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The amount of data that enterprises need to store in-
creases faster than storage prices decrease, causing busi-
nesses to spend ever greater funds on storage [3]. One
way to reduce storage costs is deduplication, in which
repeated data is detected and replaced by references to
a unique copy. Deduplication has been shown to be
very effective in cases where the data is highly redun-
dant [7, 8, 11]. For example, typical backup data con-
tains multiple copies of the same files captured at dif-
ferent times, resulting in deduplication ratios as high
as 95% [6]. Virtualized environments often run multi-
ple similar virtual machines, which produces high du-
plication rates [7]. Even in primary storage, where one
might expect data to be more unique, deduplication can
be highly effective [9]. In fact, distinct users often
share similar data, such as common project files or MP3
recordings of popular songs.

The significant space savings offered by deduplica-
tion have made it an almost mandatory part of the mod-
ern enterprise storage stack [4, 10]. Though the general
concept of deduplication is the same in every product,
there are many differences in how it is implemented and
which optimizations are applied. Because of this variety
and the high number of recently published papers in the
area, it is important to be able to accurately compare the
performance of deduplication systems.

The standard approach to deduplication is to divide
the data into “chunks,” calculate chunk hashes, and look
up the result in an index to discover duplicates. The
hashing step is straightforward; chunking is well under-
stood but sensitive to various parameter settings. The
indexing step is the most challenging because of the im-
mense number of chunks found in real systems.

The chunking parameters and indexing method lead to
three primary evaluation criteria for deduplication sys-
tems: (1) space savings, (2) performance (e.g., through-
put and latency), and (3) resource usage (disk and CPU
utilization, memory footprint, etc.). All three metrics
are affected by the selection of data used for the eval-
uation and the specifics of the hardware configuration.
Whereas previous storage systems could be evaluated
based on traces of I/O operations, deduplication systems
need the actual content (or a realistic recreation) to exer-
cise caching and index structures.

We surveyed 120 datasets used in deduplication stud-
ies published in USENIX FAST, ATC, and several other
conferences. We found that 76% of the datasets were
not usable for cross-system evaluation, mostly because
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Figure 1: Mutation conveyor used to generate a dataset of sev-
eral snapshots.

the data was either private or non-reproducible. Another
16% of the datasets were smaller than 1GB, which is
too small to stress a full-fledged deduplication system.
All remaining datasets (8%) contained various operating
system distributions in different formats: installed, ISO,
or VM images. However, such data cannot be consid-
ered as representative for the general user population. As
a result, neither academia nor industry have wide access
to representative datasets that can be used for unbiased
comparison of deduplication systems.

We are developing a framework for controllable data
generation that is suitable for evaluating deduplication
systems. The key insight that we exploit is that dedupli-
cation is typically applied to multiple similar but slightly
modified snapshots. (In this discussion “snapshot” is a
generic term.) Snapshots can represent periodic back-
ups; initially identical Virtual Machine disk images that
become different because of their different usage; etc. If
one can realistically emulate changes in the snapshots,
then the whole dataset can be easily generated.

Our dataset generator operates at the file-system level,
which is a common denominator across almost all dedu-
plication systems. In fact, even block- and network-level
deduplication solutions usually process data that is a file
system at a higher level. We maintain an in-memory
fstree object that represents file system tree along with
the files’ content. We do not store whole content, how-
ever, but only chunk’s hashes. The generator uses an
existing file system to create a first fstree object. It then
mutates the fstree in accordance with a mutation profile.
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Figure 2: Markov model for handling file modifications. The
probabilities of transitions are based on the Kernels 2.6.0–
2.6.39 dataset.

A mutation conveyor can be created as depicted in Fig-
ure 1 to emulate long-term file system evolution. Each
fstree object servers as an input to the next mutation and
to the fs-create tool, which generates an on-disk snap-
shot. The important property that fs-create preserves is
that the content of every generated chunk corresponds
uniquely to that chunk’s hash. This allows preserving
the distribution of duplicates in the created file system.

Mutation should emulate both data and meta-data
changes, because real deduplication systems are sensi-
tive to both. E.g., it is known that the run-lengths of
unique or duplicated chunks affect the throughput of
many deduplication systems. Run lengths in turn depend
on the ways files are modified and file size distribution.

Our current fs-mutate tool uses a Markov model to
emulate file-level changes and multi-dimensional statis-
tical distributions for in-file changes. Figure 2 shows
a Markov model with probabilities for the Linux ker-
nel versions 2.6.0–2.6.39. New files are created with
5% probability; existing ones stay unmodified from one
snapshots to another with 80% probability. Only 17%
of the files are modified if they were not changed in the
previous snapshots. Using these probabilities, we can
accurately select files for creation, deletion and modifi-
cation. To predict the sizes of created files, the distribu-
tion of duplicates within them, the type of modification,
etc., we use a multi-dimensional statistical distribution.

To create profiles, we analyzed both data and meta-
data changes in several public and private datasets:
home directories, system logs, Mac OS X-based email
and Web servers, and a version control repository. We
are currently experimenting with our model and various
datasets to identify its accuracy range. Preliminary num-
bers show that the error of emulated parameters is within
15%. We believe our generator can become a useful tool
for fair and versatile comparison of deduplication sys-
tems.

To the best of our knowledge there has been no re-
search focusing on emulating file system content and
meta-data evolution. File system benchmarks usually

pre-create a file system to perform operations on it.
Fstress [2] and Filebench [5] have the ability to spec-
ify file size and directory depth distributions for the pre-
creation phase, but the data written to the files is either
all zeros or random. Agrawal et al. presented a more de-
tailed attempt to approximate the distributions encoun-
tered in the real-world file systems [1], but again, no at-
tention was given in their study to generating duplicated
content.
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