
Improving I/O Performance of Applications through Compiler-Directed

Code Restructuring

Mahmut Kandemir Seung Woo Son

Department of Computer Science and Engineering

The Pennsylvania State University

{kandemir,sson}@cse.psu.edu

Mustafa Karakoy

Department of Computing

Imperial College

m.karakoy@imperial.edu.uk

Abstract

Ever-increasing complexity of large-scale applications

and continuous increases in sizes of the data they pro-

cess make the problem of maximizing performance of

such applications a very challenging task. In particular,

many challenging applications from the domains of as-

trophysics, medicine, biology, computational chemistry,

and materials science are extremely data intensive. Such

applications typically use a disk system to store and later

retrieve their large data sets, and consequently, their disk

performance is a critical concern. Unfortunately, while

disk density has significantly improved over the last cou-

ple of decades, disk access latencies have not. As a re-

sult, I/O is increasingly becoming a bottleneck for data-

intensive applications, and has to be addressed at the

software level if we want to extract the maximum per-

formance from modern computer architectures.

This paper presents a compiler-directed code restruc-

turing scheme for improving the I/O performance of

data-intensive scientific applications. The proposed ap-

proach improves I/O performance by reducing the num-

ber of disk accesses through a new concept called disk

reuse maximization. In this context, disk reuse refers to

reusing the data in a given set of disks as much as pos-

sible before moving to other disks. Our compiler-based

approach restructures application code, with the help of

a polyhedral tool, such that disk reuse is maximized to

the extent allowed by intrinsic data dependencies in the

application code. The proposed optimization can be ap-

plied to each loop nest individually or to the entire ap-

plication code. The experiments show that the average

I/O improvements brought by the loop nest based ver-

sion of our approach are 9.0% and 2.7%, over the origi-

nal application codes and the codes optimized using con-

ventional schemes, respectively. Further, the average im-

provements obtained when our approach is applied to the

entire application code are 15.0% and 13.5%, over the

original application codes and the codes optimized using

conventional schemes, respectively. This paper also dis-

cusses how careful file layout selection helps to improve

our performance gains, and how our proposed approach

can be extended to work with parallel applications.

1 Introduction

In the recent past, large scale applications in science and

engineering have grown dramatically in complexity. As

a result, scientists and engineers expend great effort to

implement software systems that carry out these appli-

cations and interface them with the instruments and sen-

sors that generate data. Apart from their huge compu-

tational needs, these large applications have tremendous

I/O requirements as well. In fact, many scientific simula-

tions tend to generate huge amounts of data that must be

stored, mined, analyzed, and evaluated. For example, in

a combustion application [39], features based on flame

characteristics must be detected and tracked over time.

Based upon evolution, simulations need to be steered in

different regions, and different types of data need to be

stored for further analysis. A simulation involving three-

dimensional turbulent flames involving detailed chem-

istry can easily result in 5 tera-bytes of data being stored

on disk, and the total storage requirement can be in the

order of peta-bytes when one considers the fact that nu-

merous such simulations have to be performed to reach

meaningful and accurate conclusions. Other scientific

applications have also similar storage and I/O require-

ments.

Unfortunately, as far as software – in particular com-

pilers – are concerned, I/O has always been neglected

and received much less attention in the past compared

to other contributors to an application’s execution time,

like CPU computation, memory accesses and inter-CPU

communication. This presents an important problem, not

just because modern large-scale applications have huge

I/O needs, but also the progresses in storage hardware are

not in the scale that can meet these pressing I/O demands.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 159

Advances in disk technology have enabled the migration

of disk units to 3.5-inch and smaller diameters. In addi-

tion, the storage density of disks has grown at an impres-

sive 60 percent annually, historically, and has accelerated

to greater than a 100 percent rate since 1999 [20]. Un-

fortunately, disk performance has not kept pace with the

growth in disk capacities. As a result, I/O accesses are

among primary bottlenecks in many large applications

that store and manipulate large data sets. Overall, huge

increases in data set sizes combined with slow improve-

ments in disk access latencies motivate for software-level

solutions to the I/O problem. Clearly, this I/O problem

is most pressing in the context of data-intensive scien-

tific applications, where increasingly larger data sets are

processed.

While there are several ways of improving I/O be-

havior of a large application, one of the promising ap-

proaches has been cutting the number of times the disks

are accessed during execution. This can be achieved at

different layers of the I/O subsystem and be attacked by

using caching which keeps frequently used data in mem-

ory (instead of disks) or by restructuring the applica-

tion code in a way that maximizes data reuse. While

both the approaches have been explored in the past

[2, 3, 9, 10, 16, 21, 24], the severity of the I/O problem

discussed above demands further research. In this paper,

we focus on a compiler-directed code restructuring for

improving I/O performance of large-scale scientific ap-

plications that process disk-resident data sets. A unique

advantage of the compiler is that it can analyze an entire

application code, understand global (application wide)

data and disk access patterns (if data-to-disk mapping is

made available to it), and – based on this understand-

ing – restructure the application code and/or data layout

to achieve the desired performance goal. This is a dis-

tinct advantage over pure operating system (OS) based

approaches that employ rigid, application agnostic opti-

mization policies as well as over pure hardware based

techniques that do not have the global (application wide)

data access pattern information. However, our compiler

based approach can also be used along with OS and hard-

ware based schemes, and in fact, we believe that this is

necessary to reach a holistic solution to the growing I/O

problem.

The work presented in this paper is different from prior

studies that explore compiler support for I/O in at least

two aspects. First, our approach can optimize the entire

program code rather than individual, parallel loop-nests,

as has been the case with the prior efforts. That is, as

against to most of the prior work on compiler-directed

I/O optimization, which restructure loops independent of

each other, our approach can restructure the entire appli-

cation code by capturing the interactions among differ-

ent loop nests. An advantage of this is that our approach

does not perform a local (e.g., loop nest based) optimiza-

tion which is effective for the targeted scope but harmful

globally. However, if desired, our approach can be ap-

plied to individual loop nests or functions/subprograms

independently. Second, we also discuss the importance

of file layout optimization and of adapting to parallel ex-

ecution. These two extensions are important as 1) the

results with our layout optimization indicate that addi-

tional performance savings (7.0% on average) are possi-

ble over the case code re-structuring is used alone, and 2)

the results with the multi-CPU extension show that this

extension brings 33.3% improvement on average over the

single-CPU version.

The proposed approach improves I/O performance by

reducing the number of disk accesses through disk reuse

maximization. In this context, disk reuse refers to reusing

the data in a given set of disks as much as possible before

moving to other disks. Our approach restructures the ap-

plication code, with the help of a polyhedral tool [26],

such that disk reuse is maximized to the extent allowed

by intrinsic data dependencies in the code. We can sum-

marize the major contributions of this paper as follows:

• We present a compiler based disk reuse optimization

technique targeting data intensive scientific applications.

The proposed approach can be applied at the loop nest

level or whole application level.

• We discuss how the success of our approach can be

increased by modifying the storage layout of data, and

how it can be extended to work under parallel execution.

• We present an experimental evaluation of the pro-

posed approach using seven large scientific applications.

The results collected so far indicate that our approach

is very successful in maximizing disk reuse, and this in

turn results in large savings in I/O latencies. More specif-

ically, the average I/O improvements brought by the loop

nest based version of our approach are 9.0% and 2.7%,

over the original application codes and the codes opti-

mized using conventional schemes, respectively. Further,

the average improvements obtained when our approach

is applied to the entire application code are 15.0% and

13.5%, over the original application codes and the codes

optimized using conventional schemes, respectively.

The rest of this paper is organized as follows. The next

section explains the disk system architecture assumed by

our compiler. It also presents the key concepts used in the

remainder of the paper. Section 3 gives the mathematical

details behind the proposed compiler-based approach.

Section 4 discusses how our approach can be extended by

taking accounts of the storage layout of data. Section 5

gives an extension to capture the disk access interactions

among the threads of a parallel application. An experi-

mental evaluation of our approach and a comparison with

the conventional data reuse optimization scheme are pre-

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association160

Figure 1: Striping a file over parallel disks. Striping is

performed at two levels, the first of which can be exposed

to and controlled by software.

sented in Section 6. Section 7 discusses related work and

Section 8 concludes the paper by summarizing its main

contributions and discussing briefly possible future ex-

tensions.

2 Disk System Architecture and Impor-

tance of Disk Reuse

Figure 1 depicts the disk system architecture targeted by

our work. In many high-performance storage systems

today, there are two levels of striping. The first one,

which is at the software level, divides an array into equal-

sized blocks (stripes) and distributes these blocks across

a number of I/O nodes in a round-robin fashion. The sec-

ond level of striping occurs at an I/O node level where

the data blocks mapped to an I/O node are further striped

(at a much finer granularity) over the disks managed by

that I/O node (e.g., using one of the RAID schemes [4]).

While this second level of striping is not visible to the

software, the first level of striping is; and in fact, many

modern file systems provide hints that can be used to

query or control some of the striping parameters (e.g.,

the number of I/O nodes to be used for striping data, the

I/O node from which the striping begins, and the size

of a stripe). The compiler-based disk reuse optimization

approach presented in this work focuses on this software-

level striping. In our discussion, we assume a single disk

per I/O node, and therefore, we use the terms “I/O node”

and “disk” interchangeably as long as the context is clear.

We also assume that a portion of the main memory

of the computation node is reserved to serve as buffer

(also called cache) for frequently used disk data. If a re-

quested data item is found in this cache, no disk I/O is

performed and this can reduce data access latencies sig-

nificantly. While it is possible to employ several buffer

management schemes, the one used in this work operates

under the LRU policy which replaces the least recently

used stripe when a new block is to be brought in. Se-

lection of the buffer management scheme to employ is

orthogonal to the main focus of this paper. It is impor-

Two-Dimensional

Array

File Layout Disk Layout

Figure 2: Different mappings a two-dimensional disk-

resident array goes through. In the most general case,

the memory layout, file layout and disk layout for an ar-

ray can be all different from each other. We use D to

represent a mapping from file layout to disk layout.

tant to note that all the disks in the system share the same

buffer (in the computation node) to cache their data, and

thus, effective management of this buffer is very critical.

Note also that, in addition to the cache in the compu-

tation node, the I/O nodes themselves can also employ

caches. Our optimization target in this paper, however, is

the performance of the cache in the computation node.

Figure 2 shows the mappings a two-dimensional data

array data goes through as far as disk system storage is

concerned. Array data in memory is stored in file using

some storage order, which may be row-major, column-

major, or in a blocked fashion. This is called the file

layout. (Note that this may be different from the mem-

ory layout adopted by the underlying programming lan-

guage. For example, a C array can be stored in file using

column-major layout as opposed to row-major, which is

the default memory layout for multi-dimensional arrays

in C.) The file is then striped across the available disks

on the system. Therefore, two data elements which are

neighbors in the memory space can get mapped to sep-

arate disks as a result of this series of mappings. Simi-

larly, data blocks that are far apart from each other can

get mapped to the same disk as a result of striping. In

this work, when we use the term “disk-resident array,”

we mean an array that is mapped to the storage system

using these mappings. Note that, while it is also possible

to map multiple data arrays to one file or one data array

to multiple files, in this work we consider only one-to-

one mappings between data arrays and files. However,

our approach can easily be extended, if desired, to work

with one-to-many or many-to-one mappings as well. Un-

less otherwise stated, all the data arrays mentioned in this

paper are disk resident.

Let us now discuss why disk reuse is important

and how an optimizing compiler can improve it. The

next section gives the technical details of our proposed

compiler-based approach to improving disk reuse. Re-

call that disk reuse means using a data in a given set of

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 161

��������	
���
� ����
������

��

��

��

�
��

���

�

�

��

��

���

���

����

����

����

Figure 3: An example access patterns and the corre-

sponding file layout. We restructure the application code

such that, once a particular file block (stripe) is accessed,

iterations that access the same block extracted from all

loop nests (L1, L2, and L3) are executed together. Note

that all three loop nests access the same disk-resident ar-

ray.

disks as much as possible before accessing other disks.

• When disk reuse is improved, the chances of finding

the requested data in the buffer increases. As a simple

scenario, consider a case in which a given disk resident

array is divided into four stripes and each stripe is stored

on a separate disk. We can expect a very good buffer

performance if the code can be restructured such that ac-

cesses to a given disk are clustered together. This is be-

cause such a clustering improves chances for catching

data in the buffer at the time of reuse. Figure 3 illus-

trates this scenario. In this scenario, three different loop

nests (L1, L2, and L3) access a given disk-resident array.

Figure 3 shows which portions of the iteration spaces

of these loop nests access what stripes (we assume 4

stripes). In a default execution, the iteration space can be

traversed in a row-wise fashion. As a result, for example,

when the first row of L1 is executed, two stripes are ac-

cessed (and they compete for the same buffer in the com-

putation node). In our approach however the iteration

spaces are visited in a buffer-aware fashion. If depen-

dencies allow, we first execute the chunks (marked using

*) from L1, L2, and L3 (one after another). Note that all

these chunks (iterations) use the same stripe (and there-

fore achieve a very good data reuse in the buffer). After

these, the chunks marked ** are executed, and these are

followed by the chunks marked ***, and so on.

• Since our approach clusters disk accesses to a small

set of disks at any given time (and maximizes the number

of unused disks), in a storage system that accommodates

power-saving features, unused disks can be placed into

a low-power operating mode [25, 30, 40]. However, in

this paper we do not quantify the power benefits of our

approach.

As mentioned earlier, our work focuses on I/O inten-

/* Open files, U , V , and W */

MPI File open (· · ·, U , &fh U, · · ·);
MPI File open (· · ·, V , &fh V, · · ·);
MPI File open (· · ·, W , &fh W, · · ·);
/* Loop on horizontal file block */

for ii=1, R, 1 {
/* Read next block of matrix U */

MPI File read (fh U, · · ·);
/* Loop on vertical file block */

for jj=1, R, 1 {
/* Read next block of matrix V */

MPI File read (fh V, · · ·);
/* actual matrix product */

for i=1, N , 1

for j=1, N , 1

for k=1, N , 1

W [i, j] += U [i, k] * V [k, j];
/* Write block of W */

MPI File write (fh W, · · ·);
}
}
/* close all open files */

MPI File close(&fh U);

MPI File close(&fh V);

MPI File close(&fh W);

for i=1, N × R, 1

for j=1, N × R, 1

for k=1, N × R, 1

W [i, j] += U [i, k] * V [k, j];

(a) (b)

Figure 4: (a) A matrix multiplication code written in

MPI-IO that operates on disk resident arrays. In this ex-

ample code, each file is divided into R × R blocks and

each block has N × N elements. (b) The corresponding

simplified version that omits the file I/O commands and

highlights computation.

sive applications that process disk resident arrays. The

application codes we target are written in MPI-IO [33],

which is the part of the MPI library [12] that handles file

I/O related activities. MPI-IO allows synchronous and

asynchronous file reads and writes as well as a large set

of collective file operations. Figure 4(a) shows an MPI-

IO code fragment that performs matrix multiplication on

disk resident arrays. For clarity reasons, in our discus-

sion, we omit the MPI-IO commands and represent such

a code as shown in Figure 4(b). That is, all the code frag-

ments discussed in this paper are assumed to have the

corresponding file I/O commands.

3 Mathematical Details

To capture disk accesses and optimize them, we use poly-

hedral algebra based on Presburger Arithmetic. Pres-

burger formulas are made of arithmetic and logic con-

nectives and existential (∃) and universal (∀) quantifiers.

In our context, we used them to capture and enumerate

loop iterations that exhibit disk access locality. We use

the term disk map to capture a particular set of disks (I/O

nodes) in the system. For a storage system with T disks,

we use Λ = λ1λ2λ3 · · ·λT to indicate a disk map. As an

example, if T = 4, λ1λ2λ3λ4 = 0110 represents a subset

(of disks) that includes only the second and third disks,

whereas 1110 specifies a subset that includes all disks

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association162

Figure 5: An example that shows three disk locality sets,

their independent locality sets, and an LSG. Each inde-

pendent LSG in the middle corresponds each disk local-

ity set on the left. Edges in the independent LSGs rep-

resent the dependencies between the nodes. The LSG

on the right is generated by combining each independent

LSG taking accounts of dependencies.

except the last one. Assuming that array–to–disk map-

ping (e.g., such as one shown in Figure 2) is exposed to

the compiler, the compiler can set up a relationship be-

tween the loop iterations in an application and the disks

in the storage system the corresponding (accessed) ar-

ray elements are stored. For example, if array reference

U [i+1] appears in a loop with iterator i, for a given value

of i we can determine the disk that stores the correspond-

ing array element (U [i + 1]).
We define disk locality set as a set of loop iterations

– which may belong to any loop nest in the application

code – that access the set of disks represented by the

same disk map. Mathematically, for a given disk map Λ,

we can define the corresponding disk locality set (QΛ)

as:

QΛ = {�ξ | �ξ ∈ I ∧ {∃R ∈ R such that D(R(�ξ)) ∈ Λ}},

where I represents the set of all loop iterations (com-

ing from all nests) in the program; �ξ is a particular loop

iteration; R represents the set of all references to disk-

resident arrays; R(.) is a reference (a mapping from the

loop iterations to the data elements), and D(.) is a disk

mapping (striping) function, which maps the data ele-

ments to the disks in the system. We use expression

D(R(�ξ)) ∈ Λ to indicate that the data element accessed

via R(�ξ) is mapped to one of disks in the set represented

by disk map Λ.
Let us give an example to illustrate the disk locality set

concept. Assume that a disk-resident array U of size K
is striped over 4 disks with a stripe of size K/4 (i.e., each

disk has a single stripe). Assume further that, for the sake

of illustration, we have a single loop i that iterates from

1 to K − 2 and uses two references, U [i] and U [i+2], to

access this disk-resident array. In this case, we have:

Q1100 = {ξ | [1 ≤ ξ ≤ K − 2]

∧{[1 ≤ ξ ≤ K/2] ∨ [1 ≤ ξ + 2 ≤ K/2]}}

= {ξ | 1 ≤ ξ ≤ K/2 − 2},

which gives us the set of iterations that access only the

first two disks. (Note that, the {[1 ≤ ξ ≤ K/2] ∨ [1 ≤
ξ + 2 ≤ K/2]} part is due to two references to array U ,

and since the loop nest has only a single loop, we use ξ
instead of �ξ.)

An important characteristic of the iterations that be-

long to the same QΛ is that they exhibit a certain degree

of locality as far as disks are concerned. As a result, if,

somehow, we can transform the application code and ex-

ecute iterations that belong to the same QΛ successively,

we can improve disk reuse (as in the case illustrated in

Figure 3). However, this is not very trivial in practice

because of two reasons. First, the inter-iteration data de-

pendencies in the application code may not allow such an

ordering, i.e., we may not be able to restructure the code

for disk reuse and (at the same time) maintain its original

semantics. Second, even if such an ordering is legal from

the viewpoint of data dependencies, it is not clear how it

can be obtained, i.e., what type of code restructuring can

be applied to obtain the desired ordering. More specifi-

cally, it is not clear whether the transformation (code re-

structuring) requested for clustering accesses to a subset

of disks can be obtained using a combination of well-

known transformations such as loop fusion, loop permu-

tation, and iteration space tiling [36]. From a compiler

angle, there is nothing much to do for the first reason.

But, for the second one, polyhedral algebra can be of

help, which is investigated in the rest of the paper.

Suppose, for now, that the application code we have

has no dependencies (we will drop this assumption

shortly). In this case, we may be able to improve disk

reuse (and the performance of the buffer in the computa-

tion node) using the following two-step procedure:

• For any given Λ, execute iterations in the QΛ set

consecutively, and

• In moving from QΛ to QΛ′ , select Λ′ such that the

Hamming Distance between Λ and Λ′ is minimum when

all possible Λ′s are considered.

The first item above helps us have good disk reuse by

executing the iterations that belong to the subset of disks

represented by a given disk map. The second item, on

the other hand, helps us minimize the number of disks

whose status (i.e., being used or not being used) has to be

changed as we move from executing the iterations in QΛ

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 163

to executing the iterations in QΛ′ . As a result, by apply-

ing these two rules repeatedly, one can traverse the entire

iteration space in a disk-reuse efficient manner, and this

in turn helps improve the performance of the buffer.

However, real I/O-intensive applications typically

have lots of data dependencies and, thus, the simple ap-

proach explained above will not suffice in practice. We

now discuss how the compiler can capture the dependen-

cies that occur across the different disk locality sets.

We start by observing that the iterations in a given

disk locality set QΛ can have data dependencies amongst

themselves. We consider a partitioning (such a parti-

tioning can be obtained using the Omega library [26] or

similar polyhedral tools) of QΛ into subsets QΛ,1, QΛ,2,

· · ·, QΛ,s such that QΛ,i ∩ QΛ,j = ∅ for any i and j,

QΛ,1 ∪QΛ,2 ∪ · · · ∪QΛ,s = QΛ, and for any i and j, all

data dependencies are either from QΛ,i to QΛ,j or from

QΛ,j to QΛ,i. The first two of these constraints indicate

that the subsets are disjoint and collectively cover all the

iterations in QΛ, and the last constraint specifies that, as

far as QΛ is concerned, the iterations in any QΛ,i can

be executed successively without any need of executing

an iteration from the set QΛ − QΛ,i. That is, when we

start executing the first iteration in QΛ,i, all the remain-

ing iterations in QΛ,i can be executed one after another

(of course, these iterations can have dependencies among

themselves). We refer to any such subset QΛ,i of QΛ as

the “independent disk locality set,” or the “independent

set” for short. As an example, Figure 5 shows three lo-

cality sets (on the left) and the corresponding indepen-

dent locality sets (in the middle). The first locality set

in this example contains four independent locality sets,

and these independent locality sets are connected to each

other using three dependence edges. In our approach,

independent locality sets are the building blocks for the

main – graph based – data structure used by the compiler

for disk reuse optimization.

This graph, called the “locality set graph” or LSG for

short, can be defined as LSG=(V , E) where each ele-

ment of V represents an independent disk locality set,

and the edges in E capture the dependencies between

the elements of V . In other words, an LSG has the QΛ,i

sets as its nodes and the dependencies among them as its

edges. The right portion of Figure 5 shows an example

LSG. The question then is to schedule the nodes of the

LSG while preserving the data dependency constraints

between the nodes. What we mean by “scheduling” in

this context is determining an order at which the nodes

of the graph will be visited (during execution). Clearly,

we want to determine such a schedule at compile time

and execute it at runtime, and the goal of this schedul-

ing should be minimizing the Hamming Distance as we

move from one independent set to another. For the ex-

ample LSG in Figure 5, we show in Figure 6 two legal

����

���� ����

����

���� ���� ����

����

���� ����

���� ��������

����
����

����
����
����
����
����
����
����
����
����
����
����

����
����

����
����
����
����
����
����

����
����
����
����
����

���

���

���

Figure 6: An example LSG (a) and two legal schedules (b

and c). The order of the schedule (c) is determined based

on minimum Hamming Distance, thereby exhibiting less

number of disk state changes.

(dependence preserving) schedules. Note that the total

(across all time steps) Hamming Distance for the first

schedule (in Figure 6(b)) is 28, whereas that for the sec-

ond one (in Figure 6(c)) is 15. Therefore, we can expect

the second one to result in a better disk buffer reuse than

the first one.

However, we note that a given LSG may not always

be schedulable as it is. This is because it can have cycles

involving a subset of its nodes. Consider for example

the example LSG shown in Figure 7(a). This LSG has

two cycles, and it is not possible to determine a sched-

ule for it. In order to convert a non-schedulable LSG

to a schedulable one, we somehow have to break all the

cycles it contains. But, before explaining how this can

be done, we want to discuss briefly the reasons for the

cycles in an LSG. There are two reasons for cycles in a

given LSG. First, for a given QΛ, there can be a cycle

formed by its independent sets (the QΛ,is) only. Sec-

ond, the independent sets coming from the different disk

locality sets can collectively form a cycle, i.e., two in-

dependent disk locality sets such as QΛ,i and QΛ′,j can

involve in the same cycle, where Λ �= Λ′.

If an LSG has one or more cycles, we need to find a

way of eliminating those cycles before the LSG can be

scheduled for improving disk reuse. In the rest of this

section, we discuss our solution to this issue. It can be

observed that there are at least two ways of removing

a cycle from a cyclic LSG. First, the nodes that are in-

volved in the cycle can be combined into a single node.

This technique is called node merging in this paper, and

is illustrated in Figures 7(b) and (c), for the cyclic LSG

in Figure 7(a). Note that, when the nodes are merged, the

iterations in the combined node can be executed in an or-

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association164

��� ��� ���

��� ��� �	�

Figure 7: Application of node merging (a through c) and

that of node splitting (d through f). In each case, the

nodes selected for applying node merging and splitting

are shown in black color, while the affected nodes are

shown in white color.

der that respect data dependencies. The second technique

that can be used for breaking cycles is node splitting (see

Figures 7(d) through (f)). While these techniques can

be used to convert a non-schedulable LSG to a schedu-

lable one, each has a potential problem we need to be

aware of. (clearly, one can also use a combination of

node merging and node splitting to remove cycles.) A

consequence of node merging is that the corresponding

iteration execution may not be very good, as the two suc-

cessively executed iterations (from the combined node)

can access different set of disks. (note that the disk map

of the merged node is the bitwise-OR of the disk maps of

the involved nodes.) That is, the potential cost of elimi-

nating cycles is a degradation in disk reuse. Node split-

ting on the other hand has a different problem. It needs

to be noted that not all splittings can help us eliminate

the cycles in a given LSG. In other words, one needs to

be careful in deciding which iterations to place into each

of the resulting sub-nodes so that the cyclic dependence

at hand can be broken. Determination of these iterations

may not be very trivial in practice, but is doable using

automated compiler analysis supported by a polyhedral

tool. Also, after splitting, the disk maps of the result-

ing nodes can be determined based on the loop iterations

they contain. It is to be observed that node splitting in

general also increases the code size as we typically need

a separate nest for each node in the LSG.

Our preliminary experience with these two techniques

showed that in general node splitting is preferable over

node merging, mainly because the latter can lead to sig-

nificant losses in disk reuse, depending on the applica-

tion code being optimized. Therefore, in our analysis

below, we restrict our discussion to node splitting only.

However, as mentioned above, code size can be an is-

sue with node splitting, and hence, we keep the num-

ber of splittings at minimum. So, the problem now be-

comes one of determining the minimum number of nodes

to split that makes the LSG cycle free. We start by not-

ing that splitting a node, if done successfully, has the

same effect as that of removing a node (and the arrows

incident on it) from the graph. That is, as far as remov-

ing cyclic dependencies is concerned, node splitting and

node removal are interchangeable. Fortunately, this lat-

ter problem (removing the minimum number of nodes

from a graph to make it cycle free) has been studied in

the past extensively and is known as the “feedback ver-

tex set” problem [8]. Karp was the first one to show that

this problem is NP-complete on directed graphs; but it

is known today that the undirected version is also NP-

complete. Moreover, the problem remains NP-complete

for directed graphs with no in-degree or out-degree ex-

ceeding 2, and also for planar directed graphs with no

in-degree or out-degree exceeding 3. Fortunately, there

exist several heuristic algorithms proposed in the litera-

ture for the feedback vertex set problem. In this work,

we use the heuristic discussed in [7]. Since the details of

this heuristic are beyond the scope of this paper, we do

not discuss them.

As an example, Figure 8(a) gives a sample LSG. Fig-

ure 8(b) highlights the node selected by the heuristic in

[7], and Figure 8(c) gives the pruned LSG. Note that

splitting the node identified by [7] eliminates both the

cycles. Figure 8(d) on the other hand shows the LSG

after node splitting, which is cycle free. It is important

to note that, while node removal and splitting obviously

result in different LSGs, their effects on the schedula-

bility of a given graph are similar; that is, both of them

make a given cyclic graph schedulable. In particular, the

set of nodes returned by the heuristic in [7] is the set of

minimum nodes that need to be considered for splitting

(though, as explained below, in some cases we may con-

sider more nodes for potential split). Based on this dis-

cussion, Figure 10 gives the algorithm used by our com-

piler for restructuring a given code for improving disk

reuse. This algorithm starts by building the initial LSG

for the input code. This LSG can contain cycles, and

hence, we next invoke procedure remove cycles(.) to ob-

tain a cycle free LSG. While this step uses the heuristic

approach in [7], it needs to do some other things as well,

as explained below.

In the rest of this section, we discuss details of our

node splitting strategy. Once a node is identified (using

the heuristic in [7]) as a potential candidate for splitting,

our approach checks whether it can be split satisfacto-

rily. What is meant by “satisfactorily” in this context is

that, although in theory we can always a split a node into

two or more nodes, the one we are looking for has the

properties explained below.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 165

(a) (b) (c) (d)

Figure 8: (a) An example LSG. (b) The node selected by

the algorithm in [7] for eliminating cycles. (c) The graph

after the cycles have been eliminated. (d) The graph after

the node detected by the algorithm in [7] is split into two

nodes.

(a)

(b) (c)(d)

i1 i2 i3

i4 i5 i6

i1 i2 i3

i4i5 i6

N1

N2

N1

N2

N1

N2’

N1

N2’

N2’’

N2’’

Figure 9: (a) An example LSG. (b) Details of dependen-

cies of the LSG. The node N1 contains the iterations i1

through i3 whereas the node N2 contains the iterations

i4 through i6. (c) Detailed view after splitting. (d) The

graph after splitting. In (b), iterations i4 and i6 are the

iterations that have incoming dependence from the node

N1, the iteration i5, on the other hand, is the iteration that

has outgoing dependence edge to the node N1.

Assume that QΛ is the node to be split. Let GI be the

set of nodes from which there are dependencies to node

QΛ. That is, for each member, QΛ′ , of GI , there is at

least a dependence from QΛ′ to QΛ. Assume further that

GO is the set of nodes to which we have dependencies

from node QΛ. In other words, we have a dependence

from QΛ to each node, QΛ′′ , of GO . Suppose now that

QΛ is split into two sub-nodes: QΛa
and QΛb

. We call

this split “satisfactory” if all of the following three con-

ditions are satisfied after the split:

• No dependency goes from any QΛ′ ∈ GI to QΛb
. In

other words, all the original in-coming dependencies of

QΛ are directed to QΛa
.

• No dependency goes from QΛb
to any QΛ′′ ∈ GO .

In other words, all the original out-going dependencies

of QΛ are directed from QΛb
.

• No dependency exists between QΛa
and QΛb

.

We say that cycle in question is removed (if the re-

moval of QΛ is sufficient to remove the cycle; otherwise,

the other nodes in the cycle, which is detected by the al-

gorithm in [7], have to be visited), if the three conditions

above are satisfied. It needs to be emphasized that, pre-

cisely speaking, the last condition above is not always

necessary. However, if there exist dependencies between

QΛa
and QΛb

, it is possible that we still have cycle(s) in

the LSG due to QΛ, depending on the direction of these

dependencies. Enforcing the last condition, along with

the others, ensures that the cyclic dependencies are re-

moved completely. Figure 9 illustrates an example LSG.

Figure 9(a) shows an original LSG in coarse grain and

(b) illustrates the dependencies between the two nodes of

this LSG in fine grain. Assuming that the bottom node

has been selected for removal (ultimately one of possi-

ble nodes to be split) by the heuristic in [7], Figures 9(c)

and (d) show the result of splitting LSG in fine grain and

coarse grain, respectively. As an another example, Fig-

ure 8(d) shows the split version of the LSG in Figure 8(a).

Note that, due to the third condition above, our approach

may need to look at more nodes than ones determined by

the heuristic described in [7]. We also need to mention

that, in our implementation, these three conditions listed

above are checked using the Omega library [26].

4 File Layout Modification

So far in our discussion we considered only data access

pattern restructuring for improving disk reuse. It is to be

noted however that data layout on disks can also play an

important role as far as disk reuse is concerned. Specif-

ically, a different file layout can lead to a different disk

layout which can in turn lead to a different amount of

disk reuse. Let us consider the following code fragment:

for i=1,N ,1

for j=1,N ,1

U [i, j] = f(V [j, i]);

In this code fragment, two disk-resident arrays are ac-

cessed (as mentioned earlier, we do not show explicit I/O

statements). While one of these is accessed in row wise,

the second one is traversed column wise. Consequently,

storing both the arrays in the same fashion in file (e.g.,

as shown in Figure 2) may not be the best option since

such a storage will not be able to take advantage of disk

reuse for the second array as its data access pattern and

file storage pattern would not match. Now, consider the

file layout transformation depicted in Figure 11. If this

transformation is applied to the second array (V) in the

code fragment above, we can expect better disk reuse.

The important question to address is to select the map-

ping that maximizes disk reuse. We start by noting that

the search space is very large for potential file layout

transformations, as there are many ways of transform-

ing a file layout. However, our experience with disk-

intensive scientific applications and our preliminary ex-

periments suggest that we can restrict the potential map-

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association166

MAX — maximum number of node splitting operations allowed;

QΛ — disk locality sets;

dep(i, j) — returns TRUE if dependence between QΛ,i and QΛ,j exists;

H(QΛ,i, QΛ,j) — returns Hamming distance between QΛ,i and QΛ,j ;

V S — set of QΛ,is that are ready to schedule;

QΛ,x — last scheduled locality set;

procedure build LSG() {
for each QΛ,i {

build independent disk locality sets;

}
for any two subsets QΛ,i and QΛ,j ∈QΛ {

if (dep(i, j) == TRUE) add edge between two nodes, QΛ,i and QΛ,j ;

}
}

procedure remove cycles() {
split count = 0;

while (split count < MAX) {
apply node splitting;

split count++;

}
}

procedure schedule LSG() {
V S = ∅;

for each QΛ,i ∈ LSG {
if (QΛ,i has no parents || ∀ parents of QΛ,i has been scheduled) {

V S = V S ∪ QΛ,i;

}
}
while (V S �= ∅) {

select QΛ,y ∈ V S such that H(QΛ,x,QΛ,y) is minimum;

schedule the selected QΛ,y ;

LSG = LSG - QΛ,y ; /* remove QΛ,y from LSG; */

V S = V S - QΛ,y ; /* update V S */

set QΛ,x to QΛ,y ; /* update last scheduled locality set */

}
}

main() {
call build LSG();

if (exits cycles in LSG)

call remove cycles();

while (LSG �= ∅) {
call schedule LSG();

}
}

Figure 10: Compiler algorithm for scheduling a given

code to increase disk reuse. Our algorithm starts by

building the LSG and then removes the cycles in the

graph if there are any. After obtaining cycle-free LSG,

we schedule each node in the graph such that the next

node scheduled has the minimum Hamming Distance

from the current node. Note that, if desired, this algo-

rithm can be applied to smaller code segments (e.g., a

loop nest) as well, instead of the whole program.

pings to dimension permutations. What we mean by “di-

mension permutation” in this context is reindexing the

dimensions of the disk resident array. As an example,

restricting ourselves to dimension re-indexings, a three-

dimensional disk-resident array can have 6 different file

layouts. Let us use D′ = DP to represent the disk

mapping function when file layout modification is con-

sidered, where D is the original disk mapping function

discussed earlier in Section 3 and P is a permutation ma-

trix (that implements dimension re-indexing). For exam-

ple, the file layout mapping shown in Figure 11 can be

expressed using the transformation matrix

P =

(
0 1
1 0

)
.

Note that, for an m-dimensional disk-resident array, P
is m × m. (for example, elements on (i, j) data space

is mapped to (j, i) as a result of applying the P matrix

shown above to a two-dimensional array.)

It is to be noted, however, that the decision for selec-

tion of a permutation should be made carefully by con-

sidering all the statements that access the array in ques-

tion. This is because different statements in the applica-

tion code can access the same disk-resident array using

entirely different access patterns, and a layout transfor-

mation that does not consider all of them may end up

with one that is not good when considered globally. Our

file layout selection algorithm is a profile based one. In

this approach, the application code is profiled by instru-

menting it and attaching a set of counters to each disk

resident array. For an m-dimensional array, we have

m!+1 counters, each keeping the number of times a par-

ticular file layout is preferred (note that the total num-

ber of possible dimension permutations is m! and one

additional counter is used for representing other file lay-

out preferences such as diagonal layouts, for which we

do not perform any optimization). In this work, we im-

plement only dimension permutation because other file

layouts such as diagonal layouts or blocked layouts are

hardly uniform across all execution. Therefore, we do

not take any actions for such layouts. At the end of

profiling, the layout preference with the largest counter

value is selected as the file layout for that array. Fig-

ure 12 gives the pseudo code for our file layout selection

algorithm. As an example, let us assume that there are

three loop nests (with the same number of iterations) ac-

cessing the same data array stored in a file. Assume fur-

ther that the profiling reveals that the first and third loop

nests exhibit column-major access pattern whereas the

second loop nest exhibits row-major access pattern. As

the column-major file layout is preferred more (that is,

it will have a higher counter value), we select the corre-

sponding permutation matrix and convert the file layout

accordingly.

5 Parallel Execution

It is also important to study disk reuse under parallel ex-

ecution. An important challenge in this case is to coor-

dinate the disk accesses coming from multiple threads.

We note that, even if the disk accesses from individual

threads exhibit disk reuse, this does not necessarily mean

that the overall execution will have disk reuse. The ex-

ample in Figure 13 shows a scenario with two threads.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 167

Original File Layout Transformed File Layout

Figure 11: Converting file layout of a two-dimensional

disk resident array. In this example, the original file lay-

out in row-major order is transformed into the layout in

column-major order.

N — number of arrays;

Ui — accessed arrays, where 1 ≤ i ≤ N ;

Di — original disk mapping for array Ui;

Dim[i] — dimension of array Ui;

Pn — group of permutation matrices;

for i = 1 to N {
Dim[i] = dimension of array Ui;

}

C[i][Dim[i]!+1]; /* counters for each array, Ui, for profiling */

/* perform profiling */

for each array Ui {
for each statement accessing Ui {

detect the file layout of accessing Ui;

select Pj for the determined file layout; /* Pj is jth entry of Pn */

C[i][j]++; /* increase corresponding counters */

}
}

for each array Ui {
select Pj that has the highest C[i][j] value;

apply D′

i = DiPj ; /* transform file layouts */

}

Figure 12: Compiler algorithm for transforming file lay-

outs to improve disk reuse. Our algorithm is based on

profiling that reveals the most desirable access patterns

for each array across all statements within a program.

Assuming the LSGs shown in Figure 13(a), a possible

scheduling is given in Figure 13(b). The overall disk

reuse (when considering both the thread) in this case is

not very good, though scheduling for each thread exhibits

high reuse when considered alone. We now consider the

alternate scheduling illustrated in Figure 13(c). In this

scheduling, the overall disk reuse is very good, which

is achieved by scheduling the node in individual thread

such that, when both threads execute the selected nodes

(at the same scheduling step), the number of disks used

is minimized. Note that, within a thread, a node that is

scheduled next is chosen based on the minimum Ham-

ming Distance. By adapting this schedule, we do not

have any scheduling step in Figure 13(c) that uses all four

disks at the same time, whereas, in Figure 13(b), steps 1

and 4 have full usage of all disks, which is not good as

far as the buffer (cache) utilization is concerned.

Our scheduling algorithm for an architecture with P

���� ����

��������

���� ����

��������

��� ����

����� ����

��� ����

����� ������

�	
�

��������������������������������������� �����������������������������������

�
��������������������������� �����������������������������������

�� �����������������������������������

��� �����������������������������������

�	
�

�� ����������������������������������

�
�� ����������������������������������

�� ����������������������������������

��� ����������������������������������

���

���

���

Figure 13: (a) LSGs for two threads of the same appli-

cation. (b-c) Two legal schedules. The last columns in

(b-c) are the disk status two threads, which are obtained

by bitwise-ORing the disk status of two threads.

processors and D disks is given in Figure 14. This algo-

rithm takes the LSGs as input, and determines, for each

thread, the schedule of the nodes considering the global

(inter-thread) usage of the disks. It uses a D-bit global

variable G to represent the current usage of the disks. It

schedules a node that is ready to be scheduled for each

thread that finishes its current task. At each step, the

algorithm first tries to schedule the node whose disk re-

quirement can be satisfied with the set of disks currently

being used. If multiple nodes satisfy this criterion, we se-

lect the one that requires the maximum number of disks

to make full utilization of the currently used disks. If

such a node does not exist, our algorithm schedules the

node whose tag is the closest (in terms of Hamming Dis-

tance) to G, the bit pattern that represents the current

disk usage (i.e., the disk usage at that particular point

in scheduling). This is to minimize the number of disks

whose (active/idle) states need to be changed. We want

to mention that, since each node may have different ex-

ecution latency it is possible that the targeted disk reuse

(across threads) may not always be achieved. However,

we can expect the resulting disk reuse (and buffer per-

formance) to be better than what a random (but legal)

scheduling would achieve.

Before moving to the discussion of our experimental

results, we want to point out the tradeoff between disk

reuse and performance. The parallel version of our ap-

proach tries to maximize the disk reuse, and this in turn

tends to attract the accesses to a small set of disks. Con-

sequently, in theory, this can lead to performance prob-

lems, as the effective disk parallelism is reduced. While

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association168

P — number of processors;

D — number of disks available;

G — global disk usage map with D bits;

QΛ — disk locality sets;

H(QΛ,i) — returns Hamming distance between QΛ,i and G;

V S[i] — set of QΛ,is that are ready to schedule in processor i;

LSG[i] — LSG for each processor i;

procedure schedule LSG P() {
for i = 1 to P { /* find schedulable QΛ,j from each processor i */

V S[i] = ∅; /* init each V S[i] of processor i */

for each QΛ,j ∈ LSG(i) {
if (QΛ,j has no parents || ∀ parents of QΛ,j has been scheduled) {

V S[i] = V S[i] ∪ QΛ,j ;

}
}

}
/* schedule all QΛ,j ∈ V S[k] */

while (V S[k] ! = ∅) {
for each processor k {

select QΛ,i ∈ V S[k] such that it requires the maximum number of

disks to fully utilize the currently used disks, or H(QΛ,i) is minimum;

schedule the selected QΛ,i;

LSG(k) = LSG(k) - QΛ,i ; /* remove QΛ,i from LSG(k); */

V S[k] = V S[k] - QΛ,i ;

update G by bitwise-ORing with Λ of QΛ,i ;

}
}

}
main() {

/* build LSG for a code assigned to each processor */

for i = 1 to P {
call build LSG();

if (LSG has cycle(s)) {
call remove cycles();

}
}

initialize G by setting all bits to 0;

while (exists (∀i, LSG[i] ! = ∅)) {
call schedule LSG P();

}
}

Figure 14: Compiler algorithm for scheduling parallel

execution of a given code to increase disk reuse. We use

the same procedures given in Figure 10 for building LSG

and removing cycles.

this negative impact has already been accounted for in

our experiments (discussed in the next section), we ob-

served that its magnitude is not very high. However, this

magnitude is typically a function of the application ac-

cess pattern and disk system parameters as well, and fur-

ther studies are needed to reach better evaluations.

6 Experiments

6.1 Setup

We implemented our compiler algorithm using the SUIF

infrastructure [13]. Our disk reuse optimization in-

creased compilation times of the original applications by

about 55% on average (the largest compilation time when

our optimization is applied was 87 seconds). When the

file layout optimization is enabled, the largest compila-

tion time jumped to 116 seconds. Extension for paral-

lelism added another 9 seconds on average.

Table 1: System parameters.
Parameter Value

CPU

Model Intel P4

Clock Frequency 2.6 GHz

Memory System

Model Rambus DRAM

Buffer Capacity 1 GB

Disk System

Number of I/O Nodes 8

Data Striping Uses all 8 I/O nodes

Stripe Size 64 KB

Interface ATA

Storage Capacity/Disk 40 GB

RPM 10,000

Interconnect

Model Ethernet

Bandwidth 100 Mbps

We performed our experiments using a platform which

includes MPI-IO [33] on top of the PVFS parallel file

system [27]. PVFS is a parallel file system that stripes

file data across multiple disks in different nodes in a clus-

ter. It accommodates multiple user interfaces which in-

clude MPI-IO, traditional Linux interface, and the native

PVFS library interface. In all our experiments, we used

the MPI-IO interface. Table 1 gives the values of our

major experiment parameters. We want to emphasize

however that later we present results from our sensitiv-

ity analysis where we change the default values of some

of the important parameters.

For each benchmark in our experimental suite, we per-

formed experiments with different versions:

• Base Scheme: This represents the original code with-

out any data locality optimization.

• Conventional Locality Optimization (CLO): This

represents a conventional data locality optimization tech-

nique that employs loop restructuring. It is not designed

for I/O, and does not take disk layout into account. The

specific data reuse optimizations used include loop inter-

change, loop fusion, iteration tiling and unrolling. This

version in a sense represents the state-of-the-art as far as

data locality optimization is concerned.

• Disk Reuse Optimization – Loop Based (DRO-L):

This is our approach applied at a loop nest level; i.e.,

each loop nest is optimized in isolation.

• Disk Reuse Optimization – Whole Program Based

(DRO-WP): This is our approach applied at a whole pro-

gram level.

All the versions use the MPI-IO interface [33] of

PVFS [27] for performing disk I/O. Note that both DRO-

L and DRO-WP are the different versions of our ap-

proach, and CLO represents the state-of-the-art as far as

optimizing data locality is concerned. The reason that

we make experiments with the DRO-L and DRO-WP

versions separately is to see how much additional ben-

efits one can obtain by going beyond the loop nest level

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 169

Table 2: Our applications.
Application Brief Data Set Disk I/O Total

Name Description Size (GB) Time (sec) Time (sec)

sar Synthetic Aperture Radar Kernel 21.1 64.6 101.4

hf Hartree-Fock Method 53.6 98.3 173.6

apsi Pollutant Distribution Modeling 49.9 101.2 238.7

wupwise Physics/Quantum Chromo-dynamics 27.9 270.3 404.7

e elem Finite Element Electromagnetic Modeling 66.2 99.2 191.9

astro Analysis of Astronomical Data 58.3 171.6 276.4

contour Contour Displaying 58.7 198.6 338.4

in optimizing for I/O. In addition to these versions, we

also implemented and conducted experiments with the

file layout optimization scheme discussed in Section 4

and with the parallel version of our approach explained

in Section 5.

The unit of buffer (cache) management in our imple-

mentation is a data block, and its size is the same as that

of a stripe. The set of applications used in this study is

given in Table 2. These applications are collected from

different sources and their common characteristic is that

they are disk-intensive. apsi and wupwise are similar to

their Spec2000 counterparts [14], except that they op-

erate on disk-resident data. The second column briefly

explains each benchmark, and the third column gives the

total (disk resident) data set size processed by each ap-

plication. The fourth and fifth columns give the disk

I/O times and total execution times, respectively, under

the base scheme explained above. Note that both the

base version and the CLO version are already optimized

for buffer usage. In addition, the CLO version is opti-

mized for data locality using conventional techniques, as

explained above. Therefore, the performance improve-

ments brought by our approaches (DRO-L and DRO-

WP) over these schemes (base and CLO) are due to the

code re-ordering we apply. We also see from Table 2

that the contribution of disk I/O times to overall execu-

tion times varies between 42.4% and 63.7%, averaging

on 57.4%. Therefore, reducing disk I/O times can be

very useful in practice. In the remainder of this section,

we present and discuss the performance improvements

brought by our approach. The disks I/O time savings and

overall execution time savings presented below are with

respect to the fourth and fifth columns of Table 2, respec-

tively.

6.2 Results

We start by presenting the percentage improvements in

disk I/O times brought by the three optimized versions

explained above. The results shown in Figure 15 indicate

that the average improvements brought by CLO, DRO-L

and DRO-WP over the base scheme are 10.4%, 16.1%

and 23.9%, respectively. Overall, we see that, while

DRO-L performs better than CLO, by 6.3% on average,

the best savings are obtained – for all benchmarks tested

– with the DRO-WP version, on average, 15.0% and

9.3% over CLO and DRO-L, respectively, meaning that

going beyond a single loop nest is important in maximiz-

ing the buffer performance. While these improvements

in disk I/O times are important, we also need to look at

the savings in overall execution times, which include the

computation times as well. These results are presented in

Figure 16 and show that the average improvements with

the CLO, DRO-L and DRO-WP versions are 5.9%, 9.0%

and 13.5%, respectively. To better explain how our ap-

proach achieves much more performance improvements

over conventional data reuse optimization, we present in

Figure 17 the average number of times a given data block

is visited under the different schemes (that is, how many

times a given data block (on average) is brought from

disks to cache). We observe that this number is much

lower with the DRO-WP version, explaining the addi-

tional performance benefits it brings. In fact, on average,

the number of disk traversals per block is 3.9 and 2.1

with the base version and DRO-WP, respectively.

Sensitivity Analysis. In this section, we study the

sensitivity of our performance savings to several param-

eters. A critical parameter of interest is the buffer (cache)

size. Recall that the default buffer size used in our exper-

imental evaluation so far was 1GB. The graph in Fig-

ure 18 gives the results using different buffer sizes. Each

point in this graph represents the average value (per-

formance improvement in overall execution time), for a

given version, when all seven benchmarks are consid-

ered. As expected, the performance gains brought by our

approach get reduced when increasing the buffer size.

However, even with the largest buffer size we used, the

average improvement we have (with the DRO-WP ver-

sion) is about 6.7%, underlining the importance of disk

reuse optimization for better performance. Considering

the fact that data set sizes of disk-intensive applications

keep continuously increasing, one can expect the disk

reuse based approach to be more effective in the future.

To elaborate on this issue further, we also performed ex-

periments with larger data sets. Recall that the third col-

umn of Table 2 gives the data set sizes used in our exper-

iments so far. Figure 19 gives the average performance

improvements, for 1GB and 4GB buffer sizes and two

sets of inputs. SMALL refers to the default dataset sizes

given in Table 2, and LARGE refers to larger datasets,

which are 38.2GB, 66.3GB, 82.1GB, 38.0GB, 88.1GB,

73.7GB, and 81.8GB for sar, hf, apsi, wupwise, e elem,

astro and contour, respectively. We see that our approach

performs better with larger data set sizes. This is because

a larger data set puts more pressure on the buffer, which

makes effective utilization of buffer even more critical.

The next parameter we study is the stripe size, which

can also be changed using a PVFS call when creating the

file. The performance improvement results with different

stripe sizes are presented in Figure 20. Our observation is

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association170

�

�

��

��

��

��

��

��

��	
� ���
 ����
�� ������ ���	� ������	

�
��
�
�
	�
�
�
�
�
�
�

��� � �!� � �!"#

Figure 15: Performance improve-

ments in I/O times.

�

�

�

�

�

��

��

��

��

��

�	
 �� 	
�� ��
���� ������ 	��
� ������

�
��
�

�
�
�
�
�
�
�

��� !�"� !�"#$

Figure 16: Performance improve-

ments in overall execution times.

�

�

�

�

�

�

�

	

��
� ��
� �����
� ������ �
��� �������

�
�
�
��
�
�
��
�
�

�
��
�
��
!
�

"
�#
��
�
�
�

�
�

�$
�
��
%
��
�
"
� %�
� &'(!)(*' !)(*+$

Figure 17: Average number of

fetches per block. Each bar repre-

sents how many times a given block

is brought to buffer cache.

�

�

��

��

��

��

��

����� ����� �	� �	�
	�

��
�������

�
��
�
�
��
�
�
�
�
�
�

��� � �!� � �!"#

Figure 18: Sensitivity to the buffer

size.

�

�

��

��

��

��

��

��

��	

	��
 ��	

	��

��� ���

�
��
�
�
��
�
�
�
�
�
�

�
� ����
 �����

Figure 19: Sensitivity to the input

size.

�

�

�

��

��

��

��	
 ��	
 ���	
 ���	
 ���	

�
���������

�
��
�
�
��
�
�
�
�
�

��� ����� ���� !

Figure 20: Sensitivity to the stripe

size.

that the DRO-WP version generates the best results with

all stripe sizes tested. We also see that the performance

savings are higher with smaller stripe sizes. This can be

explained as follows. The disk reuse is not very good in

the original codes (the base scheme) with smaller stripe

sizes, and since the savings shown are normalized with

respect to the original codes, we observe large savings.

Comparison with I/O Prefetching. We next com-

pare our approach to prefetching. The specific prefetch

implementation we use is inspired by TIP [24], a hint-

based I/O prefetching scheme. The graph in Figure 21

presents, for each benchmark, three results: prefetching

alone, DRO-WP alone, and the two technique combined.

We see from these results that the best performance

improvements are achieved using both prefetching and

code restructuring. This is because these two optimiza-

tion techniques are in a sense orthogonal to each other.

Specifically, while core restructuring tries to reduce I/O

latencies by improving buffer performance, prefetching

tries to hide I/O latencies. While it is also possible to in-

tegrate these two optimizations better (rather than apply-

ing one after another), we postpone exploring this option

to a future study.

Impact of File Layout Optimization. Recall from

Section 4 that file layout optimization (which impacts

the layout of data on the disks as well) can help our ap-

proach improve disk reuse further. To quantify this, we

performed another set of experiments, whose results are

presented in Figure 22 when the whole program is op-

timized. We see that, except for one benchmark, layout

optimization improves the effectiveness of our code re-

structuring approach. The average additional improve-

ment it brings is about 7%. We observe that the file lay-

out optimization could not find much opportunity for im-

provement in benchmark e elem as the default file lay-

outs of the disk resident arrays in this benchmark per-

form very well.

Evaluation of Parallel Execution. Figure 23

presents the results collected from an evaluation of the

parallel version of our approach discussed in Section 5.

For these experiments, the number of CPUs that are

used to execute an application is varied between 1 and

8. For each processor size, we present the results with

our baseline implementation (where disk reuse is opti-

mized from each CPU’s perspective individually) as well

as with those obtained when the approach in Section 5

is enabled. We see from these results that considering

all parallel threads together is important in maximizing

overall disk reuse, especially with the large number of

CPUs. For example, when 8 CPUs are used for executing

an application, the average performance improvements

with individual reuse optimization (sequential version)

and collective reuse optimization (parallel version) are

25.7% and 33.3%, respectively.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 171

�

�

��

��

��

��

��

��

��

��

�	
 �� 	
�� ��
���� ������ 	��
� ������

�
��
�

�
�
�
�
�
�
�

�
������ �� !"� #��$���%

Figure 21: Comparison with I/O

prefetching.

�

�

��

��

��

��

��

��	
� ���
 ����
�� ������ ���	� ������	

�
��
�
�
	�
�
�
�
�
�
�

�
�
��������������
�
���
�� �
�
�����������
�
���
��

Figure 22: Impact of layout opti-

mization.

�

�

��

��

��

��

��

��

��

�	
�	�
��� ������	� �	
�	�
��� ������	� �	
�	�
��� ������	� �	
�	�
��� ������	�

����� ����� ����� �����

�
��
�
�
��
�
	
�
	
�

��� �� ���� ������	 	 	�	� ��
�� !��
���

Figure 23: Impact of parallel thread

optimization.

�

�

�

��

��

��

�	
��
���� �	
��
�����

�
��
�
�

�
�

�

�
�

��� ����� ������

Figure 24: Impact of multiple application execution.

Evaluation of Multiple Application Execu-

tion. Since a disk system can be used by multiple

applications at the same time, it is also important to

quantify the benefits brought by our approach under

such an execution scenario. Figure 24 presents the

results from two sets of experiments. In the first set,

called Scenario-I, 7 CPUs are used and each CPU

executes one of our seven applications. In the second

set, called Scenario-II, 8 CPUs are used and four of our

applications (sar, hf, apsi and astro) are parallelized,

each using two CPUs. In both set of experiments, a

CPU executes only a single thread. Also, in Scenario-I

the sequential version of our approach is used (for each

application), and in Scenario-II the parallel version

explained in Section 5 is used. The results given in

Figure 24 indicate that the DRO-WP version generates

the best results for both the scenarios tested.

7 Discussion of Related Work

An important way of using compiler in improving I/O

performance is to hide I/O latency through I/O prefetch-

ing. Mowry et al [21] proposed a compiler-managed

I/O prefetching technique for out-of-core applications.

They automated the insertion of I/O prefetching instruc-

tions based on future memory page usage determined by

compile-time locality analysis. In another study [2], they

proposed a runtime system for managing the dynamic

behavior of compiler-inserted I/O prefetch/release hints

from multiple applications running concurrently. Several

researches focused on compilation of I/O-intensive ap-

plications. For example, Bordawekar et al [1] focused on

stencil computations and proposed several algorithms to

optimize communication and ultimately to enhance I/O

performance. Palecnzy et al [23] proposed a technique

to guide I/O for out-of-core applications based on high-

level annotations, which they incorporated into Fortran

D compiler. To bridge the disparities between the data

access patterns and the storage (file) layouts, [18] and

[17] proposed compiler-directed I/O optimization strate-

gies. Their main idea is to find the most preferable I/O

access patterns to disk-resident files, and then determine

the most suitable storage layouts associated with them.

For the remaining part, which contains non-dominant ac-

cess patterns, they optimized it using collective I/O op-

erations. In [35], Vilayannur et al proposed a compiler-

directed discretionary caching policies for I/O-intensive

applications. They leveraged compiler support in de-

termining the cache blocks to be accessed in each loop

nest. Besides these efforts to enhance the I/O perfor-

mance explained so far, the compiler-guided information

can be used for different purposes, such as reducing en-

ergy consumption of disk subsystems. In [30], Son et al

proposed to expose disk layouts of each data file to the

compiler and let the compiler analyze the data access pat-

terns along with this information to determine I/O (disk)

access patterns. These extracted disk access patterns are

finally used for transforming code and/or underlying disk

layouts to reduce the energy consumption of disk subsys-

tems.

There has been significant past work on optimizing

file and buffer cache management in storage systems

[3, 9, 10, 16, 28, 35]. To better exploit multi-level caches,

which are common in modern storage systems, several

multi-level buffer cache management policies have been

proposed [6, 37, 35]. [37] introduced a DEMOTE oper-

ation that allows one to keep cache blocks in an exclu-

sive manner, i.e., a cache block is not duplicated across

cache hierarchy. Chen et al [6], on the other hand, utilize

the eviction information of higher level cache in decid-

ing which cache blocks need to be replaced in a lower

level of the cache hierarchy. More recently, [38] pro-

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association172

posed a replacement policy for multi-level cache, called

Karma. Karma uses application hints in maintaining

cache blocks exclusively. Most high-end parallel and

cluster systems provide some sort of parallel I/O oper-

ations to meet the I/O requirements (i.e., low latency and

high bandwidth) of scientific applications. This is typ-

ically accomplished by employing a set of I/O nodes,

each of which is equipped with multiple disks, divid-

ing a file into a number of small file stripes, and dis-

tributing those stripes across available I/O nodes. This

notion of file-level striping is adapted in many commer-

cial or research parallel file systems, such as IBM GPFS

[28], Intel PFS [11], PPFS [15], Galley [22], and PVFS2

[27]. It should be mentioned that these parallel file sys-

tems provide huge I/O performance improvements when

they receive large and contiguous I/O requests. How-

ever, many scientific applications that exhibit small and

non-contiguous I/O access patterns may suffer from per-

formance degradation. To deal with this problem, several

approaches have been proposed in the context of differ-

ent parallel file system libraries and APIs such as Panda

[5], PASSION [31], and MPI-IO [32, 33, 34]. Among

various techniques used to achieve this goal, collective

I/O is commonly recognized as an efficient way of re-

ducing I/O latency. The concept of collective I/O can

be implemented in different places of parallel I/O sys-

tems; namely, client side [34], disk side [19], or server

side [29]. The majority of the existing collective I/O im-

plementations employ two-phase I/O [34]. In two-phase

I/O, disk accesses are reorganized in client side (compute

node) before sending them over the I/O nodes. Disk-

directed I/O [19], on the other hand, performs collective

I/O operations on disk side, where I/O requests are opti-

mized such that they conform to the storage layouts. In

Panda [29], I/O server nodes, rather than disk or client

nodes, generate I/O requests that conform to the layouts

of disk-resident array data.

Our approach is different from prior compiler-based

I/O optimization techniques in that it optimizes entire

program rather than individual, parallel loop nests. It

is also different from previous studies that considered

buffer caching and prefetching because we improve I/O

performance by increasing disk reuse. Lastly, our ap-

proach emphasizes the role of file layout optimization

and parallel execution when applying optimization tech-

niques to achieve better disk reuse (and better cache per-

formance).

8 Concluding Remarks and Future Work

In the recent past, sensor, measurement, and simulation-

based applications in science and engineering have

grown dramatically in complexity. Moreover, there have

been huge increases in the sizes of the data sets they pro-

duce, manipulate, and consume, meaning that the high

I/O performance is a must for these applications. Un-

fortunately, advances in I/O architectures (in particular,

disks) could not meet this high I/O performance require-

ment satisfactorily. As a result, adequate software sup-

port for I/O is critical and has to be provided at differ-

ent layers, including libraries, file systems, runtime sys-

tems, and compilers. The main contribution of this pa-

per is a compiler-directed disk performance optimization

scheme for large-scale data-intensive applications. This

proposed scheme is oriented towards maximizing disk

reuse over successive visits to the disk system within a

given period of time, thereby (1) maximizing the utiliza-

tion of cache in the computation node, and (2) reduc-

ing the latencies due to data search on disks. In addi-

tion, the success of this scheme can be increased sig-

nificantly if it is augmented with a file layout optimiza-

tion scheme, and it can be easily adapted to capture disk

interactions across the threads of a parallel application.

We implemented this scheme fully using an optimizing

compiler framework and evaluated its performance us-

ing seven data-intensive applications that exercise disks.

The results collected indicate that our compiler-directed

approach is very successful in maximizing disk reuse,

and this in turn results in large savings in I/O latencies.

In our experiments, we also compared our approach to

a conventional data reuse optimization scheme (not de-

signed for I/O) and explain where the additional bene-

fits are coming from. This work shows how an optimiz-

ing compiler can help reduce I/O latencies by automated

code restructuring. We believe that further compiler op-

timizations are possible by exposing the disk layout of

data to the different layers of the software stack. One

of the research directions to investigate is this interaction

between the compiler optimizations for I/O and other I/O

optimizations that are normally applied by file systems

and runtime libraries. Another interesting research direc-

tion is to adapting the cache policy based on the applica-

tion behavior information collected by the compiler. This

can help to increase the hit rates of the cache, thereby fur-

ther boosting the performance of the application.

Acknowledgments This work is supported in part by

the NSF grants #0406340, #0444158, and #0621402. We

would like to thank our anonymous reviewers for their

helpful comments.

References

[1] BORDAWEKAR, R., CHOUDHARY, A. N., AND RAMANUJAM,

J. Automatic Optimization of Communication in Compiling Out-

of-Core Stencil Codes. In International Conference on Super-

computing (1996), pp. 366–373.

[2] BROWN, A. D., AND MOWRY, T. C. Taming the Memory Hogs:

Using Compiler-Inserted Releases to Manage Physical Memory

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 173

Intelligently. In Proceedings of the 4th Conference on Symposium

on Operating System Design & Implementation (2000), pp. 31–

44.

[3] CAO, P., FELTEN, E. W., AND LI, K. Application-Controlled

File Caching Policies. In Proceedings of the USENIX Technical

Conference (1994), pp. 11–11.

[4] CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND

PATTERSON, D. A. RAID: High-Performance, Reliable Sec-

ondary Storage. ACM Comput. Surv. 26, 2 (1994), 145–185.

[5] CHEN, Y., WINSLETT, M., CHO, Y., AND KUO, S. Automatic

Parallel I/O Performance Optimization in Panda. In Proceedings

of the 10h Annual ACM Symposium on Parallel Algorithms and

Architectures (1998), pp. 108–118.

[6] CHEN, Z., ZHOU, Y., AND LI, K. Eviction-based Cache Place-

ment for Storage Caches. In USENIX Annual Technical Confer-

ence (2003), pp. 269–281.

[7] CHENG CAI, M., DENG, X., AND ZANG, W. A TDI System and

Its Application to Approximation Algorithms. In Proceedings of

the 39th Annual Symposium on Foundations of Computer Science

(1998), pp. 227–231.

[8] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND

STEIN, C. Introduction to Algorithms, 2nd ed. The MIT Press,

2001.

[9] CORTES, T., GIRONA, S., AND LABARTA, J. Design Issues of a

Cooperative Cache with No Coherence Problems. In Proceedings

of the 5th Workshop on I/O in Parallel and Distributed Systems

(1997), pp. 37–46.

[10] FORNEY, B. C., ARPACI-DUSSEAU, A. C., AND ARPACI-

DUSSEAU, R. H. Storage-Aware Caching: Revisiting Caching

for Heterogeneous Storage Systems. In Proceedings of the 1st

USENIX Conference on File and Storage Technologies (2002).

[11] GARG, S. TFLOPS PFS: Architecture and Design of a Highly

Efficient Parallel File System. In Proceedings of the ACM/IEEE

Conference on Supercomputing (1998), pp. 1–12.

[12] GROPP, W., THAKUR, R., AND LUSK, E. Using MPI-2: Ad-

vanced Features of the Message Passing Interface. MIT Press,

1999.

[13] HALL, M. W., ANDERSON, J. M., AMARASINGHE, S. P.,

MURPHY, B. R., LIAO, S.-W., BUGNION, E., AND LAM, M. S.

Maximizing Multiprocessor Performance with the SUIF Com-

piler. IEEE Computer 29, 12 (1996), 84–89.

[14] HENNING, J. L. SPEC CPU2000: Measuring CPU Performance

in the New Millennium. IEEE Computer 33, 7 (2000), 28–35.

[15] JAMES V. HUBER, J., CHIEN, A. A., ELFORD, C. L., BLU-

MENTHAL, D. S., AND REED, D. A. PPFS: a high performance

portable parallel file system. In Proceedings of the 9th Interna-

tional Conference on Supercomputing (1995), pp. 385–394.

[16] KALLAHALLA, M., AND VARMAN, P. J. Optimal Prefetching

and Caching for Parallel I/O Sytems. In Proceedings of the 13th

annual ACM Symposium on Parallel Algorithms and Architec-

tures (2001), pp. 219–228.

[17] KANDEMIR, M. A Collective I/O Scheme Based on Compiler

Analysis. In Proceedings of the 5th International Workshop on

Languages, Compilers, and Run-Time Systems for Scalable Com-

puters (2000), pp. 1–15.

[18] KANDEMIR, M., AND CHOUDHARY, A. Compiler-Directed I/O

Optimization. In Proceedings of the 16th International Sympo-

sium on Parallel and Distributed Processing (2002), p. 19.2.

[19] KOTZ, D. Disk-directed I/O for an Out-of-core Computation.

In Proceedings of the Fourth IEEE International Symposium on

High Performance Distributed Computing (1995), pp. 159–166.

[20] MOORE, F. Disk companies pricing themselves out of business-

again: lessons of the past still unlearned. Computer Technology

Review (March 2003).

[21] MOWRY, T. C., DEMKE, A. K., AND KRIEGER, O. Automatic

compiler-inserted I/O prefetching for out-of-core applications. In

Proceedings of the 1996 Symposium on Operating Systems De-

sign and Implementation (1996), pp. 3–17.

[22] NIEUWEJAAR, N., AND KOTZ, D. The Galley Parallel File Sys-

tem. In Proceedings of the 10th International Conference on Su-

percomputing (1996), pp. 374–381.

[23] PALECZNY, M., KENNEDY, K., AND KOELBEL, C. Compiler

Support for Out-of-Core Arrays on Data Parallel Machines. In

Proceedings of the 5th Symposium on the Frontiers of Massively

Parallel Computation (McLean, VA, 1995), pp. 110–118.

[24] PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOL-

SKY, D., AND ZELENKA, J. Informed Prefetching and Caching.

In Proceedings of the 15th ACM Symposium on Operating Sys-

tems Principles (1995), pp. 79–95.

[25] PINHEIRO, E., BIANCHINI, R., AND DUBNICKI, C. Exploiting

Redundancy to Conserve Energy in Storage Systems. In Proceed-

ings of the Joint International Conference on Measurement and

Modeling of Computer Systems (2006), pp. 15–26.

[26] PUGH, W. The Omega Test: A Fast and Practical Integer Pro-

gramming Algorithm for Dependence Analysis. In Proceedings

of the ACM/IEEE Conference on Supercomputing (1991), pp. 4–

13.

[27] PVFS2 DEVELOPMENT TEAM. Parallel Virtual File Sys-

tem, Version 2. http://www.pvfs.org/pvfs2-guide.

html, September 2003.

[28] SCHMUCK, F., AND HASKIN, R. GPFS: A Shared-Disk File

System for Large Computing Clusters. In Proceedings of the

1st Conference on File and Storage Technologies (January 2002),

pp. 231–244.

[29] SEAMONS, K. E., CHEN, Y., JONES, P., JOZWIAK, J., AND

WINSLETT, M. Server-Directed Collective I/O in Panda. In Pro-

ceedings of Supercomputing (1995).

[30] SON, S. W., KANDEMIR, M., AND CHOUDHARY, A. Software-

Directed Disk Power Management for Scientific Applications. In

Proceedings of the 19th IEEE International Parallel and Dis-

tributed Processing Symposium (2005).

[31] THAKUR, R., BORDAWEKAR, R., CHOUDHARY, A., PON-

NUSAMY, R., AND SINGH, T. PASSION Runtime Library for

Parallel I/O. In Proceedings of the Scalable Parallel Libraries

Conference (1994), pp. 119–128.

[32] THAKUR, R., GROPP, W., AND LUSK, E. Data Sieving and Col-

lective I/O in ROMIO. In Proceedings of the 7th Symposium on

the Frontiers of Massively Parallel Computation (1999), pp. 182–

189.

[33] THAKUR, R., GROPP, W., AND LUSK, E. On Implementing

MPI-IO Portably and with High Performance. In Proceedings

of the 6th Workshop on I/O in Parallel and Distributed Systems

(1999), pp. 23–32.

[34] THAKUR, R., GROPP, W., AND LUSK, E. Optimizing Noncon-

tiguous Accesses in MPI-IO. Parallel Computing 28, 1 (2002),

83–105.

[35] VILAYANNUR, M., SIVASUBRAMANIAM, A., KANDEMIR,

M. T., THAKUR, R., AND ROSS, R. B. Discretionary Caching

for I/O on Clusters. In IEEE International Symposium on Cluster

Computing and the Grid (2003), pp. 96–103.

[36] WOLFE, M. J. High Performance Compilers for Parallel Com-

puting. Addison-Wesley Longman Publishing Co., Inc., 1995.

[37] WONG, T. M., AND WILKES, J. My Cache or Yours? Making

Storage More Exclusive. In USENIX Annual Technical Confer-

ence (2002), pp. 161–175.

[38] YADGAR, G., FACTOR, M., AND SCHUSTER, A. Karma:

Know-it-All Replacement for a Multilevel Cache. In Proceedings

of the 5th USENIX Conference on File and Storage Technologies

(2007), pp. 25–25.

[39] ZHANG, Y. Z., KUNG, E. H., AND HAWORTH, D. C. A PDF

Method for Multidimensional Modeling of HCCI Engine Com-

bustion: Effects of Turbulence/Chemistry Interactions on Ignition

Timing and Emissions. In Proceedings of the 30th International

Symposium on Combustion (2004), pp. 2763–2771.

[40] ZHU, Q., AND ZHOU, Y. Power-Aware Storage Cache Manage-

ment. IEEE Trans. Comput. 54, 5 (2005), 587–602.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association174

