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Abstract
Shared storage underlies most enterprise VM deploy-

ments because it is an established technology that admin-
istrators are familiar with and because it good job of pro-
tecting data. However, shared storage is also very expen-
sive to scale. This paper describesCapo1, a transparent
and persistent block request proxy for virtual machine
disk images. Capo reduces the load on shared storage by
using local disks as persistent caches, using multicast-
based preloading to broadcast read results across a clus-
ter, and by imposingdifferential durability– dividing a
VM’s file system into regions of varying writeback fre-
quency. We motivate the system’s design through the
analysis of a week-long trace of 55 production virtual
desktops and then describe and evaluate our implemen-
tation. Capo is particularly well suited for virtual desk-
top deployments, in which large numbers of VMs boot
from a small number of “gold master” images and are
refreshed on a periodic basis.

1 Introduction

The storage we trust is expensive. Fast and reliable data
storage is something that organizations are prepared to
pay a premium for, both in the capital costs of enterprise
storage hardware and the operational costs of ensuring
that important data is written to it.

Interestingly, the deployment of virtualization has in-
verted the historical imperative that systems be config-
ured to “opt-in” to storing data on appropriate network
shares instead of on less reliable locations such as lo-
cal disks. While administrators used to have to work to
configure applications to use enterprise storage, virtual
environments simply storeeverythingon it.

1The name of our system is borrowed from the phrase“Da Capo
al coda”, which is used in sheet music to indicate a brief return to the
beginning of a piece, followed by a jump to the Coda, or conclusion.
In sonatas, this “recapitulation” involves revisiting a similar, but some-
times different version of the main theme of the arrangement.

As such, these environments present the opposite
problem: The requirement that virtual machine images
be universally accessible, with high performance, to all
physical hosts in a cluster has necessitated the deploy-
ment of SAN hardware in even modest virtualization
deployments. The improved density and utilization af-
forded by virtualization allows systems to scale to large
numbers of VMs; shared storage must scale proportion-
ately to provide for them. This symptom is especially
problematic for virtual desktops, where infrastructure is
being deployed to host literally thousands of nearly iden-
tical VM images. A number of commercial virtual desk-
top systems now exist, and deployments suffer from a
significant, if not dominant, cost for enterprise storage.

This paper argues that shared, central, storageis the
correct approach for scalable virtual environments. It
is trustworthy, relatively easy to manage, and simple to
reason about. However, we believe that for applications
such as virtual desktops, which involve large numbers
of image clones, the majority of request load is redun-
dant and can be effectively serviced by local, commodity
disks within individual servers. Furthermore, we believe
that the levels of durability provided by enterprise stor-
age in these environments are in excess of what is neces-
sary for large portions of desktop OS disk images.

The contributions of this paper are twofold: First, we
validate our hypothesis through the analysis of a week-
long trace of all storage traffic from a production deploy-
ment of 55 Windows Vista desktops in an executive and
administrative office of a large public organization. Our
results examine the opportunities that exist for caching
data both within and across virtual desktop images. They
also examine the breakdown of request workload within
desktop filesystems.

Second, based on the analysis of this trace, we de-
scribe the design and implementation ofCapo, a dis-
tributed persistent cache that aims to reduce aggregate
load on shared storage in virtual desktop environments.
Capo uses local server disks to provide persistent caching



of VM images, and includes mechanisms to share and
pre-load caches of gold master images across VMs and
across hosts. Finally, Capo introduces a facility fordif-
ferential durability, which allows administrators to selec-
tively “opt out” of enterprise storage guarantees by relax-
ing the durability properties of subsets of a desktop’s file
system.

Virtual desktop systems have already taken advantage
of several approaches to scale storage to large numbers
of desktop machines. We begin in Section 2 by providing
some brief initial background on these systems.

2 VDI Background

Virtual desktops represent the latest round in a decades-
long oscillation between thin- and thick-client computing
models. So-called Virtual Desktop Infrastructure (VDI)
systems have emerged as a means of serving desktop
computers from central, virtualized hardware. VDIs are
being touted as a new compromise in a history of largely
unsuccessful attempts to migrate desktop users onto thin
clients, and the approach does provide a number of bene-
fits. Giving users private virtual machines preserves their
ability to customize their environment and interact with
the system as they would a normal desktop computer.
From the administration perspective, consolidating VMs
onto central compute resources has the potential to re-
duce power consumption, allow location-transparent ac-
cess, better protect private data, and ease software up-
grades and maintenance.

Commercial VDI systems appear to be experiencing
a degree of success: Gartner predicts that forty percent
of all worldwide desktops—49 Million in total—will be
virtualized by 2013 [17]. Today, the two major vendors
of VDI systems, Citrix and VMWare, individually de-
scribe numerous case studies of active virtual desktop
deployments of over 10,000 users. From a storage per-
spective, VDI systems have faced immediate challenges
around space overheads and the ability to deploy and up-
grade desktops over time. As background, this section
describes how these problems are typically solved in ex-
isting architectures, as illustrated in Figure 1.

2.1 Copy-on-Write and Linked Clones

Operating system images are entire virtual disks, often
tens of gigabytes each. A naive approach to support-
ing hundreds or thousands of virtual machines results in
two immediate storage scalability problems. First, VMs
must have isolated disk images, but maintaining individ-
ual copies of every single disk is impractical and con-
sumes an enormous amount of space. Second, adding
new users requires that images can be quickly duplicated
without necessitating a complete copy.
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Figure 1: Typical image management in VDI systems.

This observation is not new; it has been a recur-
ring challenge in virtualization. Existing VDI systems
make use of VM-specific file formats such as Microsoft’s
VHD [14] and VMware’s VMDK [22]. Both allow a
sparse overlay image to be “chained” to a read-only base
image (or gold master). As shown in Figure 1, modifi-
cations are written to private, per-VM overlays, and any
data not in the overlay is read from the base image. In
this manner, large numbers of virtual disks may share
a single gold master. This approach consolidates com-
mon initial image data, and new images may be quickly
cloned from a single gold master.

2.2 Image Updates and Periodic Rollback

Image chaining saves space and allows new images to
be cloned from a gold master almost instantaneously. It
is not a panacea though. Chained images immediately
begin to diverge from the master version as VMs issue
writes to them. One immediate problem with this diver-
gence is the consumption of independent extra storage
on a per-image basis. This divergence problem for stor-
age consumption is typically addressed through the use
of data deduplication [24, 6, 4].

For VDI, wasted storage is not the most pressing con-
cern: block-level chaining means that patches and up-
grades cannot be applied to the base image in a manner
that merges and reconciles with the diverged clones. This
means the ability to deploy new software or upgrades to a
large number of VMs, whichwasinitially provided from
the single gold master is immediately lost.

The leading VDI offerings all solve this problem in a
very similar way: They disallow users from persisting
long term changes to the system image. When gold mas-
ter images are first created and clones are deployed, the
VDI system arranges images to isolate private user data
(documents, settings, etc.) on separate storage from the
system disk itself. As suggested initially in the Collec-
tive project [3], this approach allows a new gold master
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with updated software to be prepared and deployed to
VMs simply by replacing the gold master, creating new
(empty) clones, and throwing away the old version of
the system disk along with all changes. This approach
effectively “freshens” the underlying system image of
all users periodically and ensures that all users are us-
ing a similar well-configured desktop. For the most part,
it also means that users are unable to install additional,
long-lived software within VDI images without support
from administrators.

3 Virtual Desktop Trace

To better understand VDI workloads, we arranged to
measure all block and file level activity from the a pro-
duction VDI deployment for a one week period during
the Summer of 2010. The deployment being studied is
an office in a large public organization containing exec-
utive and administrative support staff. The deployment
had been in production use for six months and includes
55 Windows Vista desktops, the organization is in the
process of rolling out another 300 desktops this fall.

3.1 Methodology

We installed a Windows storage class driver into the base
system image of the virtual desktop machines. The driver
was written to record block read and write events to
the virtual disks using the Microsoft Windows Software
Trace Preprocessor (WPP). It recorded request size and
virtual disk address. In 93% of cases we were also able
to determine the file on which the access originated by
following the OriginalFileObject pointer in the Windows
I/O Request Packet (IRP) structure. To better contextu-
alize this information, we also installed a driver at the
filesystem level and recorded cache accesses, the appli-
cation making each request, and the file flags for each file
accessed. Our disk-level driver is written in 515 lines of
C, while our file-level driver is 82 lines of C.

Logs from these drivers were written to a network
share and collected on the Thursday following a full
week of logging. In total we collected 75GB of logs in
a compressed binary format. We then checked for cor-
ruption, missing logs, or missing events. Out of over 300
million entries we found a single anomalous write to a
clearly invalid block address, which we removed. We
could find no explanation for the event. In the rest of
this section we present our analysis of this data. Unless
otherwise specified, we will refer to block level accesses
to a virtual disk and measure aggregate workloads in I/O
operations per second (IOPS).

3.2 Our Virtual Desktop Environment

The environment we are studying is structured very much
like the one described in Section 2. At the time our mea-
surements were gathered it hosted 55 Microsoft Win-
dows Vista virtual desktops with VMWare View, of
which roughly 27 are in dedicated day-to-day use as the
primary desktop. This small size is the primary limi-
tation of our study, but we expect to measure consider-
ably more as the installation grows. Furthermore, even
at the current size it is possible to see considerable self-
similarity among machines, as we will discuss.

End users work from Dell FX100 Zero thin clients,
while VMs are served from HP BL490c G6 Blades run-
ning ESX Server. These servers connect to a Network
Appliance 3170s over fiber channel, for booting from
the SAN, and 10GigE, for VM disk images. System
images are hosted via NFS on a 14 drive RAID group
with 2 parity disks. The operating systems and applica-
tions are optimized for the virtual environment [20] and
are pre-loaded with Firefox, Microsoft Office Enterprise,
and Sophos Anti-Virus among other software. At the end
of every Wednesday, a new system image is published to
all users exactly as discussed in Section 2.2.

3.3 Analysis

We begin by asking,What are the day-to-day charac-
teristics of VDI storage workloads?Figure 2 shows the
entire study in I/O operations-per-second for the 24-hour
period of each of the 7 full days recorded. There is a
distinct peak load period between 8:30 and 9:30 every
morning, as employees arrive at work. Three peaks in
this period are highlighted in the figure and presented
for expanded analysis in Table 1. The right-most col-
umn shows the applications responsible for the most disk
I/O, excluding the system and services. Most days, Fire-
fox and the virus scanner are very active in this period,
we also see Thunderbird, Pidgin, and Microsoft Outlook
frequently. We were surprised to see the Search Indexer
active as well, because we were told its background scan-
ning task had been disabled to reduce I/O consumption.
Our best guess is that it was invoked manually.

We measured the write to read percentages for both
IOps and throughput, which is useful in characterizing
the workload. Our workload is write-heavy in IOps, and
read-heavy in throughput, both by approximately two-
to-one. We then measured the percentage of VMs which
contributed at least 5% of the peak workload, to deter-
mine if peaks were caused by multiple VMs or by a few
outliers. In most cases, it is the former; however, the peak
in slice 4 was caused primarily by 4 VMs. The column
titled “Dup. reads” illustrates the potential for caching.
We present two numbers. The left-most is the percent-
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Figure 2: Activity measured in I/O operations over each of the 7 days.

Time Period Write % % of VMs Dup. reads Top Applications by IOps
(IOps / Thpt) (≥ 5%) (VM / Clust.) (excludes system and scvhost)

1 Mon. 8:30am-8:45am 50% / 22% 26% 81% / 91% Search Indexer, Firefox, Sophos
2 Fri. 8:30am-9:00am 52% / 22% 29% 88% / 97% Firefox, Search Indexer, Sophos
3 Tue. 9:15am-9:30am 64% / 43% 29% 78% / 99% Defrag, Firefox, Search Indexer
4 Mon. 2:00pm-2:30pm 62% / 41% 7% 59% / 99% Firefox, Pidgin, Sophos
5 Tue. 2:40pm-3:00pm 69% / 52% 26% 77% / 97% Firefox, Defrag, Pidgin
6 Wed. 4:00pm-4:15pm 60% / 37% 26% 99% />99% Firefox, Pidgin, Sophos

Table 1: Points of interest in Figure 2.

age of reads that have been previously seen by that VM
over the course of the trace. With a large enough cache,
we could potentially absorball these reads. The right-
hand column presents the same measure, but imagines
that caching could be shared across all VMs in the clus-
ter. Slice 4 stands out for having an unusually low du-
plicate read rate for VMs, but a very high rate across the
cluster as a whole. We investigated and found that two
very active VMs had duplicate read rates of 26% and
30%. By including the least beneficial 38%, 15% and
4% of VMs, we could reach duplicate read rates of 40%,
60% and 90% respectively. From this we conclude that
you can achieve significant improvements with caching,
possibly even by sharing caches, but that some benefits
may require careful selection of the VMs in question.

Lunch, dinner, and late nights are periods of relative
inactivity, as are the weekends. Late afternoon peaks
are sporadic, but reach loads nearly as high as the morn-
ing. One such peak, marked 4 in Figure 2 and Table 1,
was caused by a relatively small number of machines en-
gaged in heavy browsing activity. This is not the norm,
as all other peaks occur when more than a quarter of
the VMs are significantly active. This is clear in Fig-
ure 3, which shows a CDF of VMs by their contribution
to the total workload for each peak. These peak load pe-
riods are particularly important, because they define the
hardware necessary to service the workload without dis-
ruption. We conclude that,VDI workloads are defined
by their peaks, and those peaks usually occur at times
of common activity among many VMs.In Sections 4.1
and 4.2 we take advantage of this fact to improve perfor-
mance in VDI environments.

Number of VMs
0 5 10 15 20 25
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1 Mon. 8:30am−8:45am
2 Fri. 8:30am−9:30am
3 Tue. 9:15am−9:30am
4 Mon. 2:00pm−2:30pm
5 Tue. 2:40pm−3:00pm
6 Wed. 4:00pm−4:15pm

Figure 3: Contributors to each of the major workload
peaks.

Next, we ask,How can we characterize the I/O re-
quests? In Figure 4 we show the entire workload by
both request count and size. We differentiate reads from
writes, and also isolate each request by its target in the
file system namespace. The workload is 65% writes,
which account for 35% of the throughput, versus 35%
of reads accounting for 65% of the throughput. Meta-
data operations account for large portion of the requests;
unfortunately we cannot determine how these modifica-
tions relate to the namespace. Directories typically man-
aged by the operating system, such as\Windows and
\Program files are also frequently accessed. There
are fewer accesses to user directories and temporary files;
most of the latter are to\Temporary Internet
Files, as opposed to\Windows\Temp. These find-
ings contrast those of Vogels who’s study showed that
93% offile-levelmodification occurred in\User direc-
tories [23]. We conclude that,while a wide range of
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Figure 5: Percentage of bytes that need to be written to
the server if writes are held back for different time peri-
ods. This is lower than the original volume of writes due
to the elimination of rewrites.

the namespace is accessed, it is not accessed uniformly,
and access to data directly managed by users is rare.
We will revisit this observation in Section 4.3.4.

Since our workload is write-heavy, we next ask,how
are these writes organized in time?Figure 5 shows the
percentage of disk writes that overwrite recently writ-
ten data, for time intervals ranging from 10 seconds to
a whole day. We have included results from each of the
seven days to underscore how consistent the results are.
In a short time span, just 10 seconds, 8% of bytes that
are written are written again. This rate increases to 20%-
30% in 10 minute periods and ranges between 50%-55%
for twenty-four hour periods. From this we conclude
that, Considerable system-wide effort is spent on data
with a high modification rate. We show how this can
used to our advantage in Section 4.3.

Since VMs typically use disk images chained from a
gold master, we are interested in the rate at which the
overlay image diverges from the original image. We
therefore ask,At what frequency do we observe the first
write to a sector? Figure 6 plots this data for the av-
erage VM, as well as the most and least divergent VM,
over the entire study. Within 24 hours, most VMs hit a
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Figure 6: Bytes of disk diverging from the gold master.
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Figure 7: Total divergence versus time for each names-
pace category.

near plateau in their divergence, around 1GB. Over time
this does increase, but slowly. A smaller set of VMs
do diverge more quickly and significantly, but they are
far from the 95% confidence interval. We conclude that,
there is significant shared data between VMs, even after
several days of divergence.

Naturally, we do not expect divergent writes to occur
uniformly, so we pose a question:Where in the names-
pace do divergent writes occur, and does this change
over time?Figure 7 plots the cumulative divergence for
each VM in the cluster, and divides that total among var-
ious components of the namespace. One can observe
that the pagefile diverges immediately, then remains a
constant size over time, as does the system metadata.
Both these files are bounded in size. Meanwhile writes
to \Windows and areas of the disk we cannot associate
with any file continue to grow over the full week of the
study. We conclude that,While writes occur everywhere
in the namespace, they exhibit significant trends when
categorized according to the destination.

3.4 Summary

While there is more to say about this workload and
those of VDI environments in general, the observations
in this section are valuable. Summarizing our observa-
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tions from the trace data:

• VDI workloads are defined by their peaks, and those
peaks usually occur at times of common activity
among many VMs

• While a wide range of the namespace is accessed,
it is not accessed uniformly, and access to data di-
rectly managed by users is rare

• Considerable system-wide effort is spent on data
with a high modification rate

• There is significant shared data between VMs, even
after several days of divergence

• While writes occur everywhere in the namespace,
they exhibit significant trends when categorized ac-
cording to the destination

These observations taken together suggest that addi-
tional caching, combined with an awareness of names-
pace organization might resolve the performance chal-
lenges that we have observed. The following section
builds on the observations and analysis presented here,
and describes the architecture of Capo.

4 Architecture

The trace analysis in Section 3 suggests that caching be-
low the individual VMs may be effective in resolving the
demand peaks that we observed. In this section we de-
scribe Capo, including its three major components:

1. A single-host cache which eliminates redundant
reads and writes from virtual desktops hosted on the
same server.

2. A multi-host cache preloader which eliminates re-
dundant reads from virtual desktops hosted on dif-
ferent servers.

3. A component that supportsdifferential durability,
which modifies cache coherency based on the loca-
tion in the namespace of the affected file.

Figure 8 shows the overall architecture of Capo. Capo
exists as a layer within the virtual machine monitor
(VMM) which supports the individual desktop VMs.
The figure depicts each host including a Local Persistent
Cache which is stored on the local disk of the host ma-
chine and is described in Section 4.1. Spanning all of the
hosts is the Transparent Multi-host Prefetch component
which optimistically preloads data accessed by one host
into the local caches of the other hosts. It is described
in Section 4.2. The Durability Map component supports
the wide variation in the durability requirements of the
various components of the file system. It is described in
Section 4.3.

VM VM VM VM
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Host 0
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Local Persistent
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Host n

Durability Map Capo:
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Cluster-wide request

interposition layer.

Local Persistent

Cache

Figure 8: The Major Architectural Components of Capo.

4.1 Local Persistent Cache

All VDI deployments rely on central enterprise storage
that provides high availability, durability, and reliability.
The servers that host virtual desktops are also configured
with local disk storage which consists of cheap COTS
disk drives with comparably lower reliability but higher
aggregate I/O bandwidth.

The trace-based analysis of our local VDI deployment
suggests that a cache shared between multiple virtual
desktops might be very effective. As shown in Figure 3,
there is significant overlap between the top applications
executed on different virtual machines. Table 1 refines
this and indicates that aggressive caching can yield very
high read hit rates. Also, as shown in Figure 5, a signif-
icant fraction of data is overwritten very quickly. There-
fore, as depicted in Figure 8, each server machine that
hosts virtual desktops uses its local disk as a persistent
cache. A key goal for Capo is to provide an appropriate
level of durability for all data while taking advantage of
the higher aggregate bandwidth available to local disk.
The level of durability achieved depends on the caching
policy in place.

4.1.1 Caching Policies

The cache supports two consistency policies: write-
through and write-back. These policies are enforced at
disk image granularity. Each of these policies represents
a different tradeoff between virtual disk consistency and
overall system performance.

Thewrite-throughpolicy provides the highest level of
consistency guarantees a machine would expect from a
block device. In this policy the cache replicates writes to
both the centralized storage and the local cache. Write
requests are not acknowledged until they hit both disks.
This policy relieves the centralized storage from serving
reads to blocks that have been previously read from or
written to. The drawback of this policy is that write re-
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quests must be sent across the network, consuming net-
work bandwidth and increasing both the load on the cen-
tralized storage and the client’s perceived write request
latency.

Thewrite-backpolicy delays pushing updates to disk
blocks by caching writes locally in the write cache. Up-
dates are pushed to the central storage in a crash consis-
tent manner at a per-virtual-disk configurable frequency.
The choice of write-back frequency trades off system
performance and durability of disk contents in case of a
failure. A high update frequency minimizes the amount
of data loss in case of the failure of the local disk, while
a lower frequency enhances overall system performance
by coalescing writes in the local cache.

4.1.2 Design and Implementation

The local persistent cache is implemented as an exten-
sion to the publicly available XenServer 5.6 release. It
runs in Xen’s “domain 0” VM and interposes on the
block request path below virtual machines. Cached data
is stored as sparse image files in a Linux file system.
Each virtual disk’s cache consists of either two or three
components, shown in Figure 9: a read store, write store,
and possibly a snapshot store. Each of these components
is represented using a data file and a bitmap in the per-
sistent cache. The bitmap’s purpose is to identify which
sectors of the corresponding data file are valid. Writing a
sector to a cache component involves writing the sector’s
data to the data file and setting the sector’s corresponding
bits in the on-disk bitmap.

Write requests are satisfied by writing their data sec-
tors to the cache’s write store. When the cache is set to
write-through, the sectors are also written concurrently
to the centralized storage. Read requests are satisfied by
first checking the write store, then the snapshot if it ex-
ists, and finally the read store. At each layer, if a sector is
valid as specified in the bitmap, the data can be returned
immediately from that layer. If none of the stores contain
valid data, the sectors are read from the centralized stor-
age, written to the read store, and returned to the client
VM.

Virtual

Disk
Write ReadRead

Virtual Disk Cache (VM Host) Central Storage

Snapshot

1
2

2

3

Figure 9: Capo’s virtual disk cache components and
snapshot procedure.

The snapshot mechanism in the cache works in tan-

dem with a transactional update mechanism in the back-
end storage to ensure crash consistent updates to remote
disk images when operating in write-back mode. Push-
ing updates to the backend storage involves three steps,
as shown in Figure 9. First, a write cache snapshot is
created by pausing the request stream momentarily and
moving the contents of the cache’s write store to the
snapshot store. Secondly, the snapshot contents are ap-
plied transactionally to the centralized storage and to the
read cache concurrently. Finally, after the snapshot up-
dates have been applied, the snapshot store is cleared.

The cache is implemented as a user-level shared li-
brary that interposes on I/O calls, specifically the glibc
and libaio I/O and file management operations. Due to
the relative sizes of the disks in virtual desktops (around
10GB) and the disks in the physical machine which hosts
them (greater than 1TB) and the amount of sharing be-
tween virtual desktops (see Figure 6), we can easily sup-
port hundreds of virtual desktops on a server without
worrying about overfilling the cache. In our implemen-
tation, when the cache does fill, we simply throw it away
and start again.

4.2 Multi-host Cache Preload

Capo’s local persistent cache goes a long way towards
eliminating redundant read requests on individual ma-
chines. But as growing VM deployments lead to larger
numbers of physical hosts, redundant reads across these
hosts place additional burden on central servers. Fur-
ther scalability improvements can be attained in this case
by multicasting common data to all hosts simultaneously
rather than to each host individually.

To this end, we have developed a multicast cache
preloader for local caches. The preloader is completely
lock-free and requires no modifications to existing cen-
tralized servers. It consists of a service which observes
network traffic to and from the central storage server.
Clients on each host contact the service and register
watches for files which are determined to be good can-
didates for preloading. The service captures any reads
made to these files and distributes the results to all sub-
scribed clients via multicast. In this way, the first host to
read common data essentially prefetches it for all other
hosts.

4.2.1 Design and Implementation

Our initial design for the preload server was to use a mir-
ror port on the central storage server to monitor network
traffic. As in Ditto [5], our server captured raw network
packets and reconstructed TCP flows to extract relevant
data (in our case, NFS requests and responses). When
deploying this solution, however, we observed signifi-
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cant packet loss between the mirror port on the filer and
our server, and since a single packet loss is enough to cor-
rupt an entire NFS request or response, we were missing
many opportunities to preload data.

Our second, and current, design employs a user-level
NFS proxy that sits between the clients and the filer. NFS
requests and responses are routed through the proxy, and
the proxy identifies data that should be preloaded into
other local persistent caches. This increases the latency
of filer requests somewhat, but avoids all of the issues
with packet capture.

In the current implementation, NFS clients are left
unmodified. Instead, a single preload client runs on
each physical host. On startup, these processes regis-
ter watches with the server for files known to be shared
across hosts. Because this data is predominately read-
only, no synchronization is required when multicast
clients update the local caches. When the preload server
observes reads to files being watched by clients, it multi-
casts the responses to all clients.

Because NFS clients are unmodified, reads of shared
files result in two responses: the unicast response to the
original requester, and a second multicast response to all
subscribed clients. This leads to an increase in over-
all read bandwidth consumption from the proxy to the
clients, but reduces the load on the storage server. The
redundant unicast response could easily be avoided by
making NFS clients aware of the multicast service.

We also currently prioritize unicast responses over
multicast responses. This limits the latency overhead
seen by NFS clients while delaying preloading on other
clients, making it slightly more likely that they will sub-
mit unicast requests for the same data. With modified
NFS clients, we could more viably prioritize multicast
responses, improving the efficacy of preloading.

The preload server sends a significant amount of traf-
fic over a number of multicast sessions, and has exposed
problems with the support for multicast in some mod-
ern switches. On some of the switches that we have
experimented against, multicast packets appear to con-
sume a disproportionately large amount of resources. As
a result, even relatively low-throughput multicast traf-
fic has resulted in packet drops with detrimental conse-
quences for concurrent TCP connections. The results can
be dramatic: early experiments with completely unthrot-
tled multicast traffic resulted in NFS throughput drops
from 100MB/sec to 3MB/sec.

To address this, we have implemented a rudimentary,
adaptive flow-control protocol, similar to one described
in SnowFlock[13]. Each packet sent by the server is as-
sociated with an epoch. The server periodically updates
the epoch number, and when clients notice a new epoch,
they send a message indicating the number of packets
successfully received during the previous epoch. In this

way the server gets feedback about packet drop rates and
is able to vary transmission rates accordingly. An ad-
ditive increase/multiplicative decrease scheme with ag-
gressive back-off has produced reasonable results in our
benchmarks.

This flow-control protocol – and preloading in general
– is strictly best-effort: no work is wasted trying to re-
transmit dropped multicast packets. If the preload clients
fail to receive multicast updates for required data, it will
eventually be fetched via the conventional unicast path.

The client logic for deciding which files to preload is
simplified by a few basic design principles. We assume
that, given a number of VMs derived from a common
master image, reads of the base image made by any indi-
vidual VM will likely be duplicated by all VMs. That is,
while the disks belonging to derived VMs will tend to di-
verge as the VMs age, the common portion of these disks
will likely be read by all or none of the VMs. Thus if
the multicast server observes any read of a common file,
it is worth sending this data to all hosts on which Capo
is caching this file. By the same assumption, multicast
clients do not pro-actively request data from the server,
as they are not in a position to know which portions of
files will be read by VMs.

4.3 Differential Durability

Major VDI providers have all adopted the software up-
date strategy proposed in The Collective [3], where user
directories are isolated from the rest of the file sys-
tem. Modifications made to files in the user directories
must be durable; users depend on these changes. Capo
therefore uses write-through caching on these directo-
ries, propagating all changed blocks immediately to the
centralized storage servers. Any modifications to the sys-
tem image can then be performed on all VMs in one step
by completely replacing the system images in the entire
pool, leaving the user’s data unmodified. This impacts
durability—any writes to the system portion (e.g., by up-
dating the registry or installing software) will be lost. In
this section we use and extend this notion to optimize for
our write-heavy workload.

4.3.1 Write-Back Period

As mentioned in Section 2.2, VDI deployments man-
age system data centrally, regularly replacing the system
data seen by each virtual desktop with a clean updated
version. While users are allowed to make changes to
their system data, these changes are not guaranteed to
be durable. Writes to the\Program Files directory as
part of an application install process, for example, rep-
resent work done by a user, but a software installation
could easily be repeated if a failure caused this to be nec-
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Path Policy
\Program Files\ write-back
\WINDOWS\ write-back
\Users\ProgramData\VMware\VDM\logs write-back
\Users\$USER$\ntuser.dat write-back
\Users\$USER$\AppData\local write-back
\Users\$USER$\AppData\roaming write-back
\pagefile.sys no-write-back
\ProgramData\Sophos no-write-back
\Temp\ no-write-back
\Users\$USER$\AppData\Local\Microsoft\Windows\Temporary Internet Files no-write-back
Everything else, including user data and FileSystem metadata write-through

Table 2: Sample cache-coherency policies applied as part ofdurability optimization.

essary. It might be acceptable if the loss of such effort
was limited to, for example, an hour or even a day. We
can set our write-back period for such partially durable
files to a corresponding length of time.

4.3.2 Extending Partial Durability to User files

While much of the data on the User volume is impor-
tant to the user and must have maximum durability, Win-
dows, in particular, places some files containing system
data in the User volume. Examples include log files,
the user portion of the Windows registry, and the local
and roaming profiles containing per-application configu-
ration settings. Table 2 shows some paths on User vol-
umes in Windows that can reasonably be cached with a
write-back policy and a relatively long write-back period.

4.3.3 Eliminating Write-Back

There are some system files that need not be durably
stored at all. These include files that are discarded on sys-
tem restarts or can easily be reconstructed if lost. Writes
to the pagefile, for example, represent nearly a tenth of
the total throughput to centralized storage in our work-
load. These writes consume valuable storage and net-
work bandwidth, but since the pagefile is discarded on
system restart, durably storing this data provides no ben-
efit. The additional durability obtained by transmitting
these writes over a congested network to store them on
highly redundant centralized storage provides no value
because this data fate-shares with the local host machine
and its disk. Many temporary files are used in the same
way, requiring persistent storage only as long as the VM
is running.

We store this data to local disk only, assigning it a
write-back cache policy with an infinitely long write-
back period. In the event of a hardware crash on a phys-
ical host, the VM will be forced to reboot, and the data

can be discarded.

4.3.4 Design

Initially, we approached the problem of mapping these
policies to write requests as one of requesttagging, in
which a driver installed on each virtual desktop would
provide hints to the local cache about each write. While
this approach is flexible and powerful, maintaining the
correct consistency between file and filesystem metadata
(much of which appears as opaque writes to the Master
File Table in NTFS) under different policies is challeng-
ing. Instead, we have developed a simpler and better per-
forming approach using existing filesystem features.

The path-based policies we use in our experiments can
be seen in Table 2; naturally, these may be customized by
an administrator. We provide these policies to a disk op-
timization tool that we run when creating a virtual ma-
chine image. The optimization tool also takes a popu-
lated and configured base disk image. For each of the two
less-durable policies, it takes the given path and moves
the existing data to one of two newly-created NTFS file
systems dedicated to that policy. It then replaces the path
in the original file system with a reparse point (Window’s
analogue of a symbolic link) to the migrated data. This
transforms the single file system into three file systems
with the same original logical view. Each of the three
file systems are placed on a volume with the appropriate
policy provided by the local disk cache. This technique
is similar to the view synthesis in Ventana [18], though
we are the first to apply the technique with a local cache
to optimize performance.

We appreciate that applying different consistency poli-
cies to files in a single logical file system may be contro-
versial. The risk in doing so is that a crash or hardware
failure results in a dependency between a file that is pre-
served and a file that is lost. Such a state could lead to
instability; however, we are aware of no dependencies

9



crossing from files with high durability requirements to
those with lower durability requirements in practice. Fur-
ther, we observe that this threat already exists in the pro-
duction environment we studied, which overwrites sys-
tem images with a common shared image on a weekly
basis.

5 Evaluation

To evaluate the effectiveness of Capo, we first consider
how effective differential durability is at reducing write
load from unimportant regions of disk. Next, we show
the storage reduction achieved by Capo with eleven con-
current users synthesizing active desktop workloads. Fi-
nally we show the storage reduction achieved by Capo
by replaying I/O logs gathered from a production system
(see Section 3) under different caching policies.

5.1 Differential Durability

This section describes several microbenchmarks that
evaluate the effectiveness of differential durability in iso-
lation of other features and provide a clearer mapping
of end-user activity to observed writes. We applied the
policies in Table 2 to several realistic desktop workloads.
For each, we measured the portion of write requests that
would fall under each policy category.
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Figure 10: Percentage of writes in three microbench-
marks organized by governing cache-coherence policy.

5.1.1 Web Workload

Our web workload is intended to capture a short burst of
web activity. The user opens www.facebook.com with
Microsoft Internet Explorer, logs in, and posts a brief
message to their account. They then log off and close
the browser. The entire task lasts less than a minute. The

workload consists of 8MB (43.6% by count) of writes
and 25.3MB (56.4% by count) of reads.

A breakdown of writes by their associated policy for
each workload is shown in Figure 10. In this short work-
load only a small, but non-trivial improvement can be
made. Local configuration changes such as registry, temp
file, and cache updates need not be written immediately,
removing or delaying just over 20% of the operations.

5.1.2 Email Workload

Our email workload is based on Microsoft Outlook. The
user sends emails to a server we have configured to au-
tomatically reply to every message by sending back an
identical message. Ten emails are sent and received in
succession before the test ends. The workload consists
of 63MB (39% by count) of writes and 148MB (61% by
count) of reads.

Here the improvement is much more substantial. Al-
though very few writes can be stored to local disk in-
definitely, over half can be delayed in writing to central-
ized storage. This is due to Outlook’s caching behavior,
which makes heavy use of the system and application
data folders. Emails in the .pst file are included in the
user category. It is worth noting that many files in the
windows and application data are obvious temp files, but
did not match our current policies. With more careful
tuning, the policies could be further optimized for this
workload.

5.1.3 Application Workload

Our application workload is intended to simulate a sim-
ple editing task. We open Microsoft Word and create a
new document. We also open www.wikipedia.org in Mi-
crosoft Internet Explorer. We then proceed to navigate
to 10 random Wikipedia pages in turn, and copy the first
paragraph of each into our word document, saving the
document each time. Finally, we close both programs.
The workload consists of 120MB (20.0% by count) of
writes and 406MB (80.0% by count) of reads.

Viewing many small pages creates a large number of
small writes to temporary files and memory pressure2 in-
creases the pagefile usage. Both programs write signif-
icantly to system folders, leaving less than 36% of the
workload to be issued as write-through.

5.2 Multi-host Cache Preload

To evaluate the effectiveness of Capo’s multi-host
prefetching we boot three Windows XP VMs on three
different hosts. The experiment first fully boots one VM

2The guest was running Windows Vista with 1GB of RAM, 25%
higher than the XenDesktop recommended minimum.
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before booting the other two VMs concurrently, with the
intention of demonstrating that the reads triggered by the
boot on the first host are sufficient to achieve a savings
for the later boots.

Figure 11 shows the read workload observed at
the server in three different cache configurations:No
cache, Write-throughandWrite-through with multi-host
preload. Notice that the read workload for booting the
two VMs is roughly double that of booting a single
VM for both theno cacheandwrite-throughconfigura-
tions. On the other handwrite-through with multi-host
prefetchingalmost eliminates the workload due to boot-
ing the two later machines.
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Figure 11: Read IOps per second for booting three VMs
on three different hosts.

5.3 Synthetic Workload

To evaluate Capo as a whole, we arranged to simulate
a set of (very) active desktop users, performing similar
workloads to those seen in the trace. Figure 13 shows
the results of request traffic hitting both the local caches
(in aggregate across all images) and the filer, while 11
users actively use a variety of office and web-based ap-
plications.

First, note that the load in this case is higher than any
of the peaks seen in the trace data. This workload rep-
resents a higher level of aggregate storage activity than
was ever seen in the production environment. Second,
observe that despite being configured conservatively for
complete write back, Capo reduces all peaks in the stor-
age request load.

5.4 Trace Replay

To evaluate the benefits of deploying Capo in a real world
setting, we replay the collected I/O traces (see Section 3)
using different disk caching policies. The next sections
describe our experimental setting, analyze our replayer
fidelity, and present the replay results.
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Figure 13: IOps per second for a workload of 11 Win-
dows users on a XenCenter Cluster.

5.4.1 Experimental Setting

The test environment consists of four physical machines
which serve as hosts for the virtual machines that replay
requests from the recorded trace, and a filer to serve as
a backend storage for these virtual machines’ disks. The
filer runs Linux’s default kernel NFS server to host an
XFS volume built on top of a RAID 0 consisting of six
disks. The host machines run XenServer 5.6 and store
their local caches in an ext3 volume on top of a RAID
configuration similar to that of the filer. The machines
are connected using a 1Gb Ethernet switch.

We replayed the workload of each desktop for which
we had collected traces in a distinct virtual machine on
one of the XenServer hosts. As it is impractical to replay
the entire week’s trace for each configuration, we choose
to focus on the six peak regions identified in Section 3.

Entirely isolating our analysis to the peak regions
would start each replay with an empty cache. Instead,
we accurately recreated the state the cache would be in at
the start of each region by priming it with the data from
whole trace up to that point. This includes any write-
back blocks that would have been pending. The write-
back interval was set to ten minutes for the write-back
and differential durability policies.

5.4.2 Replay Fidelity

Both the hosts and the storage server in our replay exper-
iment are different from those in the original system from
which we collected the traces. We satisfied ourselves that
the replay is representative by measuring the observed
load during a simple replay without any caching. Fig-
ure 12 plots the fourth selected time period’s I/O oper-
ations per second as observed at a number of different
points in the I/O stack of the experimental environment.

The Trace line represents the aggregate workload as
observed in the original trace. TheReplayline represents
the rate at which the replayer issues I/O requests to the
system as observed at the replay clients. These two lines
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Figure 12: Replay fidelity and resulting load on the server.

Peak IOps / Reduction in peak IOps compared to No Cache configuration
Time No Cache Write Through Write Back Differential
Period Peak Total Peak Total Peak Total Peak Total

1 2307 / 100% 262590 / 100% 893 / 38% 155757 / 59% 670 / 29% 67798 / 25% 712 / 30% 91877 / 34%
2 2516 / 100% 561894 / 100% 937 / 37% 319936 / 56% 671 / 26% 113184 / 20% 903 / 35% 161737 / 28%
3 1302 / 100% 143468 / 100% 876 / 67% 126049 / 87% 595 / 45% 43455 / 30% 802 / 61% 84044 / 58%
4 1887 / 100% 450914 / 100% 910 / 48% 334089 / 74% 595 / 31% 131064 / 29% 849 / 44% 271529 / 60%
5 1214 / 100% 159736 / 100% 890 / 73% 141656 / 88% 704 / 57% 45868 / 28% 841 / 69% 75500 / 47%
6 2185 / 100% 72082 / 100% 1155 / 52% 66668 / 92% 910 / 41% 29086 / 40% 1368 / 62% 42895 / 59%

avg 100% 100% 52.5% 76% 38.1% 28.6% 50.1% 47.6%

Table 3: Peak and Total IOps workload observed at the file server during the replay of time periods of interest under
different caching policies. Each peak or total IOps value isfollowed by its ratio relative to its corresponding value
observed with no cache deployed. The last row represents theaverage reduction of the metric across the six time
periods of interest.

are almost indistinguishable in the figure which indicates
that the timing of our replayer is accurate.

The Server line represents the load observed at the
server. Notice that this load is lighter than the aggregate
trace load, largely due to coalescing requests in the stor-
age stack of the XenServer hosts. TheVHD line repre-
sents the load observed at the server when image files are
stored in the Microsoft VHD format. Notice that VHD
adds significant overhead to the workload; most of this
overhead is due to meta data management.

We draw two observations from this evaluation. First,
our replay client is able to match the request issue rate of
the original trace with high fidelity. Second, because of
transformations that result from both the XenServer stor-
age stack and the underlying VM image format, the load
experienced at the storage target may be dramatically dif-
ferent from that measured at the client. In evaluating our
cache under replay in the next subsection, we first replay
with no caching involved to establish a baseline load at
the filer, and then compare caching configurations to this
baseline.

5.4.3 Replay Results

We replayed the 6 periods of intense workload identi-
fied in Figure 2 using four different cache configurations.
These cache configurations are no cache, write-through,
write-back and differential. Figure 14 plots the IOps ob-

served at the server using each configuration. As ex-
pected, differential durability represents a compromise
between the load reduction realized by write-back and
completely protecting important user data.

Table 3 summarizes the peak and total I/O workload
reductions for the time periods of interest. The write-
back policy applied to the entire disk was the best in re-
ducing I/O workload. On average it reduced the peak
and total I/O workload to 38.1% and 28.6% of that with-
out any caching in place. The differential durability pol-
icy goes further to protect user files, and still reduced the
peak and total I/O workload down to 50.1% and 47.6%
on average. Finally, as expected the write-through policy
had the worst average peak and total workload reductions
of 52.5% and 76%.

6 Related Work

The caching component of Capo is most closely related
to the ITC [19], Andrew [10], and Coda [12] file systems
which utilize the local disk as a cache for whole files
retrieved from servers. The Cedar file system [21] allows
users to share immutable files over the network; by only
supporting immutable files Cedar eliminates the need for
cache consistency management.

Unlike these distributed file system caches, Capo op-
erates at the block level. Cache consistency management
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Figure 14: IOps per second observed at the filer for replays ofselected periods of interest under different cache
configurations.
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is simplified by the fact that each virtual disk has a sin-
gle writer and copy-on-write is used to prevent updat-
ing shared data. As in Cedar, shared data is always im-
mutable.

Fs-cache [11] and iCache [9] are systems that, like
Capo, implement block-level caching for remote stor-
age systems: a file system in the case of Fs-cache and
an iSCSI target in the case of iCache. Capo extends
the basic block caches of these systems using a host
cache shared by all the VMs on a host, the multi-host
prefetcher, and differential durability for files. All of
these features are inspired by our target environment of
supporting virtual desktops.

Capo’s use of write-back caching reduces the demand
placed on the central storage facility in a manner sim-
ilar to that of Everest [15]. Where Everest replicates
offloaded write requests to tolerate disk failures, Capo
uses a technique similar to Snapmirror [16] to periodi-
cally push self-consistent updates across the network for
data that is cached in write-back mode.

Other researchers have studied the performance of
storage in virtualized environments. In particular, Gu-
lati et al. [7] study the storage demands of enterprise ap-
plications in virtualized environments. In contrast, our
study of virtual desktops provides insight into the unique
characteristics of this emerging use of virtualization.

SnowFlock [13] provides a fork abstraction to instan-
taneously replicate stateful virtual machines to scale up
computations in the cloud easily. Similar to our multi-
host cache preloader, SnowFlock uses multicasting to
replicate the persistent (disk) and non-persistent (mem-
ory) state of the cloned virtual machines.

Agrawal et al. [1] and Bolosky et al. [2] collect and an-
alyze snapshots of Desktop machine’s file system meta-
data over long periods of time. This kind of analysis
restricts I/O workload analysis to mean estimates and
doesn’t capture the dynamic characteristics of Desktop
I/O such as burstiness. In this work we focus on captur-
ing detailed block level I/O operations to better under-
stand the variation of Desktop I/O workloads in time.

Lithium [8] gives up centralization in favor of distri-
bution to provide scalable storage for virtual machines.
To improve availability of data, Lithium replicates disk
updates to remote hosts either synchronously or lazily
(eventual consistency). These two replication policies
are synonymous to Capo’s write-through and write-back
caching policies. However, Lithium’s treatment of repli-
cation consistency is more complicated due to its dis-
tributed nature.

7 Conclusion

Enterprise storage provides considerable benefit to vir-
tual environments. However, for applications such as

virtual desktops, which involve large numbers of nearly
identical images running concurrently, a large portion of
the request load placed on shared storage is unnecessary.
After analyzing a one-week trace of a production VDI
deployment, we presented Capo, a distributed and per-
sistent cache which reduces the aggregate load placed on
shared storage. Capo uses local disks on individual phys-
ical servers to cache image contents for the VMs being
hosted. It includes mechanisms to share common cached
base images across VMs, and to prefetch caches across
physical hosts. In addition, Capo supports a configurable
degree of differential durability, allowing administrators
to relax the durability properties and the associated write
load of less-important subsets of a VM’s file system.
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