
Email-based File System for Personal Data

Jagan Srinivasan†, Wei Wei∗, Xiaosong Ma‡∗, Ting Yu∗
†EMC2, ∗North Carolina State University, ‡Oak Ridge National Laboratory

ABSTRACT
Email services have been offering growing email storage
capacity, reliable service, and powerful search capability,
making them appealing as storage resources. In this pa-
per, we present EMFS, which aggregates back-end stor-
age by establishing a RAID-like system on top of virtual
email disks formed by email accounts. By replicating data
across accounts from different service providers, highly
available storage services can be constructed based on
already reliable, cloud-based email storage. EMFS pro-
vides a POSIX-like file system interface that allows ubiq-
uitous data access. We have implemented a prototype of
EMFS and conducted experiments in a campus network.
Our results indicate that while EMFS cannot match the
performance of highly optimized distributed file systems
such as NFS and AFS, it performs quite closely to Jun-
gleDisk, a commercial cloud storage solution.

1

1. INTRODUCTION
Recently, cloud storage has received great attention for

being an attractive solution to deliver storage as a service
with scalability, reliability and cost-effectiveness. We
have seen the emergence of many commercial solutions
that provide different access interfaces to the back-end
cloud storage. For example, Google Docs and Adobe
Buzzword not only provide a variety of applications such
as word processing and spread sheet, but also offer on-
line storage for file backup. Meanwhile, Jungle Disk and
Dropbox provide a generic file system interface for cloud
storage access. However, they either tightly bind cloud
storage with specific applications, where migration be-
tween service providers could present a challenge, or they
solely rely on one underlying cloud provider, which can-
not yet guarantee high data reliability/availability.

Rather than using separate cloud storage services, we
believe that email service offers an appealing solution to
personal cloud storage for several reasons. First, the ca-
pacity of a single email account has increased dramat-
ically in recent years. For example, currently Google
Gmail provides 7.4 GB, while Yahoo! and AOL Mail
even provide unlimited storage. Second, email services
are provided by many reliable and reputable online ser-
vice providers, such as Google and Yahoo. Further, be-
sides reliability, email services, even for uncharged ac-
counts, are rather stable and long-lasting. Admittedly,

1Wei is the only student, and Dr.Ma will present the poster.

email services are not immune to technical failures, as
magnified by the recent incident of Hotmail. However, as
users can easily obtain multiple accounts from different
providers, replication techniques can be more naturally
adopted for better reliability. Further, email-based cloud
storage allows mail service providers to leverage their
existing infrastructure to build light-weight value-added
storage services and to utilize existing features such as
data deduplication and personalized advertising.

In this paper, we propose EMFS, a personal cloud stor-
age solution based on email services. EMFS is novel
in that it views email accounts as virtual disks and em-
ploys RAID-like approaches for space aggregation, data
striping, and data replication. We examined the feasibil-
ity of using email transfer protocols for general-purpose
file access and providing traditional file system interfaces,
and addressed many unique design challenges and issues,
such as anti-spam usage restrictions, metadata and file
data organization, and data placement. We implemented a
prototype of EMFS via FUSE [2]. We evaluated this pro-
totype with comprehensive experiments in a campus net-
work. Our results indicate that while EMFS cannot match
the performance of highly optimized distributed file sys-
tems such as NFS and AFS, it performs quite closely to
JungleDisk, a commercial cloud storage solution.

2. SYSTEM OVERVIEW
Design Goals. We aim at building a personal cloud

storage on top of email services. Our design goals in-
clude usability (generic file system interface), scalability
(allowing the personal storage space to grow by adding
more email accounts and handling growing number of
files as time goes by), and reliability (continuous access
despite failures of individual email services).

EMFS Architecture. EMFS is composed of two lay-
ers: the EMFS client and the email storage cloud. The
email storage cloud treats email accounts as virtual disks.
Such virtual disks can further be organized into a RAID
system. By striping and replicating data across these
“email disks”, especially accounts with different service
providers, we receive benefit in several aspects: per-
formance, reliability, and capacity. The EMFS client
presents an POSIX-like file system interface for the email
storage cloud, which enables existing applications to run
on top of EMFS without any modification.

3. SYSTEM DESIGN



Data Organization and Access. Data and metadata
in EMFS are stored as contents of emails, either as at-
tachments or as part of the body of the emails. There are
two types of emails, metadata emails and data emails. As
their names indicate, a metadata email stores metadata for
files and directories, and a data email is used to stored file
data. A metadata is stored in the body of an email, while
its unique identifier is stored in the subject line; data is
stored as attachments of emails. These emails can be sent
to and received from email servers through standard pro-
tocols such as IMAP, SMTP and POP. We finally choose
IMAP over SMTP and POP for several reasons. First,
IMAP is not restricted by the spam policies enforced by
email service providers (as uploading an email to a ser-
vice provider through IMAP does not count as sending
an email. Instead, it is only considered as saving a draft
to an email account). Second, IMAP provides better per-
formance than SMTP when uploading emails to servers.
Third, IMAP is more powerful than POP. For example, it
supports multiple client connections to the same mailbox,
and access to individual parts of a message.

File Striping and Data Replication. EMFS views
each email account as a virtual disk and builds a RAID
systems on top of a group of such email disks. In our
prototype implementation, we experimented with simple
striping and mirroring strategies. Data blocks are striped
across a group of email accounts to improve the aggregate
throughput. EMFS further employs replication to mirror
data across multiple of email account groups from differ-
ent providers as it is highly unlikely that multiple service
providers experience down time concurrently.

We experiment with two strategies for data access-
ing: (1) Read-one and Write-one: reads and writes from
EMFS go to the same account that acts as a primary ac-
count. Other accounts are not used in file accesses unless
the primary account fails; (2) Read-fast and Write-fast:
reads and writes go to different accounts based on their
upload and download speeds. This is based on our ob-
servation that some email services provide better perfor-
mance for reads and others for writes. In both strategies,
replication occurs lazily to all accounts. Because of the
use of local caching, the Read-fast and Write-fast strat-
egy will not cause inconsistency between reads and sub-
sequent writes even though they go to different accounts.

Consistency and Failure Recovery. Considering the
append-only nature of email services, EMFS adopts a
mechanism similar to that used in LFS [1] to ensure the
atomicity of updates. Whenever a file needs to be writ-
ten to the server, one metadata email and as many data
emails as needed, are sent out to the email server at the
same time. This metadata email has a "status" field set for
the file that is transferred, which indicates that the file is
dirty. Once the system receives confirmation that the data
blocks have been transferred successfully, it sends out an-

other metadata email with the status field cleared. Such a
pair of metadata emails help EMFS check the consistency
of files and roll back if necessary.

4. EXPERIMENTAL EVALUATION

 0

 2000

 4000

 6000

 8000

 10000

 12000

Equal bias Read heavy Append heavy Create heavy

T
im

e 
fo

r 
co

m
pl

et
io

n 
(s

) NFS
AFS

Jungle Disk
EMFS-One
EMFS-Fast

Figure 1: Postmark performance

We have implemented EMFS with two replication
strategies - Read-One-Write-One (EMFS-One) and Read-
Fast-Write-Fast (EMFS-Fast), in around 3000 lines of
Python code via FUSE. We conducted our experiments in
a campus network, and compare EMFS with NSF, AFS
and Jungle Disk, a commercial cloud storage solution.
Both NFS and AFS servers were configured on dedicated
machines inside the campus network. Figures 1 shows the
results for the Postmark benchmark, which were config-
ured to use 200 files, 200 transactions, with file sizes rang-
ing between 4 KB and 16 MB. We generated four work-
loads by varying the operation bias. The results show that
EMFS offers comparable performance to Jungle Disk, es-
pecially for balanced or read-heavy workloads.

5. CONCLUSION
We presented EMFS, a personal cloud storage solu-

tion, which provides cost-effective, efficient, and highly
available storage by leveraging the cloud infrastructure of
leading email service providers, viewing email accounts
as virtual disks and applying techniques such as striping
and replication. Though email protocols are not designed
for file transfer, we have found that EMFS achieves a sig-
nificant fraction of NFS/AFS performance (with the lat-
ter running on dedicated servers within local networks)
and approximately matches or outperforms Jungle Disk,
a commercial cloud storage service.

6. REFERENCES
[1] Mendel Rosenblum and John K. Ousterhout. The

design and implementation of a log-structured file
system.ACM Trans. Comput. Syst., 10(1):26–52,
1992.

[2] Miklos Szeredi. File system in user space.
http://fuse.sourceforge.net/, 2006.


