
A crash course on some recent bug
finding tricks.

Junfeng Yang, Can Sar, Cristian Cadar, Paul Twohey

 Dawson Engler
Stanford

Background

 Lineage
 Thesis work at MIT building a new OS (exokernel)
 Spent last 7 years developing methods to find bugs in

them (and anything else big and interesting)

 Goal: find as many serious bugs as possible.
 Agnostic on technique: system-specific static analysis,

implementation-level model checking, symbolic execution.
 Our only religion: results. Works? Good. No work? Bad.

 This talk
 eXplode: model-checking to find storage system bugs.
 EXE: symbolic execution to generate inputs of death
 Maybe: weird things that happen(ed) when academics try

to commercialize static checking.

EXPLODE: a Lightweight, General System
for Finding Serious Storage System Errors

Junfeng Yang, Can Sar, Dawson Engler
Stanford University

The problem
 Many storage systems, one main contract

 You give it data. It does not lose or corrupt data.
 File systems, RAID, databases, version control, ...
 Simple interface, difficult implementation: failure

 Wonderful tension for bug finding
 Some of the most serious errors possible.
 Very difficult to test: system must *always*

recover to a valid state after any crash
 Typical: inspection (erratic), bug reports (users

mad), pull power plug (advanced, not systematic)Goal: comprehensively check many storage
systems with little work

EXPLODE summary

 Comprehensive: uses ideas from model checking

 Fast, easy
 Check new storage system: 200 lines of C++ code
 Port to new OS: 1 device driver + optional instrumentation

 General, real: check live systems.
 Can run (on Linux, BSD), can check, even w/o source code

 Effective
 checked 10 Linux FS, 3 version control software, Berkeley DB,

Linux RAID, NFS, VMware GSX 3.2/Linux
 Bugs in all, 36 in total, mostly data loss

 This work [OSDI’06] subsumes our old work FiSC [OSDI’04]

Checking complicated stacks

 All real

 Stack of storage
systems
 subversion: an

open-source
version control
software

 User-written
checker on top

 Recovery tools run
after EXPLODE-
simulated crashes

subversion
checker

NFS client

NFS server

loopback

JFS

software
RAID1

checking
disk

subversion

checking
disk

%fsck.jfs

%mdadm --assemble
 --run
 --force
 --update=resync
%mdadm -a

crash
disk

%svnadm.recover

crash
disk

ok?

crash

Outline

 Core idea

 Checking interface

 Implementation

 Results

 Related work, conclusion and future work

The two core eXplode principles

 Expose all choice:

 Exhaust states:

 Result of systematic state exhaustion:
 Makes low-probability events as common as high-

probability ones. Quickly hit tricky corner cases.

When execution reaches a point in program that can do
one of N different actions, fork execution and in first
child do first action, in second do second, etc.

Do every possible action to a state before exploring
another.

Core idea: explore all choices

 Bugs are often triggered by corner cases

 How to find: drive execution down to these
tricky corner cases

When execution reaches a point in program that can do
one of N different actions, fork execution and in first
child do first action, in second do second, etc.

External choices

cre
at

/root

ba

c

link

unlink

mkdirrmdir

…

…

 Fork and do every possible operation

Explore generated
states as well

Speed hack: hash states, discard if seen,
prioritize interesting ones.

Internal choices

cre
at

/root

ba

c
Buffer cache misses

kmalloc returns NULL

 Fork and explore all internal choices

How to expose choices

 To explore N-choice point, users instrument
code using choose(N)

 choose(N): N-way fork, return K in K’th kid

 We instrumented 7 kernel functions in Linux

void* kmalloc(size s) {
 if(choose(2) == 0)
 return NULL;
 … // normal memory allocation
}

Crashes

cre
at

/root

ba

c

 Dirty blocks can be written in any order, crash
at any point

Write all
subsets

fsck

fsck

fsck

buffer
cache

check

check

check

Users write code to
check recovered FS

Outline

 Core idea: exhaustively do all verbs to a state.
 external choices X internal choices X crashes.
 This is the main thing we’d take from model checking
 Surprised when don’t find errors.

 Checking interface
 What EXPLODE provides
 What users do to check their storage system

 Implementation

 Results

 Related work, conclusion and future work

What EXPLODE provides

 choose(N): conceptual N-way fork, return K in
K’th child execution

 check_crash_now(): check all crashes that
can happen at the current moment
 Paper talks about more ways for checking crashes
 Users embed non-crash checks in their code.

EXPLODE amplifies them

 error(): record trace for deterministic replay

 Example: ext3 on RAID

 checker: drive ext3 to do something: mutate(),
then verify what ext3 did was correct: check()

 storage component: set up, repair and tear down
ext3, RAID. Write once per system

 assemble a checking stack

What users do

Ext3

Raid

RAM Disk RAM Disk

FS checker

 FS Checker
 mutate

 ext3
Component

 Stack
choose(4)

mkdir rmdirrm filecreat file

…/0 2 3 41 …/0 2 3 41sync fsync

 FS Checker
 check

 ext3
Component

 Stack

Check file exists

Check file
contents match

Even trivial checkers work:finds JFS
fsync bug which causes lost file.

Checkers can be simple (50 lines) or
very complex(5,000 lines)

Whatever you can express in C++, you
can check

 FS Checker

 ext3
Component

 Stack

 storage component: initialize,
repair, set up, and tear down your
system
 Mostly wrappers to existing utilities.

“mkfs”, “fsck”, “mount”, “umount”
 threads(): returns list of kernel

thread IDs for deterministic error
replay

 Write once per system, reuse to
form stacks

 Real code on next slide

 FS Checker

 ext3
Component

 Stack

Ext3

Raid

RAM Disk RAM Disk

 FS Checker

 ext3
Component

 Stack

 assemble a checking stack

 Let EXPLODE know how
subsystems are connected
together, so it can initialize, set
up, tear down, and repair the
entire stack

 Real code on next slide

Ext3

Raid

RAM Disk RAM Disk

 FS Checker

 ext3
Component

 Stack

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a system

 Implementation
 Checkpoint and restore states
 Deterministic replay
 Checking process
 Checking crashes
 Checking “soft” application crashes

 Results

 Related work, conclusion and future work

Recall: core idea
 “Fork” at decision point to explore all choices

state: a snapshot of
the checked system

…

How to checkpoint live system?

S0

S

…
 Hard to checkpoint live

kernel memory
 VM checkpoint heavy-weight

 checkpoint: record all
choose() returns from S0

 restore: umount, restore
S0, re-run code, make K’th
choose() return K’th
recorded values

 Key to EXPLODE approach

2

3

S = S0 + redo choices (2, 3)

Deterministic replay
 Need it to recreate states, diagnose bugs

Sources of non-determinism

 Kernel choose() can be called by other code
 Fix: filter by thread IDs. No choose() in interrupt

 Kernel scheduler can schedule any thread
 Opportunistic hack: setting priorities. Worked well
 Can’t use lock: deadlock. A holds lock, then yield to B

 Other requirements in paper

 Worst case: non-repeatable error. Automatic
detect and ignore

EXPLODE: put it all together

EXPLODE Runtime

M
odified Linux

K
ernel

Model
Checking

Loop

C
hecking S

tack

FS Checker

Ext3 Component

Raid Component

Ext 3

Raid

EKM

RAM Disk RAM Disk

void*
kmalloc (size_t s, int fl) {
 if(fl & __GFP_NOFAIL)
 if(choose(2) == 0)
 return NULL;
 ….

B
uffer

C
ache

?

?

Hardware

EXPLODE User code EKM = EXPLODE
device driver

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a
system

 Implementation

 Results
 Lines of code
 Errors found

 Related work, conclusion and future work

EXPLODE core lines of code

3 kernels: Linux 2.6.11, 2.6.15, FreeBSD 6.0.
FreeBSD patch doesn’t have all functionality yet

User-level code

Kernel patch
 1,915 (+ 2,194 generated)Linux

Lines of code

6,323

1,210FreeBSD

Checkers lines of code, errors found

16931Subversion

366,0081,115Total

1FS54
VMware

GSX/Linux

4FS34NFS

2FS + 137144RAID

Transparent
subsystems

620282Berkeley DB

312430“EXPENSIVE”

16827CVS

Storage
applications

185,477744/1010 file systems

BugsCheckerComponentStorage System Checked

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check
new storage system

 Implementation

 Results
 Lines of code
 Errors found

 Related work, conclusion and future work

FS Sync checking results

App rely on sync operations, yet they are broken

indicates a failed check

ext2 fsync bug

Mem

Disk

A

B

Atruncate A

creat B

write B

fsync B …
…

B

Events to trigger bug

fsck.ext2

Bug is fundamental due to ext2 asynchrony

crash!

B

Indirect block

Classic: mishandle crash during recovery
 ext3, JFS, reiserfs: All had this bug

 Result: can lose directories (e.g., “/”)
 Root cause: the same journalling mistake.

 To do a file system operation:
 Record effects of operation in log (“intent”)
 Apply operation to in-memory copy of FS data
 Flush log (so know how to fix on-disk data). wait()
 Flush data.
 All get this right.

 To recover after crash
 Replay log to fix FS. Flush FS changes to disk.
 wait()
 Clear log. Flush to disk.
 All get this wrong.

ext3 Recovery Bug

recover_ext3_journal(…) {
 // …
 retval = -journal_recover(journal)
 // …
 // clear the journal
 e2fsck_journal_release(…)
 // …
}

journal_recover(…) {
 // replay the journal
 //…
 // sync modifications to disk
 fsync_no_super (…)
}

 Code was directly adapted from the kernel
 But, fsync_no_super was defined as NOP

// Error! Empty macro, doesn’t sync data!
#define fsync_no_super(dev) do {} while (0)

 Many subsystems intend to invisibly augment storage
 Easy checking: checker run with and without = equivalent.
 Sync-checker on NFS, RAID or VMM should be same as not
 Ran it. All are broken.

 Linux RAID:
 Does not reconstruct bad sectors: marks disk as faulty,

removes from RAID, returns error.
 Two bad sectors, two disks: almost all reconstruct fail

 NFS:
 write file, then read through hardlink = different result.

 GSX/Linux:
 No matter how you configure: guest OS gets lied to about

when data hits disk. Result: bugs you can’t get on raw HW.

Easy checking of “transparent”
subsystems

 Version control: cvs, subversion, “ExPENsive”
 Test: create repository with single file, checkout, modify,

commit, use eXplode to crash.
 All do careful atomic rename, but don’t do fsync!
 Result: all lose commited data. Bonus: crash during

“exPENsive” merge = completely wasted repo

 BerkeleyDB:
 Test: loop does transaction, choose() to abort or commit.
 After crash: all (and only) commited transactions in DB.
 Result: commited get lost on ext2, crash on ext3 can leave

DB in unrecoverable state, uncommited can appear after
crash on ext2, ext3, jfs.

Even simple test drivers find bugs

Classic app mistake: “atomic” rename

 All three version control app. made this mistake

 Atomically update file A to avoid corruption

 Problem: rename guarantees nothing abt. Data

fd = creat(A_tmp, …);
write(fd, …);

close(fd);
rename(A_tmp, A);

fsync(fd); // missing!

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a
system

 Implementation

 Results: checked many systems, found many
bugs

 Related work, conclusion and future work

Related work

 FS testing
 IRON

 Static analysis
 Traditional software model checking
 Theorem proving
 Other techniques

Conclusion and future work

 EXPLODE
 Easy: need 1 device driver. simple user interface
 General: can run, can check, without source
 Effective: checked many systems, 36 bugs

 Current work:
 Making eXplode open source
 Junfeng on academic job market.

 Future work:
 Work closely with storage system implementers to check

more systems and more properties
 Smart search
 Automatic diagnosis
 Automatically inferring “choice points”
 Approach is general, applicable to distributed systems,

secure systems, …

Automatically Generating Malicious
Disks using Symbolic Execution

Junfeng Yang, Can Sar, Paul Twohey,
Cristian Cadar and Dawson Engler

Stanford University

Trend: mount untrusted disks

 Removable device (USB stick, CD, DVD)
 Let untrusted user mount files as disk

images

File systems vulnerable to malicious disks

 Privileged, run in kernel
 Not designed to handle malicious disks.

FS folks not paranoid (v.s. networking)
 Complex structures (40 if statements in

ext2 mount) many corner cases.
Hard to sanitize, test

 Result: easy exploits

Generated disk of death
(JFS, Linux 2.4.19, 2.4.27, 2.6.10)

Create 64K file, set 64th sector to above. Mount.
And PANIC your kernel!

FS security holes are hard to test

 Manual audit/test: labor, miss errors
 Random test: automatic. can’t go far

 Unlikely to hit narrow input range.
 Blind to structures

int fake_mount(char* disk) {
 struct super_block *sb = disk;
 if(sb->magic != 0xEF53) //hard to pass using random
 return -1;
 // sb->foo is unsigned, therefore >= 0
 if(sb->foo > 8192)
 return -1;
 x = y/sb->foo; //potential division-by-zero
 return 0;
}

Soln: let FS generate its own disks

 EXE: Execution generated Executions [Cadar
and Engler, SPIN’05] [Cadar et al Stanford TR2006-1]
 Run code on symbolic input, initial value = “anything”
 As code observes input, it tells us values input can be
 At conditional branch that uses symbolic input, explore

both
 On true branch, add constraint input satisfies check
 On false that it does not

 exit() or error: solve constraints for input.

 To find FS security holes, set disk symbolic

Key enabler: STP constraint solver

 Handles: All of C (except floating point)
 Memory, arrays, pointers, updates, bit-

operations.
 Full bit-level accurate precision. No

approximations.
 One caveat: **p, where p is symbolic.

 Written by David Dill and Vijay Ganesh.
 Destroy’s previous CVCL system
 10-1000+x faster, 6x smaller.
 Much simpler, more robust

A galactic view

EXE-cc instrumented

1

2

3

4 5

Unmodified Linux

ext3

User-Mode-
Linux

Outline

 How EXE works
 Apply EXE to Linux file systems
 Results

The toy example

int fake_mount(char* disk) {
 struct super_block *sb = disk;
 if(sb->magic != 0xEF53) //hard to pass using random
 return -1;
 // sb->foo is unsigned, therefore >= 0
 if(sb->foo > 8192)
 return -1;
 x = y/sb->foo; //potential division-by-zero
 return 0;
}

Concrete v.s. symbolic execution

sb->magic != 0xEF53 return -1

Concrete: sb->magic = 0xEF53, sb->foo = 9000

sb->foo > 8192 return -1

x=y/sb->foo

return 0

Concrete v.s. symbolic execution

sb->magic != 0xEF53 return -1

Symbolic: sb->magic and sb->foo unconstrained

sb->foo > 8192 return -1

x=y/sb->foo

return 0

sb->magic != 0xEF53

sb->magic == 0xEF53
sb->foo > 8192

sb->magic == 0xEF53
sb->foo < 8192
x == y/sb->foo

The toy example: instrumentation

int fake_mount(char* disk) {
 struct super_block *sb = disk;

 if(sb->magic != 0xEF53)
 return -1;

 if(sb->foo > 8192)
 return -1;

 x = y/sb->foo;
 return 0;
}

int fake_mount_exe(char* disk) {
 struct super_block *sb = disk;
 if(fork() == child) {
 constraint(sb->magic != 0xEF53);
 return -1;
 } else
 constraint(sb->magic == 0xEF53);

 if(fork() == child) {
 constraint(sb->foo > 8192);
 return -1;
 } else
 constraint(sb->foo <= 8192);

 check_symbolic_div_by_zero(sb->foo);
 x=y/sb->foo;
 return 0;
}

How to use EXE

 Mark disk blocks as symbolic
 void make_symbolic(void* disk_block, unsigned

size)

 Compile with EXE-cc (based on CIL)
 Insert checks around every expression: if operands

all concrete, run as normal. Otherwise, add as
constraint

 Insert fork when symbolic could cause multiple acts

 Run: forks at each decision point.
 When path terminates, solve constraints and

generate disk images
 Terminates when: (1) exit, (2) crash, (3) error

 Rerun concrete through uninstrumented Linux

Why generate disks and rerun?

 Ease of diagnosis. No false positive
 One disk, check many versions
 Increases path coverage, helps

correctness testing

Mixed execution

 Too many symbolic var, too many constraints
 constraint solver dies

 Mixed execution: don’t run everything
symbolically
 Example: x = y+z;
 if y, z both concrete, run as in uninstrumented
 Otherwise set “x == y + z”, record x = symbolic.

 Small set of symbolic values
 disk blocks (make_symbolic) and derived

 Result: most code runs concretely, small slice
deals w/ symbolics, small # of constraints
 Perhaps why worked on Linux mounts, sym on

demand

Symbolic checks

int fake_mount(char* disk) {
 struct super_block *sb = disk;

 if(sb->magic != 0xEF53)
 return -1;

 if(sb->foo > 8192)
 return -1;

 x = y/sb->foo;
 return 0;
}

int fake_mount_exe(char* disk) {
 struct super_block *sb = disk;
 if(fork() == child) {
 constraint(sb->magic != 0xEF53);
 return -1;
 } else
 constraint(sb->magic == 0xEF53);

 if(fork() == child) {
 constraint(sb->foo > 8192);
 return -1;
 } else
 constraint(sb->foo <= 8192);

 x=y/sb->foo;
 return 0;
}

check_symbolic_div_by_zero(sb->foo);

Symbolic checks

 Key: Symbolic reasons about many
possible values simultaneously. Concrete
about just current ones (e.g. Purify).

 Symbolic checks:
 When reach dangerous op, EXE checks if any

input exists that could cause blow up.
 Builtin: x/0, x%0, NULL deref, mem overflow,

arithmetic overflow, symbolic assertion

Check symbolic div-by-0: x/y, y symbolic

 Found 2 bugs in ext2, copied to ext3

void check_sym_div_by_zero (y) {
 if(query(y==0) == satisfiable)

if(fork() == child) {
constraint(y != 0);
return;

} else {
constraint(y == 0);
solve_and_generate_disk();
error(“divided by 0!”)

}
}

More on EXE ([CCS’06])

 Handling C constructs
 Casts: untyped memory
 Bitfield
 Symbolic pointer, array index: disjunctions

 Limitations
 Constraint solving NP
 Uninstrumented functions
 Symbolic double dereference: concretize
 Symbolic loop: heuristic search

Outline

 How EXE works
 Apply EXE to Linux file systems
 Results

Results

 Checked ext2, ext3, and JFS mounts
 Ext2: four bugs.

 One buffer overflow read and write
arbitrary kernel memory (next slide)

 Two div/mod by 0
 One kernel crash

 Ext3: four bugs (copied from ext2)
 JFS: one NULL pointer dereference
 Extremely easy-to-diagnose: just

mount!

Simplified: ext2 r/w kernel memory

int ext2_overflow(int block, unsigned count) {
 if(block < lower_bound

|| (block+count) > higher_bound)
return -1;

 while(count--)
bar(block++);

}
void bar(int block) {
 // B = power of 2
 int block_group = (block-A)/B;
 …
 //array length is 8
 … = array[block_group]
 …
 array[block_group] = …
 …
}

block is symbolic

block + count can overflow
and becomes negative!

block_group is symbolic

block can be large!
Symbolic read off bound

Symbolic write off bound

Pass block to bar

Related Work

 FS testing
 Mostly stress test for functionality bugs
 Linux ISO9660 FS handling flaw, Mar 2005

(http://lwn.net/Articles/128365/)

 Static analysis
 Model checking

 Symbolic model checking

 Input generation
 Using symbolic execution to generate testcases

BPF, Linux packet filters

 “We’ll never find bugs in that”
 heavily audited, well written open source

 Mark filter & packet as symbolic.
 Symbolic = turn check into generator
 Safe filter check: generates all valid filters of

length N.
 BPF Interpreter: will produce all valid filter

programs that pass check of length N.
 Filter on message: generates all packets that

accept, reject.

Results: BPF, trivial exploit.

Linux Filter

 Generated filter:

 offset=s[0].k passed in; len=2,4

Conclusion [Oakland’06, CCS’06]

 Automatic all-path execution, all-value
checking

 Make input symbolic.
 Run code.
 If operation concrete, do it.
 If symbolic, track constraints.
 Generate concrete solution at end (or on way),

feed back to code.

 Finds bugs in real code.
 Zero false positives.

Exponential forking?

 Only fork on symbolic branch
 Mixed execution: to reduce # of symbolic var, don’t

run everything symbolically. Mix concrete execution
and symbolic execution
 Example: x = y+z;
 if y, z both concrete, run as in uninstrumented
 Otherwise set “x == y + z”, record x = symbolic.

 Small set of symbolic values
 disk blocks (make_symbolic) and derived

 Result: most code runs concretely, small slice deals
w/ symbolics, small # of constraints
 Perhaps why worked on Linux mounts, sym on demand

