
A Metadata Workload Generator for Data-Intensive File Systems

Cristina L. Abad (student presenter, UIUC), Kihwal Lee (Yahoo!), Nathan Roberts (Yahoo!), Yi
Lu (UIUC), Roy H. Campbell (UIUC)

Large-scale data-intensive computing [2, 3] has posed
numerous challenges to the underlying distributed file
system, due to the unprecedented amount of data, the
large number of users, the intense competition on cost
and service quality, and the emergence of new applica-
tions. As a result, there has been an increasing amount of
research on scalable metadata management [4, 6], high
availability [6], efficient scheduling [7], and dynamic
data replication and placement [1].

The performance of the proposed solutions depends
on the characteristics of the metadata workload, which
describes file operations with respect to the underlying
namespace, and captures correlation across time and file
system structures. One example where realistic meta-
data workloads are highly desirable is the design of peta
and exascale data-intensive file systems [5, 6]. The large
scale of the system requires partitioning of the names-
pace, whose performance depends on the nature of the
workload. Existing micro-benchmarks such as mdtest
assume uniform data access patterns across all files,
while realistic workloads, such as those we analyzed,
exhibit highly skewed access patterns both in terms of
file sizes and time since creation. The discrepancy in as-
sumptions can cause ineffective namespace partitioning.

Currently there exist no publicly available traces from
large-scale data-intensive systems. Designers and evalu-
ators often rely on proprietary traces and disclose only
the characteristics of workloads that are interesting to
that particular work. Comparisons of solutions to the
same problem are difficult as the characteristics of one
workload are difficult to verify in others.

Within the Internet-services data-intensive community
a few benchmark tools have emerged, but they have tar-
geted other layers of the infrastructure (e.g., Gridmix for
map-reduce and YCSB for key-value stores).

We present a tool that generates representative work-
loads based on trace studies on two large production clus-
ters at Yahoo!, and user-configurable workloads based on
proprietary traces and/or user-specified parameters. The
synthetic workloads generated are guaranteed to be sta-
tistically realistic with respect to the original traces, and
conform to parameters set by users.

The Dataset. We analyzed the access patterns of one
month (May 2011) of two large Yahoo! clusters. We
mined the HDFS [5] namenode logs which contain ev-
ery metadata operation (open, create, mkdir, etc.) on the
cluster. The PROD cluster has roughly 4000 nodes, and
is the largest production cluster at Yahoo!. R&D is a
1900-node research and development cluster used for ad

hoc queries, business intelligence, and large-scale testing
of products before they go to production.

Design

Our tool consists of the statistical analysis engine (SAE)
and the workload generation engine (WGE). The SAE
analyzes proprietary traces and extracts a set of statisti-
cal parameters. The WGE takes the stored parameters
and generates synthetic workloads that maintain the sta-
tistical parameters of the original traces.
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Figure 1: Block diagram of the components of our tool.

The SAE takes processed logs in a specified format
as input, and outputs extracted parameters. We used the
SAE to extract the parameters from two large production
traces and stored them with our tool (default).

The WGE has two modes: the Default mode and the
User-input mode. The Default mode uses parameters ex-
tracted from the production traces and stored with the
framework to generate representative workloads statisti-
cally similar to the production traces. The User-input

mode takes the default parameters, or parameters ex-
tracted from user-input traces, both of which are config-
urable through a simple command-line interface. Work-
loads conforming to these parameters are statistically
generated. The WGE is further divided into two mod-
ules, corresponding to two parts of the workload gen-
eration. The namespace creation module generates the
underlying file system structures with the given distribu-
tions and the workload generation module generates the
synthetic trace with the given access patterns.

There are three main sets of parameters that character-
ize the workload (Table 1): the namespace structure, the
access pattern, and the workload characteristics, includ-
ing the workload-induced namespace.

The namespace structure is extracted from a snapshot



Table 1: Statistical parameters.
Namespace characterization

Number of directories and number of files
Distribution of files at each depth in namespace hierarchy
Distribution of directories at each depth in namespace hierarchy
Distribution of number of files per directory
Distribution of number of subdirectories per directory
Distribution of file sizes (in MB)
Access pattern characterization

Distribution of file age at time of access
Distribution of file age at deletion (i.e., file life span)
Workload characterization

Percentiles of operation type in trace
Interarrival rate distribution
Percentiles of operations observed at each depth in namespace
Distribution of files per depth in namespace, as observed in trace
Distribution of dirs. per depth in namespace, as observed in trace
Distribution of number of files per directory, as observed in trace
Distribution of number of subdirs. per dir., as observed in trace

of the namespace image and describes the shape of the
namespace hierarchy tree. The number of directories and
number of files describe the size of the namespace, which
are not preserved when scaling the namespace onto a dif-
ferent cluster. The shape of the hierarchy tree are de-
scribed by the following distributions: the number of
files at each depth in the namespace hierarchy, the num-
ber of directories at each depth, the number of files per
directory and the number of subdirectories per directory.
These shapes are preserved when generating synthetic
namespace on a cluster with a different size. Note that
these distributions are not independent, hence fitting a
workload to all of the distributions requires the solution
of a bin-packing problem. In addition, the file size distri-
bution is also extracted, which can be important to prob-
lems involving data block replication and placement.

The access patterns describe the relationship between
the operations and the age of the files, which indirectly
describe temporal correlation. This is important, for in-
stance, to namespace partitioning or metadata caching.
The distribution of the file age at the time of access and
that at the time of deletion are extracted, and are repro-
duced in synthetic workloads.

The workload-induced namespace describes the hier-
archy of files that actually occur in the trace. The shape
of the hierarchy tree induced by the workload can be sig-
nificantly different from that obtained from a snapshot
when there are a large number of rarely accessed files.
The hierarchy of the actual accessed files is important
to metadata caching, for instance. In addition, the per-
centile of operation types and interarrival rates are also
extracted and reproduced in the synthetic workload.

Each of the distributions listed in the parameter table
takes value as either a known distribution or a percentile
table. The SAE attempts to fit a known distribution to
the measured values. If the values pass the goodness-of-

fit test, the known distribution becomes the value of the
parameter; otherwise, an empirical distribution is built
using the cumulative distribution function (CDF) of the
percentiles observed in the input data.

Case Study: Metadata cache for HDFS

To evaluate the usefulness of the traces generated by our
tool, we tackle a real problem in the HDFS [5]: the need
for a metadata cache for the namespace server. The ex-
pected effectiveness of a metadata cache could be eval-
uated with: (a) a real metadata workload trace, (b) a
synthetic metadata workload trace, or (c) in the absence
of traces, data sampled from an assumed distribution of
popularity of data (e.g. Zipf). We found that the hit rate
achieved by our metadata cache for varying cache sizes is
comparable for the cases of real and synthetic traces gen-
erated with our tool. We also show that sampling from a
known distribution (case (c) above) is a poor alternative
due to the lack of temporal locality present in the sample.
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Figure 2: Hit rate for varying metadata sizes, using three
2-hour traces.
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