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Abstract

Application launch performance is of great importance

to system platform developers and vendors as it greatly

affects the degree of users’ satisfaction. The single most

effective way to improve application launch performance

is to replace a hard disk drive (HDD) with a solid state

drive (SSD), which has recently become affordable and

popular. A natural question is then whether or not to

replace the traditional HDD-aware application launchers

with a new SSD-aware optimizer.

We address this question by analyzing the inefficiency

of the HDD-aware application launchers on SSDs and

then proposing a new SSD-aware application prefetching

scheme, called the Fast Application STarter (FAST). The

key idea of FAST is to overlap the computation (CPU)

time with the SSD access (I/O) time during an applica-

tion launch. FAST is composed of a set of user-level

components and system debugging tools provided by the

Linux OS (operating system). In addition, FAST uses a

system-call wrapper to automatically detect application

launches. Hence, FAST can be easily deployed in any

recent Linux versions without kernel recompilation. We

implemented FAST on a desktop PC with a SSD running

Linux 2.6.32 OS and evaluated it by launching a set of

widely-used applications, demonstrating an average of

28% reduction of application launch time as compared

to PC without a prefetcher.

1 Introduction

Application launch performance is one of the impor-

tant metrics for the design or selection of a desktop or

a laptop PC as it critically affects the user-perceived

performance. Unfortunately, application launch perfor-

mance has not kept up with the remarkable progress of

CPU performance that has thus far evolved according to

Moore’s law. As frequently-used or popular applications

get “heavier” (by adding new functions) with each new

release, their launch takes longer even if a new, power-

ful machine equipped with high-speed multi-core CPUs

and several GBs of main memory is used. This undesir-

able trend is known to stem from the poor random access

performance of hard disk drives (HDDs). When an ap-

plication stored in a HDD is launched, up to thousands

of block requests are sent to the HDD, and a significant

portion of its launch time is spent on moving the disk

head to proper track and sector positions, i.e., seek and

rotational latencies. Unfortunately, the HDD seek and

rotational latencies have not been improved much over

the last few decades, especially compared to the CPU

speed improvement. In spite of the various optimizations

proposed to improve the HDD performance in launch-

ing applications, users must often wait tens of seconds

for the completion of launching frequently-used applica-

tions, such as Windows Outlook.

A quick and easy solution to eliminate the HDD’s seek

and rotational latencies during an application launch is to

replace the HDD with a solid state drive (SSD). A SSD

consists of a number of NAND flash memory modules,

and does not use any mechanical parts, unlike disk heads

and arms of a conventional HDD. While the HDD ac-

cess latency—which is the sum of seek and rotational

latencies—ranges up to a few tens of milliseconds (ms),

depending on the seek distance, the SSD shows a rather

uniform access latency of about a few hundred micro-

seconds (us). Replacing a HDD with a SSD is, there-

fore, the single most effective way to improve applica-

tion launch performance.

Until recently, using SSDs as the secondary storage of

desktops or laptops has not been an option for most users

due to the high cost-per-bit of NAND flash memories.

However, the rapid advance of semiconductor technol-

ogy has continuously driven the SSD price down, and at

the end of 2009, the price of an 80 GB SSD has fallen be-

low 300 US dollars. Furthermore, SSDs can be installed

in existing systems without additional hardware or soft-

ware support because they are usually equipped with the
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same interface as HDDs, and OSes see a SSD as a block

device just like a HDD. Thus, end-users begin to use a

SSD as their system disk to install the OS image and ap-

plications.

Although a SSD can significantly reduce the applica-

tion launch time, it does not give users ultimate satisfac-

tion for all applications. For example, using a SSD re-

duces the launch time of a heavy application from tens of

seconds to several seconds. However, users will soon be-

come used to the SSD launch performance, and will then

want the launch time to be reduced further, just as they

see from light applications. Furthermore, users will keep

on adding functions to applications, making them heav-

ier with each release and their launch time greater. Ac-

cording to a recent report [24], the growth of software is

rapid and limited only by the ability of hardware. These

call for the need to further improve application launch

performance on SSDs.

Unfortunately, most previous optimizers for applica-

tion launch performance are intended for HDDs and have

not accounted for the SSD characteristics. Furthermore,

some of themmay rather be detrimental to SSDs. For ex-

ample, running a disk defragmentation tool on a SSD is

not beneficial at all because changing the physical loca-

tion of data in the SSD does not affect its access latency.

Rather, it generates unnecessary write and erase opera-

tions, thus shortening the SSD’s lifetime.

In view of these, the first step toward SSD-aware op-

timization may be to simply disable the traditional op-

timizers designed for HDDs. For example, Windows 7

disables many functions, such as disk defragmentation,

application prefetch, Superfetch, and Readyboost when

it detects a SSD being used as a system disk [27]. Let’s

consider another example. Linux is equipped with four

disk I/O schedulers: NOOP, anticipatory, deadline, and

completely fair queueing. The NOOP scheduler almost

does nothing to improve HDD access performance, thus

providing the worst performance on a HDD. Surpris-

ingly, it has been reported that NOOP shows better per-

formance than the other three sophisticated schedulers on

a SSD [11].

To the best of our knowledge, this is the first attempt

to focus entirely on improving application launch perfor-

mance on SSDs. Specifically, we propose a new appli-

cation prefetching method, called the Fast Application

STarter (FAST), to improve application launch time on

SSDs. The key idea of FAST is to overlap the compu-

tation (CPU) time with the SSD access (I/O) time dur-

ing each application launch. To achieve this, we monitor

the sequence of block requests in each application, and

launch the application simultaneously with a prefetcher

that generates I/O requests according to the a priorimon-

itored application’s I/O request sequence. FAST consists

of a set of user-level components, a system-call wrap-

per, and system debugging tools provided by the Linux

OS. FAST can be easily deployed in most recent Linux

versions without kernel recompilation. We have imple-

mented and evaluated FAST on a desktop PC with a SSD

running Linux 2.6.32, demonstrating an average of 28%

reduction of application launch time as compared to PC

without a prefetcher.

This paper makes the following contributions:

• Qualitative and quantitative evaluation of the ineffi-

ciency of traditional HDD-aware application launch

optimizers on SSDs;

• Development of a new SSD-aware application

prefetching scheme, called FAST; and

• Implementation and evaluation of FAST, demon-

strating its superiority and deployability.

While FAST can be also applied to HDDs, its per-

formance improvements are only limited to high I/O re-

quirements of application launches on HDDs. We ob-

served that existing application prefetchers outperformed

FAST on HDDs by effectively optimizing disk head

movements, which will be discussed further in Section 5.

The paper is organized as follows. In Section 2, we re-

view other related efforts and discuss their performance

in optimizing application launch on SSDs. Section 3

describes the key idea of FAST and presents an upper

bound for its performance. Section 4 details the imple-

mentation of FAST on the Linux OS, while Section 5

evaluates its performance using various real-world appli-

cations. Section 6 discusses the applicability of FAST to

smartphones and Section 7 compares FAST with tradi-

tional I/O prefetching techniques. We conclude the paper

with Section 8.

2 Background

2.1 Application Launch Optimization

Application-level optimization. Application developers

are usually advised to optimize their applications for fast

startup. For example, they may be advised to postpone

loading non-critical functions or libraries so as to make

applications respond as fast as possible [2, 30]. They

are also advised to reduce the number of symbol reloca-

tions while loading libraries, and to use dynamic library

loading. There have been numerous case studies—based

on in-depth analyses and manual optimizations—of vari-

ous target applications/platforms, such as Linux desktop

suite platform [8], a digital TV [17], and a digital still

camera [33]. However, such an approach requires the

experts’ manual optimizations for each and every appli-

cation. Hence, it is economically infeasible for general-

purpose systems with many (dynamic) application pro-

grams.
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Snapshot technique. A snapshot boot technique has

also been suggested for fast startup of embedded systems

[19], which is different from the traditional hibernate

shutdown function in that a snapshot of the main mem-

ory after booting an OS is captured only once, and used

repeatedly for every subsequent booting of the system.

However, applying this approach for application launch

is not practical for the following reasons. First, the page

cache in main memory is shared by all applications, and

separating only the portion of the cache content that is

related to a certain application is not possible without

extensive modification of the page cache. Furthermore,

once an application is updated, its snapshot should be in-

validated immediately, which incurs runtime overhead.

Prediction-based prefetch. Modern desktops are

equipped with large (up to several GBs) main memory,

and often have abundant free space available in the main

memory. Prediction-based prefetching, such as Super-

fetch [28] and Preload [12], loads an application’s code

blocks in the free space even if the user does not ex-

plicitly express his intent to execute that particular ap-

plication. These techniques monitor and analyze the

users’ access patterns to predict which applications to be

launched in future. Consequently, the improvement of

launch performance depends strongly on prediction ac-

curacy.

Sorted prefetch. The Windows OS is equipped with

an application prefetcher [36] that prefetches appli-

cation code blocks in a sorted order of their logical

block addresses (LBAs) to minimize disk head move-

ments. A similar idea has also been implemented for

Linux OS [15, 25]. We call these approaches sorted

prefetch. It monitors HDD activities to maintain a list

of blocks accessed during the launch of each application.

Upon detection of an application launch, the application

prefetcher immediately pauses its execution and begins

to fetch the blocks in the list in an order sorted by their

LBAs. The application launch is resumed after fetching

all the blocks, and hence, no page miss occurs during the

launch.

Application defragmentation. The block list informa-

tion can also be used in a different way to further reduce

the seek distance during an application launch. Modern

OSes commonly support a HDD defragmentation tool

that reorganizes the HDD layout so as to place each file in

a contiguous disk space. In contrast, the defragmentation

tool can relocate the blocks in the list of each application

by their access order [36], which helps reduce the total

HDD seek distance during the launch.

Data pinning on flash caches. Recently, flash cache has

been introduced to exploit the advantage of SSDs at a

cost comparable to HDDs. A flash cache can be inte-

grated into traditional HDDs, which is called a hybrid

HDD [37]. Also, a PCI card-type flash cache is available

[26], which is connected to the mother board of a desk-

top or laptop PC. As neither seek nor rotational latency is

incurred while accessing data in the flash cache, we can

accelerate application launch by storing the code blocks

of frequently-used applications, which is called a pinned

set. Due to the small capacity of flash cache, how to

determine the optimal pinned set subject to the capacity

constraint is a key to making performance improvement,

and a few results of addressing this problem have been

reported [16, 18, 22]. We expect that FAST can be in-

tegrated with the flash cache for further improvement of

performance, but leave it as part of our future work.

2.2 SSD Performance Optimization

SSDs have become affordable and begun to be deployed

in desktop and laptop PCs, but their performance char-

acteristics have not yet been understood well. So, re-

searchers conducted in-depth analyses of their perfor-

mance characteristics, and suggested ways to improve

their runtime performance. Extensive experiments have

been carried out to understand the performance dynam-

ics of commercially-available SSDs under various work-

loads, without knowledge of their internal implementa-

tions [7]. Also, SSD design space has been explored

and some guidelines to improve the SSD performance

have been suggested [10]. A new write buffer manage-

ment scheme has also been suggested to improve the ran-

dom write performance of SSDs [20]. Traditional I/O

schedulers optimized for HDDs have been revisited in

order to evaluate their performance on SSDs, and then

a new I/O scheduler optimized for SSDs has been pro-

posed [11, 21].

2.3 Launch Optimization on SSDs

As discussed in Section 2.1, various approaches have

been developed and deployed to improve the applica-

tion launch performance on HDDs. On one hand, many

of them are effective on SSDs as well, and orthogo-

nal to FAST. For example, application-level optimiza-

tion and prediction-based prefetch can be used together

with FAST to further improve application launch perfor-

mance.

On the other hand, some of them exploit the HDD

characteristics to reduce the seek and rotational delay

during an application launch, such as the sorted prefetch

and the application defragmentation. Such methods are

ineffective for SSDs because the internal structure of a

SSD is very different from that of a HDD. A SSD typi-

cally consists of multiple NAND flash memory modules,

and does not have any mechanical moving part. Hence,

unlike a HDD, the access latency of a SSD is irrelevant to

the LBA distance between the last and the current block
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Figure 1: Various application launch scenarios (n= 4).

requests. Thus, prefetching the application code blocks

according to the sorted order of their LBAs or changing

their physical locations will not make any significant per-

formance improvement on SSDs. As the sorted prefetch

has the most similar structure to FAST, we will quanti-

tatively compare its performance with FAST in Section

5.

3 Application Prefetching on SSDs

This section illustrates the main idea of FASTwith exam-

ples and derives a lower bound of the application launch

time achievable with FAST.

3.1 Cold and Warm Starts

We focus on the performance improvement in case of

a cold start, or the first launch of an application upon

system bootup, representing the worst-case application

launch performance. Figure 1(a) shows an example cold

start scenario, where si is the i-th block request gener-

ated during the launch and n the total number of block

requests. After si is completed, the CPU proceeds with

the launch process until another page miss takes place.

Let ci denote this computation.

The opposite extreme is a warm start in which all the

code blocks necessary for launch have been found in the

page cache, and thus, no block request is generated, as

shown in Figure 1(b). This occurs when the application

is launched again shortly after its closure. The warm start

represents an upper-bound of the application launch per-

formance improvement achievable with optimization of

the secondary storage.

Let the time spent for si and ci be denoted by t(si) and
t(ci), respectively. Then, the computation (CPU) time,

tcpu, is expressed as

tcpu =
n

∑
i=1

t(ci), (1)

and the SSD access (I/O) time, tssd , is expressed as

tssd =
n

∑
i=1

t(si). (2)

3.2 The Proposed Application Prefetcher

The rationale behind FAST is that the I/O request se-

quence generated during an application launch does not

change over repeated launches of the application in case

of cold-start. The key idea of FAST is to overlap the SSD

access (I/O) time with the computation (CPU) time by

running the application prefetcher concurrently with the

application itself. The application prefetcher replays the

I/O request sequence of the original application, which

we call an application launch sequence. An application

launch sequence S can be expressed as (s1, . . . ,sn).
Figure 1(c) illustrates how FAST works, where tcpu >

tssd is assumed. At the beginning, the target applica-

tion and the prefetcher start simultaneously, and compete

with each other to send their first block request to the

SSD. However, the SSD always receives the same block

request s1 regardless of which process gets the bus grant

first. After s1 is fetched, the application can proceed with

its launch by the time t(c1), while the prefetcher keeps

issuing the subsequent block requests to the SSD. After

completing c1, the application accesses the code block

corresponding to s2, but no page miss occurs for s2 be-

cause it has already been fetched by the prefetcher. It is

the same for the remaining block requests, and thus, the

resulting application launch time tlaunch becomes

tlaunch = t(s1)+ tcpu. (3)

Figure 1(d) shows another possible scenario where tcpu <

tssd . In this case, the prefetcher cannot complete fetching

s2 before the application finishes computation c1. How-

ever, s2 can be fetched by t(c1) earlier than that of the

cold start, and this improvement is accumulated for all

of the remaining block requests, resulting in tlaunch:

tlaunch = tssd + t(cn). (4)

Note that n ranges up to a few thousands for typical ap-

plications, and thus, t(s1)≪ tcpu and t(cn)≪ tssd . Con-

sequently, Eqs. (3) and (4) can be combined into a single

equation as:

tlaunch ≈max(tssd , tcpu), (5)
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which represents a lower bound of the application launch

time achievable with FAST.

However, FAST may not achieve application launch

performance close to Eq. (5) when there is a significant

variation of I/O intensiveness, especially if the beginning

of the launch process is more I/O intensive than the other.

Figure 2 illustrates an extreme example of such a case,

where the first half of this example is SSD-bound and the

second half is CPU-bound. In this example, tcpu is equal

to tssd , and thus the expected launch time texpected is given

to be tssd + t(c8), according to Eq. (4). However, the ac-

tual launch time tactual is much larger than texpected . The

CPU usage in the first half of the launch time is kept quite

low despite the fact that there are lots of remaining CPU

computations (i.e., c5, . . . ,c8) due to the dependency be-

tween si and ci. We will provide a detailed analysis for

this case using real applications in Section 5.

4 Implementation

We chose the Linux OS to demonstrate the feasibility and

the superior performance of FAST. The implementation

of FAST consists of a set of components: an application

launch manager, a system-call profiler, a disk I/O pro-

filer, an application launch sequence extractor, a LBA-

to-inode reverse mapper, and an application prefetcher

generator. Figure 3 shows how these components inter-

act with each other. In what follows, we detail the imple-

mentation of each of these components.

4.1 Application Launch Sequence

4.1.1 Disk I/O Profiler

The disk I/O profiler is used to track the block re-

quests generated during an application launch. We used

Blktrace [3], a built-in Linux kernel I/O-tracing tool

that monitors the details of I/O behavior for the evalua-

tion of I/O performance. Blktrace can profile various

I/O events: inserting an item into the block layer, merg-

ing the item with a previous request in the queue, remap-

ping onto another device, issuing a request to the device

driver, and a completion signal from the device. From

these events, we collect the trace of device-completion

events, each of which consists of a device number, a

LBA, the I/O size, and completion time.

4.1.2 Application Launch Sequence Extractor

Ideally, the application launch sequence should include

all of the block requests that are generated every time the

application is launched in the cold start scenario, with-

out including any block requests that are not relevant to

the application launch. We observed that the raw block

request sequence captured by Blktrace does not vary

from one launch to another, i.e., deterministic for mul-

tiple launches of the same application. However, we

observed that other processes (e.g., OS and application

daemons) sometimes generate their own I/O requests si-

multaneously with the application launch. To handle this

case, the application launch sequence extractor collects

two or more raw block request sequences to extract a

common sequence, which is then used as a launch se-

quence of the corresponding application. The imple-

mentation of the application launch sequence extractor

is simple: it searches for and removes any block requests

appearing in some of the input sequences. This proce-

dure makes all the input sequences the same, so we use

any of them as an application launch sequence.

4.2 LBA-to-Inode Map

4.2.1 LBA-to-Inode Reverse Mapper

Our goal is to create an application prefetcher that gen-

erates exactly the same block request sequence as the

obtained application launch sequence, where each block

request is represented as a tuple of starting LBA and

size. Since the application prefetcher is implemented as

a user-level program, every disk access should be made

via system calls with a file name and an offset in that file.

Hence, we must obtain the file name and the offset of

each block request in an application launch sequence.

Most file systems, including EXT3, do not support

such a reverse mapping from LBA to file name and off-

set. However, for a given file name, we can easily find
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the LBA of all of the blocks that belong to the file and

their relative offset in the file. Hence, we can build a

LBA-to-inode map by gathering this information for ev-

ery file. However, building such a map of the entire file

system is time-consuming and impractical because a file

system, in general, contains tens of thousands of files and

their block locations on the disk change very often.

Therefore, we build a separate LBA-to-inode map

for each application, which can significantly reduce the

overhead of creating a LBA-to-inode map because (1)

the number of applications and the number of files used

in launching each application are very small compared

to the number of files in the entire file system; and (2)

most of them are shared libraries and application code

blocks, so their block locations remain unchanged unless

they are updated or disk defragmentation is performed.

We implement the LBA-to-inode reverse mapper that

receives a list of file names as input and creates a LBA-

to-inode map as output. A LBA-to-inode map is built

using a red-black tree in order to reduce the search time.

Each node in the red-black tree has the LBA of a block as

its key, and a block type as its data by default. According

to the block type, different types of data are added to

the node. A block type includes a super block, a group

descriptor, an inode block bitmap, a data block bitmap,

an inode table, and a data block. For example, a node for

a data block has a block type, a device number, an inode

number, an offset, and a size. Also, for a data block, a

table is created to keep the mapping information between

an inode number and its file name.

4.2.2 System-Call Profiler

The system-call profiler obtains a full list of file names

that are accessed during an application launch,1 and

passes it to the LBA-to-inode reverse mapper. We used

strace for the system-call profiler, which is a debugging

tool in Linux. We can specify the argument of strace

so that it may monitor only the system calls that have a

file name as their argument. As many of these system

calls are rarely called during an application launch, we

monitor only the following system calls that frequently

occur during application launches: open(), creat(),

execve(), stat(), stat64(), lstat(), lstat64(),

access(), truncate(), truncate64(), statfs(),

statfs64(), readlink(), and unlink().

4.3 Application Prefetcher

4.3.1 Application Prefetcher Generator

The application prefetcher is a user-level program that

replays the disk access requests made by a target appli-

1Files mounted on pseudo file systems such as procfs and sysfs

are not processed because they never generate any disk I/O request.

Table 1: System calls to replay access of blocks in an

application launch sequence

Block type System call

Inode table open()

Data block: a directory opendir() and readdir()

Data block: a regular file read() or posix_fadvise()

Data block: a symbolic

link file

readlink()

cation. We implemented the application prefetcher gen-

erator to automatically create an application prefetcher

for each target application. It performs the following op-

erations.

1. Read si one-by-one from S of the target application.

2. Convert si into its associated data items stored in the

LBA-to-inode map, e.g.,

(dev,LBA,size)→(datablk,filename,offset,size) or

(dev,LBA,size)→(inode,start_inode,end_inode).

3. Depending on the type of block, generate an appro-

priate system call using the converted disk access

information.

4. Repeat Steps 1–3 until processing all si.

Table 1 shows the kind of system calls used for each

block type. There are two system calls that can be

used to replay the disk access for data blocks of a reg-

ular file. If we use read(), data is first moved from

the SSD to the page cache, and then copying takes

place from the page cache to the user buffer. The sec-

ond step is unnecessary for our purpose, as the process

that actually manipulates the data is not the application

prefetcher but the target application. Hence, we chose

posix fadvise() that performs only the first step, from

which we can avoid the overhead of read(). We use

the POSIX FADV WILLNEED parameter, which informs

the OS that the specified data will be used in the near

future. When to issue the corresponding disk access af-

ter posix fadvise() is called depends on the OS im-

plementation. We confirmed that the current version of

Linux we used issues a block request immediately after

receiving the information through posix fadvise(),

thus meeting our need. A symbolic-linked file name is

stored in data block pointers in an inode entry when the

length of the file name is less than or equal to 60 bytes

(c.f., the space of data block pointers is 60 bytes, 4*12

for direct, 4 for single indirect, another 4 for double in-

direct, and last 4 for triple indirect data block pointer).

If the length of linked file name is more than 60 bytes,

the name is stored in the data blocks pointed to by data

block pointers in the inode entry. We use readlink() to

replay the data block access of symbolic-link file names

that are longer than 60 bytes.
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int main(void) {

...
readlink("/etc/fonts/conf.d/90-ttf-arphic-uming-emb

olden.conf", linkbuf, 256);
int fd423;
fd423 = open("/etc/fonts/conf.d/90-ttf-arphic-uming

-embolden.conf", O_RDONLY);
posix_fadvise(fd423, 0, 4096, POSIX_FADV_WILLNEED);

posix_fadvise(fd351, 286720, 114688, POSIX_FADV_WIL
LNEED);

int fd424;
fd424 = open("/usr/share/fontconfig/conf.avail/90-tt

f-arphic-uming-embolden.conf", O_RDONLY);

posix_fadvise(fd424, 0, 4096, POSIX_FADV_WILLNEED);
int fd425;

fd425 = open("/root/.gnupg/trustdb.gpg", O_RDONLY);
posix_fadvise(fd425, 0, 4096, POSIX_FADV_WILLNEED);
dirp = opendir("/var/cache/");

if(dirp)while(readdir(dirp));
...

return 0;
}

Figure 4: An example application prefetcher.

Figure 4 is an example of automatically-generated ap-

plication prefetcher. Unlike the target application, the

application prefetcher successively fetches all the blocks

as soon as possible to minimize the time between adja-

cent block requests.

4.3.2 Implicitly-Prefetched Blocks

In the EXT3 file system, the inode of a file includes

pointers of up to 12 data blocks, so these blocks can

be found immediately after accessing the inode. If the

file size exceeds 12 blocks, indirect, double indirect, and

triple indirect pointer blocks are used to store the point-

ers to the data blocks. Therefore, requests for indirect

pointer blocks may occur in the cold start scenario when

the application is accessing files larger than 12 blocks.

We cannot explicitly load those indirect pointer blocks in

the application prefetcher because there is no such sys-

tem call. However, the posix fadvise() call for a data

block will first make a request for the indirect blockwhen

needed, so it can be fetched in a timely manner by run-

ning the application prefetcher.

The following types of block request are not listed in

Table 1: a superblock, a group descriptor, an inode entry

bitmap, a data block bitmap. We found that requests to

these types of blocks seldom occur during an application

launch, so we did not consider their prefetching.

4.4 Application Launch Manager

The role of the application launch manager is to detect

the launch of an application and to take an appropri-

ate action. We can detect the beginning of an applica-

tion launch by monitoring execve() system call, which

is implemented using a system-call wrapper. There are

three phases with which the application launch manager

Table 2: Variables and parameters used by the applica-

tion launch manager

Type Description

ninit A counter to record the number of application

launches done in the initial launch phase

npre f A counter to record the number of launches

done in the application prefetch phase after the

last check of the miss ratio of the application

prefetcher

Nrawseq The number of raw block request sequences that

are to be captured at the launch profiling phase

Nchk The period to check the miss ratio of the applica-

tion prefetcher

Rmiss A threshold value for the prefetcher miss ratio that

is used to determine if an update of the application

or shared libraries has taken place

Tidle A threshold value for the idle time period that is

used to determine if an application launch is com-

pleted

Ttimeout The maximum amount of time allowed for the

disk I/O profiler to capture block requests

deals: a launch profiling phase, a prefetcher generation

phase, and an application prefetch phase. The applica-

tion launch manager uses a set of variables and param-

eters for each application to decide when to change its

phase. These are summarized in Table 2.

Here we describe the operations performed in each

phase:

(1) Launch profiling. If no application prefetcher is

found for that application, the application launch man-

ager regards the current launch as the first launch of this

application, and enters the initial launch phase. In this

phase, the application launch manager performs the fol-

lowing operations in addition to the launch of the target

application:

1. Increase ninit of the current application by 1.

2. If ninit = 1, run the system call profiler.

3. Flush the page cache, dentries (directory entries),

and inodes in the main memory to ensure a cold start

scenario, which is done by the following command:

echo 3 > /proc/sys/vm/drop_caches

4. Run the disk I/O profiler. Terminate the disk I/O

profiler when any of the following conditions are

met: (1) if no block request occurs during the last

Tidle seconds or (2) the elapsed time since the start

of the disk I/O profiler exceeds Ttimeout seconds.

5. If ninit = Nrawseq, enter the prefetcher generation

phase after the current launch is completed.

(2) Prefetcher generation. Once application launch

profiling is done, it is ready to generate an application

7



prefetcher using the information obtained from the first

phase. This can be performed either immediately after

the application launch is completed, or when the system

is idle. The following operations are performed:

1. Run the application launch sequence extractor.

2. Run the LBA-to-inode reverse mapper.

3. Run the application prefetcher generator.

4. Reset the values of ninit and npre f to 0.

(3) Application prefetch. If the application prefetcher

for the current application is found, the application

launch manager runs the prefetcher simultaneously with

the target application. It also periodically checks the miss

ratio of the prefetcher to determine if there has been any

update of the application or shared libraries. Specifically,

the following operations are performed:

1. Increase npre f of the current application by 1.

2. If npre f = Nchk, reset the value of npre f to 0 and run

the disk I/O profiler. Its termination conditions are

the same as those in the first phase.

3. Run the application prefetcher simultaneously with

the target application.

4. If a raw block request sequence is captured, use it to

calculate the miss ratio of the application prefetcher.

If it exceeds Rmiss, delete the application prefetcher.

The miss ratio is defined as the ratio of the number of

block requests not issued by the prefetcher to the total

number of block requests in the application launch se-

quence.

5 Performance Evaluation

5.1 Experimental Setup

Experimental platform. We used a desktop PC

equipped with an Intel i7-860 2.8 GHz CPU, 4GB of

PC12800 DDR3 SDRAM and an Intel 80GB SSD (X25-

M G2Mainstream). We installed a Fedora 12 with Linux

kernel 2.6.32 on the desktop, in which we set NOOP

as the default I/O scheduler. For benchmark applica-

tions, we chose frequently used user-interactive appli-

cations, for which application launch performance mat-

ters much. Such an application typically uses graphical

user interfaces and requires user interaction immediately

after completing its launch. Applications like gcc and

gzip are not included in our set of benchmarks as launch

performance is not an issue for them. Our benchmark

set consists of the following Linux applications: Acro-

bat reader, Designer-qt4, Eclipse, F-Spot, Firefox, Gimp,

Gnome, Houdini, Kdevdesigner, Kdevelop, Konqueror,

Labview, Matlab, OpenOffice, Skype, Thunderbird, and

XilinxISE. In addition to these, we used Wine [1], which

is an implementation of the Windows API running on the

Linux OS, to test Access, Excel, Powerpoint, Visio, and

Word—typical Windows applications.

Test scenarios. For each benchmark application, we

measured its launch time for the following scenarios.

• Cold start: The application is launched immediately

after flushing the page cache, using the method de-

scribed in Section 4.4. The resulting launch time is

denoted by tcold .

• Warm start: We first run the application prefetcher

only to load all the blocks in the application launch

sequence to the page cache, and then launch the

application. Let twarm denote the resulting launch

time.

• Sorted prefetch: To evaluate the performance of the

sorted prefetch [15, 25, 36] on SSDs, we modify the

application prefetcher to fetch the block requests in

the application launch sequence in the sorted order

of their LBAs. After flushing the page cache, we

first run the modified application prefetcher, then

immediately run the application. Let tsorted denote

the resulting launch time.

• FAST: We flush the page cache, and then run

the application simultaneously with the application

prefetcher. The resulting launch time is denoted by

tFAST .

• Prefetcher only: We flush the page cache and run

the application prefetcher. The completion time

of the application prefetcher is denoted by tssd . It

is used to calculate a lower bound of the appli-

cation launch time tbound = max(tssd , tcpu), where
tcpu = twarm is assumed.

Launch-time measurement. We start an application

launch by clicking an icon or inputting a command, and

can accurately measure the launch start time by moni-

toring when execve() is called. Although it is difficult

to clearly define the completion of a launch, a reasonable

definition is the first moment the application becomes re-

sponsive to the user [2]. However, it is difficult to accu-

rately and automatically measure that moment. So, as

an alternative, we measured the completion time of the

last block request in an application launch sequence us-

ing Blktrace, assuming that the launch will be com-

pleted very soon after issuing the last block request. For

the warm start scenario, we executed posix fadvise()

with POSIX FADV DONTNEED parameter to evict the last

block request from the page cache. For the sorted

prefetch and the FAST scenarios, we modified the ap-

plication prefetcher so that it skips prefetching of the last

block request.
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Figure 5: The size of application launch sequences.

5.2 Experimental Results

Application launch sequence generation. We captured

10 raw block request sequences during the cold start

launch of each application. We ran the application launch

sequence extractor with a various number of input block

request sequences, and observed the size of the result-

ing application launch sequences. Figure 5 shows that

for all the applications we tested, there is no significant

reduction of the application launch sequence size while

increasing the number of inputs from 2 to 10. Hence, we

set the value of Nrawseq in Table 2 to 2 in this paper. We

used the size of the first captured input sequence as the

number of inputs one in Figure 5 (the application launch

sequence extractor requires at least two input sequences).

For some applications, there are noticeable differences in

size between the number of inputs one and two. This is

because the first raw input request sequence includes a

set of bursty I/O requests generated by OS and user dae-

mons that are irrelevant to the application launch. Fig-

ure 5 shows that such I/O requests can be effectively

excluded from the resulting application launch sequence

using just two input request sequences.

The second and third columns of Table 3 summarize

the total number of block requests and accessed blocks of

the thus-obtained application launch sequences, respec-

tively. The last column shows the total number of files

used during the launch of each application.

Testing of the application prefetcher. Application

prefetchers are automatically generated for the bench-

mark applications using the application launch sequences

in Table 3. In order to see if the application prefetch-

ers fetch all the blocks used by an application, we

first flushed the page cache, and launched each applica-

tion immediately after running the application prefetcher.

During the application launch, we captured all the block

requests generated using Blktrace, and counted the

number of missed block requests. The average number of

missed block requests was 1.6% of the number of block

requests in the application launch sequence, but varied

among repeated launches, e.g., from 0% to 6.1% in the

experiments we performed.

Table 3: Collected launch sequences (Nrawseq = 2)

Application # of block # of fetched # of used

requests blocks files

Access 1296 106 992 555

Acrobat reader 960 73 784 178

Designer-qt4 2400 138 608 410

Eclipse 4163 155 216 787

Excel 1610 169 112 583

F-Spot 1180 49 968 304

Firefox 1566 60 944 433

Gimp 1939 66 928 799

Gnome 4739 228 872 538

Houdini 4836 290 320 724

Kdevdesigner 1537 44 904 467

Kdevelop 1970 63 104 372

Konqueror 1780 62 216 296

Labview 2927 154 768 354

Matlab 6125 267 312 742

OpenOffice 1425 104 600 308

Powerpoint 1405 120 808 576

Skype 892 41 560 197

Thunderbird 1533 64 784 429

Visio 1769 168 832 662

Word 1715 181 496 613

Xilinx ISE 4718 328 768 351

By examining themissed block requests, we could cat-

egorize them into three types: (1) files opened by OS

daemons and user daemons at boot time; (2) journaling

data or swap partition accesses; and (3) files dynamically

created or renamed at every launch (e.g., tmpfile()).

The first type occurs because we force the page cache to

be flushed in the experiment. In reality, they are highly

likely to reside in the page cache, and thus, this type of

misses will not be a problem. The second type is irrel-

evant to the application, and observed even during idle

time. The third type occurs more or less often, depend-

ing on the application. FAST does not prefetch this type

of block requests as they change at every launch.

Experiments for the test scenarios. We measured the

launch time of the benchmark applications for each test

scenario listed in Section 5.1. Figure 6 shows that the

average launch time reduction of FAST is 28% over the

cold start scenario. The performance of FAST varies

considerably among applications, ranging from 16% to

46% reduction of launch time. In particular, FAST shows

performance very close to tbound for some applications,

such as Eclipse, Gnome, and Houdini. On the other hand,

the gap between tbound and tFAST is relatively larger for

such applications as Acrobat reader, Firefox, OpenOf-

fice, and Labview.

Launch time behavior. We conducted experiments to

see if the application prefetcher works well as expected

when it is simultaneously run with the application. We
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chose Firefox because it shows a large gap between

tbound and tFAST . We monitored the generated block re-

quests during the launch of Firefox with the application

prefetcher, and observed that the first 12 of the entire

1566 block requests were issued by Firefox, which took

about 15 ms. As the application prefetcher itself should

be launched as well, FAST cannot prefetch these block

requests until finishing its launch. However, we ob-

served that all the remaining block requests were issued

by FAST, meaning that they are successfully prefetched

before the CPU needs them.

CPU and SSD usage patterns. We performed another

experiment to observe the CPU and SSD usage patterns

in each test scenario. We chose two applications, Eclipse

and Firefox, representing the two groups of applications

of which tFAST is close to and far from tbound , respec-

tively. We modified the OS kernel to sample the number

of CPU cores having runnable processes and to count the

number of cores in the I/O wait state. Figure 7 shows

the CPU and SSD usage of the two applications, where

the entire CPU is regarded as busy if at least one of its

cores is active. Similarly, the SSD is assumed busy if

there are one or more cores in the I/O wait state. In the

cold start scenario, there is almost no overlap between

CPU computation and SSD access for both applications.

In the warm start scenario, the CPU stays fully active

until the launch is completed as there is no wait. One ex-

ception we observed is the time period marked with Cir-

cle (a), during which the CPU seems to be in the event-

waiting state. FAST is shown to be successful in overlap-

ping CPU computation with SSD access as we intended.

However, CPU usage is observed to be low at the begin-

ning of launch for both applications, which can be ex-

plained with the example in Figure 2. As Eclipse shows

a shorter such time period (Circle (b)) than Firefox (Cir-

cle (c)), tFAST can reach closer to tbound . In the case of

Firefox, however, the ratio of tcpu to tssd is close to 1:1,

allowing FAST to achieve more reduction of launch time

for Firefox than for Eclipse.

Performance of sorted prefetch. Figure 6 shows that

the sorted prefetch reduces the application launch time

by an average of 7%, which is less efficient than FAST,

but non-negligible. One reason for this improvement is

the difference in I/O burstiness between the cold start

and the sorted prefetch. Most SSDs (including the one

we used) support the native command queueing (NCQ)
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Figure 8: Simultaneous launch of multiple applications.

feature, which allows up to 31 block requests to be sent

to a SSD controller. Using this information, the SSD

controller can read as many NAND flash chips as possi-

ble, effectively increasing read throughput. The average

queue depth in the cold start scenario is close to 1, mean-

ing that for most of time there is only one outstanding

request in case of SSD. In contrast, in the sorted prefetch

scenario, the queue depth will likely grow larger than

1 because the prefetcher may successively issue asyn-

chronous I/O requests using posix fadvise(), at small

inter-issue intervals.

On the other hand, we could not find a clear evidence

that sorting block requests in their LBA order is advan-

tageous in case of SSD. Rather, the execution time of

the sorted prefetcher was slightly longer than its unsorted

version for most of the applications we tested. Also, the

sorted prefetch shows worse performance than the cold

start for Excel, Powerpoint, Skype, and Word. Although

these observations were consistent over repeated tests, a

further investigation is necessary to understand such a

behavior.

Simultaneous launch of applications. We performed

experiments to see how well FAST can scale up for

launching multiple applications. We launched multiple

applications starting from the top of Table 3, adding five

at a time, and measured the launch completion time of

all launched applications2. Figure 8 shows that FAST

could reduce the launch completion time for all the tests,

whereas the sorted prefetch does not scale beyond 10 ap-

plications. Note that the FAST improvement decreased

from 20% to 7% as the number of applications increased

from 5 to 20.

Runtime and space overhead. We analyzed the run-

time overhead of FAST for seven possible combinations

of running processes, and summarized the results in Ta-

ble 4. Cases 2 and 3 belong to the launch profiling phase,

which was described in Section 4.4. During this phase,

Case 2 occurs only once, and Case 3 occurs Nrawseq

times. Case 4 corresponds to the prefetcher generation

phase (the right side of Figure 3), and shows a relatively

long runtime. However, we can hide it from users by run-

ning it in background. Also, since we primarily focused

on functionality in the current implementation, there is

2Except for Gnome that cannot be launched with other applications,

and Houdini whose license had expired.

Table 4: Runtime overhead (application: Firefox)

Running processes Runtime (sec)

1. Application only (cold start scenario) 0.86

2. strace + blktrace + application 1.21

3. blktrace + application 0.88

4. Prefetcher generation 5.01

5. Prefetcher + application 0.56

6. Prefetcher + blktrace + application 0.59

7. Miss ratio calculation 0.90

room for further optimization. Cases 5, 6, and 7 belong

to the application prefetch phase, and repeatedly occur

until the application prefetcher is invalidated. Cases 6

and 7 occur only when npre f reaches Nchk, and Case 7

can be run in background.

FAST creates temporary files such as system call log

files and I/O traces, but these can be deleted after FAST

completes creating application prefetchers. However, the

generated prefetchers occupy disk space as far as ap-

plication prefetching is used. In addition, application

launch sequences are stored to check the miss ratio of

the corresponding application prefetcher. In our exper-

iment, the total size of the application prefetchers and

application launch sequences for all 22 applications was

7.2 MB.

FAST applicability. While previous examples clearly

demonstrated the benefits of FAST for a wide range of

applications, FAST does not guarantee improvements for

all cases. One such a scenario is when a target appli-

cation is too small to offset the overhead of loading the

prefetcher. We tested FASTwith the Linux utility uname,

which displays the name of the OS. It generated 3 I/O re-

quests whose total size was 32 KB. The measured tcold
was 2.2 ms, and tFAST was 2.3 ms, 5% longer than the

cold start time.

Another possible scenario is when the target applica-

tion experiences a major update. In this scenario, FAST

may fetch data that will not be used by the newly up-

dated application until it detects the application update

and enters a new launch profiling phase. We modified

the application prefetcher so that it fetches the same size

of data from the same file but from another offset that

is not used by the application. We tested the modi-

fied prefetcher with Firefox. Even in this case, FAST

reduced application launch time by 4%, because FAST

could still prefetch some of the metadata used by the ap-

plication. Assuming most of the file names are changed

after the update, we ran Firefox with the prefetcher for

Gimp, which fetches a similar number of blocks as Fire-

fox. In this experiment, the measured application launch

time was 7% longer than the cold start time, but the per-

formance degradation was not drastic due to the internal

parallelism of the SSD we used (10 channels).
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Configuring application launch manager. The appli-

cation launch manager has a set of parameters to be con-

figured, as shown in Table 2. If Nrawseq is set too large,

users will experience the cold-start performance during

the initialization phase. If it is set too small, unnecessary

blocks may be included in the application prefetcher.

Figure 5 shows that setting it between 2 and 4 is a good

choice. The proper value of Nchk will depend on the run-

time overhead of Blktrace; if FAST is placed in the OS

kernel, the miss ratio of the application prefetchermay be

checked upon every launch (Nchk = 1) without noticeable

overhead. Also, setting Rmiss to 0.1 is reasonable, but it

needs to be adjusted after gaining enough experience in

using FAST. To find the proper value of Tidle, we investi-

gated the SSD’s maximum idle time during the cold-start

of applications, and found it to range from 24 ms (Thun-

derbird) to 826 ms (Xilinx ISE). Hence, setting Tidle to 2

seconds is proper in practice. As the maximum cold-start

launch time is observed to be less than 10 seconds, 30

seconds may be reasonable for Ttimeout . All these values

may need to be adjusted, depending on the underlying

OS and applications.

Running FAST on HDDs. To see how FAST works on

a HDD, we replaced the SSD with a Seagate 3.5” 1 TB

HDD (ST31000528AS) and measured the launch time of

the same set of benchmark applications. Although FAST

worked well as expected by hiding most of CPU com-

putation from the application launch, the average launch

time reduction was only 16%. It is because the applica-

tion launch on a HDD is mostly I/O bound; in the cold

start scenario, we observed that about 85% of the appli-

cation launch time was spent on accessing the HDD. In

contrast, the sorted prefetch was shown to be more ef-

fective; it could reduce the application launch time by an

average of 40% by optimizing disk head movements.

We performed another experiment by modifying the

sorted prefetch so that the prefetcher starts simultane-

ously with the original application, like FAST. However,

the resulting launch time reduction was only 19%, which

is worse than that of the unmodified sorted prefetch. The

performance degradation is due to the I/O contention be-

tween the prefetcher and the application.

6 Applicability of FAST to Smartphones

The similarity between modern smartphones and PCs

with SSDs in terms of the internal structure and the us-

age pattern, as summarized below, makes smartphones a

good candidate to which we can apply FAST:

• Unlike other mobile embedded systems, smart-

phones run different applications at different times,

making application launch performance matter

more;
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Figure 9: Measured application launch time on iPhone 4

(CPU: 1 GHz, SDRAM: 512 MB, NAND flash: 32 GB).

• Smartphones use NAND flash as their secondary

storage, of which the performance characteristics

are basically the same as the SSD; and

• Smartphones often use slightly customized (if not

the same) OSes and file systems that are designed

for PCs, reducing the effort to port FAST to smart-

phones.

Furthermore, a smartphone has the characteristics that

enhance the benefit of using FAST as follows:

• Users tend to launch and quit applications more fre-

quently on smartphones than on PCs;

• Due to relatively smaller main memory of a smart-

phone, users will experience cold start performance

more frequently; and

• Its relatively slower CPU and flash storage speed

may increase the absolute reduction of application

launch time by applying FAST.

Although we have not yet implemented FAST on a

smartphone, we could measure the launch time of some

smartphone applications by simply using a stopwatch.

We randomly chose 14 applications installed on the

iPhone 4 to compare their cold and warm start times, of

which the results are plotted in Figure 9. The average

cold start time of the smartphone applications is 6.1 sec-

onds, which is more than twice of the average cold start

time of the PC applications (2.4 seconds) shown in Fig-

ure 6. Figure 9 also shows that the average warm start

time is 63% of the cold start time (almost the same ra-

tio as in Figure 6), implying that we can achieve similar

benefits from applying FAST to smartphones.

7 Comparison of FAST with Traditional

Prefetching

FAST is a special type of prefetching optimized for appli-

cation launch, whereas most of the traditional prefetch-

ing schemes focus on runtime performance improve-

ment. We compare FAST with the traditional prefetching

algorithms by answering the following three questions

that are inspired by previous work [32].
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7.1 What to Prefetch

FAST prefetches the blocks appeared in the application

launch sequence. While many prediction-based prefetch-

ing schemes [9, 23, 39] suffer from the low hit ratio of

the prefetched data, FAST can achieve near 100% hit

ratio. This is because the application launch sequence

changes little over repeated launches of an application,

as observed by previous work [4, 18, 34].

Sequential pattern detection schemes like readahead

[13, 31] can achieve a fairly good hit ratio when acti-

vated, but they are applicable only when such a pattern

is detected. By contrast, FAST guarantees stable perfor-

mance improvement for every application launch.

One way to enhance the prefetch hit ratio for a com-

plicated disk I/O pattern is to analyze the application

source code to extract its access pattern. Using the thus-

obtained pattern, prefetching can be done by either in-

serting prefetch codes into the application source code

[29, 38] or converting the source code into a computa-

tion thread and a prefetch thread [40]. However, such

an approach does not work well for application launch

optimization because many of the block requests gener-

ated during an application launch are not from the ap-

plication itself but from other sources, such as loading

shared libraries, which cannot be analyzed by examin-

ing the application source code. Furthermore, both re-

quire modification of the source code, which is usually

not available for most commercial applications. Even

if the source code is available, modifying and recompil-

ing every application would be very tedious and incon-

venient. In contrast, FAST does not require application

source code and is thus applicable for any commercial

application.

Another relevant approach [6] is to deploy a shadow

process that speculatively executes the copy of the orig-

inal application to get hints for the future I/O requests.

It does not require any source modification, but con-

sumes non-negligibleCPU andmemory resources for the

shadow process. Although it is acceptable when CPU

is otherwise stalled waiting for the I/O completion, em-

ploying such a shadow process in FAST may degrade ap-

plication launch performance as there is not enough CPU

idle period as shown in Figure 7.

7.2 When to Prefetch

FAST is not activated until an application is launched,

which is as conservative as demand paging. Thus, un-

like prediction-based application prefetching schemes

[12, 28], there is no cache-pollution problem or addi-

tional disk I/O activity during idle period. However, once

activated, FAST aggressively performs prefetching: it

keeps on fetching subsequent blocks in the application

launch sequence asynchronously even in the absence of

page misses. As the prefetched blocks are mostly (if not

all) used by the application, the performance improve-

ment of FAST is comparable to that of the prediction-

based schemes when their prediction is accurate.

7.3 What to Replace

FAST does not modify the replacement algorithm of

page cache in main memory, so the default page replace-

ment algorithm is used to determine which page to evict

in order to secure free space for the prefetched blocks.

In general, prefetching may significantly affect the

performance of page replacement. Thus, previous work

[5, 14, 35] emphasized the need for integrated prefetch-

ing and caching. However, FAST differs from the tradi-

tional prefetching schemes since it prefetches only those

blocks that will be referenced before the application

launch completes (e.g., in next few seconds). If the page

cache in the main memory is large enough to store all

the blocks in the application launch sequence, which is

commonly the case, FAST will have minimal effect on

the optimality of the page replacement algorithm.

8 Conclusion

We proposed a new I/O prefetching technique called

FAST for the reduction of application launch time on

SSDs. We implemented and evaluated FAST on the

Linux OS, demonstrating its deployability and perfor-

mance superiority. While the HDD-aware application

launcher showed only 7% of launch time reduction on

SSDs, FAST achieved a 28% reduction with no addi-

tional overhead, demonstrating the need for, and the

utility of, a new SSD-aware optimizer. FAST with a

well-designed entry-level SSD can provide end-users the

fastest application launch performance. It also incurs

fairly low implementation overhead and has excellent

portability, facilitating its wide deployment in various

platforms.
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