
Computer Architecture and Systems Group
Department of Computer Science
University Carlos III of Madrid
Fco Javier García Blas, Florin Isaila & Jesús Carretero

ϒ We propose and evaluate an alternative to the
two-phase collective I/O (TP I/O)
implementation of ROMIO called view-based
collective I/O (VB I/O).

ϒ View based I/O targets the following goals:
 Reducing the cost of data scatter-gather operations,
 MinimizingMinimizing the overhead of file metadata transfer,
 Decreasing the number of conservative collective

communication and synchronization operations.

ϒ Differences between two-phase I/O and view-based I/O :
 At view declaration, VB I/O sends the view data type to

aggregators, while TP I/O stores it locally at the application
nodes.

 VB I/O assigns statically the file domain to aggregators, while TP
I/O dynamically.

 At access time, TP I/O sends the offset-lists to the aggregators,
while view I/O transfers only the view access interval extremities.

 The collective buffers of VB I/O are cached across collective
operations. A collective read following a write, may find the data
already at the aggregator.

 The collective buffers of VB I/O are written to the file system
when the collective buffer pool is full or when the file is closed.
For TP I/O, the collective buffers are flushed to the file system
when they are full or at the end of each write operation.

Pool

Aggregator Node 0

Page 0
Page 2
Page 4
Page 6

Access phase

Mapping phase

Pool

Aggregator Node 1

Page 1
Page 3
Page 5
Page 7

Access phase

Mapping phase

Compute Node 0 Compute Node 1 Compute Node 2 Compute Node 3

ϒ Evaluated on CACAU (HLRS Stuttgart)
ϒ MPICH2
ϒ File system tested: PVFS 2.6.3 with 8 I/O

servers
ϒ The communication protocol of PVFS2 and

MPICH2 was TCP/IP on top of the native
Infiniband communication library

ϒ 1 process per node
ϒ View-based I/O had a collective buffer pool

of maximum 64 Mbytes
ϒ BTIO, coll perf and MPI_TILE_IO

ϒ Use 4 to 64 processes and two classes of data
set sizes: B (1697.93 Mbytes) and C (6802.44
MBytes).

ϒ BTIO explicitly sets the size of write collective
buffer to 1 Mbytes

ϒ The benchmark reports the total time including
the time spent to write the solution to the file.

ϒ However, the verification phase time containing
the reading of data from files is not included in
the reported total time.

 Writes were between 89% and 121%
 Reads were between 3% to 109%
 Overral time was between 8% to 50%

ϒ Breakdowns: total time spent in computation,
communication and file access of collective write and read
operations, for class B from 4 to 64 processes.

Two-phase I/O View-based I/O

 Avoids the necessity of transferring large lists of offset-length pairs
at file access time as the present implementation of two-phase I/O.

 Reduces the total run time of a data intensive parallel application,
by reducing both I/O cost and implicit synchronization cost.

 The write-on-close approach brings satisfactory results in all
cases.

 Adding lazy view I/O
 Views and data are sent together in write/read primitives
 Views are sent if the aggregators do not have the data view

 Including two data staging strategies for prefetchingprefetching and flushingflushing the
collective I/O buffer cache:
 The prefetch is done in coordinate manner, by aggregating the view

information of several processes and reading ahead whole blocks. Based on
MPI-IO views.

 The flushing strategy allows for overlapping the computation and I/O.
Reduces also the rates at which the buffer cache becomes full with dirty file
blocks, which may clog the computation to go on.

 Currently:
 We have already implemented the mechanisms for enforcing these two

strategies and are estimating the efficiency of this approach for large scale
scientific parallel application.

 We are investigating the trade-off between the contradictory goals of
promoting data by prefetching, demoting the data by flushing and temporal
locality.

