NetApp[™]

Go further, faster®

Improving throughput for small disk requests with proximal I/O

Jiri Schindler with Sandip Shete & Keith A. Smith

v.1.3

Advanced Technology Group

2/16/2011

Net App⁻ Important Workload in Datacenters

- Serial reads after random writes
 - Writes are (small) logical updates
 - Serial reads of continuously changing data
- Database systems example
 - Data acquired through transactions
 - Data scans for business intelligence
- Datacenter/enterprise scale
 - Flash memory prohibitively expensive
 - Use disk drives for serial reads

Inherent Tradeoff in Current FS Designs

- Optimized for one prevalent access pattern
 - either serial reads or random updates
- Update-in-place writes (e.g., FFS, ext2 etc.)
 - Preserve physical locality for serial reads
 - Updates inefficient, especially with parity RAID
- LFS-style log-append writes
 - Fragment on-media layout for serial reads

Want a file system where both random writes and serial reads are efficient

Our Approach – Briefly

- Stage random updates in NV memory buffer
- Destage (bulk write-allocate) to disk
 - Use proximal disk I/O for efficient writes
 - Can retire multiple I/Os per revolution
- Write allocation with no overwrites
 - Old versions used for snapshots etc.
 - Maintains desired serial-read efficiency
 - Write to free locations near related data

RAID 1-like write performance on parity RAID Minimal serial read degradation on aged FS

- System concepts
- Experimental results
- Concluding remarks

SYSTEM CONCEPTS

© 2011 NetApp. All rights reserved.

Efficient Proximal Disk I/O – Concept

- Disk technology trends
 - Minimal seek/head switch time <1ms
 - Same repositioning cost within ~100 of tracks
 - Increasing aerial bit density is in our favor
- Can service multiple small I/Os per rev.
 - Up to 10 locations within a span ~100K blocks
 - Large degree of freedom for write allocation
- Near-line (SATA) 7200 RPM disk
 - 8.3 ms per revolution
 - 0.8 ms head switch time

Achieving Enough I/O Density

- Assume random updates
 - Single 1 TB disk holds ¼ billion blocks
 - Proximal I/O needs 6 to 8 blocks/ ~100K blocks
- Stage random updates in NV memory
 - Destage to disk when required density achieved
- Trends in out favors
 - Not all I/Os are not user I/Os
 - "Degree of randomness" workload-dependent

Stage area sized at 1% of the working set sufficient

Traditional approach Our approach with proximal I/O

RAM-based buffer cache

NV memory-based staging area

Features & Some Details

- Small (over)writes absorbed by Flash memory
 - Metadata updated immediately
 - Updates create "holes" in on-disk layout
 - New versions of data accessed from Flash in parallel while streaming other data from disk
- Destaging
 - Batch blocks belonging to the same extent
 - Metadata reads amortized during destage
 - read once access many times

EXPERIMENTAL RESULTS

© 2011 NetApp. All rights reserved.

Experimental Setup

- File system data layout engine (DLE) prototype
 - Extent Create/Read/Write/Unlink ops
 - Basic implementation of allocation algorithms
- Data Storage
 - NetApp DS4243 Shelf with 1TB SATA disks
 - Staging area on FLASH-based SSDs
 - NetApp RAID user-level emulator
 - Each FS 4KB block has checksum/context info
 - One block for every *n* user-blocks

Basic Workload Description

- Write sequentially large (16MB) extents
- Many random small updates
 - "age" initial on-disk layout
 - destage I/Os from Flash to disk
- Adverse scenario: 90% full FS
 - Limits allocation choices
- Vary staging area size
 - n% of disks' capacity

Small Random Updates NetApp

4+1 RAID4 (WD1002FBYS-05ASM 7200 RPM SATA disks), NetApp DS4243 shelf

	User writes per batch	Batch resp. time	Service time per user write	I/Os per revolution	I/O amplification
Baseline	1	16.1 ms	16.1 ms	2.0	8x
1% Stage	47.5	129.5 ms	2.7 ms	5.3	6.2x

% Stage: Flash size relative to RAID capacity

BASE: update-in-place writes w/ checksum block **Batch:** one destage operation (blocks of one file/extent) I/O amplification: # of disk I/Os for each user write

- 6x smaller per user write service time
- 5.3 I/Os serviced per revolution
 - With minimal reduction in write amplification

Serial Reads after Random Updates

Mean RAID group I/O request size: 819 blocks Max I/O size per disk: 256 blocks (1024 KB)

			Data Disks	
	Per-disk bandwidth	I/Os to RAID per request	Avg. I/Os per disk	Utilization (Busy time)
New FS	89.0 MB/s	1.2	11.7	85%
Aged FS	86.2 MB/s -3%	26.3	20.7	82%
Aged LFS-style*	2.6 MB/s -97%	509.9	210.2	85%

* no segment cleaning/background reallocation

Only 3% BW degradation on aged layout

Flash Cost vs. Performance Trade off

Increasing stage area size

Expressed as % of the RAID group size

Diminishing return after stage area of 3%

CONCLUDING REMARKS

© 2011 NetApp. All rights reserved.

NetApp^{*} Summary

- Flash memory (~1% of HDD capacity)
 - Absorbs small random writes
 - Destage when enough data for efficient disk write
 - 3x more IOPS vs. equivalent disk-only system
- Making destage disk I/O efficient
 - Proximal I/O maximizes blocks accessed per seek
 - 5.3 I/Os per rev in the vicinity ~100,000 LBNs
 - RAID1-like I/O performance with RAID 4
- Minimize/eliminate background disk grooming
 - In-band reallocation during destage operation

At the poster session

Email jiri.schindler@netapp.com

Advanced Technology Group <u>www.netapp.com/us/company/leadership/advanced-technology/</u>

Yes, we are hiring! <u>http://www.netapp.com/careers</u>