
Byzantine fault-tolerant
erasure-coded storage
James Hendricks, Gregory R. Ganger

Carnegie Mellon University

Michael K. Reiter
University of North Carolina at Chapel Hill



© James Hendricks, 27 February 20082

• As systems grow in size and complexity…
• Must tolerate more faults, more types of faults

• Modern storage systems take ad-hoc approach

• Not clear which faults to tolerate

• Instead: tolerate arbitrary (Byzantine) faults

• But, Byzantine fault-tolerance = expensive?

Motivation



© James Hendricks, 27 February 20083

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Number of faults tolerated (f)

Crash fault-tolerant erasure-coded
block storage (non-Byzantine)

Replicated Byzantine 
fault-tolerant block storage 

B
an

dw
id

th
 (

M
B

/s
)

Low-overhead erasure-coded
Byzantine fault-tolerant block storage

f +1-of-2f +1
erasure-coded

f +1 replicas

3f +1 replicas

Comparison of write throughput



© James Hendricks, 27 February 20084

• Each server gets one fragment
and a small checksum value

• Decoding from consistent
fragments yields unique block

d1 d2 d3 d4

B'

B Homomorphic
fingerprint checksum

Server

Client 1

Client 2

Homomorphic fingerprinting

If {d1,d2} & {d3,d4} consistent, then B = B'

Cryptographic hash



© James Hendricks, 27 February 20085

Summary and status

Byzantine fault-tolerant storage can rival

crash-only storage performance
Verifying distributed erasure-coded data [PODC07]

Low-overhead Byzantine fault-tolerant storage [SOSP07]

Current work: Good performance under faults
Prevent concurrency livelock (i.e., wait-freedom)

Minimize communication in worst case

Improve recovery performance


