A crash course on some recent bug
finding tricks.

Junfeng Yang, Can Sar, Cristian Cadar, Paul Twohey

Dawson Engler
Stanford

Background

Q Lineage
= Thesis work at MIT building a new OS (exokernel)

= Spent last 7 years developing methods to find bugs in
them (and anything else big and interesting)

Q Goal: find as many serious bugs as possible.

= Agnostic on technique: system-specific static analysis,
implementation-level model checking, symbolic execution.

= Our only religion: results. Works? Good. No work? Bad.

Q This talk
» eXplode: model-checking to find storage system bugs.
« EXE: symbolic execution to generate inputs of death

= Maybe: weird things that happen(ed) when academics try
to commercialize static checking.

EXPLODE: a Lightweight, General System
for Finding Serious Storage System Errors

Junfeng Yang, Can Sar, Dawson Engler
Stanford University

The problem

Q Many storage systems, one main contract
= You give it data. It does not lose or corrupt data.
= File systems, RAID, databases, version contral, ...
= Simple interface, difficult implementation: failure

0 Wonderful tension for bug finding
» Some of the most serious errors possible.

= Very difficult to test: system must *always™
recover to a valid state after any crash

= Typical: inspection (erratic), bug reports (users
Goakdygribperee piiyédsvainedknmapst stortage
systems with /ittle work

EXPLODE summary

Comprehensive: uses ideas from model checking

Fast, easy
Check new storage system: 200 lines of C++ code
Port to new OS: 1 device driver + optional instrumentation

General, real: check live systems.
Can run (on Linux, BSD), can check, even w/o source code

Effective

checked 10 Linux FS, 3 version control software, Berkeley DB,
Linux RAID, NFS, VMware GSX 3.2/Linux

Bugs in all, 36 in total, mostly data loss

TL\:A AAAAA II rnChT'ﬂL1 ﬂllL\"llW\hf‘ ~Ll I\lIJ AAAAA |I EIC/‘ rnCl\T'ﬁ/l'l

Checking complicated stacks

All real

Stack of storage
systems

= subversion: an
open-source
version control
software

User-written
checker on top

Recovery tools run
after EXPLODE-
simulated crashes

subversion
checker

ok?

loopback

Outline

:>Core idea

a Checking interface
0 Implementation
0 Results

a Related work, conclusion and future work

The two core eXplode principles

Q Expose all choice:

When execution reaches a point in program that can do
one of N different actions, fork execution and in first

hild do £ o P | ptc

| Do every possible action to a state before exploring
another,

Q Result of systematic state exhaustion:
= Makes low-probability events as common as high-

hm‘lAAL\:|:+Qn - A o A Al I:Allltl l‘:* *m:n.'l“ P v LA A o o N A

Core idea: explore all choices

0 Bugs are often triggered by corner cases

0 How to find: drive execution down to these
tricky corner cases

When execution reaches a point in program that can do
one of N different actions, fork execution and in first

hild do £ o P | ptc

External choices

a Fork and do every possible operation

X

cf@o

W » Explore generated
states as well

unlink'<§ .

Speed hack: hash states, discard if seen,
prioritize interesting ones.

Internal choices

a Fork and explore all internal choices

/,,o"’.
J kmalloc returns NULL

Buffer cache misses

How to expose choices

a To explore N-choice point, users instrument
code using

0 : N-way fork, return K in K'th kid

void* kmalloc(size s) {

... // normal memory allocation

»

0 We instrumented 7 kernel functions in Linux

Crashes

a Dirty blocks can be written in any order, crash

at any point

S

¢
9

buffer
cache

Users write code to
check recovered FS

fsck ™ check
Write all fsck check
|sgbseTs

fsck ™ check

Outline

0 Core idea: exhaustively do all verbs to a state.
= external choices X internal choices X crashes.
= This is the main thing we'd take from model checking
= Surprised when don't find errors.

ﬂ Checking interface

- What EXPLODE provides
« What users do to check their storage system

0 Implementation
0 Results

0 Related work, conclusion and future work

What EXPLODE provides

Q : conceptual N-way fork, return K in
K'th child execution

0 : check all crashes that
can happen at the current moment
» Paper talks about more ways for checking crashes

« Users embed non-crash checks in their code.
EXPLODE amplifies them

0 : record trace for deterministic replay

What users do

(FS checker]

a Example: ext3 on RAID £xt3

Raid

Q checker: drive ext3 to do something: mutate(),
then verify what ext3 did was correct: check()

Q storage component: set up, repair and tear down
ext3, RAID. Write once per system

const char *dir = "/mnt/sbdo/";
const char *file = "/mnt/sbd0/test-file";
void FsChecker::mutate(void) {

witch(choose(4)) {
. quermF("E:hQ %":test\" > %S", ﬁle),
a FS Checker if(choose(2)| == 0)

sy el

else| {
doMsync(file);
// fsync parent to commit the new directory entry

0 kbdo_fsync("/mnt/sbd0");

= mutate

eck_crash_now();|// invokes check() for each crash
ak;

stemf ("rp %s—fM); break;
systemf("mkdir %s%® dir,[choose(5)); break;

-~

case 3« systemI("rmdirS4=%4", dir,[choose(b)); break;

- }
1 choose(4)

— e N,

creat file rm file mkdir rmdir

sync | | fsync LJO1 2113 m LJO1 2113 m

a FS Checker

check

void FsChecker::check(void) {
ifstream in(file); Check file exists

if(lin) _

error("fs", "file gone!");

char buf[1024];

. . _ Check file
m.read(buf, sizeof buf); contents match
in.close();
if(strncmp(buf, "test", 4) 1= 0)

error("fs", "wrong file contents!");

Even trivial checkers work:finds JFS
fsync bug which causes lost file.

Checkers can be simple (50 lines) or
very complex(5,000 lines)

Whatever you can express in C++, you
can check

0 ext3
Component

Q storage component: initialize,
repair, set up, and tear down your
system

= Mostly wrappers to existing utilities.
“mkfs”, "fsck”, "mount”, "umount”

. returns list of kernel
thread IDs for deterministic error
replay

Q Write once per system, reuse to
form stacks

0 Real code on next slide

0 ext3
Component

void Ext3:init(void) {
// create an empty ext3 FS with
// user-specified block size
systemf("mkfs.ext3 -F -j -b %d %s",
get_option(blk_size), children[0]—>path());
}
void Ext3::recover() {
systemf("fsck.ext3 -y %s", children[0]—>path())
}
void Ext3::mount(void) {
int ret = systemf("sudo mount -t ext3 %s %s",
children[0]—>path(), path());
if (ret < 0) error("Corrupt FS: Can’t mount!");
b
void Ext3::umount(void) {
systemf("sudo umount %s", path());
b
void Ext3::threads(threads_t &thids) {
int thid;
if ((thid=get_pid("kjournald")) != —1)
thids.push_back(thid);
else
explode_panic("can’t get kjournald pid!");

. a assemble a checking stack

a Let EXPLODE know how

- subsystems are connected
together, so it can initialize, set
up, tear down, and repair the
entire stack

Q Stack

Raid

ﬁ 0 Real code on next slide

H)

0 Stack

Raid

// Assemble FS + RAID storage stack step by step.
void assemble(Component *&top, TestDriver *&driver) {
// 1. load two RAM disks with size specified by user
ekm_load_rdd(2, get_option(rdd, sectors));

Disk *d1 = new Disk("/dev/rdd0");
Disk *d2 = new Disk("/dev/rdd1");

// 2. plug a mirrored RAID array onto the two RAM disks.
Raid *raid = new Raid("/dev/md0", "raidi");
raid—>plug-_child(d1);

raid—>plug-_child(d2);

// 8. plug an ext3 system onto RAID

Ext3 *ext3 = new Ext3("/mnt/sbd0");
ext3—>plug-child(raid);

top = ext3; // let eXplode know the top of storage stack

// 4. attach a file system test driver onto ext3 layer
driver = new FsChecker(ext3);

Outline

Q Core idea: explore all choices

O Checking interface: 200 lines of C++ to check a system

! Implemen‘ra’non

= Checkpoint and restore states
= Deterministic replay
= Checking process
= Checking crashes
= Checking "soft" application crashes

O Results

Recall: core idea

a "Fork" at decision point to explore all choices

state: a snhapshot of
the checked system

How to checkpoint live system?

a Hard to checkpoint live
kernel memory

« VM checkpoint heavy-weight

a checkpoint: record all
returns from SO

Q restore: umount, restore
SO, re-run code, make K'th

return K'th
recorded values

S = S0 + redo choices (2, 3)

Deterministic replay

0 Need it to recreate states, diagnose bugs

Sources of non-determinism

a Kernel can be called by other code
« Fix: filter by thread IDs. No in interrupt

0 Kernel scheduler can schedule any thread
= Opportunistic hack: setting priorities. Worked well

a Worst case: non-repeatable error. Automatic

P [T IO

EXPLODE: put it all together

EXPLODE Runtime o .
FS Checker @
Model ? g
Checking = \ Ext3 Component 0
Loop g);_
t \ ‘ Raid Component
N)3 8
@ = 2 =
/— @
Raid Q
void* /\ g
kmalloc| (size_t s, int fl) { §
if(fl & | GFP_NOFAIL) R s
if(chobseg2) == 0)
return NULL;
Hardware
EXPLODE User code EKM = EXPLODE

device driver

Outline

Q Core idea: explore all choices

0 Checking interface: 200 lines of C++ to check a
system

0 Implementation

)

0 Results
« Lines of code
« Errors found

EXPLODE core lines of code

Lines of code

Linux 1,915 +@ 94 generate@
Kernel patch
FreeBSD 1,210

User-level code 6,323

3 kernels: Linux 2.6.11, 2.6.15, FreeBSD 6.0.
FreeBSD patch doesn't have all functionality yet

Checkers lines of code, errors found

Storage System Checked |Component| Checker | Bugs
10 file systems 44/10 5,477 18
CVS 27 68 1
Storage Subversion 31 69 1
applications | “ExpENSIVE” 30 124 3
Berkeley D 82 02 6
RAID 144 S + 137 2
Transparent NFES \ 34 FS 4
|| subsystems G‘;l)\(,[/ VI@/ o o 1
Total 1,115 | | (6,008 36

Outline

Q Core idea: explore all choices

a Checking interface: 200 lines of C++ to check
hew storage system

0 Implementation

0 I:PEesul‘rs
Lines of code

« Errors found

FS Sync checking results

ext2 X
ext3
ReiserFS X
Reiserd
JES
XFS
MSDOS
VFAT
HES
HFS+

FS sync | mount sync | £ c O_SYNC
X

X
X

X X XX
XX XX XX
XXX XX XX XX

¥ 1ndicates a failed check

App rely on sync operations, yet they are broken

ext2 fsync bug

Events to trigger bug

truncate A

creat B Mem

write B Disk

fsync B

crashl

fock.ext? Indirect block

Bug is fundamental due to ext2 asynchrony

Classic: mishandle crash during recovery
a ext3, JFS, reiserfs: All had this bug

= Result: can lose directories (e.g., "/")
= Root cause: the same journalling mistake.

Q To do a file system operation:

» Record effects of operation in log (“intent")

= Apply operation to in-memory copy of FS data
= Flush log (so know how to fi 5K data). wait()
* Flush data.

= All get this right.
a To recover after crash

: Replawix FS. Flush FS changes to disk
« wait()

ext3 Recovery Bug

recover ext3 journal(...)
/... joﬁrnal_recover(...) {
retval = -journal reCover(journal) [// replay the journal
/... /...
// clear the journal // sync modifications to disk
e2fsck journal release(...) fsync nq super (...)
/... ! (\
) /

// Error! Empty macro, doesn’t sync data! /
#define fsync no super(dev) do {} while (0)

0 Code was directly adapted from the kernel
a Buft, fsync_no_super was defined as NOP

Easy checking of "transparent”
subsystems

a Many subsystems intend to invisibly augment storage
= Easy checking: checker run with and without = equivalent.
= Sync-checker on NFS, RAID or VMM should be same as not
= Ran it. All are broken.

0 Linux RAID:

« Does not reconstruct bad sectors: marks disk as faulty,
removes from RAID, returns error.

= Two bad sectors, two disks: almost all reconstruct fail

O NFS:
- write file, then read through hardlink = different resulf.

a 6SX/Linux:

Even simple test drivers find bugs

Qa Version control: cvs, subversion, "ExPENsive”

» Test: create repository with single file, checkout, modify,
commit, use eXplode to crash.

= All do careful atomic rename, but don't do fsync!

= Result: all lose commited data. Bonus: crash during
"exPENsive" merge = completely wasted repo

0 BerkeleyDB:

» Test: loop does transaction, choose() to abort or commit.
= After crash: all (and only) commited transactions in DB.

= Result: commited get lost on ext2, crash on ext3 can leave
DB in unrecoverable state, uncommited can appear after

Classic app mistake: "atomic” rename

a All three version control app. made this mistake

a Atomically update file A to avoid corruption
fd = creat(A_tmp, ...);
write(fd, ...);
fsync(fd); // missing!
close(fd);
rename(A_tmp, A);

Q Problem: rename guarantees nothing abt. Data

Outline

Q Core idea: explore all choices

0 Checking interface: 200 lines of C++ to check a
system

0 Implementation

0 Results: checked many systems, found many

bugs
—)

a Related work, conclusion and future work

Related work

Q FS testing
- IRON

Q Static analysis
» Traditional software model checking
= Theorem proving
» Other techniques

Conclusion and future work

o EXPLODE

« Easy: need 1 device driver. simple user interface
= General: can run, can check, without source
- Effective: checked many systems, 36 bugs
a Current work:
= Making eXplode open source
= Junfeng on academic job market.

0 Future work:

= Work closely with storage system implementers to check
more systems and more properties

= Smart search

= Automatic diagnosis

« Automatically inferring "choice points”

= Approach is general, applicable to distributed systems,

AnrmiinAa AmasatrAama s

Automatically Generating Malicious

!'- Disks using Symbolic Execution

Junfeng Yang, Can Sar, Paul Twohey,
Cristian Cadar and Dawson Engler

Stanford University

Trend: mount untrusted disks

) Software Distribution: Distributing Software With Inte €3 | WN; Patch; [PATCH] unprivileged mountfumount - Mozilla Firefox

Tools Help

Eookrmarks

File:

T [, . /_- [.-.
Ep - a | @ http: ; :
<:§| - | @ @ | ttp: ffdeveloper.apple.g

Edit wigw Go

Developer Connection

""' Log In | Mot a Member?

ADC Home = Reference Librang

= Show TOC

Distributing

Dizk images have hecorme th
Copy application {Jocated in
when installing from disk ima

Hote; Starting in Mag 05 Xy
sapplications~Ttili

In this section:

Impraving the Us
Creating An Inten
Adding a Licenss
How Diisk Copy
Caveats for Inter

Improving the

Daone

Ly & f

File Edit Wiew Go Bookmarks Tools Help

@-op- g 1-7;] % hittp:fjlwn.netiArticles 134448/ - B 0 [,
Lw N Home Weekly edition Eermnel Securty Distributions
[]
a n et Archives Search Letters Calendar LW net FAQ L]
PR Subscriptions Advertise Write for LWIT Contact us Privacy

Your Linux info source

Patch: [PATCH] unprivileged mount/umount

: From: Mikdos Szeredi <mides@szeredihu>
Sponsored Link
i To: linuz-fzdevel@wger kernel org, linue-kernel@wvger kernel org
Subject: [ECF] [PATCH] unprinleged mountiumount
ECommerce & crecitcard | py o Tue, 03 May 2005 16:31:35 +0200
processing - the Open
Soutce way! Ce: ericvh@gmail com, stnfrenchi@austin rr. com, hehi@imnfradead. org

You are not logged in

Archive-lnk: Article, Thread

_ Thiz (lightly tested) patch against Z.6.12-rc¥ adds some
Logmnow infrastructure and bhasic functionality for unprivileged mount/uwmount
Create an account system calls.
Subscribe to LY]
Details:
Weekly Fdition - new wnt_owner field in struct vismount

Eeturn to the Eemel
page

Recent Features

LW net Weeldy Edition
for ay 11, 2006
The Grumpy Editor's
gude to audie stream
<

it's a privileged mount

- if mmnt_owner is NULL,
fproc/sys/ £/ mount —max

- global liwit on unprivileged mounts in
— per user limit of wounts in rlimic

— allow uwount for the owner (except force flag)

— allow unprivileged bhind mount to files/directories writabhle by owner
— add nosuid, nodev flags to unprivileged mounts

Next step would bhe to add some policy for new mounts. I'm thinking of

either something static: e.g. F3_3AFE flag for "safe" filesystems, or
a mwore configurable approach through sysfs or something.

= i |

Done

[& W es 3

W I

O R

File systems vulnerable to malicious disks

= Privileged, run in kernel

= Not designed to handle malicious disks.
FS folks not paranoid (v.s. networking)

= Complex structures (40 if statements in
ext2 mount) = many corner cases.
Hard to sanitize, test

= Result: easy exploits

Generated disk of death
(JFS, Linux 2.4.19, 2.4.27, 2.6.10)

Offset Hex Values

00000 | 0000 0000 0000 0000 0000 0000 0000 0000
08000 | 464a 3153 0000 0000 0000 0000 0000 0000
08010 | 1000 0000 0000 0000 0000 0000 0000 0000
08020 | 0000 0000 0100 0000 0000 0000 0000 0000
08030 | e004 000f 0000 0000 0002 0000 0000 0000
08040 | 0000 0000 0000 0000 0000 0000 0000 0000
10000

Create 64K file, set 64t sector to above. Mount.
And PANIC your kernel!

FS security holes are hard to test

= Manual audit/test: labor, miss errors®

= Random test: automatic®©. can’t go far®
= Unlikely to hit narrow input range.
= Blind to structures

int fake_mount(char* disk) {
struct super_block *sb = disk;
if(sb->magic = OXEF53) //hard to pass using random
return -1;

// sb->foo is unsigned, therefore >= O
if(sb->foo > 8192)

return -1;
x = y/sb->foo; //potential division-by-zero
____return Q:

}

i Soln: let FS generate its own disks

= EXE: Execution generated Executions [Cadar
and Engler, SPIN'05] [Cadar et al Stanford TR2006-1]

= Run code on symbolic input, initial value = “anything”
= As code observes input, it tells us values input can be

= At conditional branch that uses symbolic input, explore
both

= On true branch, add constraint input satisfies check
= On false that it does not
= exit() or error: solve constraints for input.

= To find FS security holes, set disk symbolic

i Key enabler: STP constraint solver

= Handles: All of C (except floating point)

« Memory, arrays, pointers, updates, bit-
operations.

= Full bit-level accurate precision. No
approximations.

= One caveat: **p, where p is symbolic.

= Written by David Dill and Vijay Ganesh.
= Destroy’s previous CVCL system
= 10-1000+x faster, 6x smaller.
= Much simpler, more robust

%)

A galactic view

Test Driver

A

\

User-Mode-
Linux

D ext3 5

00010

Test Cases

) |
Path Selection

10 00011

(]

00010)

00111

symbolic

Disk Blocks

Dlsk

Constraints

T e,

; \
3> L wefrin)
I'_l'_l.l L Symbollc: > 2

IR

'x buf[j] /—~ —

N
I

._r""'\-\.ﬁ'

T mounts

}, ==

xﬁ‘__ E_Pf[/] x’

Test Case Generation

EXE-cc instrumented

)
\
I
“‘.

symbolic
Execution
Runtime

Constraint
Solver

—__ = (Goncrete Disks
00n4°——,
15{ ::}r:}om___ﬁ
G 00010
00111

)

ext3

Unmodified Linux

Test Case Checking

i Outline

m) = How EXE works
= Apply EXE to Linux file systems
= Results

The toy example

int fake_mount(char* disk) {
struct super_block *sb = disk;
if(sb- >magic |= OXEF53) //hard to pass using random
return -1;
// sb->foo is unsigned, therefore >= O
if(sb->foo > 8192)

return -1;
x = y/sb->foo; //potential division-by-zero
____retuen Q:

}

i Concrete v.s. symbolic execution

Concrete: sb->magic = OXEF53, sb->foo = 9000

return -1

b->magic 1= OxEF53=

return -1

sb->foo > 8192

x=y/sb->foo

return O

i Concrete v.s. symbolic execution

Symbolic: sb->magic and sb->foo unconstrained

b->magic 1= OxEF53=
sb->foo > 8192

return -1
sb->magic |= OxEF53

return -1

sb->magic == OxEF53

x=y/sb->foo

sb->foo > 8192

v

return O

sb->magic == OxEF53
sb->foo < 8192

¥ == v/ch->fnn

The toy example: instrumentation

int fake_mount(char* disk) {
struct super_block *sb = disk;

if(sb- >magic 1= OxEF53)
return -1;

if(sb->foo > 8192)
return -1;

int fake_mount_exe(char* disk) {
struct super_block *sb = disk;
if(fork() == child) {
constraint(sb- >magic |= OXEF53);
return -1;
} else
constraint(sb->magic == OxEF53):

if(fork() == child) {
constraint(sb->foo > 8192):;
return -1;

} else
constraint(sb->foo <= 8192);

check_symbolic_div_by_zero(sb->foo);

m— - v

i How to use EXE

= Mark disk blocks as symbolic
= void make_symbolic(void* disk_block, unsigned
Size)
= Compile with EXE-cc (based on CIL)

= Insert checks around every expression: if operands
all concrete, run as normal. Otherwise, add as
constraint

= Insert fork when symbolic could cause multiple acts

= Run: forks at each decision point.

= When path terminates, solve constraints and
generate disk images

= Terminates when: (1) exit, (2) crash, (3) error
= Rerun concrete through uninstrumented Linux

i Why generate disks and rerun?

= Ease of diagnosis. No false positive
= One disk, check many versions

= Increases path coverage, helps
correctness testing

Mixed execution

= Too many symbolic var, too many constraints
=» constraint solver dies

= Mixed execution: don’t run everything
symbolically
« Example: x = y+z;
= if y, z both concrete, run as in uninstrumented
= Otherwise set "x ==y + 7", record x = symbolic.

= Small set of symbolic values
= disk blocks (make_symbolic) and derived

= Result: most code runs concretely, small slice
deals w/ symbolics, small # of constraints

= Perhaps why worked on Linux mounts, sym on
demand

Symbolic checks

int fake_mount(char* disk) {
struct super_block *sb = disk;

if(sb->magic 1= OxEF53)
return -1;

if(sb->foo > 8192)
return -1;

int fake_mount_exe(char* disk) {
struct super_block *sb = disk;
if(fork() == child) {
constraint(sb->magic |= OXEF53);
return -1;
} else
constraint(sb->magic == OxEF53):;

if(fork() == child) {
constraint(sb->foo > 8192);
return -1;

} else

chedeongymiiaticbdivEby_ze®(g2)»>foo).

oy /shaofoo.

i Symbolic checks

= Key: Symbolic reasons about many
possible values simultaneously. Concrete
about just current ones (e.g. Purify).

= Symbolic checks:

= When reach dangerous op, EXE checks if any
input exists that could cause blow up.

= Builtin: x/0, x%0, NULL deref, mem overflow,
arithmetic overflow, symbolic assertion

i Check symbolic div-by-0: x/y, y symbolic

= Found 2 bugs in ext2, copied to ext3

void check_sym_div_by_zero (y) {
if(query(y==0) == satisfiable)
if(fork() == child) {
constraint(y != 0);
return;
} else {
constraint(y == 0):
solve_and_generate_disk():
error("divided by OI")

* More on EXE ([CCS'06])

= Handling C constructs

» Casts: untyped memory

= Bitfield

» Symbolic pointer, array index: disjunctions
= Limitations

= Constraint solving NP

» Uninstrumented functions

=« Symbolic double dereference: concretize

» Symbolic loop: heuristic search

i Outline

= How EXE works
= Apply EXE to Linux file systems
=) = Results

Results

= Checked ext2, ext3, and JFS mounts

= Ext2: four bugs.

= One buffer overflow = read and write
arbitrary kernel memory (next slide)

= Two div/mod by 0
= One kernel crash

= Ext3: four bugs (copied from ext2)
= JFS: one NULL pointer dereference

= Extremely easy-to-diagnose: just
mount!

Simplified: ext2 r/w kernel memory

block is symbolic == ¢ ' :
block + count can overflo

and becomes negative! return -1:
Pass block to bar ~ ======thile(count--)
bar(block++);
}
_ _ void bar(int block) {
block_group is symbolic — 8 = power of 2
int block_group = (block-A)/B;

block can be large!

Symbolic read off bound -

//array length is 8
Symbolic write off bound === .. = array[block_group]

array[block_group] = ..

Related Work

= FS testing

= Mostly stress test for functionality bugs

= Linux ISO9660 FS handling flaw, Mar 2005
(http://lwn.net/Articles/128365/)

= Static analysis

= Model checking
= Symbolic model checking

= Input generation
= Using symbolic execution to generate testcases

BPF, Linux packet filters

= "We'll never find bugs in that”
= heavily audited, well written open source

= Mark filter & packet as symbolic.
= Symbolic = turn check into generator

= Safe filter check: generates all valid filters of
length N.

= BPF Interpreter: will produce all valid filter
programs that pass check of length N.

= Filter on message: generates all packets that
accept, reject.

Results: BPF, trivial exploit.

/I Check that memory operations only uses valid addresses.

Il == Check forgets LDX STXI
if{ (BPF_.CLASS(p—>code) == BPFST || (BPFLCLASS{p—>code) == BPF_LD &&
(p—=code & Oxel) == BPF_.MEM)) && p—k == BPF.MEMWORDS)

return

case BPF_LDX |BPF_MEM:

X = mem|pc—>=k]; continue;

case BPE_STX:

mem[pc—>k] = X, continue;

i Linux Filter

= Generated filter:

other filters that cause this error.

|'
/== BPF_LD|BPF_B |BPF_ IND
[/ == BPF_LD|BPF_H BPF_IND

s[0].code = BPF_LD|BPF_B|BPF_ABS:
s[0].k = OxTHAFIL:

s[1].code = BPF_RET:

s[1].k = OxFFFOUL:

iline void * skb-header-pointer(struct sk-buft *skb, int offset, int len,
int hlen = skb_headlen(skb);
if {offset + len <= hlen)
return skb—>data + offset;

i Conclusion [Oakland’06, CCS'06]

= Automatic all-path execution, all-value
checking
= Make input symbolic.
= Run code.
=« If operation concrete, do it.
= If symbolic, track constraints.

= Generate concrete solution at end (or on way),
feed back to code.

= Finds bugs in real code.
= Zero false positives.

Exponential forking?

= Only fork on symbolic branch

= Mixed execution: to reduce # of symbolic var, don‘t
run everything symbolically. Mix concrete execution
and symbolic execution

= Example: x = y+z;
= if y, z both concrete, run as in uninstrumented
= Otherwise set "x ==y + 7", record x = symbolic.
= Small set of symbolic values
= disk blocks (make_symbolic) and derived
= Result: most code runs concretely, small slice deals
w/ symbolics, small # of constraints
= Perhaps why worked on Linux mounts, sym on demand

