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Abstract

We present a study of the effects of disk and memory cor-

ruption on file system data integrity. Our analysis fo-

cuses on Sun’s ZFS, a modern commercial offering with

numerous reliability mechanisms. Through careful and

thorough fault injection, we show that ZFS is robust to

a wide range of disk faults. We further demonstrate that

ZFS is less resilient to memory corruption, which can

lead to corrupt data being returned to applications or

system crashes. Our analysis reveals the importance of

considering both memory and disk in the construction of

truly robust file and storage systems.

1 Introduction

One of the primary challenges faced by modern file sys-

tems is the preservation of data integrity despite the pres-

ence of imperfect components in the storage stack. Disk

media, firmware, controllers, and the buses and networks

that connect them all can corrupt data [4, 52, 54, 58];

higher-level storage software is thus responsible for both

detecting and recovering from the broad range of corrup-

tions that can (and do [7]) occur.

File and storage systems have evolved various tech-

niques to handle corruption. Different types of check-

sums can be used to detect when corruption occurs [9,

14, 49, 52], and redundancy, likely in mirrored or parity-

based form [43], can be applied to recover from it. While

such techniques are not foolproof [32], they clearly have

made file systems more robust to disk corruptions.

Unfortunately, the effects of memory corruption on

data integrity have been largely ignored in file system

design. Hardware-based memory corruption occurs as

both transient soft errors and repeatable hard errors due

to a variety of radiation mechanisms [11, 35, 62], and

recent studies have confirmed their presence in modern

systems [34, 41, 46]. Software can also cause memory

corruption; bugs can lead to “wild writes” into random

memory contents [18], thus polluting memory; studies

confirm the presence of software-induced memory cor-

ruptions in operating systems [1, 2, 3, 60].

The problem of memory corruption is critical for file

systems that cache a great deal of data in memory for

performance. Almost all modern file systems use a page

cache or buffer cache to store copies of on-disk data

and metadata in memory. Moreover, frequently-accessed

data and important metadata may be cached in memory

for long periods of time, making them more susceptible

to memory corruptions.

In this paper, we ask: how robust are modern file

systems to disk and memory corruptions? To answer

this query, we analyze a state-of-the-art file system, Sun

Microsystem’s ZFS, by performing fault injection tests

representative of realistic disk and memory corruptions.

We choose ZFS for our analysis because it is a modern

and important commercial file system with numerous ro-

bustness features, including end-to-end checksums, data

replication, and transactional updates; the result, accord-

ing to the designers, is “provable data integrity” [14].

In our analysis, we find that ZFS is indeed robust to a

wide range of disk corruptions, thus partially confirming

that many of its design goals have been met. However,

we also find that ZFS often fails to maintain data integrity

in the face of memory corruption. In many cases, ZFS is

either unable to detect the corruption, returns bad data to

the user, or simply crashes. We further find that many of

these cases could be avoided with simple techniques.

The contributions of this paper are:

• To our knowledge, the first study to empirically an-

alyze the reliability of ZFS.

• To our knowledge, the first study to analyze local

file system reliability techniques in the face of mem-

ory corruption.

• A novel holistic approach to analyzing both disk

and memory corruptions using carefully-controlled

fault-injection techniques.

• A simple framework to measure the likelihood of

different memory corruption failure scenarios.

• Results that demonstrate the importance of both

memory and disk in end-to-end data protection.

The rest of this paper is organized as follows. In Sec-

tion 2, we motivate our work by discussing the problem

of disk and memory corruption. In Section 3, we provide

some background on the reliability features of ZFS. Sec-

tion 4 and Section 5 present our analysis of data integrity

in ZFS with disk and memory corruptions. Section 6

gives an preliminary analysis of the probabilities of dif-

ferent failure scenarios in ZFS due to memory errors. In

Section 7, we present initial results of the data integrity

analysis in ext2 with memory corruptions. Section 8 dis-

cusses related work and Section 9 concludes our work.



2 Motivation

This section provides the motivation for our study by de-

scribing how potent the problem of disk and memory cor-

ruptions is to file system data integrity. Here, we discuss

why such corruptions happen, how frequently they oc-

cur, and how systems try to deal with them. We discuss

disk and memory corruptions separately.

2.1 Disk corruptions

We define disk corruption as a state when any data ac-

cessed from disk does not have the expected contents due

to some problem in the storage stack. This is different

from latent sector errors, not-ready-condition errors and

recovered errors (discussed in [6]) in disk drives, where

there is an explicit notification from the drive about the

error condition.

2.1.1 Why they happen

Disk corruptions happen due to many reasons originat-

ing at different layers of the storage stack. Errors in the

magnetic media lead to the problem of “bit-rot” where

the magnetic properties of a single bit or few bits are

damaged. Spikes in power, erratic arm movements, and

scratches in media can also cause corruptions in disk

blocks [4, 47, 54]. On-disk ECC catches many (but not

all) of these corruptions.

Errors are also induced due to bugs in complex drive

firmware (modern drives contain hundreds of thousands

of lines of firmware code [44]). Some reported firmware

problems include a misdirected write where the firmware

accidentally writes to the wrong location [58] or a lost

write (or phantom write) where the disk reports a write

as completed when in fact it never reaches the disk [52].

Bus controllers have also been found to incorrectly report

disk requests as complete or to corrupt data [24, 57].

Finally, software bugs in operating systems are also

potential sources of corruption. Buggy device drivers can

issue disk requests with bad parameters or data [20, 22,

53]. Software bugs in the file system itself can cause

incorrect data to be written to disk.

2.1.2 How frequently they happen

Disk corruptions are prevalent across a broad range

of modern drives. In a recent study of 1.53 million

disk drives over 41 months [7], Bairavasundaram et al.

show that more than 400,000 blocks had checksum mis-

matches, 8% of which were discovered during RAID re-

construction, creating the possibility of real data loss.

They also found that nearline disks develop checksum

mismatches an order of magnitude more often than enter-

prise class disk drives. In addition, there is much anecdo-

tal evidence of corruption in storage stacks [9, 52, 58].

2.1.3 How to handle them

Systems use a number of techniques to handle disk cor-

ruptions. We discuss some of the most widely used tech-

niques along with their limitations.

Checksums: Checksums are block hashes computed

with a collision-resistant hash function and are used to

verify data integrity. For on-disk data integrity, check-

sums are stored or updated on disk during write opera-

tions and read back to verify the block or sector contents

during reads.

Many storage systems have used checksums for on-

disk data integrity, such as Tandem NonStop [9] and Net-

App Data ONTAP [52]. Similar checksumming tech-

niques have also been used in file systems [14, 42].

However, Krioukov et al. show that checksumming, if

not carefully integrated into the storage system, can fail

to protect against complex failures such as lost writes and

misdirected writes [32]. Further, checksumming does

not protect against corruptions that happen due to bugs

in software, typically in large code bases [20, 61].

Redundancy: Redundancy in on-disk structures also

helps to detect and, in some cases, recover from disk cor-

ruptions. For example, some B-Tree file systems such as

ReiserFS [15] store page-level information in each inter-

nal page in the B-Tree. Thus, a corrupt pointer that does

not connect pages in adjacent levels is caught by check-

ing this page-level information. Similarly, ext2 [16] and

ext3 [56] use redundant copies of superblock and group

descriptors to recover from corruptions.

However, it has been shown that many of these file

systems still sometimes fail to detect corruptions, leading

to greater problems [44]. Further, Gunawi et al. show

instances where ext2/ext3 file system checkers fail to use

available redundant information for recovery [26].

RAID storage: Another popular technique is to use a

RAID storage system [43] underneath the file system.

However, RAID is designed to tolerate the loss of a cer-

tain number of disks or blocks (e.g., RAID-5 tolerates

one, and RAID-6 two) and it may not be possible with

RAID alone to accurately identify the block (in a stripe)

that is corrupted. Secondly, some RAID systems have

been shown to have flaws where a single block loss leads

to data loss or silent corruption [32]. Finally, not all sys-

tems incorporate multiple disks, which limits the appli-

cability of RAID.

2.2 Memory corruptions

We define memory corruption as the state when the con-

tents accessed from the main memory have one or more

bits changed from the expected value (from a previous

store to the location). From the software perspective, it

may not be possible to distinguish memory corruption

from disk corruption on a read of a disk block.



2.2.1 Why they happen

Errors in the memory chip are one source of memory cor-

ruptions. Memory errors can be classified as soft errors

which randomly flip bits in RAM without leaving any

permanent damage, and hard errors which corrupt bits

in a repeatable manner due to physical damage.

Researchers have discovered radiation mechanisms

that cause errors in semiconductor devices at terrestrial

altitudes. Nearly three decades ago, May and Woods

found that if an alpha particle penetrates the die surface,

it can cause a random, single-bit error [35]. Zeigler and

Lanford found that cosmic rays can also disrupt elec-

tronic circuits [62]. More recent studies and measure-

ments confirm the effect of atmospheric neutrons causing

single event upsets (SEU) in memories [40, 41].

Memory corruption can also happen due to software

bugs. The use of unsafe languages like C and C++ makes

software vulnerable to bugs such as dangling pointers,

buffer overflows and heap corruption [12], which can re-

sult in seemingly random memory corruptions.

2.2.2 How frequently they happen

Early studies and measurements on memory errors pro-

vided evidence of soft errors. Data collected from a vast

storehouse of data at IBM over a 15-year period [41] con-

firmed the presence of errors in RAM and that the up-

set rates increase with elevation, indicating atmospheric

neutrons as the likely cause.

In a recent measurement-based study of memory er-

rors in a large fleet of commodity servers over a period

of 2.5 years [46], Schroeder et al. observe DRAM error

rates that are orders of magnitude higher than previously

reported, with 25,000 to 70,000 FIT per Mbit (1 FIT

equals 1 failure in 109 device hours). They also find that

more than 8% of the DIMMs they examined (from mul-

tiple vendors, with varying capacities and technologies)

were affected by bit errors each year. Finally, they also

provide strong evidence that memory errors are domi-

nated by hard errors, rather than soft errors.

Another study [34] of production systems including

300 machines for a multi-month period found 2 cases of

suspected soft errors and 9 cases of hard errors suggest-

ing the commonness of hard memory faults.

Besides hardware errors, software bugs that lead to

memory corruption are widely extant. Reports from the

Linux Kernel Bugzilla Database [2], USCERT Vulner-

abilities Notes Database [3], CERT/CC advisories [1],

as well as other anecdotal evidence [18] show cases of

memory corruption happening due to software bugs.

2.2.3 How to handle them

Systems use both hardware and software techniques to

handle memory corruptions. Below, we discuss the most

relevant hardware and software techniques.

ECC: Traditionally, memory systems have employed

Error Correction Codes [19] to correct memory errors.

Unfortunately, ECC is unable to address all soft-error

problems. Studies found that the most commonly-used

ECC algorithms called SEC/DED (Single Error Cor-

rect/Double Error Detect) can recover from only 94% of

the errors in DRAMs [23]. Further, many commodity

systems simply do not use ECC protection in order to

reduce cost [28].

More sophisticated techniques like Chipkill[30] have

been proposed to withstand multi-bit failure in DRAMs.

However, such techniques are expensive and have been

restricted to proprietary server systems, leaving the prob-

lem of memory corruptions open in commodity systems.

Programming models and tools: Another approach to

deal with memory errors is to use recoverable program-

ming models [38] at different levels (firmware, operating

system, and applications). However, such techniques re-

quire support from hardware to detect memory corrup-

tions. Further, a holistic change in software is required

to provide recovery solution at various levels.

Much effort has also gone into detecting software

bugs which cause memory corruptions. Tools such as

metal [27] and CSSV [21] apply static analysis to de-

tect memory corruptions. Others such as Purify [29] and

SafeMem [45] use dynamic monitoring to detect mem-

ory corruptions at runtime. However, as discussed in

Section 2.2.2, software-induced memory corruptions still

remain a problem.

2.3 Summary

In modern systems corruption occurs both within the

storage system and in memory. Many commercial sys-

tems apply sophisticated techniques to detect and recover

from disk-level corruptions; beyond ECC, little is done to

protect against memory-level problems. Therefore, the

protection of critical user data against memory corrup-

tions is largely left to software.

3 ZFS reliability features

ZFS is a state-of-the-art file system from Sun which

takes a unified approach to data management. It provides

data integrity, transactional consistency, scalability, and

a multitude of useful features such as snapshots, copy-

on-write clones, and simple administration [14].

In terms of reliability, ZFS claims to provide provable

data integrity by using techniques like checksums, repli-

cation, and transactional updates. Further, the use of a

pooled storage in ZFS lends it additional RAID-like reli-

ability features. In the words of the designers, ZFS is the

“The Last Word in File Systems.” We now describe the

reliability mechanisms in ZFS.

Checksums for data integrity checking: ZFS main-

tains data integrity by using checksums for on-disk



blocks. The checksums are kept separate from the cor-

responding blocks by storing them in the parent blocks.

ZFS provides for these parental checksums of blocks by

using a generic block pointer structure to address all on-

disk blocks.

The block pointer structure contains the checksum of

the block it references. Before using a block, ZFS calcu-

lates its checksum and verifies it against the stored check-

sum in the block pointer. The checksum hierarchy forms

a self-validating Merkle tree [37]. With this mechanism,

ZFS is able to detect silent data corruption, such as bit

rot, phantom writes, and misdirected reads and writes.

Replication for data recovery: Besides using RAID

techniques (described below), ZFS provides for recov-

ery from disk corruption by keeping replicas of certain

“important” on-disk blocks. Each block pointer contains

pointers to up to three copies (ditto blocks) of the block

being referenced. By default ZFS stores multiple copies

for metadata and one copy for data. Upon detecting a

corruption due to checksum mismatch, ZFS uses a re-

dundant copy with a correctly-matching checksum.

COW transactions for atomic updates: ZFS maintains

data consistency in the event of system crashes by using a

copy-on-write transactional update model. ZFS manages

all metadata and data as objects. Updates to all objects

are grouped together as a transaction group. To commit

a transaction group to disk, new copies are created for all

the modified blocks (in a Merkle tree). The root of this

tree (the uberblock) is updated atomically, thus main-

taining an always-consistent disk image. In effect, the

copy-on-write transactions along with block checksums

(in a Merkle tree) preclude the need for journaling [59],

though ZFS occasionally uses a write-ahead log for per-

formance reasons.

Storage pools for additional reliability: ZFS provides

additional reliability by enabling RAID-like configura-

tion for devices using a common storage pool for all file

system instances. ZFS presents physical storage to file

systems in the form of a storage pool (called zpool). A

storage pool is made up of virtual devices (vdev). A vir-

tual device could be a physical device (e.g., disks) or a

logical device (e.g., a mirror that is constructed by two

disks). This storage pool can be used to provide addi-

tional reliability by using devices as RAID arrays. Fur-

ther, ZFS also introduces a new data replication model,

RAID-Z, a novel solution similar to RAID-5 but using

a variable stripe width to eliminate the write-hole issue

in RAID-5 [13]. Finally, ZFS provides automatic repairs

in mirrored configurations and provides a disk scrubbing

facility to detect latent sector errors.

4 On-disk data integrity in ZFS

In this section, we analyze the robustness of ZFS against

disk corruptions. Our aim is to find whether ZFS can
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Figure 1: Block pointer. The figure shows how the block

pointer structure points to (up to) three copies of a block (ditto

blocks), and keeps a single checksum.

maintain data integrity under a variety of disk corruption

scenarios. Specifically, we wish to find if ZFS can detect

and recover from all disk corruptions in data and meta-

data and how ZFS reacts to multiple block corruptions at

the same time.

We find that ZFS is able to detect all and recover from

most disk corruptions. We present our analysis, includ-

ing methodology and results in later sections. First, we

present a brief background about the on-disk organiza-

tion in ZFS, focusing on how data integrity is maintained.

4.1 ZFS on-disk organization

All on-disk data and metadata in ZFS are treated as ob-

jects, where an object is a collection of blocks. Objects

are further grouped into object sets. Other structures

such as uberblocks are also used to organize data on disk.

We now discuss these basic on-disk structures and their

usage in ZFS.

4.1.1 Basic structures

Block pointers: A block pointer is the basic structure in

ZFS for addressing a block on disk. It provides a generic

mechanism to keep parental checksums and replicas of

on-disk blocks. Figure 1 shows the block pointer used

by ZFS. As shown, the block pointer contains up to three

block addresses, called DVAs (data virtual addresses),

each pointing to a different block having the same con-

tents. These are referred to as ditto blocks. The num-

ber of DVAs varies depending on the importance of the

block. The current policy in ZFS is that there is one DVA

for user data, two DVAs for file system metadata, and

three DVAs for global metadata across all file system in-

stances in the pool [39]. As discussed earlier, the block

pointer also contains a single copy of the checksum of

the block being pointed to.

Objects: All blocks on disk are organized in objects.

Physically, an object is represented on disk by a structure

called dnode phys t (hereafter referred to as dnode).

A dnode contains an array of up to three block point-

ers, each of which points to either a leaf block (e.g., a

data block) or an indirect block (full of block pointers).

These blocks pointed to by the dnode form a block tree.

A dnode also contains a bonus buffer at the end, which

stores an object-specific data structure for different types



Level Object Name Simplified Explanation

zpool

MOS dnode A dnode object that contains dnode blocks, which store dnodes representing pool-level objects.

Object directory A ZAP object whose blocks contain name-value pairs referencing further objects in the MOS object set.

Dataset It represents an object set (e.g., a file system) and tracks its relationships with its snapshots and clones.

Dataset directory It maintains an active dataset object along with its child datasets. It has a reference to a dataset child map

object. It also maintains properties such as quotas for all datasets in this directory.

Dataset child map A ZAP object whose blocks hold name-value pairs referencing child dataset directories.

zfs

FS dnode A dnode object that contains dnode blocks, which store dnodes representing filesystem-level objects.

Master node A ZAP object whose blocks contain name-value pairs referencing further objects in this file system.

File An object whose blocks contain file data.

Directory A ZAP object whose blocks contain name-value pairs referencing files and directories inside this directory.

Table 1: Summary of ZFS objects visited. The table presents a summary of all ZFS objects visited in the walkthrough, along

with a simplified explanation. Note that ZAP stands for ZFS Attribute Processor. A ZAP object is used to store name-value pairs.

of objects. For example, a dnode of a file object contains

a structure called znode phys t (znode) in the bonus

buffer, which stores file attributes such as access time,

file mode and size of the file.

Object sets: Object sets are used in ZFS to group related

objects. An example of a object set is a file system, which

contains file objects and directory objects belonging to

this file system.

An object set is represented by a structure called

objset phys t, which consists of a meta dnode and a

ZIL (ZFS Intent Log) header. The meta dnode points to

a group of dnode blocks; dnodes representing the objects

in this object set are stored in these dnode blocks. The

object described by the meta dnode is called “dnode ob-

ject”. The ZIL header points to a list of blocks, which

holds transaction records for ZFS’s logging mechanism.

Other structures: ZFS uses other structures to organize

on-disk data. Each physical vdev is labeled with a vdev

label that describes this device and other related virtual

devices. Four copies of the label are stored in each phys-

ical vdev to provide redundancy and a two-stage update

mechanism is used to guarantee that there is always a

valid vdev label in the device [51]. An uberblock (simi-

lar to a superblock) inside the vdev label is used to pro-

vide access to the pool data and verify its integrity. The

uberblock is self-checksummed and updated atomically.

4.1.2 On-disk layout

In this section, we present some details about ZFS on-

disk layout. This overview will help the reader to un-

derstand the range of our fault injection experiments pre-

sented in later sections. A complete description of ZFS

on-disk structures can be found elsewhere [51].

For the purpose of illustration, we demonstrate the

steps that ZFS takes to locate a file system and to locate

file data in it in a simple storage pool. Figure 2 shows the

on-disk layout of the simplified pool with a sample file

system called “myfs”, along with the sequence of objects

and blocks accessed by ZFS. A simple explanation of all

visited objects is described in Table 1. Note that we skip

the details of how in-memory structures are set up and

assume that data and metadata are not cached in memory

to begin with.

Find pool metadata (steps 1-2): As the starting point,

ZFS locates the active uberblock in the vdev label of the

device. ZFS then uses the uberblock to locate and verify

the integrity of pool-wide metadata contained in an ob-

ject set called Meta Object Set (MOS). There are three

copies of the object set block representing the MOS.

Find a file system (steps 3-10): To locate a file system,

ZFS accesses a series of objects in MOS, all of which

have three ditto blocks. Once the dataset representing

“myfs” is found, it is used to access file system wide

metadata contained in an object set. The integrity of file

system metadata is checked using the block pointer in

the dataset, which points to the object set block. All file

system metadata blocks have two ditto copies.

Find a file and a data block (steps 11-18): To locate

a file, ZFS then uses the directory objects in the “myfs”

object set. Finally, by following the block pointers in

the dnode of the file object, ZFS finds the required data

block. The integrity of every traversed block is con-

firmed by verifying the checksum in its block pointers.

The legend in Figure 2 shows a summary of all the on-

disk block types visited during the traversal. Our fault

injection tests for analyzing robustness of ZFS against

disk corruptions (discussed in the next subsection) inject

bit errors in the on-disk blocks shown in Figure 2.

4.2 Methodology of analysis

In this section, we discuss the methodology of our relia-

bility analysis of ZFS against disk corruptions. We dis-

cuss our fault injection framework first and then present

our test procedures and workloads.

4.2.1 Fault injection framework

Our experiments are performed on a 64-bit Solaris Ex-

press Community Edition (build 108) virtual machine

with 2GB non-ECC memory. We use ZFS pool version

14 and ZFS filesystem version 3. We run ZFS on top of

a single disk for our experiments.

To emulate disk corruptions, we developed a fault in-

jection framework consisting of a pseudo-driver to per-

form fault injection on disk blocks and an application for
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Figure 2: ZFS on-disk structures. The figure shows the on-disk structures of ZFS including the pool-wide metadata and file

system metadata. In the example above, the zpool contains a sample file system named “myfs”. All ZFS on-disk data structures are

shown by rounded boxes, and on-disk blocks are shown by rectangular boxes. Solid arrows point to allocated blocks and dotted

arrows represent references to objects inside blocks. The legend at the top shows the types of on-disk blocks and their contents.

controlling the experiments. The pseudo-driver is a stan-

dard Solaris layered driver that interposes between the

ZFS virtual device and the disk driver beneath. We an-

alyze the behavior of ZFS by looking at return values,

checking system logs, and tracing system calls.

4.2.2 Test procedure and workloads

In our tests, we wanted to understand the behavior of

ZFS to disk corruptions on different types of blocks.

We injected faults by flipping bits at random offsets in

disk blocks. Since we used the default setting in ZFS

for compression (metadata compressed and data uncom-

pressed), our fault injection tests corrupted compressed

metadata and uncompressed data blocks on disk. We

injected faults on nine different classes of ZFS on-disk

blocks and for each class, we corrupted a single copy as

well as all copies of blocks.

In our fault injection experiments on pool-wide and

file system level metadata, we used “mount” and “re-

mount” operations as our workload. The “mount” work-

load indicates that the target block is corrupted with the

pool exported and “myfs” not mounted, and we subse-

quently mount it. This workload forces ZFS to use on-

disk copies of metadata. The “remount” workload in-

dicates that the target block is corrupted with “myfs”

mounted and we subsequently umount and mount it. ZFS

uses in-memory copies of metadata in this workload.

For injecting faults in file and directory blocks in a

file system, we used two simple operations as workloads:

“create file” creates a new file in a directory, and “read

file” reads a file’s contents.

4.3 Results and observations

The results of our fault injection experiments are shown

in Table 2. The table reports the results of experiments on

pool-wide metadata and file system metadata and data.

It also shows the results of corrupting a single copy as

well as all copies of blocks. We now explain the results

in detail in terms of the observations we made from our

fault injection experiments.

Observation 1: ZFS detects all corruptions due to

the use of checksums. In our fault injection experiments

on all metadata and data, we found that bad data was

never returned to the user because ZFS was able to de-

tect all corruptions due to the use of checksums in block

pointers. The parental checksums are used in ZFS to ver-
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zpool

vdev label1 R R E R

uberblock R R E R

MOS object set block R R E R

MOS dnode block R R E R

zfs

myfs object set block R R E R

myfs indirect block R R E R

myfs dnode block R R E R

dir ZAP block R R E E

file data block E E
1 excluding the uberblocks contained in it.

Table 2: On-disk corruption analysis. The table shows

the results of on-disk experiments. Each cell indicates whether

ZFS was able to recover from the corruption (R), whether ZFS

reported an error (E), whether ZFS returned bad data to the

user (B), or whether the system crashed (C). Blank cells mean

that the workload was not exercised for the block.

ify the integrity of all the on-disk blocks accessed. The

only exception are uberblocks, which do not have parent

block pointers. Corruptions to the uberblock are detected

by the use of checksums inside the uberblock itself.

Observation 2: ZFS gracefully recovers from single

metadata block corruptions. For pool-wide metadata and

file system wide metadata, ZFS recovered from disk cor-

ruptions by using the ditto blocks. ZFS keeps three ditto

blocks for pool-wide metadata and two for file system

metadata. Hence, on single-block corruption to meta-

data, ZFS was successfully able to detect the corruption

and use other available correct copies to recover from it;

this is shown by the cells (R) in the “Single ditto” column

for all metadata blocks.

Observation 3: ZFS does not recover from data block

corruptions. For data blocks belonging to files, ZFS

was not able to recover from corruptions. ZFS detected

the corruption and reported an error on reading the data

block. Since ZFS does not keep multiple copies of data

blocks by default, this behavior is expected; this is shown

by the cells (E) for the file data block.

Observation 4: In-memory copies of metadata help

ZFS to recover from serious multiple block corruptions.

In an active storage pool, ZFS caches metadata in mem-

ory for performance. ZFS performs operations on these

cached copies of metadata and writes them to disk on

transaction group commits. These in-memory copies of

metadata, along with periodic transaction commits, help

ZFS recover from multiple disk corruptions.

In the “remount” workload that corrupted all copies of

uberblock, ZFS recovered from the corruptions because

the in-memory copy of the active uberblock remains as

long as the pool exists. The in-memory copy is subse-

quently written to a new disk block in a transaction group

commit, making the old corrupted copy void. Similar

results were obtained when corrupting other pool-wide

metadata and file system metadata, and ZFS was able to

recover from these multiple block corruptions (R).

Observation 5: ZFS cannot recover from multiple

block corruptions affecting all ditto blocks when no in-

memory copy exists. For file system metadata, like di-

rectory ZAP blocks, ZFS does not always keep an in-

memory copy unless the directory has been accessed.

Thus, on corruptions to both ditto blocks, ZFS reported

an error. This behavior is shown by the results (E) for di-

rectories indicating for the “create file” and “read file”

operations. Note that we performed these corruptions

without first accessing the directory, so that there were no

in-memory copies. Similarly, in the “mount” workload,

when the pool was inactive (exported) and thus no in-

memory copies existed, ZFS was unable to recover from

multiple disk corruptions and responded with errors (E).

Observation 4 and 5 also lead to an interesting conclu-

sion that an active storage pool is likely to tolerate more

serious disk corruptions than an inactive one.

In summary, ZFS successfully detects all corruptions

and recovers from them as long as one correct copy ex-

ists. The in-memory caching and periodic flushing of

metadata on transaction commits help ZFS recover from

serious disk corruptions affecting all copies of metadata.

For user data, ZFS does not keep redundant copies and

is unable to recover from corruptions. ZFS, however, de-

tects the corruptions and reports an error to the user.

5 In-memory data integrity in ZFS

In the last section we showed the robustness of ZFS to

disk corruptions. Although ZFS was not specifically de-

signed to tolerate memory corruptions, we still would

like to know how ZFS reacts to memory corruptions, i.e.,

whether ZFS can detect and recover from a single bit flip

in data and metadata blocks. Our fault injection exper-

iments indicate that ZFS has no precautions for mem-

ory corruptions: bad data blocks are returned to the user

or written to disk, file system operations fail, and many

times the whole system crashes.

This section is organized as follows. First, we briefly

describe ZFS in-memory structures. Then, we discuss

the test methodology and workloads we used to conduct

the analysis. Finally, we present the experimental results

and our observations.

5.1 ZFS in-memory structures
In order to better understand the in-memory experiments,

we present some background information on ZFS in-

memory structures.

5.1.1 In-memory structures

ZFS in-memory structures can be classified into two cat-

egories: those that exist in the page cache and those that
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Figure 3: Lifecycle of a block. This figure illustrates one example of the lifecycle of a block. The left half represents the

read timeline and the right half represents the write timeline. The black dotted line is a protection boundary, below which a block

is protected by the checksum, otherwise unprotected.

are in memory outside of the page cache; for convenience

we call the latter in-heap structures. Whenever a disk

block is accessed, it is loaded into memory. Disk blocks

containing data and metadata are cached in the ARC

page cache [36], and stay there until evicted. Data blocks

are stored only in the page cache, while most metadata

structures are stored in both the page cache (as copies of

on-disk structures) and the heap. Note that block point-

ers inside indirect blocks are also metadata, but they only

reside in the page cache. Uberblocks and vdev labels, on

the other hand, only stay in the heap.

5.1.2 Lifecycle of a block

To help the reader understand the vulnerability of ZFS to

memory corruptions discussed in later sections, Figure 3

illustrates one example of the lifecycle of a block (i.e.,

how a block is read from and written asynchronously to

disk). To simplify the explanation, we consider a pair of

blocks in which the target block to be read or written is

pointed to by a block pointer contained in the parental

block. The target block could be a data block or a meta-

data block. The parental block could be an indirect block

(full of block pointers), a dnode block (array of dnodes,

each of which contains block pointers) or an object set

block (a dnode is embedded in it). The user of the block

could be a user-level application or ZFS itself. Note that

only the target block is shown in the figure.

At first, the target block is read from disk to memory.

For read, there are two scenarios, as shown in the left

half of Figure 3. On first read of a target block not in

the page cache, it is read from the disk and immediately

verified against the checksum stored in the block pointer

in the parental block. Then the target block is returned to

the user. On a subsequent read of a block already in the

page cache, the read request gets the cached block from

the page cache directly, without verifying the checksum.

In both cases, after the read, the target block stays in

the page cache until evicted. The block remains in the

page cache for an unbounded interval of time depend-

ing on many factors such as the workload and the cache

replacement policy.

After some time, the block is updated. The write time-

line is illustrated in the right half of Figure 3. All up-

dates are first done in the page cache and then flushed

to disk. Thus before the updates occur, the target block

is either in the page cache already or just loaded to the

page cache from disk. After the write, the updated block

stays in the page cache for at most 30 seconds and then

it is flushed to disk. During the flush, a new physical

block is allocated and a new checksum is generated for

the dirty target block. The new disk address and check-

sum are then written to the block pointer contained in

the parental block, thus making it dirty. After the target

block is written to the disk, the flush procedure contin-

ues to allocate a new block and calculate a new check-

sum for the parental block, which in turn dirties its sub-

sequent parental block. Following the updates of block

pointers along the tree (solid arrows in Figure 2), it fi-

nally reaches the uberblock which is self-checksummed.

After the flush, the target block is kept in the page cache

until it is evicted.

5.2 Methodology of analysis
In this section, we discuss the fault injection framework,

and the test procedure and workloads. The injection

framework is similar to the one used for on-disk experi-

ments. The only difference is the pseudo-driver, which in

this case, interacts with the ZFS stack by calling internal

functions to locate the in-memory structures.

5.2.1 Test procedure and workloads

We wished to find out the behavior of ZFS in response

to corruptions in different in-memory objects. Since all

data and metadata in memory are uncompressed, we per-

formed a controlled fault injection in various objects. For

metadata, we randomly flipped a bit in each individual

field of the structure separately; for data, we randomly

corrupted a bit in a data block of a file in memory. We re-

peated each fault injection test five times. We performed



Object Data Structures Workload

MOS dnode dnode t, dnode phys t

zfs create,

zfs destroy,

zfs rename,

zfs list,

zfs mount,

zfs umount

Object

directory

dnode t, dnode phys t,

mzap phys t, mzap ent phys t

Dataset dnode t, dnode phys t,

dsl dataset phys t

Dataset

directory

dnode t, dnode phys t,

dsl dir phys t

Dataset

child map

dnode t, dnode phys t,

mzap phys t, mzap ent phys t

FS dnode dnode t, dnode phys t zfs umount,

path traversalMaster node dnode t, dnode phys t,

mzap phys t, mzap ent phys t

File dnode t, dnode phys t,

znode phys t

open, close, lseek,

read, write, access,

link, unlink,

rename, truncate

(chdir, mkdir, rmdir)

Dir dnode t, dnode phys t,

znode phys t,

mzap phys t, mzap ent phys t

Table 3: Summary of objects and data structures cor-
rupted. The table presents a summary of all the ZFS objects and

structures corrupted in our in-memory analysis, along with their

data structures and the workloads exercised on them.

Data Structure Fields

dnode t dn nlevels, dn bonustype, dn indblkshift,

dn nblkptr, dn datablkszsec, dn maxblkid,

dn compress, dn bonuslen, dn checksum,

dn type

dnode phys t dn nlevels, dn bonustype, dn indblkshift,

dn nblkptr, dn datablkszsec, dn maxblkid,

dn compress, dn bonuslen, dn checksum,

dn type, dn used, dn flags,

mzap phys t mz block type, mz salt

mzap ent phys t mze value, mze name

znode phys t zp mode, zp size, zp links,

zp flags, zp parent

dsl dir phys t dd head dataset obj, dd child dir zapobj,

dd parent obj

dsl dataset phys t ds dir obj

Table 4: Summary of data structures and fields cor-
rupted. The table lists all fields we corrupted in the in-

memory experiments. mzap phys t and mzap ent phys t

are metadata stored in ZAP blocks. The last three structures

are object-specific structures stored in the dnode bonus buffer.

fault injection tests on nine different types of objects at

two levels (zfs and zpool) and exercised different set of

workloads as listed in Table 3. Table 4 shows all data

structures inside the objects and all the fields we cor-

rupted during the experiments.

For data blocks, we injected bit flips at an appropriate

time as described below. For reads, we flipped a random

bit in the data block after it was loaded to the page cache;

then we issued a subsequent read() on that block to see if

ZFS returned the corrupted block. In this case, the read()

call fetched the block from the page cache. For writes,

we corrupted the block after the write() call finished but

before the target block was written to the disk.

For metadata, in our fault injection experiments, we

covered a broad range of metadata structures. However,

to reduce the sample space for experiments to more in-

teresting cases, we made two choices. First, we always

injected faults to the in-memory structure after it was ac-

cessed by the file system, so that both the in-heap version

and page cache version already exist in the memory. Sec-

ond, among the in-heap structures, we only corrupted the

dnode t structure (in-heap version of dnode phys t).

The dnode structure is the most widely used metadata

structure in ZFS and every object in ZFS is represented

by a dnode. Hence, we anticipate that corrupting the in-

heap dnode structure will cover many interesting cases.

5.3 Results and observations

We present the results of our in-memory experiments in

Table 5. As shown, ZFS fails to catch data block corrup-

tions due to memory errors in both read and write exper-

iments. Single bit flips in metadata blocks not only lead

to returning bad data blocks, but also cause more serious

problems like failure of operations and system crashes.

Note that Table 5 is a subset of the results showing only

cases with apparent problems. In other cases that are ei-

ther indicated by a dot (.) in the result cells or not shown

at all in Table 5, the corresponding operation either did

not access the corrupted field or completed successfully

with the corrupted field. However, in all cases, ZFS did

not correct the corrupted field.

Next we present our observations on ZFS behavior and

user-visible results. The first five observations are about

ZFS behavior and the last five observations are about

user-visible results of memory corruptions.

Observation 1: ZFS does not use the checksums in

the page cache along with the blocks to detect memory

corruptions. Checksums are the first guard for detect-

ing data corruption in ZFS. However, when a block is

already in the page cache, ZFS implicitly assumes that it

is protected against corruptions. In the case of reads, the

checksum is verified only when the block is being read

from the disk. Following that, as long as the block stays

in the page cache, it is never checked against the check-

sum, despite the checksum also being in the page cache

(in the block pointer contained in its parental block). The

result is that ZFS returns bad data to the user on reads.

For writes, the checksum is generated only when the

block is being written to disk. Before that, the dirty block

stays in the page cache with an outdated checksum in the

block pointer pointing to it. If the block is corrupted in

the page cache before it is flushed to disk, ZFS calcu-

lates a checksum for the bad block and stores the new

checksum in the block pointer. Both the block and its

parental block containing the block pointer are written

to disk. On subsequent reads of the block, it passes the

checksum verification and is returned to the user.

Moreover, since the detection mechanisms already

fail to detect memory corruptions, recovery mechanisms



File Dir MOS dnode Dataset directory
Dataset

childmap
Dataset

Structure Field O R W A U N T O A L U N T M C D c d r l m u c d r l m u c d r c d r l m

dnode t

dn type . . . . . . . . . . . . . . . . C C C C C C . . . . . . . . . . . . . .

dn indblkshift . BC . . C . . . . E E E . E . E . . . . . . . . . . . . . . . . . . . .

dn nlevels . . C . . . C . . C C C . C . C C C C C C C . . . . . . C C C C C C . .

dn checksum . . C . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn compress . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn maxblkid . . . . . . C . . . . . . . . C . . . . . . . . . . . . . . . . . . . .

dnode phys t

dn indblkshift . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn nlevels . BC C . C . . . . . . . . . . C . . . . . . . . . . . . . C . . . . . .

dn nblkptr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . .

dn bonuslen . . C . . . . . . . . . . . . . . . . . . . . C . . . . . . . . C . . .

dn maxblkid . B . . C . C . . . . . . . . C . . . . . . . C . . . . . C . . C . . .

znode phys t
zp size . . . . . . . . . . . . . . E

zp flags E . . E . E E E E E E E E E E E

dsl dir phys t
dd head dataset obj E E E E . .

dd child dir zapobj EC EC EC EC EC C

dsl dataset phys t ds dir obj . E E . .

data block B B

Table 5: In-memory corruption results. The table shows a subset of memory corruption results. The operations exercised

are O(open), R(read), W(write), A(access), L(link), U(unlink), N(rename), T(truncate), M(mkdir), C(chdir), D(rmdir), c(zfs create),

d(zfs destroy), r(zfs rename), l(zfs list), m(zfs mount) and u(zfs umount). Each result cell indicates whether the system crashed (C),

whether the operation failed with wrong results or with a misleading message (E), whether a bad data block was returned (B) or

whether the operation completed (.). Large blanks mean that the operations are not applicable.

such as ditto blocks and the mirrored zpool are not trig-

gered to recover from the damage.

The results in Table 5 indicate that when a data block

was corrupted, the application that issued a read() or

write() request was returned bad data (B), as shown in

the last row. When metadata blocks were corrupted, ZFS

accessed the corrupted data structures and thus behaved

wrongly, as shown by other cases in the result table.

Observation 2: The window of vulnerability of blocks

in the page cache is unbounded. As Figure 3 shows, af-

ter a block is loaded into the page cache by first read, it

stays there until evicted. During this interval, if a cor-

ruption happens to the block, any subsequent read will

get the corrupted block because the checksum is not ver-

ified. Therefore, as long as the block is in the page cache

(unbounded), it is susceptible to memory corruptions.

Observation 3: Since checksums are created when

blocks are written to disk, any corruption to blocks that

are dirty (or will be dirtied) is written to disk perma-

nently on a flush. As described in Section 5.1.2, dirty

blocks in the page cache are written to disk during a

flush. During the flush, any dirty block will further cause

updates of all its parental blocks; a new checksum is then

calculated for each updated block and all of them are

flushed to disk. If a memory corruption happens to any of

those blocks before a flush (above the black dotted line

before G in Figure 3), the corrupted block is written to

disk with a new checksum. The checksum is thus valid

for the corrupted block, which makes the corruption per-

manent. Since the window of vulnerability is long (30

seconds), and there are many blocks that will be flushed

to disk in each flush, we conjecture that the likelihood

of memory corruption leading to permanent on-disk cor-

ruptions is high.

We did a block-based fault injection to verify this ob-

servation. We injected a single bit flip to a dirty (or to-be-

dirtied) block before a flush; as long as the flipped bit in

the block was not overwritten by subsequent operations,

the corrupted block was written to disk permanently.

Observation 4: Dirtying blocks due to updating file

access time increases the possibility of making corrup-

tions permanent. By default, access time updates are en-

abled in ZFS; therefore, a read-only workload will up-

date the access time of any file accessed. Consequently,

when the structure containing the access time (znode)

goes inactive (or when there is another workload that up-

dates the znode), ZFS writes the block holding the zn-

ode to disk and updates and writes all its parental blocks.

Therefore, any corruption to these blocks will become

permanent after the flush caused by the access time up-

date. Further, as mentioned earlier, the time interval

when the corruption could happen is unbounded.

Observation 5: For most metadata blocks in the page

cache, checksums are not valid and thus useless in de-

tecting memory corruptions. By default, most metadata

blocks such as indirect blocks and dnode blocks are com-

pressed on disk. Since the checksums for these blocks

are used to prevent disk corruptions, they are only valid

for compressed blocks, which are calculated after they

are compressed during writes and verified before they are

decompressed during reads. When metadata blocks are

in the page cache, they are uncompressed. Therefore, the



checksums contained in the corresponding block point-

ers are useless.

We now discuss our observations about user-visible re-

sults of memory corruptions.

Observation 6: When metadata is corrupted, oper-

ations fail with wrong results, or give misleading error

messages (E). As shown in Table 5, when zp flags in

dnode phys t for a file object was corrupted, in one

case open() returned an error code EACCES (permis-

sion denied). This case occurred when the 41st bit of

zp flags was flipped from 0 to 1, which signifies that

the file is quarantined by an anti-virus software. There-

fore, open() was incorrectly denied, giving an error code

EACCES. The calls access(), rename() and truncate()

also failed for the same reason.

Another example of a misleading error mes-

sage happened when dd head dataset obj in

dsl dir phys t for a dataset directory object was

corrupted; there is one case where “zfs create” failed to

create a new file system under the parent file system rep-

resented by the corrupted object. ZFS gave a misleading

error message saying that the parent file system did not

exist. ZFS gave similar error messages in other cases (E)

under “Dataset directory” and “Dataset”.

A case where wrong results are returned occurred

when dd child dir zapobj was corrupted. This field

refers to a dataset child map object containing references

to child file systems. On corrupting this field, “zfs list”,

which should list all file systems in the pool, did not list

the child file systems of the corrupted dataset directory.

Observation 7: Many corruptions lead to a system

crash (C). For example, when dn nlevels (the height of

the block tree pointed to by the dnode) in dnode phys t

for a file object was corrupted and the file was read, the

system crashed due to a NULL pointer dereference. In

this case, ZFS used the wrong value of dn nlevels to

traverse the block tree of the file object and obtained an

invalid block pointer. Therefore, the block size obtained

from the block pointer was an arbitrary value, which was

then used to index into an array whose size was much

less than the value. As a result, the system crashed when

a NULL pointer was dereferenced.

Observation 8: The read() system call may return

bad data. As shown in Table 5, for metadata corruptions,

there were three cases where read() gave bad data block

to the user. In these cases, ZFS simply trusted the value

of the corrupted field and used it to traverse the block

tree pointed to by the dnode, thus returning bad blocks.

For example, when dn nlevels in dnode phys t for a

file object was changed from 3 to 1, ZFS gave an incor-

rect block to the user on a read request for the first block

of the file. The bad block was returned because ZFS as-

sumed that the tree only had one level, and incorrectly

returned an indirect block to the user. Such cases where

wrong blocks are returned to the user also have the po-

tential for security vulnerabilities.

Observation 9: There is no recovery for corrupted

metadata. In the cases where no apparent error happened

(as indicated by a dot or not shown) and the operation

was not meant to update the corrupted field, the corrup-

tion remained in the metadata block in the page cache.

In summary, ZFS fails to detect and recover from

many corruptions. Checksums in the page cache are not

used to protect the integrity of blocks. Therefore, bad

data blocks are returned to the user or written to disk.

Moreover, corrupted metadata blocks are accessed by

ZFS and lead to operation failure and system crashes.

6 Probability of bit-flip induced failures

In this section, we present a preliminary analysis of the

likelihood of different failure scenarios due to memory

errors in a system using ZFS. Specifically, given that one

random bit in memory is flipped, we compute the proba-

bilities of four scenarios: reading corrupt data (R), writ-

ing corrupt data (W), crashing/hanging (C) and running

successfully to complete (S). These probabilities help us

to understand how severely filesystem data integrity is

affected by memory corruptions and how much effort

filesystem developers should make to add extra protec-

tion to maintain data integrity.

6.1 Methodology

We apply fault-injection techniques to perform the analy-

sis. Considering one run of a specific workload as a trial,

we inject a fixed number number of random bit flips to

the memory and record how the system reacts. There-

fore, by doing multiple trials, we measure the number

of trials where each scenario occurs, thus estimating the

probability of each scenario given that certain number of

bits are flipped. Then, we calculate the probability of

each scenario given the occurrence of one single bit flip.

We have extended our fault injection framework to

conduct the experiments. We replaced the pseudo-driver

with a user-level “injector” which injects random bit flips

to the physical memory. We used filebench [50] to gener-

ate complex workloads. We modified filebench such that

it always writes predefined data blocks (e.g., full of 1s)

to disk. Therefore, we can check every read operation

to verify that the returned data matches the predefined

pattern. We can also verify the data written to disk by

checking the contents of on-disk files.

We used the framework as follows. For a specific

workload, we ran 100 trials. For each trial, we used the

injector to generate 16 random bit flips at the same time

when the workload has been running for 3 minutes. We

then kept the workload running for 5 minutes. Any oc-

currence of reading corrupt data (R) was reported. When

the workload was done, we checked all on-disk files to



see if there was any corrupt data written to the disk (W).

Since we only verify write operations after each run of

a workload, some intermediate corrupt data might have

been overwritten and thus the actual number of occur-

rence of writing corrupt data could be higher than mea-

sured here. We also logged whether the system hung or

crashed (C) during each trial, but we did not determine if

it was due to corruption of ZFS metadata or other kernel

data structures.

It is important to notice that we injected 16 bit flips

in each trial because it let us observe a sufficient number

of failure trials in 100 trials. However, we apply the fol-

lowing calculation to derive the probabilities of different

failure scenarios given that 1 bit is flipped.

6.2 Calculation

We use Pk(X) to represent the probability of scenario X

given that k random bits are flipped, in which X could

be R, W, C or S. Therefore, Pk(X̄) = 1 − Pk(X) is

the probability of scenario X not happening given that

k bits are flipped. In order to calculate P1(X), we first

measure Pk(X) using the method described above and

then derive P1(X) from Pk(X), as explained below.

• Measure Pk(X) Given that k random bit flips are

injected in each trial, we denote the total number of

trials as N and the number of trials in which sce-

nario X occurs at least once as NX . Therefore,

Pk(X) =
NX

N

• Derive P1(X) Assume k bit flips are independent,

then we have

Pk(X̄) = (P1(X̄))k, when X = R, W or C

Pk(X) = (P1(X))k, when X = S

Substituting Pk(X̄) = 1−Pk(X) into the equations

above, we can get,

P1(X) = 1−(1−Pk(X))
1

k , when X = R, W or C

P1(X) = (Pk(X))
1

k , when X = S

6.3 Results

The analysis is performed on the same virtual machine as

mentioned in Section 4.2.1. The machine is configured

with 2GB non-ECC memory and a single disk running

ZFS. We first ran some controlled micro-benchmarks

(e.g., sequential read) to verify that the methodology and

the calculation is correct (the result is not shown due to

limited space). Then, we chose four workloads from

filebench: varmail, oltp, webserver and fileserver, all

of which were exercised with their default parameters.

A detailed description of these workloads can be found

elsewhere [50].

Workload P16(R) P16(W ) P16(C) P16(S)
varmail 9% [4, 17] 0% [0, 3] 5% [1, 12] 86% [77, 93]

oltp 26% [17, 36] 2% [0, 8] 16% [9, 25] 60% [49, 70]

webserver 11% [5, 19] 20% [12, 30] 19% [11, 29] 61% [50, 71]

fileserver 69% [58, 78] 44% [34, 55] 23% [15, 33] 28% [19, 38]

Workload P1(R) P1(W ) P1(C) P1(S)
varmail 0.6% [0.2, 1.2] 0% [0, 0.2] 0.3% [0.1, 0.8] 99.1% [98.4, 99.5]

oltp 1.9% [1.2, 2.8] 0.1% [0, 0.5] 1.1% [0.6, 1.8] 96.9% [95.7, 97.8]

webserver 0.7% [0.3, 1.3] 1.4% [0.8, 2.2] 1.3% [0.7, 2.1] 97.0% [95.8, 97.9]

fileserver 7.1% [5.4, 9.0] 3.6% [2.5, 4.8] 1.6% [1.0, 2.5] 92.4% [90.2, 94.2]

Table 6: P16(X) and P1(X). The upper table presents

percentage values of the probabilities and 95% confidence in-

tervals (in square brackets) of reading corrupt data (R), writ-

ing corrupt data (W), crash/hang and everything being fine (S),

given that 16 bits are flipped, on a machine of 2GB memory.

The lower table gives the derived percentage values given that

1 bit is corrupted. The working set size of each workload is

less than 2GB; the average amount of page cache consumed by

each workload after the bit flips are injected is 31MB (varmail),

129MB (oltp), 441MB (webserver) and 915MB (fileserver).

Table 6 provides the probabilities and confidence in-

tervals given that 16 bits are flipped and the derived val-

ues given that 1 bit is flipped. Note that for each work-

load, the sum of Pk(R), Pk(W ), Pk(C) and Pk(S) is

not necessary equal to 1, because there are cases where

multiple failure scenarios occur in one trial.

From the lower table in Table 6, we see that a single

bit flip in memory causes a small but non-negligible per-

centage of runs to experience an failure. For all work-

loads, the probability of reading corrupt data is greater

than 0.6% and the probability of crashing or hanging is

higher than 0.3%. The probability of writing corrupt data

varies widely from 0 to 3.6%. Our results also show that

in most cases, when the working set size is less than the

memory size, the more page cache the workload con-

sumes, the more likely that a failure would occur if one

bit is flipped.

In summary, when a single bit flip occurs, the chances

of failure scenarios happening can not be ignored. There-

fore, efforts should be made to preserve data integrity in

memory and prevent these failures from happening.

7 Beyond ZFS

In addition to ZFS, we have applied the same fault injec-

tion framework used in Section 5 to a simpler filesystem,

ext2. Our initial results indicate that ext2 is also vulner-

able to memory corruptions. For example, corrupt data

can be returned to the user or written to disk. When cer-

tain fields of a VFS inode are corrupted, operations on

that inode fail or the whole system crashes. If the inode

is dirty, the corrupted fields of the VFS inode are propa-

gated to the inode in the page cache and are then written

to disk, making the corruptions permanent. Moreover, if

the superblock in the page cache is corrupted and flushed



to disk, it might result in an unmountable filesystem.

In summary, so far we have studied two extremes:

ZFS, a complex filesystem with many techniques to

maintain on-disk data integrity, and ext2, a simpler

filesystem with few mechanisms to provide extra relia-

bility. Both are vulnerable to memory corruptions. It

seems that regardless of the complexity of the file sys-

tem and the amount of machinery used to protect against

disk corruptions, memory corruptions are still a problem.

8 Related work

Software-implemented fault injection techniques have

been widely used to analyze the robustness of sys-

tems [10, 17, 25, 31, 48, 55]. For example, FINE used

fault injection to emulate hardware and software faults

in the operating system [31]; Weining et al. [25] injected

faults to instruction streams of Linux kernel function to

characterize Linux kernel behavior.

More recent works [5, 8, 44] have applied type-aware

fault injection to analyze failure behaviors of different

file systems to disk corruptions. Our analysis of on-disk

data integrity in ZFS is similar to these studies.

Further, fault injection has also been used to analyze

effects of memory corruptions on systems. FIAT [10]

used fault injection to study the effects of memory cor-

ruptions in a distributed environment. Krishnan et al.

applied a memory corruption framework to analyze the

effects of metadata corruption on NFS [33]. Our study

on in-memory data integrity is related to these studies in

their goal of finding effects of memory corruptions.

However, our work on ZFS is the first comprehensive

reliability analysis of local file system that covers care-

fully controlled experiments to analyze both on-disk and

in-memory data integrity. Specifically, for our study of

memory corruptions, we separately analyze ZFS behav-

ior for faults in page cache metadata and data and for

metadata structures in the heap. To the best of our knowl-

edge, this is the first such comprehensive study of end-

to-end file system data integrity.

9 Summary and discussion

In this paper, we analyzed a state-of-the-art file system,

ZFS, to study the implications of disk and memory cor-

ruptions to data integrity. We used carefully controlled

fault injection experiments to simulate realistic disk and

memory errors and presented our observations about ZFS

behavior and its robustness.

While the reliability mechanisms in ZFS are able to

provide reasonable robustness against disk corruptions,

memory corruptions still remain a serious problem to

data integrity. Our results for memory corruptions in-

dicate cases where bad data is returned to the user, oper-

ations silently fail, and the whole system crashes. Our

probability analysis shows that one single bit flip has

small but non-negligible chances to cause failures such

as reading/writing corrupt data and system crashing.

We argue that file systems should be designed with

end-to-end data integrity as a goal. File systems should

not only provide protection against disk corruptions, but

also aim to protect data from memory corruptions. Al-

though dealing with memory corruptions is hard, we con-

clude by discussing some techniques that file systems can

use to increase protection against memory corruptions.

Block-level checksums in the page cache: File systems

could protect the vulnerable data and metadata blocks

in the page cache by using checksums. For example,

ZFS could use the checksums inside block pointers in

the page cache, update them on block updates, and ver-

ify the checksums on reads. However, this does incur an

overhead in computation as well as some complexity in

implementation; these are always the tradeoffs one has

to make for reliability.

Metadata checksums in the heap: Even with block-

level checksums in the page cache, there are still copies

of metadata structures in the heap that are vulnerable

to memory corruptions. To provide end-to-end data in-

tegrity, data-structure checksums may be useful in pro-

tecting in-heap metadata structures.

Programming for error detection: Many serious ef-

fects of memory corruptions can be mitigated by using

simple programming practices. One technique is to use

existing redundancy in data structures for simple consis-

tency checks. For instance, the case described in Obser-

vation 8 (Section 5.3) could be detected by comparing

the expected level calculated from the dn levels field

of dnode phys t with the actual level stored inside the

first block pointer. Another simple technique is to in-

clude magic numbers in metadata structures for sanity

checking. For example, some “crash” cases happened

due to bad block pointers obtained during the block tree

traversal (Observation 7 in Section 5.3). Using a magic

number in block pointers could help detect such cases

and prevent unexpected behavior.
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