
Wayne State University
Cluster and Internet Computing Laboratory 

A Scheduling Framework that Makes any Disk 
Schedulers Non-work-conserving 

solely based on Request Characteristics

Yuehai Xu and Song Jiang

Department of Electrical and Computer Engineering
Wayne State University



2

Disk Performance and Workload Spatial Locality

The disk is cost effective with its ever increasing 
capacity and peak throughput. 

The performance with non-sequential access is critical  
for the disk to be competitive.
– Virtual machine environment
– Consolidated storage system

The effective performance depends on exploitation of 
spatial locality. 
– This locality is usually exploited statically in the request 

scheduling. 
– In this work, we exploit it in both space and time dimensions. 



3

Quantifying Request Service Time

Logical Block 

Address (LBA) 



From 1-D Locality to 2-D Locality

4

LB
A

LB
A

TimeTimeCurrent Time 

D
is

k 
H

ea
d

T1 = service_time(pending_request)

To exploit the locality, usually select 
minimal T1 among pending requests.

T1



From 1-D Locality to 2-D Locality

TimeTime 5

LB
A

LB
A

T1

T3

T2

T1 = service_time(pending_request)

T2 = wait_time (future_request)

T3 = service_time (future_request)

To exploit 1-D locality, select 
min(T1) among pending requests.

To exploit 2-D locality, select 
min(T1, T2+T3) among pending and 
future requests with non-work-
conserving scheduling.D

is
k 

H
ea

d

Current Time 



Challenges of Exploiting 2-D Locality

TimeTime 6

LB
A

LB
A

T1

T3

T2

T2+T3 < T1

Predicting arrival times and locations of 
future requests whose T2+T3 < T1;

Determining what request history should 
be used for the prediction. 

T1 = service_time(pending_request)

T2 = wait_time (future_request)

T3 = service_time (future_request)

D
is

k 
H

ea
d

Current Time 



How does anticipatory handle them?

7

LB
A

LB
A

TimeTimeCurrent Time 

D
is

k 
H

ea
d

The anticipatory scheduling (AS) groups requests according 
to their issuing processes.
AS explicitly tracks request arrival times and locations for 
each process to make a prediction for the next request.



Anticipatory’s Limitations

8

LB
A

LB
A

TimeTime

D
is

k 
H

ea
d

Requests in a local disk region may be issued by different processes. 
Maintaining/analyzing long history access statistics can be expensive.
The process information may be unavailable ! (VM, SAN, NFS, 
and  PVFS etc.)   



9

Related Approaches
Antfarm infers process information in the virtual machine monitor 
by tracking activities of processes in VMs [USENIX ATC’06].
– Applicable only to VM.
– Guest OS needs to be open for instrumentation.

Hints, such as accessed files’ directory or owner, are used for 
grouping requests in the NFS servers. [Cluster’08].
– Hints may not be always relevant. 

The Linux prefetching policy exploits spatial locality by tracking file 
access for every processes’ opened file. [Linux Symposium’04]
– File abstraction may not be available to the disk schedulers.
– Its efficient tracking and decision making mechanisms can be leveraged.



Design Goals of Stream Scheduling

Use only request characteristics, i.e., request arrival 
times and locations
– Process information is not required in any way.

Introduce minimal overhead
– Remember minimal history access information
– Conduct minimal computation in its locality analysis 

Integrate seamlessly with any work-conserving 
schedulers 
– Designed as a framework to make them non-work-conserving 

10



11

Design of Stream Scheduling

Group requests into streams so that the intra-stream 
locality is stronger than the inter-stream locality. 

Track judicious scheduling decisions rather than locality 
metrics
– Wait or not wait? (future request vs. pending request)
– A stream is a sequence of requests for which judicious decisions

are “wait”.

A stream is maintained as Linux prefetching does. 
– A stream is built up or torn down depending on next judicious 

decision.



Arrival of a request 

Completion of a request 

Time period serving other requests

Time period serving this request

Link showing relationship between 
parent request and child request 

TimeTime

LB
A

LB
A

1

Stream Scheduling Illustration

a

1

b

2

b

3

c

3

2

c
d

4 4

Req 1 has its child (Req 2). 

The stream length increases to two.

T2+T3 < T1



13

Maintenance of Streams
A stream grows when a completed request sees its child. 
– Determining existence of a child is independent of actual 

scheduling.
– A stream is established when its length exceeds a threshold.
– An established stream leads to non-work-conserving 

scheduling. 
The scheduler stops serving a stream when 
– the stream is broken; or
– the time slice allocated to the stream runs out; or
– an urgent request appears.
To maintain a stream, only current stream lengths need to 
be remembered. 
– The cost is trivial !
We have design of stream scheduling for the disk array. 
– It is described in the paper.



Experiment Settings

Software settings
– Stream Scheduling (SS) is prototyped in Linux kernel 2.6.31.3 using 

Deadline as its work-conserving component. 
– The default stream length threshold is 4.
– The default stream time slice is 124ms.
Hardware settings
– Intel Core2 Duo with 2GB DRAM memory.
– 7200RPM, 500GB Western Digital Caviar Blue SATA II with a 16MB 

built-in cache. 
Adaptation for NCQ
– Disk head position is indicated by the last request sent to the disk.

14



Storage without Process Information

parpar--readread: four independent processes, each reading a 1GB file using 4KB requests in 
parallel.
GrepGrep: two grep instances, each searching in a Linux directory tree.
TPCTPC--HH: three TPC-H instances, each using PostgreSQL as its database server and DBT3 to 
create its tables. 
PostMarkPostMark: four PostMark instances, each creating a data set of 10,000 files.

par-read grep TPC-H PostMark



Storage without Process Information

parpar--readread: four independent processes, each reading a 1GB file using 4KB 
requests in parallel.

Execution Time (s)

P
en

di
ng

 T
im

e 
(m

s)

S
er

vi
ce

 T
im

e 
(m

s)

Execution Time (s)



Storage with Inadequate Process 
Information

multimulti--threads:threads: four processes, each forking two threads for reading files 
with periodic synchronization between them.
mpimpi--ioio--testtest:: four mpi-io-test program instances running on PVFS2 where 
files are striped over eight data servers. 
ProFTPDProFTPD:: a ProFTPD FTP server on each Xen VM supporting four clients 
to simultaneously download four 300MB files.
TPCTPC--H:H: three TPC-H instances on each Xen VM.



18

Conclusions

The stream scheduling framework turns any disk 
scheduler into a non-work-conserving one. 
– Process information is not required in the scheduling.
– Both time and space overheads are low. 

The framework can be extended to disk arrays to 
recover and exploit the locality weakened by file 
striping.

Experiments on its Linux prototype show significantly 
improved performance for representative benchmarks.


