
Challenges in Long-Term System Logging

Ian F. Adams

University of California, Santa Cruz

Ethan L. Miller

University of California, Santa Cruz

1 Introduction

A wide variety of techniques exist for tracing both gen-

eral and storage specific system behavior. These range

from periodic crawls of file system metadata [2, 5] and

system call interception [3] to network port mirroring [6]

and complicated end-to-end tracing methodologies in

distributed systems [4, 9]. While these works all have

good techniques for producing data on system activities,

by themselves they do not address issues in maintenance

of the logged data, particularly in long-term logging and

tracing scenarios. They have no provisions for dealing

with the potentially massive volume of data that will ac-

cumulate over long periods, nor do they have any relia-

bility mechanisms for safely storing log data over many

years. Put another way, with large volumes of logged

data we need the ability to intelligently forget less use-

ful data to control data volume and usability and reliably

store what we want to keep for years on end.

Yet, why should one even care about logging and trac-

ing of system behaviors over the long-term? The short

answer is that there are system behaviors that may take

months or even years to become clear. For example, in

our own archival workload studies [1], years of data were

often necessary for behaviors to be clear. In one instance,

Google did a slow scan of available materials over the

course of a month, eventually accounting for over 70% of

retrievals for the entire 3 year trace. Had we had shorter

a dataset we would have missed events like the Google

crawl that radically changed our conclusions. Another

area where this can be of benefit is within computer se-

curity. For example, a port scan is usually fairly evident

if it is done quickly, but if it is done over the course of

weeks or months it can be easy to miss without storage

and subsequent analysis of logged data.

In the rest of this paper we discuss the primary chal-

lenges we have identified for long-term logging, and our

proposed approaches to addressing them.

2 Challenges and Approaches

Physical Scalability In general we are moving away

from monolithic systems, to distributed systems com-

prised of many discrete physical and logical entities, e.g.

the cloud. Correspondingly, a logging framework should

be able to smoothly scale from a few nodes up to many

thousands without saturating compute and network re-

sources. It should be decentralized, as single points of

failure make scalability more difficult, as well as hinder

robustness.

Our approach to this challenge is to build a peer-to-

peer system using a distributed hash table (DHT) imple-

mentation such as Chord [7]. DHTs provide a robust

communication substrate that can smoothly scale from

a few nodes to many thousands with low per-node and

network overhead. Additionally we plan on subdividing

the logging system into a hierarchy of groups such that

any individual group of nodes has detailed knowledge of

nodes within its group and coarser knowledge of neigh-

boring groups. This allows for global location of re-

sources and hierarchical system summarization without

the need for any individual node to have detailed global

knowledge of the entire system.

Temporal Scalability A challenge unique to long-

term tracing is the storage and maintenance of activity

logs over the course of many years. The volume of data

that is likely to be logged over many years may be very

large, and we must also ensure the safe storage of the

logs themselves. Put another way, we must provide a

way for the system to intelligently and selectively forget

logged data that may be of limited use after as it ages,

while reliably storing the desired data for years on end.



Large volumes of log data can be a problem for 2 pri-

mary reasons. First, depending on the granularity of data

being logged, logs can take up enormous amounts of

space. Imagine keeping every disk IO a system saw for

10 years. Second, what is considered a useful granularity

of data may change over time. Using the prior example

of a long-term IO trace, one may not care what every IO

was 10 years prior, but may still want to know broad in-

formation about the system, such as read and write ratios.

Our approach to dealing with large volumes of data

over time is to periodically transform logged data into

coarser granularity formats via user-defined policies. Us-

ing our above example of a block-level IO trace, after a

logged activity passes a certain age, it may be acceptable

to transform or truncate portions of the logged activities

data into a higher level form, such as storing hourly sum-

mary or per-file access information. Using transforma-

tion along with data compression techniques will allow

for large, long-term traces to be efficiently gathered.

Maintaining the safety of the logs is just as important

as keeping them at a usable size and granularity. In a

short term observation of a few days or week, the loss

of a logged data can be painful but not necessarily catas-

trophic. Often times it is possible to simply re-run an

experiment or restart one’s observations. When there are

years of logs involved, logs may be effectively irreplace-

able.

To address this, we will be incorporating automated

replica management of logs into our proposed frame-

work. This ensures not only the safe storage of logged

data over time, it provides the opportunity to explicitly

note node absence in a distributed system, which we de-

scribe next.

Noting Absence A common problem we have run into

is trying to understand the cause of sudden reductions in

activity in a log. For example, in activity logs we ob-

tained from National Center for Atmospheric Research

(NCAR) tertiary storage system in 2011 we see some

days that have an order of magnitude less activity than

others. It is unclear if this is the result of a crash or

maintenance cycle, or actually is just a sudden drop in

activity. Because of this, we see a need for a long-term

tracing system to be able to explicitly note the absence

of processes or entire physical devices.

Our approach for tackling this problem is to lever-

age replica management of logs. Each node that is log-

ging activity will have one or more replicas of its logs.

The nodes maintaining those replicas can explicitly note

within the replicas they are managing when another node

fails or is otherwise non-responsive.

Implementation As our design matures, we plan on

implementing and testing our solutions in a framework

we are calling Janus. Janus will provide an interface

for applications and users to send events they wish to

be logged, and allow them to provide specifications for

how to transform and trim logged data over time. Janus

will also provide for replica management of logged data,

ensuring the safe storage of logged data as it is produced

with minimal human interaction.

References

[1] ADAMS, I. F. et al. Analysis of workload behavior

in scientific and historical long-term data reposito-

ries. Tech. Rep. UCSC-SSRC-11-01, University of

California, Santa Cruz, Mar. 2011.

[2] AGRAWAL, N. et al. A five-year study of file-

system metadata. In Proc. of FAST’08

[3] ARANYA, A. et al. Tracefs: A file system to trace

them all. In Proc. of FAST’04

[4] BARHAM et al. Using Magpie for request extrac-

tion and workload modelling. In Proc. of OSDI ’04

[5] GIBSON, T. J., AND MILLER, E. L. Long-term

file activity patterns in a UNIX workstation envi-

ronment. In Proc. of MSST’98

[6] LEUNG, A. W et al. Measurement and analysis of

large-scale network file system workloads. In Proc.

USENIX ATC’08

[7] STOICA, I et al. Chord: A scalable peer-to-peer

lookup service for Internet applications. In Proc. of

SIGCOMM ’01

[8] STORER, M. W. et al. Logan: Automatic manage-

ment for evolvable, large-scale, archival storage. In

Proc. PDSW ’08

[9] THERESKA, E. et al. Stardust: Tracking activity

in a distributed storage system. In Proc. SIGMET-

RICS ’06


