
Dynamic Load Balancing in Ceph

Esteban Molina-Estolano, Carlos Maltzahn, Scott Brandt, University of California, Santa Cruz

February 21, 2008

The Ceph distributed object-based storage system, devel-
oped at UC Santa Cruz, [1] uses CRUSH, a pseudo-random
placement function, to decide which OSDs to store data
on, instead of storing the placement information in a table.
This technique offers multiple advantages. In particular, the
amount of metadata stored per file is drastically reduced, re-
ducing the load on the metadata servers and speeding up
metadata accesses and clients need communicate with the
metadata servers only for metadata operations, since they
can directly calculate the correct data placement for read and
write operations. [2] However, pseudorandom placement also
brings challenges for load balancing, since data cannot be ar-
bitrarily moved to other nodes.

We identify two types of load imbalance: persistent imbal-
ance and transient imbalance. Persistent imbalance is caused
by performance differences among nodes; we found that sup-
posedly identical nodes in our cluster had up to four-fold dif-
ferences in I/O performance. This can be addressed in Ceph
by assigning different weights to different nodes in CRUSH.

Transient imbalance has two causes. First, a workload may
be inherently imbalanced; for instance, a flash crowd on a sin-
gle object can overload a storage node. Second, even without
an imbalanced workload, transient imbalance may coinciden-
tally occur: CRUSH’s pseudorandom placement statistically
distributes workloads well over time, but this does not guard
against coincidental hotspots at any given moment.

We have a number of ideas for load-balancing techniques.
We have added limited support for read shedding, where
clients in a read flash crowd are redirected to replicas instead
of the primary copy. This can be extended to allow clients to
read from other clients in the flash crowd. We can switch pri-
maries to distribute non-flash-crowd load from one primary
to several primaries. We also have an algorithm to take a
flash crowd of multiple writers to the same object and split
the work among several nodes, by delaying synchronization.

We have tested the primary switching technique. When a
single primary is overloaded by requests on multiple objects,
those objects will typically have different sets of replicas. For
each object, we temporarily transfer the primary role to one of
the replicas. We have shown that primary shifting successfully
relieves the load on the original primary and distributes it
among several new primaries. However, we have not yet found
workloads that saturate the primary in such a way that the
load balancing makes the workload complete more quickly.

Future work includes testing the other techniques; char-
acterizing which techniques speed up which workloads; and
dynamically detecting overload to automatically invoke these
load-balancing techniques.

Figure 1: In this workload, eight clients write 256 MB each,
and all writes initially have OSD 0 as the primary. The top
graph shows the load on OSD 0. In the bottom graph, pri-
mary switching is activated, distributing the load among the
OSDs.

References

[1] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: a scalable, high-
performance distributed file system. In USENIX’06: Pro-
ceedings of the 7th conference on USENIX Symposium on
Operating Systems Design and Implementation, pages 22–
22, Berkeley, CA, USA, 2006. USENIX Association.

[2] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Car-
los Maltzahn. Crush: controlled, scalable, decentralized
placement of replicated data. In SC ’06: Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, page
122, New York, NY, USA, 2006. ACM.

1


