
High-Throughput Direct Data Transfer between PCIe SSDs

Jun Suzuki, Masato Yasuda, Masahiko Takahashi, Yoichi Hidaka†, Junichi Higuchi, Yoshikazu Watanabe,
and Takashi Yoshikawa

System Platforms Research Laboratories, NEC Corporation, †Applied Appliance Division, NEC Corporation
{j-suzuki@ax, m-yasuda@ct, m-takahashi@ex, y-hidaka@bq, j-higuchi@ax, y-watanabe@fa, yoshika-

wa@cd}.jp.nec.com

Abstract
Data transfer between storage devices for data reallo-

cation in a storage system and backing up data from a
client to a network-attached storage are examples of
data processing that transfers data between I/O devices
without modifying data. In current systems, transferred
data between I/O devices must be sent once to the main
memory of the server hosting the I/O devices, but the
bandwidth between the host and the I/O devices be-
comes a bottleneck for high-throughput data transfer.
This paper proposes a method to transfer data directly
between I/O devices. Evaluation using two PCI Express
(PCIe) solid-state drives (SSDs) showed the proposed
method increased the bandwidth of the data transfer to
the maximum throughput of the SSD.

1. Introduction
Server platforms need to have various kinds of I/O

devices to provide their respective services. Such I/O
devices include network interface cards (NICs), PCI
Express (PCIe) solid-state drives (SSDs), and storage
host bus adaptors (HBAs). For this purpose, technolo-
gies have been introduced that connect servers and I/O
devices using a network method and assign a server its
necessary I/O devices by configuring the network con-
nection [1, 2].

Many of the different kinds of data processing that
use these I/O devices just transfer data between I/O
devices in a block level without modifying them [3].
For example, when a network-attached storage system
accepts writing to its disk from a client, the data re-
ceived from its NIC are written to its disk. In another
example, the Hadoop framework uses a method called
pipelining to distribute data between HDFS nodes. Its
node relays data by receiving them from its NIC and
sending them to its NIC again.

However, even when transferred data are not mod-
ified, all of them must be sent once to the main memory
of the server hosting the I/O devices. This leads to inef-
ficient transfer, because all the data traverse the net-
work link that connects a server to I/O devices, so its
bandwidth becomes a bottleneck. In addition, the laten-
cy of data transfer accumulates when the data are co-
pied within a server memory between kernel space and
user space.

This paper proposes a method called Direct Connect
that directly transfers data between PCIe-compliant I/O
devices. These I/O devices are connected to a host serv-
er using PCIe over Ethernet technology implemented in
a PCIe-to-Ethernet bridge LSI. Data are transferred by
relaying direct memory accesses (DMAs) of a source
device and a destination device by using an interme-
diate buffer in a PCIe-to-Ethernet bridge. Because the
transferred data do not traverse the host server, low-
latency and high-throughput transfer is performed.

The evaluation using two SSDs confirmed high-
throughput data transfer without the bottleneck of the
bandwidth between the server and the SSDs.

The proposed method is also designed so as to mi-
nimize alternation to current systems. I/O devices used
are standard PCIe devices and are controlled by a host
server using their device drivers.

 2. Direct Connect Architecture and Im-
plementation

Different I/O devices cannot directly communicate
with each other or exchange data. Instead, they are con-
trolled with driver software in a host server and can
only transfer data by way of a server memory. There-
fore, the bandwidth between a host server and I/O de-
vices becomes a bottleneck of the data transfer. In our
method, we directly transfer data using a memory in a
PCIe-to-Ethernet bridge as an intermediate buffer so
that the DMAs of a source device and a destination
device can be relayed.

The architecture of the proposed Direct Connect is il-
lustrated in Figure 1. I/O devices accommodated in an
I/O resource box are connected to a host server through
an Ethernet. A PCI-to-Ethernet bridge called an Ex-
pEther bridge encapsulates a PCIe packet to an Ethernet
frame and transports it between a server and an I/O
device [1]. Because the PCIe bus of a server is virtually
extended over the Ethernet, a server can use a con-
nected I/O device as its local device. An ExpEther
bridge also has a Direct Connect (DC) buffer internally
to relay DMAs of I/O devices. This buffer is memory-
mapped to the physical address of a server, and an I/O
device can access it using its DMA.

The software part of Direct Connect in a host server
consists of three components: DC commands, a DC
operator, and a DC manager. DC commands are user-

Figure 1: Proposed Direct Connect architecture.

level functions used to request data transfer between
I/O devices. The actual transfer is performed by a DC
operator that calls device drivers of I/O devices. When
data are transferred between two devices, a DC operator
calls the data read function of a source device driver
and makes the device write its data to one of the DC
buffers. Then, it calls the data write function of a desti-
nation device driver and makes the device read the data
from the same DC buffer. In this way, two DMAs made
by the source and destination devices are relayed and
the data are directly transferred. A DC operator is also
implemented as a device driver to minimize kernel
modifications. When a DC operator calls a DC manager,
the manager associates the names of I/O devices desig-
nated by DC commands to their data structures in ker-
nel space. The sought data structure is used by a DC
operator to call the functions of device drivers.

We implemented a prototype that directly transfers
data between two SSDs. We used one PCIe SSD for a
source device and another for a destination device, and
a 10-Gb-Ethernet to connect an Intel Xeon server and
the SSDs. The OS of the server was CentOS 5.5. A DC
manager was implemented to the I/O stack of the kernel.
Part of the device driver of the SSD was also modified
to direct the DMA of the SSDs to a DC buffer. Because
of the hardware limitation of the ExpEther bridge, we
implemented a DC buffer on a separate field-
programmable gate array (FPGA) card and inserted it
into another slot of an I/O resource box.

3. Evaluation
The evaluation confirmed that our method enables

high-throughput data transfer between two SSDs with-
out the bottleneck caused by traversing a server.

First, we used a PCIe packet analyzer and confirmed
that data were transferred not through the server but the
DC buffer. Next, we measured the throughput of data

Figure 2: Measured bandwidth of data transfer.

transfer when 1-GB data were transferred between two
SSDs. Figure 2 shows the measured bandwidth. For
comparison with a conventional method that needs the
transferred data to be sent once to the memory of a
server, we also measured the throughput when trans-
ferred data traversed the server memory. The through-
put was measured in two cases: the PCIe lane width of
the server-side ExpEther bridge was set to x8 or x1.
When the lane width was x8, the bandwidth between
the server and the SSDs did not become a bottleneck for
the data transfer. On the other hand, when the lane
width was x1, the bandwidth became a bottleneck. The
evaluation results show that the bandwidth of the pro-
posed method was the same in both x8 and x1 cases and
was increased by 86% compared with the conventional
method in the x1 case. The obtained bandwidth was
limited by the specification of the SSD. These results
show that the proposed method enables high-throughput
data transfer between I/O devices even if the bandwidth
between a host server and I/O devices is as low as PCIe
lane width of x1.

4. Future Work and Conclusion
We have applied our method to high-throughput direct

data transfer between two SSDs. We will also apply it
to the transfer between a NIC and an SSD. In addition,
we will develop a method to handle storage metadata
when its addressing data are directly transferred be-
tween two SSDs.

Acknowledgements
 A part of this work was performed of the METI R&D
Program supported by NEDO.

References
[1] J. Suzuki et al., “ExpressEther – Ethernet-Based
Virtualization Technology for Reconfigurable Hard-
ware Platform,” IEEE Symp. on High-Performance
Interconnects (HOTI’06), pp. 45-51, 2006.
[2] HP Virtual Connect Technology:
http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA0-
5821ENW.pdf
[3] B. Rhoden et al., “Improving Per-Node Efficiency
in the Datacenter with New OS Abstractions,” Symp. on
Cloud Computing (SOCC’11), 2011.

0

50

100

150

200

250

x8 x1

B
a
n
d
w
id
th
 [
M
B
/s
]

Host PCIe Lane Width

Conventional

Proposed

Maximum performance
of the SSD

I/O
Device 1

Device
Driver 1

DC Operator

OS
DC Manager

DC Command User Space

Kernel
Space

Device
Driver

Hardware
Ethernet

Device
Driver 2

Device
Driver N

Server-Side ExpEther Bridge

I/O
Device 2

I/O
Device N

I/O-Side
ExpEther Bridge

DC Buffer

Control

Data I/O
Resource

Box

・・・

・・・

Host Server

