
Object-based SCM: An Efficient Interface for Storage Class Memories

Yangwook Kang Jingpei Yang Ethan L. Miller
Storage Systems Research Center, University of California, Santa Cruz

{ywkang, yangjp, elm}@cs.ucsc.edu

Abstract

Storage Class Memory (SCM) has become increas-
ingly popular in storage systems. However, replac-
ing hard drives with SCMs often forces either major
changes in file systems or suboptimal performance,
because the current block-based interface does not
deliver enough information to the device to allow
it to optimize data management for specific device
characteristics such as the out-of-place update. To
alleviate this problem and fully utilize different char-
acteristics of SCMs, we propose the use of an object-
based model that provides the hardware and firmware
the ability to optimize performance for the underlying
implementation, and allows drop-in replacement for
devices based on new types of SCM. We implement
an object-based flash memory prototype.

1. Introduction and Motivation

Storage class memories (SCMs) are playing an
increasingly important role in the storage hierarchy.
The combination of low power consumption, relatively
large capacity, fast random I/O performance and shock
resistance make SCMs attractive for use in desktops
and servers as well as in embedded systems. Recently,
deployment of Solid State Drives (SSDs) using NAND
flash has rapidly accelerated. However, there are many
other SCM technologies beyond NAND flash, includ-
ing FeRAM, Phase Change RAM (PCM), and carbon
nanotube, that may see dramatically increased use in
the near future. It is critical to design systems that can
both fully utilize flash memory and easily accept drop-
in replacements using future technologies.

Although SCMs generally provide better perfor-
mance than hard drives, they require more intelligent
algorithms to efficiently handle unique requirements
such as out-of-place update. As SCM technologies
differ in many characteristics, the design of file systems
optimized for each technology also varies significantly,
creating issues of portability and compatibility. Efforts
to exploit these new characteristics in file systems have

driven a great deal of research, primarily using one
of two approaches; the direct-access model and the
FTL-based model. The first model (Figure 1(a)), either
places SCM on the main memory path [1], or uses a
specific file system that allows SCMs to work prop-
erly in the system [4]. This model provides optimal
performance for a specific hardware configuration, but
suffers from a potential requirement to redesign the file
system to optimally utilize (or simply function properly
with) different SCMs.

The second model (Figure 1(b)), interposes firmware
(Flash Translation Layer, or FTL) between the raw
device and a standard block-based file system, hiding
the complexities of managing hardware from the file
system and allowing devices to be accessed directly by
an unmodified disk file system. However, this approach
achieves suboptimal performance due to the lack of file
system semantics delivered to the hardware and the
duplication of block mapping in both the file system
and the device.

To alleviate the problems of current approaches to
integrating SCMs into the file system and exploit the
characteristics of various SCM devices without either
limiting the design flexibility or introducing additional
overhead, we explore the use of an object-based stor-
age model [2] for SCMs. This model offloads the
storage management layer from the file system to the
underlying hardware, enabling device manufacturers
to optimize the mapping layer based on the hardware
configuration (Figure 1(c)). The POSIX-level requests
are encapsulated in an object with their metadata infor-
mation and sent to the device through an object-based
interface. By doing so, the object-based storage model
provides an easy transition between different SCM
devices. Moreover, this model can be implemented on
any type of SCM device more flexibly, while having
one generic object-based file system on the host.

2. Object-based SCMs

In systems built on the object-based storage model,
a file system does name resolution on the host side, of-

File 1

File 2

File 3

SCM-aware file system Raw SCM device

Block-based interface

Inodes

(a) Direct access model.

File 1

File 2

File 3

Disk-based file system SCM device

Block-based interface

Inodes Flash Translation Layer

(b) FTL-based model.

File 1

File 2

File 3

Object-based file system Object-based SCM

Object-based interface

Object nodes
(onodes)

(c) Object-based model.

Figure 1. Three approaches to access SCMs from file system

floading the storage management layer to the OSD. By
isolating device-specific technology behind an object-
based interface, this model allows the file system to be
independent of the particulars of the storage medium
while the characteristics of the storage medium are
efficiently handled within the device. Thus, a single
file system can be efficiently used with different types
of SCM devices, in contrast to the current approaches
that either require significant changes in the system or
sacrifice I/O performance.

The object-based interface delivers objects (which
contain both data and associated metadata) and rec-
ognizes all types of requests that the file system does.
This allows devices to provide features such as hot/cold
separation to reduce cleaning overhead. For small
objects, OSDs can achieve better space efficiency than
block-based devices due to the lack of a minimum
allocation size. OSDs can reduce index overheads by
using extent-based allocation for large, infrequently
updated objects. In addition, by encapsulating data in
objects, OSDs can provide more advanced features,
such as object-level reliability and compression. More-
over, adding an object interface will not significantly
complicate make existing FTL firmware since SCM
devices already need a translation layer for data place-
ment and segment management. For example, when
hybrid phase-change/flash memory is used, the file
system can store data efficiently by simply sending a
write-object request to the OSD with no need to know
about the two types of memory in the device.

3. Current Status

We built an object-based model prototype as a file
system module in the 2.6 Linux kernel to investigate
the design issues in the object-based model for SCMs.
We explore three data placement policies, which sep-
arates data and metadata, and further extracts access
time from metadata, to reduce the overall cleaning
overhead. We use a wandering tree combined with
extent-based allocation to show the effects of extent-
based allocation. In addition, we implemented object-

combined split split+atime
read intensive

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

cl
e
a
n
in

g
 o

v
e
rh

e
a
d

data segments cleaned
metadata segments cleaned
atime segments cleaned

bytes of data
bytes of metadata

Figure 2. Cleaning overhead of three data place-
ment policies under read-intensive workload. The
overhead is normalized to the combined policy

level reliability in our prototype to investigate the
impact of advanced features.

Our experiments on Postmark benchmark for both
read- and write- intensive wokload shows that the
cleaning overhead is significanly reduced by sepearat-
ing data, metadata, and atime, as shown in Figure 2.
When extent-based allocation is enabled, we can get
much benefit by reducing the number of page I/Os
issued by the index structure.

In summary, to avoid the limitations of standard
block-based interfaces, we propose the use of object-
based SCMs. This approach allows systems to imme-
diately utilize new SCM technologies with no change
to host systems, and enables the device to optimize the
performance flexibly.

References

[1] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through byte-
addressable, persistent memory. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles,
Oct. 2009.

[2] G. A. Gibson and R. Van Meter. Network attached
storage architecture. Commun. ACM, 43(11):37–45,
2000.

[3] Y. Kang, J. Yang, and E. L. Miller. Efficient storage
management for object-based flash memory. In MAS-
COTS’10, Aug. 2010.

[4] A. O. Ltd. YAFFS: Yet another flash file system.
http://www.yaffs.net.

