
Polymorphic Mapping for Tera-scale Solid State Drives

Sungmin Park1 , Jaehyuk Cha1, Youjip Won1, Sungroh Yoon2, Jongmoo Choi3, Sooyong Kang1
1Div. of Comp. Sci. & Eng., Hanyang University, Korea, {syrilo, chajh, yjwon, sykang}@hanyang.ac.kr

2School of Electrical Engineering, Korea University, Korea, sryoon@korea.ac.kr
3School of Computer Science and Engineering, Dankook University, Korea, choijm@dankook.ac.kr

Abstract1

Recently, NAND flash Memory based SSD (solid state
drive) is widely used in desktop and enterprise severs
as well as portable devices. SSD, which already has
hundreds of gigabyte of capacity, is expected to has
tera-scale capacity in a near future. Since contempo-
rary high-end SSDs use page mapped FTL for better
performance, they require tens or hundreds of mega-
byte of DRAM for mapping table store. However, since
tera-scale SSDs need gigabytes of DRAM for mapping
table store, the mapping table management itself is a
new challenge for tera-scale SSDs. In this paper, we
propose a novel caching-based mapping scheme, Pol-
ymorphic Mapping, for tera-scale SSDs, which sub-
sumes wide range of mapping granularities from page
to block or range.

1. Introduction

Since SSD, unlike HDD, has no mechanical parts, it
has many merits such as low power consumption, low
noise, high speed and shock resistance. Because of the-
se characteristics, it is widely used in desktop PCs and
enterprise servers as well as portable devices. Recently,
due to the improved packing density and new types of
NAND flash chip such as MLC, TLC and QLC, the
capacity of SSDs increases continuously. Assuming the
subsequent capacity improvement, it is expected that
the tera-scale SSDs will be introduced to the market in
a near future.
SSD requires a special software layer, FTL, which en-

ables users to use SSD as an ordinary block device such
as a hard disk. Lots of FTLs have been developed for a
decade, which can be categorized into block mapping,
hybrid mapping and page mapping FTLs. Among them,
contemporary SSDs mainly use page-mapped FTL to
increase the random write performance. However, orig-
inal page-mapped FTL requires a large-sized DRAM
for mapping table store [1]. For example, 128 GB SSD
needs at least 128 MB DRAM for mapping table,

1 This work was supported by the IT R&D program of
MKE/KEIT No. KI10035202, Development of Core Tech-
nologies for Next Generation Hyper MLC NAND based SSD.

which makes it easy to project the required DRAM
space for future tera-scale SSDs. To remedy this prob-
lem, DFTL[2] proposed to caching only part of the
mapping table in a fast volatile memory and store the
entire mapping table in the Flash memory. DFTL uses a
small-sized SRAM for caching space and exploits tem-
poral locality of workload to maintain high cache hit
ratio. However, it does not consider either the spatial
locality of write accesses or caching space scalability.
If the spatial locality is high, large number of mapping
entries can be merged into much smaller number of
entries, which can be more efficiently managed like in
huge page table of operating systems or extents map in
file systems. When the spatial locality is low, updated
entries can be logged, as in database system, instead of
updating mapping table entries in flash memory pages,
instantaneously. Also, since the SRAM is such an ex-
pensive memory, it cannot be used for tera-scale SSDs
which may require large sized cache space for entire
working set store. Even if we use DFTL for large sized
DRAM, instead of SRAM, its caching structure is not
practical because of large search overhead.

2. Polymorphic Mapping

In this paper, we propose a novel mapping scheme for

tera-scale SSDs, Polymorphic mapping, which exploits
both the spatial locality of write accesses and cache
space scalability. Figure 1 shows the data structures of
Polymorphic mapping. Polymorphic mapping uses dif-
ferent mapping granularities according to the write pat-
tern: Direct mapping, Extents mapping, and Page map-
ping. The entire logical address space of SSD is parti-
tioned into a set of contiguous fixed-sized (4MB)
regions of which mapping information is stored in a
root data structure, Global Table Directory (GTD). If a
region is written sequentially, the PPN field of the cor-
responding entry in GTD directly points to the physical
address of its first data page in the flash memory, and
the state bits are set to 00 (Direct mapping). For non-
sequentially written regions, a mapping table (of which
the address is stored in the PPN field) is assigned to
each of them, and the state bits in GTD are set to 01.
The initial form of the mapping table is Extents map-
ping. The number of entries in the Extents map increas-

es whenever random write occurs to the region. If the
size of Extents map table becomes larger than the pre-
defined threshold (half of a page), the region trans-
forms to a Page-mapped region, in which case the state
bits in GTD becomes 10. In this way, Polymorphic
mapping maintains three kinds of mapping structures
according to the write pattern (sequential: Direct map-
ping, random: Page mapping, mixed: Extents mapping).
In pursuit of caching scalability, CP (cache pointer)

which points either cached PMT (Page Mapping Table)
or cached EMT (Extents Mapping Table) is used. CP
field helps to translate address within O(1) regardless
of the cache size. For update of a mapping entry, we
use map log. An updated mapping entry is logged into a
fixed location of flash memory, which is updated to the
original mapping table, periodically.

3. Performance Evaluation

We performed trace-driven simulation to evaluate the
performance of the Polymorphic mapping. We used
four kinds of real world workloads: WI, WU-1, WU-2,
and OLTP. WI was collected during installing windows
and programs. WU-1 and WU-2 were extracted while
running windows applications during one month. WI,
WU-1 and WU-2 show high sequentiality while OLTP
generates mainly random requests. We measured cache
hit ratio and flash access overhead during address trans-
lation phase and normalized them to that of the DFTL.
In Figure 2, line graphs show cache hit ratio when

cache size varies from 32KB to 2MB, and bar graphs
represent flash read/write overhead when cache size is
512KB. As we can see from the figure, Polymorphic
mapping outperforms DFTL in most cases. In particular,
Polymorphic mapping shows far better performance
than DFTL in sequential workloads. They show little
performance difference in random workload, in which
Polymorphic mapping behaves like a mere page map-
ping with caching. As cache miss invokes flash
read/write operations, the cache hit ratio is inverse pro-
portional to the address translation overhead.

Figure 3 shows the characteristics of the Polymorphic
mapping in WU-1 and OLTP. In WU-1, 40% of data
are accessed through only 20% of mapping entries (di-
rect mapping). It shows why Polymorphic mapping
outperforms DFTL in sequential workloads.

4. Conclusion

In this paper, we propose a Polymorphic mapping,

which exploits different mapping granularities for dif-
ferent access patterns, for tera-scale SSDs. It naturally
adapts well to the workload characteristics and outper-
forms by up to 67% in comparison to the DFTL during
address translation phase.

References

[1] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.

D., M. Manasse, and Panigraphy, R., Design
Tradeoffs for SSD Performance. In Proceedings of
the USENIX Annual Technical Conference (Boston,
MA, June 2008). USENIX 2008.

[2] GUPTA, A., KIM, Y., AND URGAONKAR, B.,
DFTL: A Flash Translation Layer Employing De-
mand-based Selective Caching of Page-level Ad-
dress Mappings. In Proceedings of ASPLOS’09

Figure 3 Analysis of Polymorphic mapping

Figure 2 Performance comparison

Figure 1 Structures of Polymorphic mapping

