
Load-Aware Replay of I/O Traces

Sankaran Sivathanu1,*, Jinpyo Kim2, Devaki Kulkarni2, and Ling Liu1

1College of Computing, Georgia Institute of Technology
2VMware Inc., Palo Alto, CA

*Student author

Abstract
Trace replay is one of the commonly used techniques in
benchmarking I/O systems. However it is still not obvi-
ous if trace replay faithfully preserves important charac-
teristics of the original application. While this may not
be a significant problem when traces are collected and
replayed in a same or similar system environment, many
issues arise when traces are replayed in a different kind of
environment than the one used during the trace collection
process.

In this work-in-progress, we present a novel mode of
I/O trace replay calledLoad-based replay that aims to
preserve the same I/O load pattern of original application
traces irrespective of the system it is replayed.

1 Introduction

Benchmarking of I/O systems by subjecting them to re-
alistic workloads is a common practise in the storage
community and it is vital for bringing further improve-
ments to the system. The most significant issue in bench-
marking is maintaining realism with respect to the actual
workload. I/O trace replay is one of the commonly used
techniques for storage benchmarking. It strikes a good
balance between realism with respect to actual applica-
tion workload and usability.

Many issues need to be addressed when building an
I/O trace replayer even if the trace collection environ-
ment and the trace replay environment are the same. For
example, if trace replay is implemented in the file sys-
tem layer, aging the file system is one issue. However
in most cases, traces are collected in different setups and
are maintained in centralized repositories like the SNIA
IOTTA from where the users pick and use them in their
own testing environment. This mismatch in I/O system
environment between trace collection and replay intro-
duces more issues that need to be carefully accounted for.

When traces are replayed in a different environment,
they may no longer be representative of the real applica-

tion because most applications tunes itself according to
the I/O system in which it runs. For example, if a trace
was collected in a high-performance storage system, and
is replayed in a low-performance storage system, it may
not be able to keep up with the request issue pace in the
trace, thus leading to massive queueing and entirely dif-
ferent timing pattern when compared to running the ap-
plication itself in the low-performance storage system.
Traditionally this problem has been tackled by either ac-
celerating the trace or decelerating the trace during re-
play based on the system capabilities. While this may be
better than replaying the trace without any modifications
at all, it may still not represent the behavior of the ac-
tual application as shown by our experiments. Also, the
degree of acceleration or deceleration of traces during re-
play is still done in an ad-hoc manner without following
any heuristics.

In this work-in-progress, we introduce a new mode of
I/O trace replay calledLoad-based replay, where traces
are replayed by adaptively varying the pace of request
issues by matching the load profile of the original trace
in the replay system.

2 Load-based Replay

Load-profile of the application on the I/O system in
which traces are collected is often over-looked when they
are replayed. This leads to inaccurate evaluation of target
I/O system (including hardware and software at host side)
because the load profile of the original application in a
new system environment may be totally different. Ex-
periments concerning load-balancing systems is a good
example for this mismatch. Evaluation of a system for
a particular application may be inaccurate because trace
replay in the target I/O system may exhibit totally differ-
ent load characteristics because of differences in system
capabilities.

We capture a metric called ’No. of outstanding I/O
requests’ from the original trace using the start and end

1



times of each request to represent load-profile of a work-
load. We then dynamically adapt our replay algorithm to
issue requests in a pace that matches original load profile
of the trace. This way, when an I/O system is tested for a
particular load behavior of an application, irrespective of
how fast the I/O system services requests, overall number
of outstanding I/Os remain the same.

The trace replay process starts in steady state – both
original trace and the replay process starts with 0 out-
standing I/Os. Subsequently, before issuing each request,
the required outstanding I/O value is compared with the
run-time value in the system. If the required number is
less than the current number of outstanding I/Os in the
system, the replayer waits till the number drops to the re-
quired value, which will happen as and when the requests
get serviced by the system. As soon as the current value
matches the required value, the next request is issued. As
we start the trace replay in steady state there will rarely be
a case when the number of I/Os outstanding in the system
is less than the required number that was captured from
the trace. It becomes tricky when the required number of
outstanding I/O matches the current number of I/Os out-
standing in the system. In this case, if original request
issue timing from the trace is preserved, the number of
outstanding I/Os in the system may drop before the next
request issue. For e.g., consider a requestR1 that is is-
sued at timet1, and requestR2 issued at timet2 with
a required outstanding I/O count of2. After the request
R1 is issued, the replayer checks the current number of
outstanding I/Os in the system and if it is2, it either is-
sues the requestR2 immediately, in which case the load
profile would match and the timing information is com-
pletely overlooked. Another alternative is to wait for time
t2 and then issue the request, in which case the number
of outstanding I/Os in the system may drop to1 or 0.

3 Evaluation

We evaluated our load-based replay accuracy using a
Swingbench DSS workload trace which is a ’sales order’
benchmark backed by Oracle 11gR1 database on RHEL
5.1 64-bit version. Figure 1 shows the distribution of out-
standing I/Os for the original trace and for a variety of re-
play modes. The AS-IS mode tries to replay the trace by
preserving original request issue timings without consid-
ering the load pattern. As the replay system has a poorly
performing storage when compared to the trace collec-
tion system, requests get queued up because of increased
service latencies of the storage system and the outstand-
ing I/O is far more when compared to the original trace.
We also followed the traditional approach of decelerat-
ing the trace replay by a factor of 2 and 4 which are also
plotted in the figure. Interestingly, even slowing-down
the trace by a factor of 2 lead to more outstanding I/Os

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

20% 40% 60% 80% 100%

N
o.

 o
f o

ut
st

an
di

ng
 r

eq
ue

st
s

Percentage of Requests

Original
Replay (AS-IS)

Replay (1/2 speed)
Replay (1/4 speed)
Load-based Replay

Figure 1: Outstanding I/O distribution for Swingbench DSS
workload

during replay than the original trace, and when slowing-
down by a factor of 4, makes the replay utilize the device
far lesser than the original trace. Also, the load pattern
of the AS-IS and the slowed-down version of replay is
entirely different than the original. In the case of load-
based replay, the distribution curve matches the original
trace pretty closely. This is because rather than using a
constant slow-down factor, our load-based replayer dy-
namically tunes itself so that it matches the load pattern
of the original workload.

4 Conclusion

We have introduced a new mode of I/O trace replay called
the load-based replay with an overall goal of matching
the load profile of original application/system with that
of replay system. However, number of outstanding re-
quests is just one metric to represent the load profile of
a system and there may be other criteria that define load
characteristics of a workload in a system. Also, mov-
ing towards the overall goal of making trace replay more
representative of real applications, it is pertinent to study
about adaptively matching more workload characteristics
like accurate timing, access patterns, etc., along with load
pattern of workloads, which we plan to work in future.

2


