Tamias: a privacy aware distributed storage

Jean Lorchat, Cristel Pelsser, Randy Bush, Keiichi Shima
Internet Initiative Japan, Inc.

{jean, cristel, randy, keiichi}@iijlab.net

1 Introduction

Today’s distributed storage solutions do not enable fine
sharing and privacy control to their users. Here we de-
scribe Tamias: a distributed storage system that can ac-
commodate both needs to share data and keep them pri-
vate, while providing users with detailed controls over
the sharing process. To achieve this, we introduce a fine-
grained access control infrastructure on top of an exist-
ing storage system.

Contrary to the Web 2.0 trends and more in line with
the Freedom in the Cloud[1] movement, we want to en-
sure that we do not give storage access to untrusted third
parties, though we wish to share and distribute storage.
So, should we need to use such third parties, we want
to not trust them with our precious data, but rather give
them an undecipherable version at best.

With privacy and security as our main focus, we be-
lieve that a distributed solution can offer better scalabil-
ity, resilience, and independence from centralized solu-
tions which would require trust in a centralized storage
provider.

2 Solution overview

We chose Tahoe-LAFS|[2] (a free and open storage sys-
tem) as the foundation for our storage system because it
provides a few very interesting properties: (i) Full en-
cryption on the user device allowing lack of trust in both
the storage provider and the transport network; sepa-
rate read, write and content verification access. (ii) Era-
sure coding for increased resiliency and performance.
(iii) Self-granting access capabilities for decentralized
access control.

Building on these strong points, we believe we will
be able to create the privacy-aware storage that we de-
sire, assuming that we add the following functionali-
ties to Tahoe: (1) User identification and authentication.
(2) Capability signing and encryption. (3) A user-centric
repository for in-band exchange of URIs.

Our solution to provide these features uses a buddy
list that acts as a repository of public keys of “friends”.
Public-key cryptography coupled with user authenti-
cation and authorization allows us to extend capabili-
ties with information about intended recipient identity
and owner signing, an important step to achieving fine
grained (per-object/per-user) access control. The public
keys also serve as unique identifiers for each user.

Alice's tree @=g:  root Bob's tree @=g: _ root

stf‘“\ Directory

¢
o 5 o g
friends list (XML fil & 3 g
riends list (XML file) N 3 friends list (XML file) o
Bob, o, snd, rev g \Z Alice, o , snd, rcv 2
v Dami’an, o o slnd, rc f::
own sending
files system receiving
& /,30 system
<§ D 3
ind \* &
0 friends' <

repository  girectories friends able to
write to me
806

picture file

NIy

example picture sharing link (XML fi

bob.jpg
meant for Bob Encrypted URLY - BOD's place
. for Alice

fileinfor Tahoe file object
contents

@=g private key description  Tahoe dir node

o public key name Tahoe dir entry - is URI Of

Figure 1: Private sub-tree stored within Tahoe

The buddy list is stored as a Tahoe object in a dedi-
cated sub-tree, making our modification self-contained.
The access capability to this tree is derived from the
user’s private key, making it possible to get a consistent
view across multiple devices by simply configuring the
private key on each device.

The tree holds all the information required to control
the sharing process, as described in figure 1. An obvious
advantage of this solution is that it requires changes on
the client only, requiring less modification of Tahoe for
the moment.

3 Summary and future work

We are adding public-key cryptography extensions to the
Tahoe storage system so that file owners can be identi-
fied, and so that these owners may control with whom
and how they choose to share files.

With the primary goal of privacy achieved, we will
need to addresses the issues of delegation and revoca-
tion. The former is easy to achieve by re-signing cer-
tified capabilities. The latter will involve classic time-
based solutions and the use of revocation services.

Finally, as any software using keys, it will need to in-
tegrate well with existing key management software in
order to be successful, an important one being pgp/gpg.

References

[1] Eben Moglen, http://www.softwarefreedom.org/events/
2010/isoc-ny/FreedomInTheCloud-transcript.html, Free-
dom in the Cloud (transcript), Feb. 2010

[2] http://tahoe-lafs.org : Tahoe-LAFS homepage



