
Scaling Security for Big, Parallel File Systems
Andrew Leung, Ethan L. Miller

1 Motivation

The need for peta- and exabyte scale parallel file systems that
support high-performance computing (HPC) has been rapidly
increasing. These systems have unique demands, different
from those of traditional distributed file systems. As a result,
securing I/O in big, parallel file systems without significantly
impacting performance has proven challenging.

Parallel file systems are commonly composed of three com-
ponents: clients, metadata servers, and network-attachedstor-
age devices, such as disks or object-storage devices. Security
is commonly based on a capability model, where capabilities
are ’tokens’ which represent single block or object I/O autho-
rization. Capabilities are generated by metadata servers,given
to clients, and presented to storage devices with I/O requests.

Peta- and exabyte scale systems may have tens of thousands
of clients and storage devices. Files are very large, often giga-
bytes to terabytes, and are commonly striped across thousands
of storage devices. HPC workloads are parallel and bursty,
meaning I/O often comes from many clients at a time with
very short inter-arrival times. This implies files are commonly
accessed by thousands of clients within a few seconds. These
factors are often worst-case scenarios for many existing solu-
tions.

While there are many security schemes for distributed file
systems, few have addressed large-scale, demanding environ-
ments. In these environments existing solutions cannot sus-
tain high performance or must weaken security to do so. HPC
workloads can burden metadata and data servers with generat-
ing and verifying millions of single block or object capabili-
ties. Reliance on shared-key cryptography introduces vulner-
abilities when millions of storage devices are susceptibleto
attack. Also, many common security techniques, such as re-
vocation, become difficult with so many clients and storage
devices.

2 Our Approach

We are developing a protocol that is designed to provide se-
cure I/O for petabyte-scale, parallel file systems. Our approach
seeks to leverage common HPC characteristics and simplify
security management to improve performance and scalability.
Our protocol, Maat, employs three main concepts: extended
capabilities, automatic revocation, and scalable, securedele-
gation.

Extended capabilities allow a capability to authorize I/O for
any number of clients to any number of files. Grouping poli-
cies allow the MDS to decide how to include client and file au-
thorization in a capability. By conferring access for client-file
pairs, rather than single client-block or client-object pairs, and
aggregating many pairs into a capability Maat is able to greatly
reduce the number of capabilities in the system, as well as, ex-
ploit capability reuse. Extended capabilities are securedusing
asymmetric cryptography, allowing anyone in the system to
verify a capability’s integrity. Though asymmetric cryptogra-
phy is quite slow, the reduced number of capabilities servesto

greatly amortize this cost. Merkle trees are used to identify
authorized client and file I/O in a capability, allowing capabil-
ities to be fixed-size and still enforce confinement. Through
the use of an update protocol, clients and storage devices can
flatten these trees into lists of clients and files. A lookup mech-
anism allows storage devices to then map files to local blocks
or objects.

Automatic revocation allows access rights to be revoked
without the need to contact any clients or storage devices.
Each capability has a short timeout. Once a capability has
timed-out it is no longer valid. Capability lifetimes can beex-
tended using extension token that are distributed by metadata
servers and cached at clients and storage devices. A single ex-
tension token can proactively prolong the timeouts for a very
large number of capabilities by batching many extensions into
a single token. This allows clients to reuse valid capabilities
with little overhead. As a result, revocation is independent of
who holds capabilities or which devices hold file data, allow-
ing Maat to scale to very large systems.

Cooperative computation, common in HPC workloads, is
achieved through the use ofscalable, secure delegation. A
single client may open a file on behalf of any number of other
clients to reduce the overhead of large, joint computations.
This client generates an asymmetric key pair and uses the pub-
lic key to receive a file handle and capability associated with
the key from the metadata servers. The client then distributes
the private key, capability, and file handle to any other clients
cooperating in the computation which the other clients use to
perform I/O. This provides scalable delegation and supports
POSIX HPC I/O extensionsopeng() andopenfh(). Ad-
ditionally, by associating clients with computational keys at
the metadata servers we are able to achieve confinement.

3 Current Status

An earlier paper [1] discusses some of our initial designs. We
are implementing Maat in the Ceph petabyte-scale, parallel
file system [2]. Ceph is an object file system which achieves
much of its scalability by pushing responsibility to intelligent
network-attached object-storage devices (OSDs). This allows
Maat to leverage OSD intelligence without addressing power
and cache size issues common to disks. In the future Maat will
address other issues, such as, on-disk security.

References

[1] A. Leung and E. L. Miller. Scalable security for large, high per-
formance storage systems. InProceedings of the 2006 ACM
Workshop on Storage Security and Survivability. ACM, Oct.
2006.

[2] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distributed
file system. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA, Nov.
2006.

1


