
A Unified Object Oriented Storage Architecture

Andy Hospodor, Ethan Miller, Rekha Pitchumani,Yangwook Kang, Darrell Long
Department of Computer Science, University of California, Santa Cruz, 95064, US

Ahmed Amer
Department of Computer Engineering, Santa Clara University, Santa Clara, CA 95035, US

Yulai Xie
Huazhong University of Science and Technology, China

Abstract
Object Oriented (OO) Storage has a history of false starts
and high expectations. OO disk drives, in particular, have
been described by industry standards, reference imple-
mentations and countless publications for over a decade.
Today, computer science lacks a unified storage archi-
tecture. By reducing devices to storage objects that con-
tain data and associated methods, such an architecture is
not only possible, but may extend to include all varieties
of storage devices, interfaces, operating systems and file
systems.

1 Introduction

This paper introduces a unified storage architecture
based upon object oriented storage devices (OOSD) that
obfuscate the physical implementation issues of the un-
derlying hardware. Within such an OO Storage Archi-
tecture the metadata is decoupled from the data to permit
the management of objects rather than blocks. Storage
objects are managed through associated methods over a
wide range of storage devices, including Magnetic Disk,
Optical Disk, Storage Class Memories, Tape, Flash, and
anticipates new storage devices such as Shingled Disk.

2 History and background

In 1986, Quantum introduced the Q200, the first disk
drive with an integrated SCSI (Small Computer Sys-
tems Interface) controller that managed its address
space as a contiguous set of logical blocks [Quan-
tum1986][SCSI1986]. Previously, access to disk stor-
age occurred using Cylinder, Head and Sector addresses,
or Cylinder, Head and Count/Key/Data addresses in the
case of IBM Enterprise Storage. The obfuscation of
physical geometry by devices following the Q200 led the
industry down a path of virtualization where nearly all
storage devices appear as their 1986 equivalents. While

the consolidation of file system and device drivers of-
fered distinct advantages in management, it made the
addition of new capabilities difficult and extended the
adoption cycle. New commands were first argued over
by standards committees, a process that took years, then
implemented in devices from select manufactures, and,
hopefully, supported by a variety of operating system and
storage management vendors.

The SCSI Third Party Copy command, for example,
allows a tape drive to oversee the transfer of data between
two devices, typically a disk drive and a tape drive. How-
ever, operating systems generally have different file sys-
tem/device driver stacks for disk and tape, so, Third Party
Copy required an entirely new, integrated stack. Sadly,
this important feature was rarely implemented in storage
architectures. Another, more timely example is the Trim
command used to perform garbage collection in storage
based upon flash memory. Different operating systems
(OS) and even different versions of an OS may or may
not support Trim. Apple supports Trim on Apple sup-
plied SSDs in version 10.7 of their operating system (aka
Lion), but no support is offered for Trim on non-Apple
SSDs nor is Trim supported at all in version 10.6.6 (aka
Snow Leopard). Reinstallation of the OS during a recov-
ery/rebuild operation may also disable Trim and prevent
garbage collection. [Trim2010]

[Reidel2001] and [ANSI2009] provided extensions of
SCSI that include Object Oriented command sets. While
this approach was groundbreaking, and generated a swell
of research, it ultimately appeared as another attempt to
extend the antiquated SCSI interface from 1986 to the
present. Again, the perceived requirement that new stor-
age devices use existing file systems and devices drivers
had a similar effect: no Object Oriented devices ever
made it into mass production.



3 Motivation

The authors believe that an OO Storage Architecture is
best implemented by scrapping the existing infrastruc-
ture of file systems and devices drivers. While this may
be considered blasphemy within the data storage indus-
try, not doing it has the effect of locking us into storage
architectures of the 1980s.

Modern storage devices have microprocessor based
control systems that decode commands, position
read/write elements, translate logical to physical ad-
dresses, transfer data and report status. However, today’s
disk drives are block level devices. Flash Translation
Layers make flash memory look like a SCSI disk, while
Hardware Abstraction Layers make USB memory sticks,
look like SCSI disks and RAID subsystems make groups
of SATA disks also appear as SCSI disks .

Modern microprocessors are capable of managing a
storage address space as a collection of objects, rather
than blocks. Such an OO storage device would map
its objects and access them using specified methods, as
shown in Table 1. This approach offers design flexibil-
ity and permits efficient allocation and placement poli-
cies based up the device’s intimate knowledge of its own
physical geometry. Legacy support could be as simple
as using a Logical Block Address(LBAs) in place of an
object name, so, storage.read(12345) would read LBA
12345 in the same manner a SCSI or ATA storage device
would read it today.

Table 1: Basic Methods of an Object Oriented Storage
Architecture

Method Description
new storage = StorageObject(size) Instantiate new Storage Objects

new moreStorage = StorageObject(size)
metadata = storage.finger Obtain metadata from a Storage Object

buffer = storage.read Retreive data from Storage Object into memory
storage.write = buffer Store data from memory onto Storage Object

storage.append = buffer Extend Storage Object with additional data
storage.find(regExp) Search a Storage Object

sortedStorage = storage.sort(keyValue) Sort a Storage Object by key value pair
moreStorage = storage.replicate Replicate a Storage Object

New storage devices are now free to implement new
methods, rather than emulate old ones. An OO storage
device would publish its capabilities and allow the oper-
ating system, file system and ultimately applications, to
subscribe to their methods. Many modern, object ori-
ented operating systems already contain a registry for
precisely this purpose.

4 Effects on File Systems and Drivers

Within our Unified OO Storage Architecture, the OO
storage devices manage their objects and the File System
manages the name space. Traditional hierarchical File
Systems can simply assign globally unique names to ob-
jects and allow users and applications to reference files

in the usual manner. Non-hierachical File Systems can
tap into the rich metadata and search devices for relevant
objects.

Although device drivers would still be necessary to ac-
cess each specific interface, the reader should be aware
that the most popular serial interfaces: FibreChannel, Gi-
gabit Ethernet, Serial SCSI, Serial ATA and IEEE 1394
all use similar signaling technologies. The electrons go
on the wire in the same fashion, yet the main differences
are the connectors and the protocols. Thus, each serial
interface requires a different driver. In the future, com-
mon or generic device drivers will extend across fami-
lies of similar interfaces such as wireless, serial, parallel,
long haul. Once this happens, translation layers and ab-
straction layers become unnecessary. Operating systems,
file systems and applications will no longer perform vir-
tualization - this function will be absorbed within the Ob-
ject Oriented Storage Architecture.

5 Conclusion

Object Oriented Storage Architectures have the promise
of integrating new storage technologies and new features
without the continuos modification of operating systems,
file systems and device drivers. As the industry embraces
Flash, Phase Change and other other non-volative mem-
ories, the ability to integrate and bring products to market
quickly offers a distinct competitive advantage - one that
Active Disk never had.

6 Acknowledgment

The authors received funding for this research from Cen-
ter for Research in Intelligent Storage (CRIS).

7 References

[ANSI2009] ”The Object-Based Storage Device Com-
mands - 2 (OSD-2) Rev 05a,” ANSI INCITS 458-2011,
16 January 2009.

[Intel2010] ”Intel High Performance Solid State Drive
- Advantages of TRIM”. Intel Corporation, Santa Clara,
CA,14 Sept 2010.

[Quantum1986] ”Q200 Series Intelligent Disk
Drives”, Quantum Corporation, Milpitas, CA, Nov
1986.,

[Reidel2001] Riedel, E., Faloutsos, C., Gibson, G.A.
and Nagle, D.F. ”Active Disks for Large-Scale Data Pro-
cessing”. IEEE Computer, June 2001.

[SCSI1986] ”Small Computer System Interface
(SCSI)”, ANSI X3.131-1986.

2


