
Skyline-enabled Storage System

H. Howie Huang and Nan Zhang

George Washington University

I. INTRODUCTION

This is a vision statement for a novel idea of enabling
skyline operators over a large-scale file system, in order to
support efficient and automated management over large files
systems. As file systems grows rapidly, so does the complexity
of the underlying storage systems, which often contains a
variety of hardware with distinct performance profiles - e.g.,
hard disks, Flash memory based devices, tapes, etc. Even for a
particular type of hardware, e.g., Flash memory based devices,
different devices may use different interfaces (PCI, SATA,
etc.), employ different technologies (single-level cell/SLC,
multi-level cell/MLC), and in turn perform differently on key
measures such as latency, bandwidth, IOPS, etc. We believe
that, to enable automated management in this environment, a
key prerequisite is the ability to process top-k queries over
the file system in an efficient manner. In general, each top-k
query defines a unique scoring (preference) function over all
files in the system, and is supposed to retrieve the k files1

which have the highest scores. For example, if one is looking
for files to be migrated from disk storage to tape archive, the
corresponding top-k query should “prefer” files with larger
sizes and are accessed less frequently. As such, it may define
the scoring function (for files) as a weighted combination of
the file size and the inverse of its access frequency. Similarly,
give a top-k query answer with scoring function being the
access frequency and a WHERE clause requiring the retrieved
files to be read-only, one may find the desired files to be moved
to a PCI-based flash storage for faster access.

A key challenge for processing top-k queries, however, is
that, given the heterogeneity of storage devices in a large-
scale system, one may have to support top-k queries with a
wide variety of scoring functions (which are determined by the
performance profiles of the corresponding storage devices). It
is clearly inefficient to scan through all files for processing
each top-k query. On the other hand, simply building an index
for each file-meta-data attribute used by the scoring functions
cannot solve the problem either, as many scoring functions
involve more than one attributes of file meta data. For example,
the above-mentioned top-k query for tape archive involves
both size and access frequency of files in the system.

To support the efficient processing of top-k queries, this
work-in-progress report proposes a novel paradigm of Skyline-
enabled Storage System (S3). The key idea here is to maintain
a list of skyline files in the system that can support the efficient

1Note that here the specification of k is loosely defined - e.g., instead of
asking for the k files with the highest scores, one may ask for the highest-
scored files to fill a given space, say 2GB.

processing of all top-k queries, regardless of what the scoring
function (i.e., the corresponding storage device performance
profile) might be. To understand the definition of a skyline
file, consider a set S of files, S = {f1, f2, ..., fn}, a skyline
operator will include a file fi ∈ S if and only if it is not
dominated by any other file fj ∈ S - i.e., fi has a higher
“preference” than fj on at least one meta-data attribute spec-
ified by the skyline operator - e.g., size, create/modify/access
time, access frequency, permission, etc. While the preferential
(partial) order are obvious for certain attributes - e.g., a larger
file is in general more interesting to storage management than
a smaller file; a read-only or write-only file is more interesting
than a read-write file because the former two permissions
suggest a well-disciplined access pattern of the file - there
are certain attributes for which more than one preferential
order is required. One can see from the above-mentioned
examples that while least-frequently-accessed files are more
interesting for tape archives, most-frequently-accessed files are
more interesting for Flash memory based devices. For these
attributes, we need to maintain multiple skyline operators to
accommodate one meaningful order with each operator.

Fig. 1 presents an example of a 2-dimensional skyline on file
size (larger is more interesting) and access frequency (larger
is more interesting), where the skyline consists of four files, l,
k, f , and e, for which there exists no file that is better in both
dimensions. For example, file e is better than file d because
file e is bigger and accessed more frequently.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
cc

es
s

F
re

q
u

en
cy

Size

a

b

c
d

e

f

g

h
i

j

k

l skyline

Fig. 1. Skyline operator on file size and access frequency

Borrowing the idea of the skyline operator [2], [4] from the
database community, we extend the concept to automated man-
agement of large file and storage systems, and in this work, we
use file management over heterogeneous storage devices as an
example. Note that S3 is orthogonal to existing research [3],
[1], [5] in the area of storage QoS management, which can
potentially be improved by the skyline-based techniques.

II. APPROACH

Fig. 2 shows the S3 architecture, where a database is used
to maintain the metadata of the system, and the sensors and
actuators are utilized to perform management tasks. As the
sensors take periodical measurements, the actuators, following
a set of predefined rules, will instrument the system to carry
out the actions. The main idea behind S3 is that a good
set of candidate components returned by the skyline operator
will enable better precision and greater impact, leading to
more efficient and effective storage management. To reuse
the previous example, in a two-level heterogeneous storage
system that consists of multiple solid-state drives (SSDs) and
a large number of hard drives, the actuators may distribute
the skyline files to different locations - a simple method is to
move files b and h on the SSDs, and file c and d on the hard
drives. A more sophisticated strategy can be devised with the
top-k skyline files. The technical challenges for designing and
developing S3 are 1) to identify the dimensions of interest,
given a management task; 2) to quickly determine, based on
the rules, the skyline query to be processed; and 3) to process
the query quickly, preferably online without reading the whole
metadata database.

Client	
File	 System	

Storage	 Devices	

Metadata	
DB	

Sensors	

Actuators	

Rules	

Top-‐k	 Skyline	 Range	

Fig. 2. Skyline-enable storage system architecture

III. STATUS

We are in the process of developing the prototype system.
For evaluation, we plan to utilize several public file system
traces, e.g., NTFS, NFS, and Plan 9 file system.

REFERENCES

[1] ANDERSON, E., HOBBS, M., KEETON, K., SPENCE, S., UYSAL, M.,
AND VEITCH, A. Hippodrome: Running circles around storage admin-
istration. In Proceedings of the 1st USENIX Conference on File and
Storage Technologies (Berkeley, CA, USA, 2002), FAST ’02, USENIX
Association.

[2] BÖRZSÖNYI, S., KOSSMANN, D., AND STOCKER, K. The skyline
operator. In Proceedings of the 17th International Conference on Data
Engineering (Washington, DC, USA, 2001), IEEE Computer Society,
pp. 421–430.

[3] GANGER, G. R., STRUNK, J. D., AND KLOSTERMAN, A. J. Self-*
storage: Brick-based storage with automated administration. Tech. rep.,
Technical Report CMU-CS-03-178, Carnegie Mellon University, 2003.

[4] PAPADIAS, D., TAO, Y., FU, G., AND SEEGER, B. Progressive skyline
computation in database systems. ACM Trans. Database Syst. 30 (March
2005), 41–82.

[5] YIN, L. Automatic action advisor for storage system performance
management.

