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We study the properties, design, implementation and
performance of trusted storage, an architecture that en-
sures the integrity, confidentiality and accountability of
data, by enforcing storage policies at the lowest layer
of a storage system, within the hardware and firmware
of disk enclosures. The guarantees provided by trusted
storage depend only on the integrity and correctness of
the trusted device/enclosure firmware and hardware, not
on the absence of bugs and security vulnerabilities in any
higher level software of a system and operator error or
malice.

Trusted storage primitives enable applications to asso-
ciate and enforce a policy with each data object they cre-
ate, and to obtain firmware-generated, cryptographically
signed certificates, which attest to a given stored data ob-
ject’s name and content hash, the policy in effect for the
object, access history for the object, as well as certain
properties of the device including its approximate loca-
tion. A typical policy states the conditions under which
a data object may be read, updated, or deleted, to what
extent access to the object should be recorded, how often
the object should be scrubbed, and the conditions under
which the policy may be changed.

To implement this functionality, each trusted storage
device has a globally unique identifier and a unique
hardware-protected asymmetric cryptographic private
key, whose corresponding public key is certified by the
manufacturer. Using this private key, the device can
cryptographically sign messages, generate short-term
session keys and establish secure connections to other
trusted storage devices, trusted servers (e.g. time, lo-
cation, firmware update) and client computers by tun-
nelling securely through the (untrusted) operating sys-
tem.

Trusted storage addresses the problems created by two
complementary trends in computing. On the one hand,
both the volume and the value of digitally stored data
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are increasing. On the other hand, the risk associated
with ensuring the integrity and confidentiality of data
is increasing for two main reasons. First, storage sys-
tem software is increasingly more complex, which in
turn increases the likelihood of software bugs and se-
curity vulnerabilities. There is mounting evidence that
data corruption is not uncommon, and that software bugs
are among the causes [3]. Trusted storage protects data
integrity and confidentiality despite software bugs and
vulnerabilities outside the storage device. Second, in-
dividuals increasingly entrust their data to third-party
providers for storage and processing (e.g., Web mail,
DropBox, Amazon S3). Most of these providers are rep-
utable companies that care about their customers, follow
best practices and respect applicable laws. Nevertheless,
accidents happen, as several recent examples demon-
strate [2]. Today, customers have to blindly trust that
providers respect policies and take appropriate measures
to safeguard data from threats. Trusted storage would al-
low customers to specify policies associated with their
data, e.g., regarding data access restrictions, the physi-
cal location of disks containing their data, the number of
copies that are maintained, or the scrubbing frequency.
Signed certificates from trusted storage would attest cor-
rectness of policies in effect for a customer’s data, inde-
pendent of the service provider’s assurance. Moreover,
compliance with those policies would depend only on the
integrity of the lowest storage layer, which could be cer-
tified by an independent authority.

Policies

Trusted storage supports a declarative policy language
used to state the conditions for reading, modification of
or deletion of an object, access logging, as well as the
conditions under which the policy may be changed. Ex-
amples of storage policies include combinations of the
following:
Identity-based access restriction Allow access to au-



thorized principals authenticated through a secure chan-
nel to the trusted storage device. Prevents unauthorized
access.
Attestation-based access restriction Allow access
subject to remote attestation of an acceptable hard-
ware/software configuration (or another trusted storage
device). Ensures that data can only be obtained by de-
vices with a hardware and software configuration trusted
to respect the owner’s policies.
Location-based access restriction Allow access to data
only if the trusted storage device is in a specific geo-
graphic region or country. Useful to enforce legislation
and policy regarding data dissemination and storage.
Expiration Allow read access only until a given date.
Useful to enforce data retention policies.
Time capsule Allow read access only after a given date.
Useful to ensure the confidentiality of information prior
to a given release date, e.g., in the case of classified in-
formation.
Storage lease Allow modifications or deletions only af-
ter a given date. Useful to protect the integrity of objects,
snapshots and backup archives with a pre-determined
lifetime.
Quota-based access restriction Allow a fixed number
of read accesses. Useful to enforce DRM and other li-
censing restrictions.

API and performance

The API of a trusted storage device is a superset of the
traditional block device API. One command can be used
to associate an object name (e.g., /usr/bin/csh) and a pol-
icy with an arbitrary set of extents in the storage device.
Conventional read and write access to any block within
these extents are then checked against the policy. An-
other command can be used to obtain a signed certificate
about an object; the object can be specified by its name
or one of its block numbers.

Our preliminary experiments indicate that using a
small amount of flash memory to store policies and asso-
ciated metadata, the overhead for enforcing policies can
be within a few percent points. This holds for hybrid
magnetic disk (conventional disks with a few GB of flash
memory) as well as solid-state disks.

Guarantees

The guarantees provided by a trusted storage device de-
pend on the correctness of its firmware, which is related
to its complexity. Storage firmware, while of substan-
tial complexity, is still far smaller, simpler and subject
to a much lower rate of change than the remaining sys-
tem software. Moreover, the correctness and integrity of

trusted storage firmware could be certified by an inde-
pendent organization.

For policies that depend on real time, a trusted storage
device could connect to an existing trusted time source
that issues signed real time stamps. Protocols for com-
munication with such sources include a fresh nonce to
prevent replay attacks. Since a granularity on the order of
a day is likely sufficient, the resulting overhead is small.
Similarly, for policies that depend on geographic loca-
tion, a few strategically placed trusted servers could be
used to obtain an approximate location based on RTTs.
The resulting location fix is sufficiently accurate to dis-
tinguish continents, perhaps countries.

Related work
Trusted computing leverages low-level trusted hardware
primitives to ensure high-level security properties of a
system. Trusted storage similarly leverages trusted prim-
itives to ensure integrity, confidentiality and accountabil-
ity of stored data. Self-securing storage [5] transpar-
ently retains shadow copies of modified data for a pre-
determined period. Self-encrypting disks ensure data
confidentiality. Trusted storage addresses integrity, con-
fidentiality and accountability, and supports more gen-
eral policies. Differentiated storage [1] provides perfor-
mance related policies for different classes of requests.
Active disks [4] allow the execution of general applica-
tion code in storage devices for performance and flexibil-
ity. Trusted storage relies on on a declarative policy lan-
guage to provide integrity, confidentiality, and account-
ability.
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