
Building a disk failure injection framework for Fault-Tolerant systems
research

Yathindra Naik1 Mike Hibler Eric Eide Robert Ricci
School of Computing, University of Utah

Abstract
Storage is one of the most common problematic subsys-
tems in a cloud platform. Disks are getting bigger as stor-
age requirements continues to grow everyday. Building
highly fault tolerant system requires the ability to rec-
ognize and handle various disk errors. Today’s cloud
platforms are built with many systems which are com-
posed of heterogeneous storage disks differing in speed
and capacity. Infrastructures providing such diversified
environment would be ideal for system designers to ex-
periment and test their systems. Such an environment
is provided by Emulab testbed. Emulab is a network
testbed, giving researchers a wide range of environments
in which to develop, debug, and evaluate their systems.
Emulab already offers the ability to intentionally degrade
hosts and links by turning off the hosts and imposing traf-
fic shaping and drops on the link. In this work, we ex-
tend these features to disks. We present a controllable
and repeatable disk failure framework for an entire clus-
ter testbed. Device mapper [4] which is a linux driver for
creating virtual disk is being used for this purpose. This
is still a work in progress.

1 Introduction

Storage forms the backbone of any cloud service. Stor-
age failure can result in downtime and data loss. Deal-
ing with storage failures therefore becomes necessary for
building a highly stable system. Enterprise storage sys-
tems provided by NetApp typically use different RAID
configurations [5] and remote mirroring techniques [6]
to protect data from disk failures. Previous studies con-
ducted by Google [7], and others [2] [3] show various
disk failure characteristics.

Emulab [8] is widely used by computer science re-
searchers in the fields of networking and distributed sys-
tems. Emulab can be used by researchers to test how

1Students; Yathindra Naik will present

their systems behave in the face of unstable storage. We
present a framework on Emulab called the disk− agent
to provide a means for injecting various disk failures.
We have made use of device mapper which is a driver
in linux as it already provides a simple way to achieve
the same.

We have integrated device mapper on Emulab nodes
and made use of Emulab’s event system to provide a
means for experimenters to inject various disk errors.
Users will have the ability to script their experiments and
also specify the time they want to trigger disk failures.
NS is the experiment description language for Emulab,
which is based on the language used by the NS simula-
tor. We have added some extensions that allow users to
use NS’s at syntax to invoke disk failure events on their
experimental nodes. Once the users define a disk object
and initialize its parameters, they can schedule disk fail-
ures with NS at statements. To define a disk object:

1. set disk0 [$nodeA disk-agent -name
"bad_disk" -type "linear" -mountpoint
"/mnt"]

2. set disk1 [$nodeA disk-agent -name
"bad_disk" -type "flakey" -mountpoint
"/mnt" params="1 1"]

Then in the NS file a set of static events to run these
commands:

3. $ns at 10 "$disk0 start"

4. $ns at 20 "$disk1 start"

In the above example, we would create two disk ob-
jects, disk0 and disk1 where both refer to the same virtual
disk named bad disk. In line 1, disk0 is declared to have
a direct mapping between the virtual and real disk (the
disk agent on the node would figure out and create a par-
tition for the real disk). In line 2, disk1 is declared to be

1

a flaky disk and the extra parameters to flakey type tells
device mapper to fail 50% of the disk I/O’s. Finally, us-
ing the event scheduler, bad disk starts off being a good
disk (line 3) and 20 seconds later starts giving I/O errors
(line 4).

This framework will be used on PRObE (Parallel Re-
configurable Observational Environment) supercomput-
ing facility. PRObE is an NSF-sponsored project aimed
at providing a large-scale, low-level systems research fa-
cility. It will use Emulab to support research in many
systems related fields such as Operating Systems, Stor-
age, and High End Computing[1].

2 Design and Implementation

The systems that are hosted in a testbed cluster can sup-
port a wide variety of applications and network protocols
that eventually talk to the storage backend. It is com-
mon to find distributed filesystems and large databases
that need raw disk access. Therefore, we needed a fault
injection framework that could operate at a block layer
rather than the file level. It is also becoming increasingly
common to find large distributed applications hosted on
commodity hardware. The idea here is to build much of
the fault handling features on upper layers of the software
stack, realizing disks are most likely to fail.

Disk faults could due to a number of reasons - medium
scratches, firmware bugs, mechanical failures, intercon-
nect cable issues, faulty disk adapter etc. Disks are me-
chanical devices and undergo wear and tear due to fric-
tion which is again directly affected by workload, tem-
perature, and other environmental issues [7] [2]. Differ-
ent classes of disks show varying reliability. For exam-
ple, Lakshmi N. Bairavasundaram et al, note that nearline
disks have an order of magnitude higher probability of
developing checksum mismatches than enterprise class
disks [2].

Disk failures are indicated by early disk errors which
can broadly be classified as:

• Latent sector errors - This kind of error results in a
sector or groups of sectors becoming inaccessible.
Read or write to those sectors fail and usually indi-
cated as SCSI medium errors.

• Data corruption - Data is inconsistent on disk. They
usually show up as checksum errors if the block is
protected by checksum.

• Transient errors - Disk read/write fails or times out.
• Slow disk - This is a relatively less known class

of failure where the disk I/O’s become significantly
slow.

2.1 Disk-Agent for Emulab
Emulab is composed of a event-system and a scheduler
which dispatches those events at the required time. It
also provides a dynamic way to trigger events on various
nodes. Disk agent framework will leverage this to pro-
vide users with two different modes of operation: one in
which users control the disk agent while the experiment
is running by dynamically sending disk events. The other
is that users can script things all out ahead of time so that
they can get repeatable, predictable behaviour.

Users of Emulab typically set up their experiments
by specifying the type of topology they are interested
in by using NS scripts. They can perform experiments
which allows them to inject failures at a later point in
time through the NS scripts. So users can inject probable
disk errors which are more realistic since disks wear out
due to time and usage.

The other part of the idea is to model disk failures. We
plan to use some of the disk failure models from litera-
ture which gives users the ability to foresee how applica-
tions behave when disks starts to degrade. Some of the
papers talk about disk failure analysis from a very large
disk population for a long duration [2]. By making use
of such studies, we can parameterize various factors that
affect disk failures such as time, workload, disk class,
temperature etc and compress them to shorter timescales.

References
[1] Probe. http://newmexicoconsortium.org/probe.

[2] BAIRAVASUNDARAM, L. N., GOODSON, G. R., PASUPATHY,
S., AND SCHINDLER, J. An analysis of latent sector errors in
disk drives. In Proceedings of the 2007 ACM SIGMETRICS inter-
national conference on Measurement and modeling of computer
systems (New York, NY, USA, 2007), SIGMETRICS ’07, ACM,
pp. 289–300.

[3] JIANG, W., HU, C., ZHOU, Y., AND KANEVSKY, A. Are disks
the dominant contributor for storage failures?: A comprehensive
study of storage subsystem failure characteristics. Trans. Storage
4 (November 2008), 7:1–7:25.

[4] MILAN BROZ. Device Mapper. http://mbroz.
fedorapeople.org/talks/DeviceMapperBasics.

[5] PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. A case for
redundant arrays of inexpensive disks (raid). In Proceedings of the
1988 ACM SIGMOD international conference on Management of
data (New York, NY, USA, 1988), SIGMOD ’88, ACM, pp. 109–
116.

[6] PATTERSON, H., MANLEY, S., FEDERWISCH, M., HITZ, D.,
KLEIMAN, S., AND OWARA, S. Snapmirror®: file system
based asynchronous mirroring for disaster recovery. In Proceed-
ings of the 1st USENIX conference on File and storage technolo-
gies (Berkeley, CA, USA, 2002), FAST’02, USENIX Association,
pp. 9–9.

[7] PINHEIRO, E., WEBER, W.-D., AND BARROSO, L. A. Failure
trends in a large disk drive population. In Proceedings of the 5th
USENIX conference on File and Storage Technologies (Berkeley,
CA, USA, 2007), USENIX Association, pp. 2–2.

2

[8] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. In Proc. of the Fifth Symposium
on Operating Systems Design and Implementation (Boston, MA,
Dec. 2002), USENIX Association, pp. 255–270.

3

