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Buffer caches are used to enhance the performance of
file or storage systems by reducing I/O requests to un-
derlying storage media. In particular, multi-level buffer
cache hierarchy is commonly deployed on network file
systems or storage systems. In this environment, the
I/O access pattern on second-level buffer caches of file
servers or storage controllers differs from that on upper-
level caches.

The reuse distance of a block is an important metric
to characterize I/O access pattern. It is defined as the
number of requests between two adjacent accesses to a
block in an I/O stream. In [1, 2], Zhou et al. showed
that the access pattern on second-level buffer caches has
a hill-shaped reuse-distance distribution. This implies
that two consecutive accesses to a data block have a rel-
atively long temporal distance due to upper-level cache
behavior. They also examined the behavior of the ac-
cess patterns in terms of frequency, and revealed that the
more frequently the block is accessed, the larger portion
it takes out of total accesses.

For second-level buffer caches, various techniques in-
cluding frequency-based block prioritizing [1, 2], exclu-
siveness [3, 4], or multi-level cache coordination [5],
have been proposed with consideration of the temporal
or frequency pattern of I/O workload on the multi-level
cache hierarchy. However, the complexity issue remains
still unsatisfactory.

The Adaptive Replacement Cache (ARC) algorithm
proposed by Megiddo et al. [6, 7] dynamically balances
recency and frequency by using twoLeast-Recently-
Used (LRU) queues in response to changing access pat-
terns. ARC is simple to implement and has low com-
putational overhead while performing well across var-
ied workloads. ARC not only outperforms most on-
line algorithms, such as LRU,Frequency-Based Re-
placement (FBR) [8], Least-Frequently-Used (LFU) [9],
and Low Inter-reference Recency Set (LIRS) [10], but
is also comparable to offline algorithms LRU-2 [11],
2-Queue (2Q) [12], and Least-Recently/Frequently-
Used (LRFU) [13].

However, because ARC does not take into account the
reuse distance of I/O requests, ARC cannot perform ef-
ficiently on a second-level cache. Note that the reuse
distances of most I/O accesses on the second-level cache
will be long so that the recency queue of ARC cannot
contribute much to the cache hits. Furthermore, due to
the long reuse distance of I/O requests on the second-
level cache, most cache hits will be observed near the
LRU (not MRU) position of the recency queue in ARC.
If cache hits are observed near the LRU position of the

recency queue, ARC tries to increase the size of the
recency queue in order to capture the recency locality
more. Accordingly, the size of the frequency queue de-
creases. It becomes worse when the second-level cache
size is equal to or smaller than the first-level cache size.
In this case, the recency queue of ARC contributes noth-
ing to the cache hits. For more details, refer to [6, 7].

In order to solve the problem, we propose an enhanced
block replacement algorithm, called RARC (Reuse-
distance aware ARC). In order to capture the reuse dis-
tance of I/O requests, a history buffer over all I/O re-
quests is maintained. A sliding window of concern on the
history buffer will determine which I/O blocks are kept
in the recency queue. So, the size of the sliding window
is equal to the size of the recency queue in RARC and
the sliding window will be dynamically updated reflect-
ing the reuse distance pattern on the second-level cache.

Fig 1-(a) shows a typical buffer cache state of ARC
when it is used in the first-level cache. Most block ac-
cesses have a reuse distance smaller than the cache size
so that the size ofT1 andT2 can be adjusted efficiently in
response to workload changes. On the other hand, in the
case of Fig 1-(b) showing a typical buffer cache state of
ARC when it is used in the second-level cache,T1 is ex-
tended by the weak temporal locality of second-level I/O
accesses whileT2 is reduced by control rules of ARC;
the cache size is smaller than thepeak distance of the
workload so that hits inB1 are increased compared to
the former case. Another side effect is only a small por-
tion of the accesses will be captured and moved toT2;
this make the hit ratio inT2 worse along with the reduced
size ofT2.

Fig 1-(c) demonstrates the intuition of the proposed
algorithm. Differently from ARC, the newly issued re-
quest is not retained by the recency queue, i.e.,T1, but
inserted into the history buffer at the MRU position. The
history buffer only maintains the block number and its
access time. The recency queue is defined as a sliding
window where only blocks within the range of the win-
dow are loaded into the cache via the background I/Os.

The main challenge in RARC is to capture the reuse
distance pattern in order to control the sliding window
to maintain I/O blocks of high demand in the cache.
Among the reuse distance pattern, the minimal reuse dis-
tance plays a key role because the upper-level cache size
usually keeps changing for various reasons like memory
pressure. The history buffer will be used to estimate the
minimal reuse distance.
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(b) ARC on the second-level cache
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Figure 1: The problem of ARC and the intuition of the
proposed RARC
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