Byzantine fault-tolerant erasure-coded storage

James Hendricks, Gregory R. Ganger Carnegie Mellon University

Michael K. Reiter University of North Carolina at Chapel Hill

Carnegie Mellon Parallel Data Laboratory

Motivation

- As systems grow in size and complexity...
 - Must tolerate more faults, more *types* of faults
 - Modern storage systems take ad-hoc approach
- Not clear which faults to tolerate
- Instead: tolerate arbitrary (Byzantine) faults
- But, Byzantine fault-tolerance = expensive?

Comparison of write throughput

Carnegie Mellon Parallel Data Laboratory

© James Hendricks, 27 February 2008

Summary and status

Byzantine fault-tolerant storage can rival crash-only storage performance

Verifying distributed erasure-coded data [PODC07] Low-overhead Byzantine fault-tolerant storage [SOSP07]

Current work: Good performance under faults Prevent concurrency livelock (i.e., wait-freedom) Minimize communication in worst case Improve recovery performance

Carnegie Mellon Parallel Data Laboratory