
Layout-Aware Exhaustive
Search

Aravindan Raghuveer, David H.C. Du

2/20/07 FAST’07 WiP

Introduction

 Exhaustive Search
 Examine all objects in a storage system.
 Expensive Operation

 Why Exhaustive Search ?
 Fuzzy Queries:

 Semantic gap in image, video  hard to annotate
 Content-based (Query-by-Example)
 Demonstrated in the Diamond project at Intel/CMU

 Index Creation:
 Not effective: Curse of dimensionality
 Too expensive
 Not always possible: Fuzzy queries

A “necessary evil” feature on all filesystems.

2/20/07 FAST’07 WiP

Technology Trends and Exhaustive
Search
 Bits per unit area increasing rapidly

 I/O Bandwidth lagging behind

 Effect on exhaustive search:
 1 day to sequentially read 10TB*

 5 months with 8KB chunk random access !!

 Filesystem level exhaustive search: Recursive
exploration of directories.

 With aged, fragmented filesystems:
 At the disk: an Exhaustive search will look more like

random access than sequential.

* Dr. Jim Gray’s keynote from FAST’05:

2/20/07 FAST’07 WiP

Filesystem Applications and Exhaustive
Search

 Exhaustive Search : Long running, I/O
intensive task.

 Other filesystem applications running
concurrently.

 Concurrent execution of both:
 Performance Isolation:

 Impact on response time of other applications should be
minimal.

 Impact on efficiency of exhaustive search should be as
low as possible.

2/20/07 FAST’07 WiP

What this work is about ?

 A fresh look at Exhaustive Search

 As a first class service provided by the storage
system.

 Close-to-sequential performance always

 Concurrent execution with other filesystem
apps.
 Without compromising extensively on response

time and efficiency

2/20/07 FAST’07 WiP

An Overview of proposed
approach
 Layout aware:

 Search order not based on logical filesystem view
but physical on-disk organization.

 As close to sequential performance as possible.

 Suspend-and-resume
 On a real-time request to disk:

 Suspend exhaustive search.
 Service real-time request.
 Resume exhaustive search.

 Modify search order based on current disk head
position.

2/20/07 FAST’07 WiP

Ingredients in the Solution

 Architecture:
 Where to embed functionality: filesystem or smart object

based disk ?

 Layout-Aware Search:
 Planning the search ?
 Metadata handling and placement?

 Where are object extents located
 List of objects already scanned

 Suspend-Resume:
 Maintaining search progress metadata to avoid

re-scanning [suspend]
 Computing new search plan [resume]

2/20/07 FAST’07 WiP

Current Status

 Layout-Awareness:
 2 modes of layout-aware search.
 Pre-planned and adhoc.

 Pre-planned used when the disk stores a small number
of objects.

 Adhoc mode used when the disk is almost full.
 Pre-planned and adhoc can be used at finer

granularities (example: different modes on different
areas of the disk)

 Suspend-Resume:
 Suspend: Search Metadata is distributed over the disk, close

to the data.
 Resume: Based on the remaining number of objects we either

shift to the pre-planned or adhoc mode.

