
Tradeoffs in Scalable Data Routing for Deduplication Clusters

Wei Dong∗

Princeton University

Fred Douglis

EMC

Kai Li
Princeton University

and EMC

Hugo Patterson

EMC

Sazzala Reddy

EMC

Philip Shilane

EMC

Abstract

As data have been growing rapidly in data centers,

deduplication storage systems continuously face chal-

lenges in providing the corresponding throughputs and

capacities necessary to move backup data within backup

and recovery window times. One approach is to build a

cluster deduplication storage system with multiple dedu-

plication storage system nodes. The goal is to achieve

scalable throughput and capacity using extremely high-

throughput (e.g. 1.5 GB/s) nodes, with a minimal loss

of compression ratio. The key technical issue is to route

data intelligently at an appropriate granularity.

We present a cluster-based deduplication system that

can deduplicate with high throughput, support dedupli-

cation ratios comparable to that of a single system, and

maintain a low variation in the storage utilization of in-

dividual nodes. In experiments with dozens of nodes,

we examine tradeoffs between stateless data routing ap-

proaches with low overhead and stateful approaches that

have higher overhead but avoid imbalances that can

adversely affect deduplication effectiveness for some

datasets in large clusters. The stateless approach has

been deployed in a two-node commercial system that

achieves 3 GB/s for multi-stream deduplication through-

put and currently scales to 5.6 PB of storage (assuming

20X total compression).

1 Introduction

For business reasons and regulatory requirements [14,

29], data centers are required to backup and recover their

exponentially increasing amounts of data [15] to and

from backup storage within relatively small windows of

time; typically a small number of hours. Furthermore,

many copies of the data must be retained for potentially

long periods, from weeks to years. Typically, backup

software aggregates files into multi-gigabyte “tar” type

files for storage. To minimize the cost of storing the

∗Work done in part as an intern with Data Domain, now part of

EMC.

many backup copies of data, these files have tradition-

ally been stored on tape.

Deduplication is a technique for effectively reducing

the storage requirement of backup data, making disk-

based backup feasible. Deduplication replaces identi-

cal regions of data (files or pieces of files) with refer-

ences (such as a SHA-1 hash) to data already stored on

disk [6, 20, 27, 36]. Several commercial storage systems

exist that use some form of deduplication in combina-

tion with compression (such as Lempel-Ziv [37]) to store

hundreds of terabytes up to petabytes of original (logical)

data [8, 9, 16, 25]. One state-of-the-art single-node dedu-

plication system achieves 1.5 GB/s in-line deduplication

throughput while storing petabytes of backup data with

a combined data reduction ratio in the range of 10X to

30X [10].

To meet increasing requirements, our goal is a backup

storage system large enough to handle multiple pri-

mary storage systems. An attractive approach is to

build a deduplication cluster storage system with indi-

vidual high-throughput nodes. Such a system should

achieve scalable throughput, scalable capacity, and a

cluster-wide data reduction ratio close to that of a single

very large deduplication system. Clustering storage sys-

tems [5, 21, 30] are a well-known technique to increase

capacity, but adding deduplication nodes to such clusters

suffer from two problems. First, it will fail to achieve

high deduplication because such systems do not route

based on data content. Second, tightly-coupled cluster

file systems often do not exhibit linear performance scal-

ability because of requirements for metadata synchro-

nization or fine-granularity data sharing.

Specialized deduplication clusters lend themselves to

a loosely-coupled architecture because consistent use

of content-aware data routing can leverage the sophis-

ticated single-node caching mechanisms and data lay-

outs [36] to achieve scalable throughput and capac-

ity while maximizing data reduction. However, there

is a tension between deduplication effectiveness and

throughput. On one hand, as chunk size decreases, dedu-

plication rate increases, and single-node systems may

deduplicate chunks as small as 4-8 KB1 to achieve very

high deduplication. On the other hand, with larger chunk

sizes, high throughput is achieved because of stream

and inter-file locality, and per-chunk memory overhead

is minimized [18, 35]. High throughput deduplication

with small chunk sizes is achieved on individual nodes

using techniques that take advantage of cache locality to

reduce I/O bottlenecks [20, 36]. For existing dedupli-

cation clusters like HYDRAstor [8], though, relatively

large chunk sizes (∼64 KB) are used to maintain high

throughput and fault tolerance at the cost of deduplica-

tion. We would like to achieve scalable throughput and

capacity with cluster-wide deduplication close to that of

a state-of-the-art single node.

In this paper, we propose a deduplicating cluster that

addresses these issues by intelligently “striping” large

files across a cluster: we create super-chunks that rep-

resent consecutive smaller chunks of data, route super-

chunks to nodes, and then perform deduplication at each

node. We define data routing as the assignment of super-

chunks to nodes. By routing data at the granularity of

super-chunks rather than individual chunks, we maintain

cache locality, reduce system overheads by batch pro-

cessing, and exploit the deduplication characteristics of

smaller chunks at each node. The challenges with rout-

ing at the super-chunk level are, first, the risk of creating

duplicates, since the fingerprint index is maintained in-

dependently on each node; and second, the need for scal-

able performance, since the system can overload a single

node by routing too much data to it.

We present two techniques to solve the data routing

problem in building an efficient deduplication cluster,

and we evaluate them through trace-driven simulation

of collected backups up to 50 TB. First, we describe a

stateless technique that routes based on only 64 bytes

from the super-chunk. It is remarkably effective on typi-

cal backup datasets, usually with only a ∼10% decrease

in deduplication for small clusters compared to a single

node; for balanced workloads the gap is within ∼10-20%

even for clusters of 32–64 nodes. Second, we compare

the stateless approach to a stateful technique that uses

information about where previous chunks were routed.

This achieves deduplication nearly as high as a single

node and distributes data evenly among dozens of nodes,

but it requires significant computation and either greater

memory or communication overheads. We also explore

a range of techniques for routing super-chunks that trade

off memory and communication requirements, including

varying how super-chunks are formed, how large they

are on average, how they are assigned to nodes, and how

1Throughout the paper, references to chunks of a given size refer to

chunks that are expected to average that size.

node imbalance is addressed.

The rest of this paper is organized as follows. Sec-

tion 2 describes our system architecture, then Section 3

focuses on alternatives for super-chunk creation and

routing. Section 4 presents our experimental method-

ology, datasets, and simulator, and Section 5 shows the

corresponding results. We briefly describe our product

in Section 6. We discuss related work in Section 7, and

conclusions and future work are presented in Section 8.

2 System Overview

This section presents our deduplication cluster design.

We first review the architecture of our earlier storage sys-

tem [36], which we use as a single-node building block.

Because the design of the single-node system empha-

sizes high throughput, any cluster architecture must be

designed to support scalable performance. We then show

the design of the deduplication cluster with stateless rout-

ing, corresponding to our product (differences pertaining

to stateful routing are presented later in the paper).

We use the following criteria to govern our design de-

cisions for the system architecture and choosing a routing

strategy:

• Throughput Our cluster should scale throughput

with the number of nodes by maximizing parallel

usage of high-throughput storage nodes. This im-

plies that our architecture must optimize for cache

locality, even with some penalty with respect to

deduplication capacity—we will write duplicates

across nodes for improved performance, within rea-

son.

• Capacity To maximize capacity, repeated patterns

of data should be forwarded to storage nodes in

a consistent fashion. Importantly, capacity usage

should be balanced across nodes, because if a node

fills up, the system must place new data on alternate

nodes. Repeating the same data on multiple nodes

leads to poor deduplication.

The architecture of our single-node deduplication sys-

tem is shown in Figure 1(a). We assume the incom-

ing data streams have been divided into chunks with a

content-based chunking algorithm [4, 22], and a finger-

print has been computed to uniquely identify each chunk.

The main task of the system is to quickly determine

whether each incoming chunk is new to the system and

then to efficiently store new chunks. High-throughput

fingerprint lookup is achieved by exploiting the dedupli-

cation locality of backup datasets: in the same backup

stream, chunks following a duplicate chunk are likely to

be duplicates, too.

To preserve locality, we use a technique based on

Stream Informed Segment2 Layout [36]: disk storage is

2Note that the term “segment” in the earlier paper means the same

2

(b) Dataflow of Deduplication Cluster

(a) Deduplication Node Architecture

Memory
New Data

Bloom Filter Fingerprint Cache

Fingerprint
Index

Fingerprints Chunk Data

Containers
Disk Storage

Load Cache

Dedup
LogicLookup Lookup

Chunked Data Streams

Multiple Backup Servers
Running Plugins

Super-Chunks

Chunks

Data Streams
Meta Data

data
routing

co
nt

ro
l

Master
Bin Mapping

Dedupllication Nodes

Figure 1: Deduplication node architecture and cluster de-

sign using individual nodes as building blocks.

divided into fixed-size large pieces called containers, and

each stream has a dedicated container. The non-duplicate

fingerprints and chunk data are appended to the metadata

part and the data part of the container. The sequence of

fingerprints needed to reconstruct a file is also written as

chunks and stored to containers, and a root fingerprint

is maintained in a directory structure. When the current

container is full, it is flushed to disk, and a new container

is allocated for the stream.

To identify existing chunks, a fingerprint cache avoids

a substantial fraction of index lookups, and for those not

found in the cache, a Bloom filter [3] identifies with high

probability which fingerprints will be found in the on-

disk index. Thus disk accesses only occur either when a

duplicate chunk misses in our cache or when a full con-

tainer of new chunks is flushed to disk. (In rare cases, a

false positive from the Bloom filter will cause an unnec-

essary lookup to the on-disk index.) Once a fingerprint is

loaded, many fingerprints that were written at the same

time are loaded with it, enabling subsequent duplicate

chunks to hit in the fingerprint cache.

Figure 1(b) demonstrates how to combine multiple

deduplication nodes into a cluster. Backup software

on each client collects individual files into a backup

as the term “chunk” in this paper.

stream, which it transfers to a backup server. We of-

fer a plugin [12] that runs on a customer’s backup

servers, which divides each stream into chunks, fin-

gerprints them, groups them into a super-chunk, and

routes each super-chunk to a deduplicating storage node.

Each storage node locally applies deduplication logic to

chunks while preserving data locality, which is essential

to maintain high throughput.

To clarify the parallelization that takes place in our

cluster, consider writing a file to the cluster. When

a super-chunk is routed to a storage node, deduplica-

tion begins while the next super-chunk is created and

routed to a potentially different node. All of the meta-

data needed to reconstruct a file is stored in chunks and

distributed across the nodes. When reading back a file,

parallel reads are initiated to all of the nodes by looking

ahead through the metadata references and issuing reads

for super-chunks to the appropriate nodes. To achieve

maximum parallelization, the I/O load should be equal

on each node, and both read and write throughput should

scale linearly with the number of nodes.

Note that we do not yet specifically address the inter-

node dependencies that arise in the event of a failure.

Each node is highly redundant, with RAID and other data

integrity mechanisms. It would be possible to provide re-

dundant controllers in each node to eliminate that single

point of failure, but these details are beyond the scope of

this paper.

Storage Rebalancing: When super-chunks are routed

to a storage node, we use a level of indirection called

a bin. We assign a super-chunk to a bin using the mod

function, and then map each bin to a given node. By

using many more bins (∼1000) than actual nodes, the

Bin Manager (running on the master node) can rebalance

nodes by reassigning bins in the future. The Bin Manager

also handles expansion cases such as when a node’s stor-

age expands or when a new node is added to the clus-

ter. In those cases, the Bin Manager reassigns bins to

the new storage to maintain balanced usage. Rebalanc-

ing data takes place online while backups and other op-

erations continue, and the entire process is transparent

to the user. After a rebalance operation, the cluster will

generally remain balanced for future backups. The mas-

ter node communicates the bin-to-node mapping to the

plugin.

Bin migration occurs when the storage usage of a node

exceeds the average usage in the cluster by some thresh-

old (defaulting to 5%). Note that if there is a great deal of

skew in the total physical storage of a single bin, that bin

can exceed the threshold even if it is the only bin stored

on a node. Such anomalous behavior is rare but possible,

and we discuss some examples of this in Section 5.

3

3 Data Routing

This section addresses two issues with data routing in

our deduplication cluster: how to group chunks into

super-chunks, and how to route data. Super-chunk for-

mation is relatively straightforward and is discussed in

Section 3.1. We focus here on two routing strategies:

stateless routing, light-weight and well suited for most

balanced workloads (Section 3.2); and stateful routing,

requiring more overhead but maintaining a higher dedu-

plication rate with larger clusters (Section 3.3).

3.1 Super-Chunk Formation

There are two important criteria for grouping consecu-

tive chunks into super-chunks. First, we want an average

super-chunk size that supports high throughput. Second,

we want super-chunk selection to be resistant to small

changes between full backups.

The size of a super-chunk could vary from a single

chunk to many megabytes, or it could be equal to indi-

vidual files as suggested by Extreme Binning [2]. We

experimented with a variety of average super-chunk sizes

from 8 KB up to 4 MB on backup datasets. The average

super-chunk size affects deduplication, balance across

storage nodes, and throughput, and it is more thoroughly

explored in Section 5.3. We generally found that a 1 MB

average super-chunk size is a good choice, because it re-

sults in efficient data locality on storage nodes as well as

generally high deduplication, and this is the default value

used in our experiments unless otherwise noted.

Determining super-chunk boundaries (anchoring) mir-

rors the problem of anchoring chunks [24] in many ways

and should be implemented in a content-dependent fash-

ion. Since all chunks in a super-chunk are routed to-

gether, deduplication is affected by super-chunk bound-

aries. We represent each chunk with a feature (see the

next subsection), compare the feature against a mask,

and when the mask is matched, the selected chunk be-

comes the boundary between super-chunks. Minimum

and maximum super-chunk sizes are enforced, half and

double the desired super-chunk size respectively.

3.2 Stateless Routing

Numerous data routing techniques are possible: routing

based only on the contents of the current super-chunk is

stateless, while routing super-chunks using information

about the location of existing chunks is stateful (see Sec-

tion 3.3).

For stateless routing, the basic technique is to pro-

duce a feature value representing the data and then ap-

ply a simple function (such as mod #bins) to the value to

make the assignment. As a super-chunk is a sequence of

chunks, we first compute a feature from each chunk, and

then select one of those features to represent the super-

chunk.

There are many options for generating a chunk fea-

ture. A hash could be calculated over an entire chunk

(hash(*)) or over a prefix of the bytes near an anchor

point (hash(N), for a prefix of N bytes). Using the hash

of a representative portion of a chunk results in data that

are similar, but not identical, being routed to the same

node; the net effect is to improve deduplication while in-

creasing skew. We tried a range of prefix lengths and

found the best results when using the first 64 bytes after

a chunk anchor point (i.e., hash(64)), which we com-

pare to hash(*). When using a hash for routing rather

than deduplication, collisions are acceptable, so we use

the first 32-bit word of the SHA-1 hash for hash(64).

In addition, we considered other variants, such as

fingerprints computed over sliding windows of con-

tent [22]; these did not make a substantial difference in

the outcome, and we do not discuss them further.

To select a super-chunk feature based on the chunk

features, the first, maximum, minimum, or most common

chunk feature could be selected; using just the first has

the advantage that it is not necessary to buffer an entire

super-chunk before deciding where to route it, something

that matters when hundreds or thousands of streams are

being processed simultaneously. Another stateless tech-

nique is to treat the feature of each chunk as a “vote”

for a node and select the most common, which does not

work especially well, because hash values are often uni-

formly distributed. We experimented with a variety of

options and found the most interesting results with four

combinations: hash(64) of the first chunk, the mini-

mum hash(64) across a super-chunk, hash(*) of the

first chunk, and the minimum hash(*) across a super-

chunk (compared in detail in Section 5.2). Elsewhere,

hash(64) refers to the feature from the first chunk un-

less stated otherwise.

The main advantages of stateless techniques are (1)

reduced overhead for recording node assignments, and

(2) reduced requirements for recovering this state after

a system failure. Stateless routing has some properties

of a “shared nothing” [31] architecture because of lim-

ited shared state. There is a potential for a loss of dedu-

plication compared to the single-node case, and there is

also the potential for increased data skew if the selected

features are not uniformly distributed. We find empiri-

cally that the reduction in deduplication effectiveness is

within acceptable bounds, and bin migration can usually

address excessive data skew.

3.3 Stateful routing

Using information about the location of existing chunks

can improve deduplication, at an increased cost in (a)

computation and (b) memory or communication. We

present a stateful approach that produces deduplication

that is frequently comparable to that of a single node

4

even with a significant number of nodes (32-64); also,

by balancing the benefit of matching existing chunks

against the capacity of overloaded nodes, it avoids the

need to migrate data after the fact. This approach is not a

panacea, however, as it increases memory requirements

(per-node Bloom filters, if storing them on a master node,

and buffering an entire super-chunk before routing it) and

computational overhead, as discussed below.

To summarize our stateful routing algorithm, in its

simplest form:

1. Use a Bloom filter to count the number of times

each fingerprint in a super-chunk is already stored

on a given node.

2. Weight the number of matches (“votes”) by each

node’s relative storage utilization. Overweight

nodes are excluded.

3. If the highest weighted vote is above a threshold,

select that node.

4. If no node has sufficient weighted votes, route to the

node selected via hash(64) of the first chunk if it is

not overloaded; otherwise route to the least loaded

node.

We now explain the algorithm in more detail. To route

a super-chunk, once the master node knows the num-

ber of chunks in common with (a.k.a. “matching”) each

node, it selects a destination. However, such a “voting”

approach requires care to avoid problematic cases: sim-

ply targeting the node with the most matching chunks

will route more and more super-chunks there, because

the more data it has relative to other nodes, the more

likely it is to match the most chunks.

Thus, one refinement to this stateful approach is to cre-

ate a threshold for a minimum fraction of chunks that

must match a node before it is selected. With a uniform

distribution, one expects each node to match at most C
N

chunks on average, where C is the number of chunks in

the super-chunk and N is the number of nodes. Typically

not all chunks will match any node, and the average num-

ber of matches will be lower, but if a node already stores

significantly more than the expected average, this is a

reason to route the super-chunk to that node. In our sys-

tem, a voting benefit threshold of 1.5 means that a node

is considered as a candidate only if it already matches

at least 1.5C
N

chunks. This prevents a node from being

selected simply because it matches more than any other

node, when no node matches well enough to be of inter-

est.

Simply using a static threshold for the number of

matches to vote a super-chunk to a particular node still

results in high data skew, as popular nodes get more

popular over time. A technique we call weighted vot-

ing addresses that deficiency by striking a balance be-

tween deduplication and uniform storage utilization. It

decreases the perceived value of known duplicates in

proportion to the extent to which a node is overloaded

relative to the average storage utilization of the system.

As an example, if a node matches 2C
N

chunks in a super-

chunk, but that node stores 120% (6
5
) of the average

node, then the node is treated as though it matched 5
6
∗

2C
N

chunks. Note that while a node that stores less than

the average could be given a weight < 1, increasing the

overall weighted value, instead we assign such nodes a

weight of 1. This ensures that when multiple nodes can

easily accommodate the new super-chunk, the node is

selected based on the best match. We experimented with

various weight functions, but we found that it is effective

simply to exclude nodes that are above a capacity thresh-

old. In practice, a capacity of 5% above the average was

selected as the threshold (see Sec 5.4).

The computational cost arises because the stateful ap-

proach computes where every chunk in a super-chunk

is currently stored. A Bloom filter lookup has to be

performed for each chunk, on each node in the cluster,

before a routing destination can be picked. Each such

lookup is extremely fast (∼100− 200ns), but there can

be a great many of these lookups: inserting M chunks

into an N-node cluster would result in NM Bloom filter

lookups, compared to M lookups in a single-node sys-

tem. The additional overhead in memory or communi-

cation depends on whether the master node(s) tracks the

state of each storage node (resulting in substantial mem-

ory allocations) or sends the chunk fingerprints to the

storage nodes and collects counts of how many chunks

match each node (resulting in communication overhead).

One way to mitigate the effect is to sample [20] chunks

that are used for voting. We reduce the number of chunks

considered by checking each chunk’s fingerprint for a

bit pattern of a specific length (e.g., B bits must match

a pattern for a 1/2B sampling rate); the total number of

lookups is then approximately NM/2B. Without sam-

pling, the total cost of the Bloom filter lookups is about

1.2 hours of computation for a 5-TB dataset, but a sam-

pling rate of 1/8 cuts this to 13 minutes of overhead with

a nominal reduction in deduplication (see Section 5.5).

That work can further be parallelized across back-ends

or in threads on the front-end.

As an example, the general approach to weighted vot-

ing is depicted in Figure 2. In this example, the seven

numbered chunks in this super-chunk are sampled for

voting. Chunks 1, 3, and 4 are contained on node 1,

chunks 2, 3, 5, and 6 are on node 2, chunk 5 is also on

node 4, and chunk 7 is not stored on any node. Node

1 has 3 raw votes, and node 2 has 4. Factoring in

space, since node 2 uses much more than the average,

5

Relative Physical
Storage Usage

Weighted
votes = 3.003

1.0
= 0.971

1.03

Bloom Filters

No Match

= 2.964
1.35

1 2 3 4 5 6 7

Super-Chunk

0.83

Node 1

1.35

Node 2

1.03

Node 4

0.79

Node 3

0

0.83

Node 1

1.35

Node 2

1.03

Node 4

0.79

Node 3

Figure 2: Weighted voting example. A node with many

matches will be selected if it does not also have too much

data already, relative to the other nodes. Any node with a

relative storage usage of less than 1 is treated as though

it is at the average.

its weighted votes are (4/1.35) = 2.96. Node 1 has a

slightly higher weighted vote of 3. The minimum weight

for a node to be selected is 1.5×7
4

= 2.6. Thus node 1 is

selected for routing.

The main advantage of a stateful technique is the op-

portunity to incorporate expected deduplication and ca-

pacity balancing while assigning chunks to nodes. On

the other hand, computational or communication over-

head must be considered when choosing this technique,

though it is an attractive option for coping with unbal-

anced workloads or cluster sizes beyond our current ex-

pectations.

4 Experimental Methodology

We use trace-driven simulation to evaluate the tradeoffs

of the various techniques described in the previous sec-

tion. This section describes the datasets used, the evalu-

ation metrics, and the details of the simulator.

4.1 Datasets

In this paper, we simulate super-chunk routing for nine

datasets. Three were collected from large backup envi-

ronments representing typical scenarios where a backup

server hosts multiple data types from dozens of clients.

These datasets contain approximately 40-50 TB precom-

pressed data. To analyze how our routing technique han-

dles datasets with specific properties, we also analyze

five datasets representing single data types. Four of the

datasets are each approximately 5 TB and a fifth is about

13 TB. In addition, we synthesize a “blended” dataset

consisting of a mixture of the five smaller datasets. In

general, we use them in the form that a deduplication

appliance would see them: tar files that are usually

many gigabytes in size, rather than individual small files.

With the exception of the “blended” dataset, all of these

datasets represent real backups from production environ-

ments.

Name
Size (GB)

Dedup. Months
Total Peak

Collection 1 40,695 2,867 6.1 1–2

Collection 2 44,536 1,536 11.5 4–6

Collection 3 51,584 2,150 6.1 3

Perforce 4,574 250 20.8 6

Workstations 4,926 200 5.6 6

Exchange 5,253 33 6.8 7

System Logs 5,436 122 38.7 4

Home Dirs. 12,907 855 19.3 3

Blended 33,097 N/A 12.5 N/A

Table 1: Summary of datasets. The Collection datasets

were collected from backup servers with multiple data

types, and the other datasets were collected from sin-

gle data-type environments. Deduplication ratios are ob-

tained from a single-node system.

For the three collected datasets, we received permis-

sion to analyze production backup servers within EMC.

We gathered traces for each file including the timestamp,

sequence of chunk fingerprints, and other metadata nec-

essary to analyze chunk routing. At an earlier collection

on internal backup servers, we gathered copies of backup

files for the individual data types.

Table 1 lists salient information of these datasets: the

total logical size, the daily peak size, the single-node

deduplication rate, and the number of months in the 99th

percentile of retention period. The datasets are:

Collection 1: Backups from approximately 100 clients

consisting of half software development and half busi-

ness records. Backups are retained 1-2 months.

Collection 2: Backups from approximately 50 engineer-

ing workstations with 4 months of retention and servers

with 6 months of retention.

Collection 3: Backups of over 100 clients for Exchange,

SQL servers, and Windows workstations with 3 months

of retention.

Perforce: Backups from a version control repository.

Workstations: Backups from 16 workstations used for

build and test.

Exchange: Backups from a Microsoft Exchange server.

Each day contains a single full backup.

System Logs: Backups from a server’s /var directory,

containing numerous system files and logs. Full backups

were created weekly.

Home Directory: Backups from engineers’ home di-

rectories, containing source code, office documents, etc.

Full backups were created weekly.

Blended: To explore the effects of multiple datasets be-

ing written to a storage system (a common scenario),

we created a blended dataset. We combined alternating

super-chunks of the single data-type datasets, weighted

6

by overall size; thus there are approximately two super-

chunks from the “home directory” dataset for each super-

chunk of the others. The overall deduplication for this

dataset (12.5) is somewhat higher than the weighted aver-

age across the datasets (12.3), due to some cross-dataset

commonality.

While our experiments studied all of these datasets,

because of space limitations, we typically only present

results for two: Workstations and Exchange. Exper-

iments with Workstations have results consistent with

the other datasets and represents our expected customer

experience. The Exchange dataset showed consistently

worse results with our techniques and is presented for

comparison. Because of data patterns within Exchange,

using a 1-MB super-chunk results in overloading a single

bin with 1/16 of the data.

4.2 Evaluation Metrics

The principal evaluation metrics are:

Total Deduplication (TD): The ratio of the original

dataset size to the size after identical chunks are elim-

inated. (We do not consider local compression (e.g.,

Lempel-Ziv [37]), which is orthogonal to the issues con-

sidered in this paper.)

Data Skew: The ratio of the largest node’s physical

(post-deduplication) storage usage to the average usage,

used to evaluate how far from this perfect balance a par-

ticular configuration is. High skew leads to a node filling

up and duplicate data being written to alternative nodes,

as discussed in Section 2.

Effective Deduplication (ED): Total Deduplication di-

vided by Data Skew, as a single utility measure that en-

compasses both deduplication effectiveness and storage

imbalance. ED is equivalent to Total Deduplication com-

puted as if every node consumes the same amount of

physical storage as the most loaded node. This metric

is meaningful because the whole cluster degrades when

one node is filled up. ED permits us to compare routing

techniques and parameter options with a single value.

Normalized ED: ED divided by deduplication achieved

by a single-node system. This is an indication of how

close a super-chunk routing method is to the ideal dedu-

plication achievable on a cluster system. It allows us

to compare the effectiveness of chunk-routing methods

across different datasets under the same [0,1] scale.

Fingerprint Index Lookups: Number of on-disk index

lookups, used as an approximation to throughput. The

lookup rate is the number of lookups divided by the num-

ber of chunks processed by a storage node.

4.3 Simulator

Most of the results presented in this paper come from a

set of simulations, organized as follows:

1. For the Collection datasets, we read from a dedu-

plicating storage node and reconstructed files based on

metadata to create a full trace including the chunk size,

its hash(*) value, and its hash(64) value. The other

datasets were preprocessed by reading in each file, com-

puting chunks of a particular average size (typically

8 KB), and storing a trace.

2. The per-chunk data are passed into a program to

determine super-chunk boundaries and route those super-

chunks to particular nodes. It produces statistical infor-

mation about deduplication rates, data skew, the number

of Bloom filter lookups performed, and so on. In addi-

tion, it logs the SHA1 hash and location of each super-

chunk, on a per-node basis. Its parameters include the

super-chunk routing algorithm; the average super-chunk

size (typically 1 MB); the maximum relative node size

before bin migration is performed (for stateless) or node

assignment is avoided (for stateful), defaulting to 1.05;

some stateful routing parameters described below, and

several others not considered here.

The simulator was validated in part by comparing

deduplication results for Total Deduplication and skew

to the values reported by the live two-node system. Due

to minor implementation differences, normalized TD is

typically up to 2–3% higher in the simulator than in the

live system, though in one case the real system reported

slightly higher normalized deduplication. Skew is simi-

larly close.

The stateful routing parameters are: (a) Vote sampling:

what fraction of chunks, on average, should be passed

to the Bloom filters and checked for matches? (Default:

1/8.) (b) Vote threshold: how many more matches than

the average (as a fraction) should an average-sized node

be, before being used rather than the node routed by the

first chunk? (Default: 1.5)

3. To analyze caching effects on a storage system,

each of the node-specific super-chunk files can be used

to synthesize a data stream with the same deduplication

patterns and chunk sizes, which speeds up experimenta-

tion relative to reading the original data repeatedly. For

simplicity, the compression for the synthesized chunks

was fixed at 2:1, a close approximation to overall com-

pression for the datasets used. This stream is then written

to a deduplication appliance, sending each bin to its final

node in the original simulations after migration.

The accuracy of using a synthesized stream in place

of the original dataset was validated by comparing Total

Deduplication of several synthesized results to those of

original datasets.

5 Experimental Results

We focused our experiments on analyzing the impact of

super-chunk routing on capacity and fingerprint index

lookups across a range of cluster sizes and a variety of

datasets. We start by surveying how different routing ap-

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(a) Collection 1

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(b) Collection 2

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(c) Collection 3

stateful
hash(64) mig

hash(64) no mig

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(d) Perforce

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(e) Workstations

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(f) Exchange

stateful
hash(64) mig

hash(64) no mig

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(g) System Logs

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(h) Home Dirs

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(i) Blended

stateful
hash(64) mig

hash(64) no mig

Figure 3: Normalized ED of the stateless and stateful techniques as a function of the number of nodes. The top row

represents the collected “real-world” datasets. Stateful and hash(64) (mig) use a capacity threshold of 5%.

proaches fare over a broad range of datasets and clus-

ter sizes (Section 5.1). This gives a picture of how To-

tal Deduplication and skew combine into the Effective

Deduplication metric. Then we dive into specifics:

• What is the best feature (hash(64) vs. hash(*),

routing by first chunk vs. all chunks in a super-

chunk) for routing super-chunks (Section 5.2)?

• How does super-chunk size affect fingerprint cache

lookups and locality (Section 5.3)?

• How sensitive is the system to various parameter

settings, including capacity threshold (Section 5.4)

and those involved in stateful routing (Section 5.5)?

5.1 Overall Effectiveness

We first compare the basic techniques, stateless and

stateful, across a range of datasets. Figure 3 shows a

scatter plot for the nine datasets and three algorithms:

hash(64) without bin migration, hash(64) with a 5%

migration threshold, and stateful routing with a 5% ca-

pacity limitation.

In general, hash(64) without migration works well

for small clusters (2–4 nodes) but degrades steadily as

the cluster size increases. Adding bin migration greatly

improves the ED for most of the datasets, though even

with bin migration, ED for Exchange decreases rapidly

as the number of nodes increases, and there is also a

sharp decrease for Home Directories and Blended at

64 nodes. This skew occurs when a single bin is substan-

tially larger than the average node utilization (see Sec-

tion 5.4). Stateful routing is often within 10% of the

single-node deduplication even at 64 nodes, although for

some datasets the gap is closer to 20%. However, there

is additional overhead, as discussed in Section 5.5.

Table 2 presents normalized Total Deduplication (TD),

data skew, and Effective Deduplication (ED) for several

datasets, as the number of nodes varies (corresponding to

the hash(64) (mig) and stateful curves in Figure 3). It

shows how a moderate increase in skew results in a mod-

erate reduction in ED (Workstations), but Exchange

suffers from both repeated data (losing 1
3

of TD) and sig-

nificant skew (further reducing ED by a factor of 4).

5.2 Feature Selection

As discussed in Section 3.2, there are a number of ways

to route a super-chunk. Here we compare four super-

chunk features: hash(64) of the first chunk, the mini-

mum of all hash(64), the hash(*) of the first chunk, or

the minimum of all hash(*). We also compare against

the method used by HYDRAstor [8], which consists of

64-KB chunks routed based on their fingerprint. Figure 4

shows the normalized ED of these four features for two

datasets, not factoring in any capacity limitations. For

Workstations, all four choices are similarly effective,

which is consistent with the other datasets that are not

8

hash(64) stateful

nodes TD Skew ED TD Skew ED

Collection 1

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.93 1.02 0.91 0.95 1.00 0.95

4 0.89 1.03 0.86 0.95 1.00 0.95

8 0.86 1.03 0.84 0.95 1.01 0.94

16 0.85 1.04 0.81 0.94 1.04 0.91

32 0.83 1.04 0.80 0.94 1.04 0.91

64 0.83 1.07 0.77 0.94 1.05 0.90

Collection 2

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.97 1.00 0.97 0.98 1.00 0.98

4 0.94 1.02 0.92 0.97 1.00 0.97

8 0.92 1.04 0.88 0.97 1.00 0.97

16 0.90 1.04 0.86 0.97 1.00 0.97

32 0.88 1.04 0.85 0.96 1.00 0.96

64 0.87 1.04 0.84 0.96 1.00 0.96

Collection 3

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.92 1.01 0.92 0.95 1.01 0.94

4 0.88 1.05 0.84 0.95 1.03 0.93

8 0.85 1.04 0.82 0.96 1.04 0.92

16 0.84 1.05 0.80 0.96 1.05 0.91

32 0.83 1.03 0.80 0.95 1.05 0.91

64 0.82 1.07 0.77 0.95 1.05 0.91

Workstations

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.97 1.02 0.95 0.98 1.00 0.98

4 0.95 1.02 0.93 0.98 1.01 0.97

8 0.94 1.04 0.90 0.98 1.04 0.94

16 0.92 1.05 0.88 0.98 1.04 0.94

32 0.91 1.04 0.88 0.97 1.03 0.94

64 0.91 1.05 0.86 0.97 1.04 0.93

Exchange

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.86 1.01 0.86 0.89 1.00 0.89

4 0.78 1.01 0.77 0.87 1.02 0.85

8 0.72 1.04 0.69 0.87 1.02 0.85

16 0.68 1.08 0.63 0.87 1.01 0.86

32 0.67 2.09 0.32 0.87 1.05 0.83

64 0.65 4.12 0.16 0.87 1.04 0.83

Table 2: Total Deduplication (TD), data skew, and nor-

malized Effective Deduplication ratio (ED = T D
skew

) for

some of the datasets, using capacity thresholds of 5%.

shown. Exchange demonstrates the extreme case, in

which most chunk-routing features degrade badly with

large clusters. One can see the effect of high skew when

a common feature results in distinct chunks being routed

to the same node. This is less common when the entire

chunk’s hash is used than when a prefix is used: first

hash(*) spreads out the data more, resulting in less data

skew and better ED. Even though chunks are consistently

routed with the HYDRAstor technique (HYDRAstor), the

ED is generally worse than the other techniques because

of the larger chunk size: the deduplication is less than

half that achieved with 8-KB chunks on a single node.

The figure demonstrates that first hash(64) is

generally somewhat better for smaller clusters, while

first hash(*) is better for larger ones. (This effect

arises because first hash(64) is more likely to keep

putting even somewhat similar chunks on the same node,

which improves deduplication but increases skew.) Us-

ing the minimum of either feature, as Extreme Binning

does for hash(*), generally achieves similar dedupli-

cation to using the first chunk. Due to its effectiveness

with the cluster sizes being deployed in the near future

and its reduction in buffer requirements, we use first

hash(64) as the default and refer to it as hash(64) for

simplicity elsewhere.

5.3 Factors Impacting Cluster Throughput

A major goal of our architecture is to maximize through-

put as the cluster scales, and in a deduplicating sys-

tem, the main throughput bottleneck is fingerprint index

lookups that require a random disk read [36]. We are not

able to produce a throughput measure in MB/s through

simulation, so we use fingerprint index lookups as an in-

direct measure of throughput.

There are two important issues involving fingerprint

index lookups to consider. The first is the total number

of fingerprint index lookups that take place, since this is

a measure of the amount of work required to process a

dataset and is impacted by data skew. The second is the

rate of fingerprint index lookup, which indicates the lo-

cality of data written to disk. These values are impacted

both by the super-chunk size and number of nodes in a

cluster, and we have selected a relatively large cluster

size (32 nodes) while varying the super-chunk size.

Early generations of backups (the first few weeks of a

dataset) tend to be laid out sequentially because of a low

deduplication rate, while higher generations of backups

are more scattered. To highlight this impact, we ana-

lyzed the caching effects while writing the final 1 TB of

each synthesized dataset across the N nodes. In these ex-

periments, the cache size is held at 12,500 fingerprints.

While this may seem small, it is similar to a cache of

400,000 fingerprints on a single, large node, Also, a

cache must handle multiple backup streams, while our

experiments use one dataset at a time.

Figure 5 shows the skew of the uncompressed (log-

ical) data, maximum normalized total number of finger-

print index lookups, maximum normalized fingerprint in-

dex lookup rate, and ED when routing super-chunks of

various sizes for (a) Workstations and (b) Exchange.

Note that we report skew of the logical data here instead

of skew of the post-dedupe data reported elsewhere, be-

cause fingerprint lookups happen on logical data. The

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o
rm

a
liz

e
d
 E

ff
e
c
ti
v
e
 D

e
d
u
p
lic

a
ti
o
n

Nodes

(a) Workstations

first hash(64)
first hash(*)

min hash(64)
min hash(*)
HYDRAstor

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o
rm

a
liz

e
d
 E

ff
e
c
ti
v
e
 D

e
d
u
p
lic

a
ti
o
n

Nodes

(b) Exchange

first hash(64)
first hash(*)

min hash(64)
min hash(*)
HYDRAstor

Figure 4: Normalized ED versus number of nodes with various features. No bin migration is performed. The HYDRA-

stor points represent 64-KB chunks routed without super-chunks, with virtually no data skew but significantly worse

deduplication in most cases. Workstations is representative of many other datasets, while Exchange is anomalous.

 0

 0.5

 1

 1.5

 2

 2.5

 3

8K... 64K 512K 1M 2M 4M

In
d
e
x
 L

o
o
k
u
p
s
 a

n
d
 O

th
e
r

M
e
tr

ic
s

Super-Chunk Size

(a) Workstations

logical skew
max lookup

max lookup rate
ED

 0

 0.5

 1

 1.5

 2

 2.5

 3

8K... 64K 512K 1M 2M 4M

In
d
e
x
 L

o
o
k
u
p
s
 a

n
d
 O

th
e
r

M
e
tr

ic
s

Super-Chunk Size

(b) Exchange

logical skew
max lookup

max lookup rate
ED

Figure 5: Skew of data written to nodes (pre-deduplication), maximum number of fingerprint index lookups and lookup

rate, and ED versus super-chunk size for a 32-node cluster. Fingerprint index lookup values are normalized relative

to those metrics when routing individual 8-KB chunks. As the super-chunk size increases, the maximum number of

on-disk index lookups decreases for Workstations (improving throughput), while effective deduplication decreases.

Workstations is representative of many other datasets, while Exchange is anomalous.

fingerprint index lookup numbers are normalized relative

to the rate seen when routing individual 8-KB chunks.

Because the lookup rate improvement achieved by us-

ing larger super-chunk sizes generally comes with a cost

of lower deduplication, we also plot normalized ED to

aid the selection of an appropriate super-chunk size. It

should be noted that we found smaller differences in

lookup rate and total number of lookups with smaller

clusters.

For Workstations, we see that the total number of

fingerprint index lookups and rate generally shrink as

we use larger super-chunk sizes. Routing 4-MB super-

chunks results in ∼ 65% of the maximum total index

lookups compared to routing chunks. Though data skew,

maximum lookup rate, and maximum number of lookups

tend to follow the same trends, the values for maximum

number of lookups and maximum lookup rate may come

from different nodes.

The index lookups (both total and rate) for Exchange

around 1 MB highlights a case where our technique may

perform poorly due to a frequently repeating pattern in

the data set that causes a large fraction of the hash(64)

values to map to the same bin. With smaller super-chunk

sizes, less data are carried with each super-chunk, so

skew can be reasonably balanced via migration, and for

larger super-chunks, the problematic hash(64) value is

no longer selected. For this dataset, a super-chunk size of

1 MB results in higher skew that lowers ED, and it has a

high total number of lookups and worst-case cache miss

rate. This is a particularly difficult example for our sys-

10

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

N
o
rm

a
liz

e
d
 E

ff
e
c
ti
v
e
 D

e
d
u
p
lic

a
ti
o
n

a
n
d
 P

e
a
k
 D

a
ta

 M
o
v
e
m

e
n
t
(D

M
)

Capacity Threshold

workstations:

stateful ED
hash(64) ED
hash(64) DM

exchange:

stateful ED
hash(64) ED
hash(64) DM

Figure 6: Normalized ED as a function of capacity

threshold on 32 nodes, for hash(64) and stateful, and

peak fraction of data movement (DM) for hash(64).

Note that lower points are better for data movement,

while higher is better for ED.

tem as the same node had both the highest lookup rate

and skew, which roughly multiply together to equal total

lookups.

Although any particular super-chunk size can poten-

tially result in skew if patterns in the data result in one bin

being selected too often, the problem is rare in practice.

Thus, despite this one poor example, we decided that

1-MB super-chunks provide both reasonable throughput

and deduplication and use that as the default super-chunk

size in our other experiments.

The scalability of our cluster design could more thor-

oughly be analyzed with a comparison of the number of

fingerprint index lookups for various cluster sizes relative

to the single node case. Intuitively, a single-node system

might have similar lookup characteristics to nodes in a

cluster when routing very large super-chunks and with-

out data skew.

5.4 Space Usage Thresholds

Limitations on storage use arise in two contexts. For

stateless routing, we periodically migrate bins away from

nodes storing more than the average, if they exceed a

fixed threshold relative to the mean. In the simulations,

bin migration takes place after multiple 1-TB epochs

have been processed, totaling ∼ 20% of a given dataset.

This means that we attempt migrations approximately 5

times per dataset regardless of size, plus once more at

the end, if needed. For stateful routing, we refrain from

placing new data on a node that is already storing more

than that threshold above the average.

Figure 6 demonstrates the impact of the capacity

threshold on ED and peak data movement, using the

Workstations and Exchange datasets on 32-nodes.

The top four curves show ED: for Workstations, dedu-

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

E
ff
e
c
ti
v
e
 D

e
d
u
p
lic

a
ti
o
n
 (

U
n
n
o
rm

a
liz

e
d
)

Percent of Total Input Processed

migration points
single node

2 nodes mig
2 nodes no mig

64 nodes mig
64 nodes no mig

Figure 7: Effective Deduplication as a function of the

amount of data processed, with and without bin migra-

tion at a 5% threshold, for the Workstations dataset

on 2 and 64 nodes. Migration points are marked along

the top, every 1 TB, with deduplication computed every

0.1 TB. The deduplication for a single node is depicted

as the top curve.

plication effectiveness improves with increasingly tight

capacity bounds, although the benefit below 5% is mini-

mal, while for Exchange, the existence of a single over-

sized bin when using 1 MB super-chunks ensures a large

skew regardless of threshold in the case of hash(64).

The bottom two curves provide an indication of the

impact of bin migration on data movement, as the thresh-

old changes. We compute the fraction of data moved

from a node at the end of an epoch, relative to the amount

of physical data stored on the node at the time of the mi-

gration, and report the maximum across all nodes and

epochs. Exchange moves 15–20% of the incoming data

(which is on the order of 1
32

of 1 TB) without improv-

ing ED, while we would migrate at most a few percent

of one node’s data for Workstations. Note that across

the entire dataset, migration accounts for at most 1
1000

of the data, and on the 2-node commercial systems cur-

rently deployed, they have never occurred. Because at

32 nodes we do see small amounts of migration even for

the Workstations dataset, and increasing the thresh-

old from 1.01 to 1.05 reduces the total data migrated by

nearly a factor of 2 without much of an impact on ED, we

use 1.05 as the default threshold in other experiments.

Figure 7 shows the impact of bin migration over time

on the Workstations dataset. The curves for 2 nodes

are identical, as no migration was performed. The curves

for 64 nodes are significantly different, with the curve

without migration having much worse ED. However,

even with migration, the ED drops between migration

points due to increasing skew. Note that this graph does

not normalize deduplication relative to a single node, in

order to highlight the effect of starting with entirely new

11

Sampling Workstations Exchange Memory

Rate
ED

Look-
ED

Look-
(GB)

(1-in-N) ups (B) ups (B)

1 5.28 20.57 5.74 21.95 96

2 5.27 10.83 5.72 11.62 48

4 5.27 6.03 5.76 6.46 24

8 5.31 3.61 5.63 3.88 12

16 5.27 2.41 5.46 2.59 6

32 5.19 1.81 5.13 1.95 3

Table 3: The ED, Bloom filter lookups in billions, and

Bloom filter memory requirements in a 32-node system,

for two of the datasets. They vary as a function of the

sampling rate: which chunks are checked for existence

on each node. The memory requirement is independent

of the dataset.

data, then increasing deduplication over time.

5.5 Parameters for Stateful Routing

In addition to capacity limitations, stateful routing is pa-

rameterized by vote sampling and vote threshold as ex-

plained in Section 4.3. Sampling has a great impact on

the number of fingerprint lookups, while surprisingly, the

system is not very sensitive to a threshold requiring a

node to be a particularly good match to be selected.

We evaluated sampling across a variety of datasets and

cluster sizes, varying the selectivity of the anchors used

to vote from 1 down to 1
32

. Table 3 reports the effect

of sampling on ED and Bloom filter lookups for two of

the datasets. (Slight rises in ED with less frequent sam-

pling result from slightly lower skew due to not match-

ing a node quite as often.) The last column of the table

shows the size of a Bloom filter on a master node for a

1% false positive rate and up to 20 TB of unique 8-KB

chunks on each node; it demonstrates how the aggregate

memory requirement on the master would decrease as the

sampling rate decreases. The required size to track each

node is multiplied by the number of nodes, 32 in this

experiment. Each node would also have its own local

Bloom filter, which would be unaffected by the sampling

rate used for stateful routing. If lookups are forwarded

to each node, sampling would be used to limit the num-

ber of lookups, but the per-node Bloom filters used for

deduplication would be used for routing, and no extra

memory would be required.

We found that the ED is fairly constant from looking up

all chunks (a sampling rate of 1) down to a rate of 1
8

and

often similar when sampling 1
16

; it degrades significantly,

as expected, when less than that. Thus we use a default

of 1
8

for stateful routing elsewhere in this paper.

We also examined the vote benefit threshold. While

we use a default of 1.5, the system is not very sensitive

to values from 0.75 to 2. The key is to have a high enough

threshold that a single chunk will not “attract” more and

more dissimilar chunks due to one match.

6 Cluster Deduplication Product

EMC now makes a product based on this technol-

ogy [13]. The cluster configuration currently consists of

two nodes and uses the hash(64) routing technique with

bin migration. Each node has the following hardware

configuration: 4 socket processor, 4 cores per socket, and

each core is running at 2.93 Ghz; 64 GB of memory;

four 10-Gb Ethernet interfaces (one for external traffic

and one for inter-node traffic, both in a fail-over pair);

and 140 TB of storage, consisting of 12 shelves of 1-TB

drives. Each shelf has 16 drives in a 12+2 RAID-6 con-

figuration with 2 spare drives.

The total physical capacity of the two-node system is

280 TB. Under typical backup usage, total compression

is expected to be 20X, which leads to a logical capac-

ity of 5.6 PB of storage. Write performance with mul-

tiple streams is over 3 GB/s. Note that this performance

was achieved with processing on the backup server as de-

scribed in Section 2, which communicates with storage

nodes to filter duplicate chunks before network transfer.

Because of the filtering step, logical throughput (file size

divided by transfer time) can even exceed LAN speed.

We measured the steady-state write and read perfor-

mance with 1–4 nodes and found close to linear improve-

ment as the number of nodes increases. While simula-

tions suggest our architecture will scale to a larger num-

ber of nodes, we have not yet tuned our product for a

larger system or run performance tests.

In over six months of customer usage, bin migration

has never run, which indicates stateless routing typically

maintains balance across two nodes.

7 Related Work

Chunk-based deduplication is the most widely used

deduplication method for secondary storage. Such a

system breaks a data file or stream into contiguous

chunks and eliminates duplicate copies by recording ref-

erences to previous, identical chunks. Numerous stud-

ies have investigated content-addressable storage us-

ing whole files [1], fixed-size blocks [27, 28], content-

defined chunks [17, 24, 36], and combinations or com-

parisons of these approaches [19, 23, 26, 32]; generally,

these have found that using content-defined chunks im-

proves deduplication rates when small file modifications

are stored. Once the data are divided into chunks, it is

represented by a secure fingerprint (e.g., SHA-1) used

for deduplication.

A technique to decrease the in-memory index require-

ments is presented in Sparse Indexing [20], which uses a

sampling technique to reduce the size of the fingerprint

12

index. The backup set is broken into relatively large re-

gions in a content-defined manner similar to our super-

chunks, each containing thousands of chunks. Regions

are then deduplicated against a few of the most similar

regions that have been previously stored using a sparse,

in-memory index with only a small loss of deduplication.

While Sparse Indexing is used in a single system to re-

duce its memory footprint, the notion of sampling within

a region of chunks to identify other chunks against which

new data may be deduplicated is similar to our sam-

pling approach in stateful routing. However, we use

those matches to direct to a specific node, while they use

matches to load a cache for deduplication.

Several other deduplication clusters have been pre-

sented in the literature. Bhagwat et al. [2] describe a

distributed deduplication system based on “Extreme Bin-

ning”: data are forwarded and stored on a file basis, and

the representative chunk ID (the minimum of all chunk

fingerprints of a file) is used to determine the destination.

An incoming file is only deduplicated against a file with

a matching representative chunk ID rather than against

all data in the system. Note that Extreme Binning is in-

tended for operations on individual files, not aggregates

of all files being backed up together. In the latter case,

this approach limits deduplication when inter-file local-

ity is poor, suffers from increased cache misses and data

skew, and requires multiple passes over the data when

these aggregates are too big to fit in memory.

DEBAR [34] also deduplicates individual files written

to their cluster. Unlike our system, DEBAR deduplicates

files partially as they are written to disk and completes

deduplication during post-processing by sharing finger-

prints between nodes.

HYDRAstor [8] is a cluster deduplication storage

system that creates chunks from a backup stream and

routes chunks to storage nodes, and HydraFS [33] is

a file system built on top of the underlying HYDRA-

stor architecture. Throughput of hundreds of MB/s is

achieved on 4-12 storage nodes while using 64 KB-sized

chunks. Individual chunks are routed by evenly parti-

tioning fingerprint space across storage nodes, which is

similar to the routing techniques used by Avamar [11]

and PureDisk [7]. In comparison, our system uses larger

super-chunks for routing to maximize cache locality and

throughput but also uses smaller chunks for deduplica-

tion to achieve higher deduplication.

Choosing the right chunking granularity presents a

tradeoff between deduplication and system capacity and

throughput even in a single-node system [35]. Bi-

modal chunking [18] is based on the observation that

using large chunks reduces metadata overhead and im-

proves throughput, but large chunks fail to recover some

deduplication opportunities when they straddle the point

where new data are added to the stream. Bimodal chunk-

ing tries to identify such points and uses a smaller chunk

size around them for better deduplication.

8 Conclusion and Future Work

This paper presents super-chunk routing as an important

technique for building deduplication clusters to achieve

scalable throughput and capacity while maximizing ef-

fective deduplication. We have investigated properties of

both stateless and stateful versions of super-chunk rout-

ing. We also describe a two-node deduplication storage

product that implements the stateless method to achieve

3 GB/sec deduplication throughput with the capacity to

store approximately 5.6 PB of backup data.

Our study has three conclusions. First, we have found

that using super-chunks, a multiple of fine-grained dedu-

plication chunks, for data routing is superior to using

individual chunks to achieve scalable throughput while

maximizing deduplication. We have demonstrated that a

1-MB super-chunk size is a good tradeoff between index

lookups, which directly impact deduplication through-

put, and effective cluster-wide deduplication.

Second, the stateless routing method (hash(64)) with

bin migration is a simple and yet efficient way to build

a deduplication cluster. Our simulation results on real-

world datasets show that this method can achieve good

balance and scalable throughput (good caching locality)

while achieving at least 80% of the single-node effective

deduplication, and bin migration appears to be critical to

the success of the stateless approach in larger clusters.

Third, our study shows that effective deduplication of

the stateless routed cluster for certain datasets (most no-

tably Exchange) may drop quickly as the number of

nodes increases beyond 4. To solve this problem, we

have proposed a stateful data routing approach. Simula-

tions show this approach can achieve 80% or better nor-

malized ED when using up to 64 nodes in a cluster, even

for “pathological” cases.

Several issues remain open. First, we would like to

further our understanding of the conditions that cause se-

vere data skew with the stateless approach. To date, no

bin migration has occurred in the production system de-

scribed in this paper; this is not surprising considering

that ED for hash(64) on two nodes is virtually identical

for each of our datasets, with or without bin migration.

The same is true for most, but not all, of the datasets as

the cluster size increases moderately. Second, we plan

to examine the scalability of the system across a broad

range of cluster sizes and the impact of parameters such

as feature selection and super-chunk size. Third, we want

to explore the use of bin migration to support reconfigu-

ration such as node additions. Finally, we plan to build a

prototype cluster with stateful routing so that more thor-

ough experiments can be conducted in lab and in cus-

tomer environments.

13

Acknowledgments

We thank Dhanabal Ekambaram, Paul Jardetzky, Ed Lee,

Dheer Moghe, Naveen Rastogi, Pratap Singh, and Grant

Wallace for helpful comments and/or assistance with our

experimentation. We are especially grateful to the anony-

mous referees and our shepherd, Cristian Ungureanu, for

their feedback and guidance.

References

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,

M. Theimer, and R. P. Wattenhofer. Farsite: fed-

erated, available, and reliable storage for an incom-

pletely trusted environment. In OSDI ’02: Proceed-

ings of the 5th Symposium on Operating Systems

Design and Implementation, pages 1–14, 2002.

[2] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillib-

ridge. Extreme binning: scalable, parallel dedu-

plication for chunk-based file backup. In MAS-

COTS 09: Proceedings of the 17th IEEE Interna-

tional Symposium on Modeling, Analysis, and Sim-

ulation of Computer and Telecommunication Sys-

tems, Sept. 2009.

[3] B. Bloom. Space/time trade-offs in hash cod-

ing with allowable errors. Communications of the

ACM, 13(7):422–426, July 1970.

[4] S. Brin, J. Davis, and H. Garcı́a-Molina. Copy

detection mechanisms for digital documents. In

Proceedings of ACM SIGMOD International Con-

ference on Management of Data, pages 398–409,

1995.

[5] P. H. Carns, W. B. Ligon, III, R. B. Ross, and

R. Thakur. Pvfs: a parallel file system for linux

clusters. In Proceedings of the 4th Annual Linux

Showcase and Conference, pages 391–430. MIT

Press, 2000.

[6] L. P. Cox., C. D. Murray, and B. D. Noble. Pastiche:

making backup cheap and easy. In OSDI ’02: Pro-

ceedings of the 5th Symposium on Operating Sys-

tems Design and Implementation, pages 285–298,

New York, NY, USA, 2002. ACM.

[7] M. Dewaikar. Symantec NetBackup PureDisk:

optimizing backups with deduplication for re-

mote offices, data center and virtual machines.

http://eval.symantec.com/mktginfo/

enterprise/white_papers/b-symantec_ne%

tbackup_puredisk_WP-en-us.pdf, September

2009.

[8] C. Dubnicki, G. Leszek, H. Lukasz, M. Kaczmar-

czyk, W. Kilian, P. Strzelczak, J. Szczepkowski,

C. Ungureanu, and M. Welnicki. HYDRAstor: a

scalable secondary storage. In FAST ’09: Proceed-

ings of the 7th conference on File and Storage Tech-

nologies, pages 197–210, February 2009.

[9] EMC Corporation. Data Domain products. http:

//www.datadomain.com/products/, 2009.

[10] EMC Corporation. DD880: dedupli-

cation storage for the core data cen-

ter. http://www.datadomain.com/pdf/

DataDomain-DD880-Datasheet.pdf, 2009.

[11] EMC Corporation. Efficient data protec-

tion with EMC Avamar global dedupli-

cation software. http://www.emc.com/

collateral/software/white-papers/

h2681-efdta-prot-av%amar.pdf, July 2009.

[12] EMC Corporation. Data Domain Boost Soft-

ware, 2010. http://www.datadomain.com/

products/dd-boost.html.

[13] EMC Corporation. Data Domain Global

Deduplication Array, 2010. http:

//www.datadomain.com/products/

global-deduplication-array.html.

[14] European Parliament. Directive 2006/24/EC ”On

the retention of data generated or processed in con-

nection with the provision of publicly available

electronic communications services or of public

communication networks” , March 2006.

[15] J. F. Gantz, C. Chute, A. Manfrediz, S. Minton,

D. Reinsel, W. Schlichting, and A. Toncheva. The

diverse and exploding digital universe: an updated

forecast of worldwide information growth through

2011. An IDC White Paper — sponsored by EMC,

March 2008.

[16] IBM Corporation. IBM ProtecTIER Deduplica-

tion Solutions, 2010. http://www-03.ibm.com/

systems/storage/tape/protectier.

[17] N. Jain, M. Dahlin, and R. Tewari. Taper: tiered

approach for eliminating redundancy in replica syn-

chronization. In FAST ’05: Proceedings of the 4th

USENIX Conference on File and Storage Technolo-

gies, pages 21–21, 2005.

[18] E. Kruus, C. Ungureanu, and C. Dubnicki. Bimodal

content defined chunking for backup streams. In

FAST ’10: Proceedings of the 8th Conference on

File and Storage Technologies, February 2010.

[19] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey.

Redundancy elimination within large collections of

14

files. In Proceedings of the USENIX Annual Tech-

nical Conference, pages 59–72, 2004.

[20] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-

likar, G. Trezise, and P. Camble. Sparse indexing:

large scale, inline deduplication using sampling and

locality. In FAST ’09: Proceedings of the 7th Con-

ference on File and Storage Technologies, pages

111–123, 2009.

[21] The Lustre File System, 2010. http://www.

lustre.org.

[22] U. Manber. Finding similar files in a large file sys-

tem. In Proceedings of the USENIX Winter Techni-

cal Conference, pages 1–10, 1994.

[23] D. T. Meyer and W. J. Bolosky. A Study of Practical

Deduplication. In FAST ’11: Proceedings of the

9th Conference on File and Storage Technologies,

February 2011.

[24] A. Muthitacharoen, B. Chen, and D. Mazières. A

low-bandwidth network file system. In SOSP ’01:

Proceedings of the 18th ACM Symposium on Oper-

ating Systems Principles, pages 174–187, 2001.

[25] Network Appliance. NetApp ONTAP.

http://www.netapp.com/us/products/

platform-os/dedupe.html, 2009.

[26] C. Policroniades and I. Pratt. Alternatives for de-

tecting redundancy in storage systems data. In Pro-

ceedings of the USENIX Annual Technical Confer-

ence, pages 73–86, 2004.

[27] S. Quinlan and S. Dorward. Venti: a new approach

to archival storage. In FAST ’02: Proceedings of the

1st USENIX conference on File and Storage Tech-

nologies, 2002.

[28] S. C. Rhea, R. Cox, and A. Pesterev. Fast, inex-

pensive content-addressed storage in foundation. In

Proceedings of the USENIX Annual Technical Con-

ference, pages 143–156, 2008.

[29] 107th Congress, United States of America. Public

Law 107-204: ”Sarbanes-Oxley Act of 2002”, July

2002.

[30] S. R. Soltis, T. M. Ruwart, and M. T. Okeefe. The

global file system. In MSS ’96: Proceedings of the

5th NASA Goddard Conference on Mass Storage,

pages 319–342, 1996.

[31] M. Stonebraker. The case for shared-nothing. IEEE

Database Engineering, 9(1), March 1986.

[32] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp,

T. Bressoud, and A. Perrig. Opportunistic Use of

Content Addressable Storage for Distributed File

Systems. In Proceedings of the USENIX Annual

Technical Conference, pages 127–140, 2003.

[33] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale,

S. Rago, G. Calkowski, C. Dubnicki, and A. Bohra.

HydraFS: a high throughput file system for the

HYDRAstor content-addressable storage system.

In FAST ’10: Proceedings of the 8th Conference

on File and Storage Technologies, February 2010.

[34] T. Yang, D. Feng, Z. Niu, K. Zhou, and

Y. Wan. DEBAR: a scalable high-performance de-

duplication storage system for backup and archiv-

ing. In IEEE International Symposium on Parallel

& Distributed Processing, May 2010.

[35] L. You and C. Karamanolis. Evaluation of efficient

archival storage techniques. In MSS ’04: Proceed-

ings of the 21st Symposium on Mass Storage Sys-

tems, Apr. 2004.

[36] B. Zhu, K. Li, and H. Patterson. Avoiding the disk

bottleneck in the Data Domain deduplication file

system. In FAST ’08: Proceedings of the 6th Con-

ference on File and Storage Technologies, pages

269–282, February 2008.

[37] J. Ziv and A. Lempel. A universal algorithm for

sequential data compression. IEEE Transactions on

Information Theory, 23(3):337–343, May 1977.

15

