
1

Layout-aware Exhaustive Search
Aravindan Raghuveer and David H.C. Du

DTC Intelligent Storage Consortium
University of Minnesota, Minneapolis, MN 55455

I. I NTRODUCTION AND MOTIVATION

An exhaustive search operation, which examines all the files
in a storage system, is required when an appropriate index is
not readily available to quickly answer the query in hand.
It is often extremely expensive, and sometimes infeasible,to
construct indexes when the query model is fuzzy or when
the data has high dimensionality. A standing example is
content-based queries, like query by example (QBE), where
the search is intended to retrieve the subset of objects that
aresimilar in content to a given example. [2] presents a case
for exhaustive content-based search on high-dimensional data
like images and video. The authors point out that indexing and
searching complex data is a challenging problem and the use
of exhaustive search cannot be completely ruled out. So an
exhaustive search operation is a “necessary-evil” featurethat
future filesystems and storage systems need to support.

We now present four key factors that spur us to design a
new exhaustive search mechanism for modern disk drives:

1. Data Characterstics: Petabyte scale datasets are becom-
ing increasingly common in scientific and HPC applications.
Video surveillance can generate terabytes of data that needto
be searched by content. In the personal computing paradigm,
storage hungry applications like multimedia content creation
and search are turning out to be killer apps.

2. Technology Trends: In recent years, disk capacity has
improved rapidly while I/O bandwidth has not seen an equal
increase. The effect of this capacity-bandwidth disparityon
exhaustive search was succintly presented in [1]. According
to the study in [1], it is predicted that with future hard disks,
it would take at least a day to read 10TB of data sequentially
and 5 months with random access (as 8KB chunks)!

3. Filesystem Design: An exhaustive search operation is not
among the key design criteria of today’s filesystems. Hence a
full filesystem search is implemented by recursively exploring
the filesystem namespace (eg. grep). With filesystem aging
and fragmentation, recursive exploration can end up being a
random scan operation at the disk level. So on a full 10TB
drive, a search operation will then take months to finish.

4. Concurrent Applications: The calculations infactor-2
above make an implicit assumption that exhaustive search is
the only application using the disk. However, in practice, a
long running exhaustive search process will most likely be
executing with other real-time filesystem applications. The
impact of the exhaustive search process on the response time
of other filesystem applications should be minimal.

II. PROBLEM STATEMENT

In this work, we aim to develop an exhaustive search algo-
rithm that has two important properties as described below:

Layout-aware exhaustive scan: To achieve sequential ac-
cess performance (eg. 24 hours to read 10TB) and to combat
the ill effects of filesystem fragmentation, the search order
of file extents should depend on their physical disk location
rather than the filesystem hierarchy. Our search algorithm uses
precise physical layout information to compute an optimal
search plan to minimize overall disk head movement.

Suspend-and-Resume Search: A suspend resume model is
required to service real-time requests wherein the exhaustive
search is paused and resumed after servicing a real-time
request. While resuming, the search plan may need to be
modified taking into account the new position of the disk head.

III. D ISCUSSION

To achieve the two properties stated above, we are con-
fronted with many questions and design tradeoffs. First of
all, where should the exhaustive algorithm be embedded: the
filesystem, an object based disk or a block device driver?

Next, in order to perform layout-aware exhaustive scan
and suspend-and-resume search, two key pieces of metadata
need to be maintained. First,location metadata about physical
placement of data objects (eg. extent information) is needed
to contruct the optimal scan schedule. The second piece of
metadata, calledstate metadata, stores the progress of the
exhaustive search operation. It consists of the list of objects
that have been scanned so far. After a suspend-resume step,
this list is used to avoid re-scanning objects that have already
been scanned. What is the best way to represent the location
and state metadata? Should they be stored as tables or should
an object and its metadata be physically stored together?

The next question is how to place the metadata relative to
the data on the disk. If all the metadata is placed in one central
location on disk, we need to pay a seek penalty to read a batch
of metadata before scanning the objects in the batch or when
we need to dump the state metadata before servicing a real-
time request. Alternatively, if we decide to store the metadata
distributed over the disk, how should the metadata layout look
like?

The final question that needs to be answered is about the
search strategy itself. After servicing a real-time request, how
should the exhaustive search plan be modified? Should we
select that part of the disk that has not yet been explored at
all or should we finish an area that is almost done?

REFERENCES

[1] J. Gray. Keynote at FAST 2005. http://www.usenix.org/
events/fast05/tech/mp3/gray.mp3.

[2] L. Huston et al. Diamond: A Storage Architecture for Early Discard in
Interactive Search. InProceedings of FAST, 2004.


