Layout-aware Exhaustive Search

Aravindan Raghuveer and David H.C. Du
DTC Intelligent Storage Consortium
University of Minnesota, Minneapolis, MN 55455

I. INTRODUCTION AND MOTIVATION L ayout-awar e exhaustive scan: To achieve sequential ac-

An exhaustive search operation, which examines all the filegss performance (eg. 24 hours to read 10TB) and to combat
in a storage system, is required when an appropriate indexth§ il effects of filesystem fragmentation, the search prde
not readily available to quickly answer the query in han®f file extents should depend on their physical disk location
It is often extremely expensive, and sometimes infeastole, "ather than the filesystem hierarchy. Our search algoritses u
construct indexes when the query model is fuzzy or whdiecise physical layout information to compute an optimal
the data has high dimensionality. A standing example $§arch plan to minimize overall disk head movement.
content-based queries, like query by example (QBE), whereSuspend-and-Resume Search: A suspend resume model is
the search is intended to retrieve the subset of objects thfiuired to service real-time requests wherein the exiveust
aresimilar in content to a given example. [2] presents a caséearch is paused and resumed after servicing a real-time
for exhaustive content-based search on high-dimensiatal dreéquest. While resuming, the search plan may need to be
like images and video. The authors point out that indexiruy afodified taking into account the new position of the disk head
searching complex data is a challenging problem and the use
of exhaustive search cannot be completely ruled out. So an I1l. DISCUSSION
exhaustive search operation is a “necessary-evil” feahmé To achieve the two properties stated above, we are con-
future filesystems and storage systems need to support. fronted with many questions and design tradeoffs. First of

We now present four key factors that spur us to designadl, where should the exhaustive algorithm be embedded: the
new exhaustive search mechanism for modern disk drives:fijlesystem, an object based disk or a block device driver?
1. Data Characterstics: Petabyte scale datasets are becom- Next, in order to perform layout-aware exhaustive scan

ing increasingly common in scientific and HPC applicationgind suspend-and-resume search, two key pieces of metadata
Video surveillance can generate terabytes of data that teegheed to be maintained. Firsbcation metadata about physical
be searched by content. In the personal computing paradigffhcement of data objects (eg. extent information) is neede
storage hungry applications like multimedia content dogat to contruct the optimal scan schedule. The second piece of
and search are turning out to be killer apps. _ metadata, calledtate metadata, stores the progress of the
2. Technology Trends: In recent years, disk capacity hasxhaustive search operation. It consists of the list of aibje
improved rapidly while I/O bandwidth has not seen an equ@at have been scanned so far. After a suspend-resume step,
increase. The effect of this capacity-bandwidth dispaoity ths |ist is used to avoid re-scanning objects that haveadire
exhaustive search was succintly presented in [1]. AccardiReen scanned. What is the best way to represent the location
to the study in [1], it is predicted that with future hard disk anq state metadata? Should they be stored as tables or should
it would take at least a day to read 10TB of data sequentialjy, object and its metadata be physically stored together?
and 5 months with random access (as 8KB chunks)! The next question is how to place the metadata relative to
3. Filesystem Design: An exhaustive search operation is Nofhe gata on the disk. If all the metadata is placed in one aentr
among the key design criteria of today’s filesystems. Hencq@ation on disk, we need to pay a seek penalty to read a batch
full filesystem search is implemented by recursively eXpBr of metadata before scanning the objects in the batch or when
the filesystem namespace (eg. grep). With filesystem agij@ need to dump the state metadata before servicing a real-
and fragmentation, recursive exploration can end up beingige request. Alternatively, if we decide to store the matad

random scan operation at the disk level. So on a full 10Tgstributed over the disk, how should the metadata layonk lo
drive, a search operation will then take months to finish. |jke?

4. Concurrent Applications: The calculations irfactor-2 The final question that needs to be answered is about the
above make an implicit assumption that exhaustive searchs@arch strategy itself. After servicing a real-time reguesw
the only application using the disk. However, in practice, %h%::'tdtﬁgi e;(rr:az)%sttglveedsfglgr>pﬁns tr)wgtmgtdikf)i:gr? eth(I)(;Jrlgdvﬁ
long running exhaustive sgarch process wil ".‘OSF likely b%ei\ or shoultlj3 we finish an area that is aln>1/ost done? g
executing with other real-time filesystem applicationseTh
impact of the exhaustive search process on the response time

, o o REFERENCES
of other filesystem applications should be minimal.
[1] J. Gray. Keynote at FAST 2005. http://wwmv. useni x. or g/
Il. PROBLEM STATEMENT event s/ fast 05/t ech/ mp3/ gray. np3.

.) . [2] L. Huston et al. Diamond: A Storage Architecture for FaBiscard in
In this work, we aim to develop an exhaustive search algo- Interactive Search. I®roceedings of FAST, 2004.

rithm that has two important properties as described below:

