ isolated

the performance much more effectively under intensive

contention and improved the throughput by 58%.

4. CONCLUSION AND FUTURE WORK
This paper presents a new approach, vPFS, to provide a

performance virtualization framework and proportional

sharing schedulers built upon it for parallel storage

management in HPC systems. Experiment results show

that the vPFS approach is feasible and it can achieve

nearly perfect total-service proportional bandwidth

sharing for two competing parallel applications with

diverse I/O patterns. In the future we will evaluate

vPFS with larger scale setups considering more servers

and applications. We also plan to realize a latency-

driven scheduler to provide response time bound in

parallel applications among diverse applications via

feedback controlled, self-adaptive methods.

5. REFERENCES
[1] PVFS2. URL: http://www.pvfs.org/pvfs2/.

[2] P. Goyal, H. M. Vin, and H. Cheng, “Start Time

Fair Queueing: A Scheduling Algorithm For

Integrated Services Packet Switching Networks”,

IEEE/ACM Trans. Networking, vol. 5, no. 5, 1997.

[3] W. Jin, J. S. Chase, and J. Kaur, “Interposed

Proportional Sharing For A Storage Service

Utility”, SIGMETRICS, 2004.

[4] Yin Wang and Arif Merchant, “Proportional Share

Scheduling for Distributed Storage Systems”,

FAST, 2007.

[5] IOR HPC Benchmark,

http://sourceforge.net/projects/ior-sio/.

[6] NAS Parallel Benchmarks. http://www.nas.nasa.

gov/Resources/Software/npb.html.

Figure 1. The architecture of vPFS

2.02:1
3.95:1

8.01:1 16.01:1 31.34:1

0

20

40

60

80

100

120

140

2:1 4:1 8:1 16:1 32:1

Th
ro

u
gh

p
u

t
(M

B
/s

)

Target Ratio

Total App1 App2

Figure 2. Bandwidth sharing between two sets of IORs

0

10

20

30

40

50

60

Without vPFS Layout-SFQD
(32:1)

NWC Layout-
SFQD (32:1)

BTIO
Standalone

B
T

IO
 T

h
ro

u
gh

tp
u

t
(M

B
/s

)

Figure 3. Throughput of BTIO when running with IOR

App

Compute
servers

Data
servers

App

App

PFSProxy

Virtual PFS1

Virtual PFS2

HPC
application

1

HPC
application

2

