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Disk Performance and Workload Spatial Locality

= The disk is cost effective with its ever increasing
capacity and peak throughput.

= The performance with non-sequential access is critical
for the disk to be competitive.
— Virtual machine environment
— Consolidated storage system

= The effective performance depends on exploitation of
spatial locality.

— This locality is usually exploited statically in the request
scheduling.

— In this work, we exploit it in both space and time dimensions.



Quantifying Request Service Time
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From 1-D Locality to 2-D Locality
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Disk Head LBA

From 1-D Locality to 2-D Locality

A

T, = service_time(pending_request)

T, = walt_time (future_request)

T, = service_time (future_request)

» To exploit 1-D locality, select
min(T,) among pending requests.

» To exploit 2-D locality, select
min(T,, T,+T;) among pending and
future requests with non-work-
conserving scheduling.
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Challenges of Exploiting 2-D Locality

A

T, = service_time(pending_request)

T, = walt_time (future_request)

T; = service_time (future_request)
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How does anticipatory handle them?

A
» The anticipatory scheduling (AS) groups requests according

to their issuing processes.

» AS explicitly tracks request arrival times and locations for
each process to make a prediction for the next request.

| :
Current Time Time 7



Anticipatory’s Limitations

A
» Requests in a local disk region may be issued by different processes.

» Maintaining/analyzing long history access statistics can be expensive.
» The process information may be unavailable ! (VM, SAN, NFS,

LBA

and PVFS etc.)

Disk Head




Related Approaches

= Antfarm infers process information in the virtual machine monitor
by tracking activities of processes in VMs [USENIX ATC’06].

— Applicable only to VM.
— Guest OS needs to be open for instrumentation.

= Hints, such as accessed files’ directory or owner, are used for
grouping requests in the NFS servers. [Cluster'08].
— Hints may not be always relevant.

= The Linux prefetching policy exploits spatial locality by tracking file
access for every processes’ opened file. [Linux Symposium’04]

— File abstraction may not be available to the disk schedulers.
— Its efficient tracking and decision making mechanisms can be leveraged.



Design Goals of Stream Scheduling

= Use only request characteristics, I.e., request arrival

times and locations
— Process information is not required in any way.

= |ntroduce minimal overhead

— Remember minimal history access information
— Conduct minimal computation in its locality analysis

= Integrate seamlessly with any work-conserving

schedulers
— Designed as a framework to make them non-work-conserving
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Design of Stream Scheduling

Group requests into streams so that the intra-stream
locality is stronger than the inter-stream locality.

Track judicious scheduling decisions rather than locality

metrics

— Wait or not wait? (future request vs. pending request)

— A stream is a sequence of requests for which judicious decisions
are “wait”.

A stream is maintained as Linux prefetching does.

— A stream is built up or torn down depending on next judicious
decision.
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Stream Scheduling lllustration

Req 1 has its child (Re¢ 2). .~

The stream length incre%ls"e"s to two.

Time
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[0 Arrival of a request

Time period serving this request

B Completion ofarequest ......, Link showing relationship between

> parent request and child request



Maintenance of Streams

= A stream grows when a completed request sees its child.

— Determining existence of a child is independent of actual
scheduling.

— A stream is established when its length exceeds a threshold.

— An established stream leads to non-work-conserving
scheduling.

= The scheduler stops serving a stream when
— the stream Is broken; or
— the time slice allocated to the stream runs out; or
— an urgent request appears.

= To maintain a stream, only current stream lengths need to
be remembered.

— The cost is trivial !
= We have design of stream scheduling for the disk array.
— It is described in the paper. 13



Experiment Settings

= Software settings

— Stream Scheduling (SS) is prototyped in Linux kernel 2.6.31.3 using
Deadline as its work-conserving component.

— The default stream length threshold is 4.
— The default stream time slice is 124ms.

= Hardware settings

— Intel Core2 Duo with 2GB DRAM memory.

— 7200RPM, 500GB Western Digital Caviar Blue SATA |l with a 16 MB
built-in cache.

= Adaptation for NCQ
— Disk head position is indicated by the last request sent to the disk.
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Storage without Process Information
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par-read: four independent processes, each reading a 1GB file using 4KB requests in
parallel.

Grep: two grep instances, each searching in a Linux directory tree.

TPC-H: three TPC-H instances, each using PostgreSQL as its database server and DBT3 to
create its tables.

PostMark: four PostMark instances, each creating a data set of 10,000 files.



Storage without Process Information
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par-read: four independent processes, each reading a 1GB file using 4KB
requests in parallel.



Storage with Inadequate Process
Information
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multi-threads: four processes, each forking two threads for reading files
with periodic synchronization between them.

mpi-io-test: four mpi-io-test program instances running on PVFS2 where
files are striped over eight data servers.

ProFTPD: a ProFTPD FTP server on each Xen VM supporting four clients
to simultaneously download four 300MB files.

TPC-H: three TPC-H instances on each Xen VM.



Conclusions

= The stream scheduling framework turns any disk
scheduler into a non-work-conserving one.

— Process information is not required in the scheduling.
— Both time and space overheads are low.

= The framework can be extended to disk arrays to

recover and exploit the locality weakened by file
striping.

= EXperiments on its Linux prototype show significantly
Improved performance for representative benchmarks.
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