A Scheduling Framework that Makes any Disk
Schedulers Non-work-conserving
solely based on Request Characteristics

Yuehal Xu and Song Jiang

Department of Electrical and Computer Engineering
Wayne State University

Disk Performance and Workload Spatial Locality

= The disk is cost effective with its ever increasing
capacity and peak throughput.

= The performance with non-sequential access is critical
for the disk to be competitive.
— Virtual machine environment
— Consolidated storage system

= The effective performance depends on exploitation of
spatial locality.

— This locality is usually exploited statically in the request
scheduling.

— In this work, we exploit it in both space and time dimensions.

Quantifying Request Service Time

Logical Block
Address (LBA)

LBA

Disk Head

From 1-D Locality to 2-D Locality

A

o T, = service_time(pending_request)
O
® To exploit the locality, usually select
o © minimal T, among pending requests.
® o
‘ N4
© S
T °e
® 0 ¢ 40 o °
A o ® o0 0° o o
0
>

|)
Current Time Time 4

Disk Head LBA

From 1-D Locality to 2-D Locality

A

T, = service_time(pending_request)

T, = walt_time (future_request)

T, = service_time (future_request)

» To exploit 1-D locality, select
min(T,) among pending requests.

» To exploit 2-D locality, select
min(T,, T,+T;) among pending and
future requests with non-work-
conserving scheduling.

|)
Current Time

>
Time 5

Challenges of Exploiting 2-D Locality

A

T, = service_time(pending_request)

T, = walt_time (future_request)

T; = service_time (future_request)
&
_ LE: » Predicting arrival times and locations of
= _}te future requests whose Ty+T; < T;
T V7. » Determining what request history should

\7 3 - -
5 T, ‘¢7j(be used for the prediction.
O A A
® Totle< Ty

|)
Current Time Time 6

LBA

Disk ‘Vlvjlead

How does anticipatory handle them?

A
» The anticipatory scheduling (AS) groups requests according

to their issuing processes.

» AS explicitly tracks request arrival times and locations for
each process to make a prediction for the next request.

| :
Current Time Time 7

Anticipatory’s Limitations

A
» Requests in a local disk region may be issued by different processes.

» Maintaining/analyzing long history access statistics can be expensive.
» The process information may be unavailable ! (VM, SAN, NFS,

LBA

and PVFS etc.)

Disk Head

Related Approaches

= Antfarm infers process information in the virtual machine monitor
by tracking activities of processes in VMs [USENIX ATC’06].

— Applicable only to VM.
— Guest OS needs to be open for instrumentation.

= Hints, such as accessed files’ directory or owner, are used for
grouping requests in the NFS servers. [Cluster'08].
— Hints may not be always relevant.

= The Linux prefetching policy exploits spatial locality by tracking file
access for every processes’ opened file. [Linux Symposium’04]

— File abstraction may not be available to the disk schedulers.
— Its efficient tracking and decision making mechanisms can be leveraged.

Design Goals of Stream Scheduling

= Use only request characteristics, I.e., request arrival

times and locations
— Process information is not required in any way.

= |ntroduce minimal overhead

— Remember minimal history access information
— Conduct minimal computation in its locality analysis

= Integrate seamlessly with any work-conserving

schedulers
— Designed as a framework to make them non-work-conserving

10

Design of Stream Scheduling

Group requests into streams so that the intra-stream
locality is stronger than the inter-stream locality.

Track judicious scheduling decisions rather than locality

metrics

— Wait or not wait? (future request vs. pending request)

— A stream is a sequence of requests for which judicious decisions
are “wait”.

A stream is maintained as Linux prefetching does.

— A stream is built up or torn down depending on next judicious
decision.

11

Stream Scheduling lllustration

Req 1 has its child (Re¢ 2). .~

The stream length incre%ls"e"s to two.

Time

-

"""""""""""" Time period serving other requests
[0 Arrival of a request

Time period serving this request

B Completion ofarequest, Link showing relationship between

> parent request and child request

Maintenance of Streams

= A stream grows when a completed request sees its child.

— Determining existence of a child is independent of actual
scheduling.

— A stream is established when its length exceeds a threshold.

— An established stream leads to non-work-conserving
scheduling.

= The scheduler stops serving a stream when
— the stream Is broken; or
— the time slice allocated to the stream runs out; or
— an urgent request appears.

= To maintain a stream, only current stream lengths need to
be remembered.

— The cost is trivial !
= We have design of stream scheduling for the disk array.
— It is described in the paper. 13

Experiment Settings

= Software settings

— Stream Scheduling (SS) is prototyped in Linux kernel 2.6.31.3 using
Deadline as its work-conserving component.

— The default stream length threshold is 4.
— The default stream time slice is 124ms.

= Hardware settings

— Intel Core2 Duo with 2GB DRAM memory.

— 7200RPM, 500GB Western Digital Caviar Blue SATA |l with a 16 MB
built-in cache.

= Adaptation for NCQ
— Disk head position is indicated by the last request sent to the disk.

14

Storage without Process Information

350 T T T T
— SS s
AS
Deadline
Noop /—43

250

200

150

100

Performance Improvements (%)

50

——_—_—_—q
I I I S S S - S - .

0

par-read grep TPC-H PostMark

par-read: four independent processes, each reading a 1GB file using 4KB requests in
parallel.

Grep: two grep instances, each searching in a Linux directory tree.

TPC-H: three TPC-H instances, each using PostgreSQL as its database server and DBT3 to
create its tables.

PostMark: four PostMark instances, each creating a data set of 10,000 files.

Storage without Process Information

00 T T 60 T T T T T T T
ool sS
50 | : ot Deadline + 1 - Deadline *
) | 'n 50+
é 00 1 é Foyen _ * iy . Rt #*,0
T Ml e S N % * gk BOCE Fge
o 50 + O ! o o X % % i
E E 5 i} : wﬂ"*ﬁ: ;‘ % k¥ # wH
= 00t — 30 e W
c) G) y KTEK X % * _
c 50 Q i
S = 21
c 00 o |
GJ U) 10 L
ol 50 oo e T) oy el " i
it B L S R :
0 L + L - - g 0 q,-_* el - A O bl : - 7 ¥ 3
0 05 1 15 2 2R 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4
Execution Time (S) Execution Time (S)

par-read: four independent processes, each reading a 1GB file using 4KB
requests in parallel.

Storage with Inadequate Process
Information

SS =
AS s
CFQ
200 | Deadline -
Noop /=3

150

100

Performance Improvements (%)

50 |

0

multi- mpi- ProFTPD ProFTPD TPC-H TPC-H
threads io-test (VM) (2VvM) (1VM) (2VM)

multi-threads: four processes, each forking two threads for reading files
with periodic synchronization between them.

mpi-io-test: four mpi-io-test program instances running on PVFS2 where
files are striped over eight data servers.

ProFTPD: a ProFTPD FTP server on each Xen VM supporting four clients
to simultaneously download four 300MB files.

TPC-H: three TPC-H instances on each Xen VM.

Conclusions

= The stream scheduling framework turns any disk
scheduler into a non-work-conserving one.

— Process information is not required in the scheduling.
— Both time and space overheads are low.

= The framework can be extended to disk arrays to

recover and exploit the locality weakened by file
striping.

= EXperiments on its Linux prototype show significantly
Improved performance for representative benchmarks.

18

