
A crash course on some recent bug
finding tricks.

Junfeng Yang, Can Sar, Cristian Cadar, Paul Twohey

 Dawson Engler
Stanford

Background

 Lineage
 Thesis work at MIT building a new OS (exokernel)
 Spent last 7 years developing methods to find bugs in

them (and anything else big and interesting)

 Goal: find as many serious bugs as possible.
 Agnostic on technique: system-specific static analysis,

implementation-level model checking, symbolic execution.
 Our only religion: results. Works? Good. No work? Bad.

 This talk
 eXplode: model-checking to find storage system bugs.
 EXE: symbolic execution to generate inputs of death
 Maybe: weird things that happen(ed) when academics try

to commercialize static checking.

EXPLODE: a Lightweight, General System
for Finding Serious Storage System Errors

Junfeng Yang, Can Sar, Dawson Engler
Stanford University

The problem
 Many storage systems, one main contract

 You give it data. It does not lose or corrupt data.
 File systems, RAID, databases, version control, ...
 Simple interface, difficult implementation: failure

 Wonderful tension for bug finding
 Some of the most serious errors possible.
 Very difficult to test: system must *always*

recover to a valid state after any crash
 Typical: inspection (erratic), bug reports (users

mad), pull power plug (advanced, not systematic)Goal: comprehensively check many storage
systems with little work

EXPLODE summary

 Comprehensive: uses ideas from model checking

 Fast, easy
 Check new storage system: 200 lines of C++ code
 Port to new OS: 1 device driver + optional instrumentation

 General, real: check live systems.
 Can run (on Linux, BSD), can check, even w/o source code

 Effective
 checked 10 Linux FS, 3 version control software, Berkeley DB,

Linux RAID, NFS, VMware GSX 3.2/Linux
 Bugs in all, 36 in total, mostly data loss

 This work [OSDI’06] subsumes our old work FiSC [OSDI’04]

Checking complicated stacks

 All real

 Stack of storage
systems
 subversion: an

open-source
version control
software

 User-written
checker on top

 Recovery tools run
after EXPLODE-
simulated crashes

subversion
checker

NFS client

NFS server

loopback

JFS

software
RAID1

checking
disk

subversion

checking
disk

%fsck.jfs

%mdadm --assemble
 --run
 --force
 --update=resync
%mdadm -a

crash
disk

%svnadm.recover

crash
disk

ok?

crash

Outline

 Core idea

 Checking interface

 Implementation

 Results

 Related work, conclusion and future work

The two core eXplode principles

 Expose all choice:

 Exhaust states:

 Result of systematic state exhaustion:
 Makes low-probability events as common as high-

probability ones. Quickly hit tricky corner cases.

When execution reaches a point in program that can do
one of N different actions, fork execution and in first
child do first action, in second do second, etc.

Do every possible action to a state before exploring
another.

Core idea: explore all choices

 Bugs are often triggered by corner cases

 How to find: drive execution down to these
tricky corner cases

When execution reaches a point in program that can do
one of N different actions, fork execution and in first
child do first action, in second do second, etc.

External choices

cre
at

/root

ba

c

link

unlink

mkdirrmdir

…

…

 Fork and do every possible operation

Explore generated
states as well

Speed hack: hash states, discard if seen,
prioritize interesting ones.

Internal choices

cre
at

/root

ba

c
Buffer cache misses

kmalloc returns NULL

 Fork and explore all internal choices

How to expose choices

 To explore N-choice point, users instrument
code using choose(N)

 choose(N): N-way fork, return K in K’th kid

 We instrumented 7 kernel functions in Linux

void* kmalloc(size s) {
 if(choose(2) == 0)
 return NULL;
 … // normal memory allocation
}

Crashes

cre
at

/root

ba

c

 Dirty blocks can be written in any order, crash
at any point

Write all
subsets

fsck

fsck

fsck

buffer
cache

check

check

check

Users write code to
check recovered FS

Outline

 Core idea: exhaustively do all verbs to a state.
 external choices X internal choices X crashes.
 This is the main thing we’d take from model checking
 Surprised when don’t find errors.

 Checking interface
 What EXPLODE provides
 What users do to check their storage system

 Implementation

 Results

 Related work, conclusion and future work

What EXPLODE provides

 choose(N): conceptual N-way fork, return K in
K’th child execution

 check_crash_now(): check all crashes that
can happen at the current moment
 Paper talks about more ways for checking crashes
 Users embed non-crash checks in their code.

EXPLODE amplifies them

 error(): record trace for deterministic replay

 Example: ext3 on RAID

 checker: drive ext3 to do something: mutate(),
then verify what ext3 did was correct: check()

 storage component: set up, repair and tear down
ext3, RAID. Write once per system

 assemble a checking stack

What users do

Ext3

Raid

RAM Disk RAM Disk

FS checker

 FS Checker
 mutate

 ext3
Component

 Stack
choose(4)

mkdir rmdirrm filecreat file

…/0 2 3 41 …/0 2 3 41sync fsync

 FS Checker
 check

 ext3
Component

 Stack

Check file exists

Check file
contents match

Even trivial checkers work:finds JFS
fsync bug which causes lost file.

Checkers can be simple (50 lines) or
very complex(5,000 lines)

Whatever you can express in C++, you
can check

 FS Checker

 ext3
Component

 Stack

 storage component: initialize,
repair, set up, and tear down your
system
 Mostly wrappers to existing utilities.

“mkfs”, “fsck”, “mount”, “umount”
 threads(): returns list of kernel

thread IDs for deterministic error
replay

 Write once per system, reuse to
form stacks

 Real code on next slide

 FS Checker

 ext3
Component

 Stack

Ext3

Raid

RAM Disk RAM Disk

 FS Checker

 ext3
Component

 Stack

 assemble a checking stack

 Let EXPLODE know how
subsystems are connected
together, so it can initialize, set
up, tear down, and repair the
entire stack

 Real code on next slide

Ext3

Raid

RAM Disk RAM Disk

 FS Checker

 ext3
Component

 Stack

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a system

 Implementation
 Checkpoint and restore states
 Deterministic replay
 Checking process
 Checking crashes
 Checking “soft” application crashes

 Results

 Related work, conclusion and future work

Recall: core idea
 “Fork” at decision point to explore all choices

state: a snapshot of
the checked system

…

How to checkpoint live system?

S0

S

…
 Hard to checkpoint live

kernel memory
 VM checkpoint heavy-weight

 checkpoint: record all
choose() returns from S0

 restore: umount, restore
S0, re-run code, make K’th
choose() return K’th
recorded values

 Key to EXPLODE approach

2

3

S = S0 + redo choices (2, 3)

Deterministic replay
 Need it to recreate states, diagnose bugs

Sources of non-determinism

 Kernel choose() can be called by other code
 Fix: filter by thread IDs. No choose() in interrupt

 Kernel scheduler can schedule any thread
 Opportunistic hack: setting priorities. Worked well
 Can’t use lock: deadlock. A holds lock, then yield to B

 Other requirements in paper

 Worst case: non-repeatable error. Automatic
detect and ignore

EXPLODE: put it all together

EXPLODE Runtime

M
odified Linux

K
ernel

Model
Checking

Loop

C
hecking S

tack

FS Checker

Ext3 Component

Raid Component

Ext 3

Raid

EKM

RAM Disk RAM Disk

void*
kmalloc (size_t s, int fl) {
 if(fl & __GFP_NOFAIL)
 if(choose(2) == 0)
 return NULL;
 ….

B
uffer

C
ache

?

?

Hardware

EXPLODE User code EKM = EXPLODE
device driver

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a
system

 Implementation

 Results
 Lines of code
 Errors found

 Related work, conclusion and future work

EXPLODE core lines of code

3 kernels: Linux 2.6.11, 2.6.15, FreeBSD 6.0.
FreeBSD patch doesn’t have all functionality yet

User-level code

Kernel patch
 1,915 (+ 2,194 generated)Linux

Lines of code

6,323

1,210FreeBSD

Checkers lines of code, errors found

16931Subversion

366,0081,115Total

1FS54
VMware

GSX/Linux

4FS34NFS

2FS + 137144RAID

Transparent
subsystems

620282Berkeley DB

312430“EXPENSIVE”

16827CVS

Storage
applications

185,477744/1010 file systems

BugsCheckerComponentStorage System Checked

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check
new storage system

 Implementation

 Results
 Lines of code
 Errors found

 Related work, conclusion and future work

FS Sync checking results

App rely on sync operations, yet they are broken

indicates a failed check

ext2 fsync bug

Mem

Disk

A

B

Atruncate A

creat B

write B

fsync B …
…

B

Events to trigger bug

fsck.ext2

Bug is fundamental due to ext2 asynchrony

crash!

B

Indirect block

Classic: mishandle crash during recovery
 ext3, JFS, reiserfs: All had this bug

 Result: can lose directories (e.g., “/”)
 Root cause: the same journalling mistake.

 To do a file system operation:
 Record effects of operation in log (“intent”)
 Apply operation to in-memory copy of FS data
 Flush log (so know how to fix on-disk data). wait()
 Flush data.
 All get this right.

 To recover after crash
 Replay log to fix FS. Flush FS changes to disk.
 wait()
 Clear log. Flush to disk.
 All get this wrong.

ext3 Recovery Bug

recover_ext3_journal(…) {
 // …
 retval = -journal_recover(journal)
 // …
 // clear the journal
 e2fsck_journal_release(…)
 // …
}

journal_recover(…) {
 // replay the journal
 //…
 // sync modifications to disk
 fsync_no_super (…)
}

 Code was directly adapted from the kernel
 But, fsync_no_super was defined as NOP

// Error! Empty macro, doesn’t sync data!
#define fsync_no_super(dev) do {} while (0)

 Many subsystems intend to invisibly augment storage
 Easy checking: checker run with and without = equivalent.
 Sync-checker on NFS, RAID or VMM should be same as not
 Ran it. All are broken.

 Linux RAID:
 Does not reconstruct bad sectors: marks disk as faulty,

removes from RAID, returns error.
 Two bad sectors, two disks: almost all reconstruct fail

 NFS:
 write file, then read through hardlink = different result.

 GSX/Linux:
 No matter how you configure: guest OS gets lied to about

when data hits disk. Result: bugs you can’t get on raw HW.

Easy checking of “transparent”
subsystems

 Version control: cvs, subversion, “ExPENsive”
 Test: create repository with single file, checkout, modify,

commit, use eXplode to crash.
 All do careful atomic rename, but don’t do fsync!
 Result: all lose commited data. Bonus: crash during

“exPENsive” merge = completely wasted repo

 BerkeleyDB:
 Test: loop does transaction, choose() to abort or commit.
 After crash: all (and only) commited transactions in DB.
 Result: commited get lost on ext2, crash on ext3 can leave

DB in unrecoverable state, uncommited can appear after
crash on ext2, ext3, jfs.

Even simple test drivers find bugs

Classic app mistake: “atomic” rename

 All three version control app. made this mistake

 Atomically update file A to avoid corruption

 Problem: rename guarantees nothing abt. Data

fd = creat(A_tmp, …);
write(fd, …);

close(fd);
rename(A_tmp, A);

fsync(fd); // missing!

Outline

 Core idea: explore all choices

 Checking interface: 200 lines of C++ to check a
system

 Implementation

 Results: checked many systems, found many
bugs

 Related work, conclusion and future work

Related work

 FS testing
 IRON

 Static analysis
 Traditional software model checking
 Theorem proving
 Other techniques

Conclusion and future work

 EXPLODE
 Easy: need 1 device driver. simple user interface
 General: can run, can check, without source
 Effective: checked many systems, 36 bugs

 Current work:
 Making eXplode open source
 Junfeng on academic job market.

 Future work:
 Work closely with storage system implementers to check

more systems and more properties
 Smart search
 Automatic diagnosis
 Automatically inferring “choice points”
 Approach is general, applicable to distributed systems,

secure systems, …

Automatically Generating Malicious
Disks using Symbolic Execution

Junfeng Yang, Can Sar, Paul Twohey,
Cristian Cadar and Dawson Engler

Stanford University

Trend: mount untrusted disks

 Removable device (USB stick, CD, DVD)
 Let untrusted user mount files as disk

images

File systems vulnerable to malicious disks

 Privileged, run in kernel
 Not designed to handle malicious disks.

FS folks not paranoid (v.s. networking)
 Complex structures (40 if statements in

ext2 mount)  many corner cases.
Hard to sanitize, test

 Result: easy exploits

Generated disk of death
(JFS, Linux 2.4.19, 2.4.27, 2.6.10)

Create 64K file, set 64th sector to above. Mount.
And PANIC your kernel!

FS security holes are hard to test

 Manual audit/test: labor, miss errors
 Random test: automatic. can’t go far

 Unlikely to hit narrow input range.
 Blind to structures

int fake_mount(char* disk) {
 struct super_block *sb = disk;
 if(sb->magic != 0xEF53) //hard to pass using random
 return -1;
 // sb->foo is unsigned, therefore >= 0
 if(sb->foo > 8192)
 return -1;
 x = y/sb->foo; //potential division-by-zero
 return 0;
}

Soln: let FS generate its own disks

 EXE: Execution generated Executions [Cadar
and Engler, SPIN’05] [Cadar et al Stanford TR2006-1]
 Run code on symbolic input, initial value = “anything”
 As code observes input, it tells us values input can be
 At conditional branch that uses symbolic input, explore

both
 On true branch, add constraint input satisfies check
 On false that it does not

 exit() or error: solve constraints for input.

 To find FS security holes, set disk symbolic

Key enabler: STP constraint solver

 Handles: All of C (except floating point)
 Memory, arrays, pointers, updates, bit-

operations.
 Full bit-level accurate precision. No

approximations.
 One caveat: **p, where p is symbolic.

 Written by David Dill and Vijay Ganesh.
 Destroy’s previous CVCL system
 10-1000+x faster, 6x smaller.
 Much simpler, more robust

A galactic view

EXE-cc instrumented

1

2

3

4 5

Unmodified Linux

ext3

User-Mode-
Linux

Outline

 How EXE works
 Apply EXE to Linux file systems
 Results

The toy example

int fake_mount(char* disk) {
 struct super_block *sb = disk;
 if(sb->magic != 0xEF53) //hard to pass using random
 return -1;
 // sb->foo is unsigned, therefore >= 0
 if(sb->foo > 8192)
 return -1;
 x = y/sb->foo; //potential division-by-zero
 return 0;
}

Concrete v.s. symbolic execution

sb->magic != 0xEF53 return -1

Concrete: sb->magic = 0xEF53, sb->foo = 9000

sb->foo > 8192 return -1

x=y/sb->foo

return 0

Concrete v.s. symbolic execution

sb->magic != 0xEF53 return -1

Symbolic: sb->magic and sb->foo unconstrained

sb->foo > 8192 return -1

x=y/sb->foo

return 0

sb->magic != 0xEF53

sb->magic == 0xEF53
sb->foo > 8192

sb->magic == 0xEF53
sb->foo < 8192
x == y/sb->foo

The toy example: instrumentation

int fake_mount(char* disk) {
 struct super_block *sb = disk;

 if(sb->magic != 0xEF53)
 return -1;

 if(sb->foo > 8192)
 return -1;

 x = y/sb->foo;
 return 0;
}

int fake_mount_exe(char* disk) {
 struct super_block *sb = disk;
 if(fork() == child) {
 constraint(sb->magic != 0xEF53);
 return -1;
 } else
 constraint(sb->magic == 0xEF53);

 if(fork() == child) {
 constraint(sb->foo > 8192);
 return -1;
 } else
 constraint(sb->foo <= 8192);

 check_symbolic_div_by_zero(sb->foo);
 x=y/sb->foo;
 return 0;
}

How to use EXE

 Mark disk blocks as symbolic
 void make_symbolic(void* disk_block, unsigned

size)

 Compile with EXE-cc (based on CIL)
 Insert checks around every expression: if operands

all concrete, run as normal. Otherwise, add as
constraint

 Insert fork when symbolic could cause multiple acts

 Run: forks at each decision point.
 When path terminates, solve constraints and

generate disk images
 Terminates when: (1) exit, (2) crash, (3) error

 Rerun concrete through uninstrumented Linux

Why generate disks and rerun?

 Ease of diagnosis. No false positive
 One disk, check many versions
 Increases path coverage, helps

correctness testing

Mixed execution

 Too many symbolic var, too many constraints
 constraint solver dies

 Mixed execution: don’t run everything
symbolically
 Example: x = y+z;
 if y, z both concrete, run as in uninstrumented
 Otherwise set “x == y + z”, record x = symbolic.

 Small set of symbolic values
 disk blocks (make_symbolic) and derived

 Result: most code runs concretely, small slice
deals w/ symbolics, small # of constraints
 Perhaps why worked on Linux mounts, sym on

demand

Symbolic checks

int fake_mount(char* disk) {
 struct super_block *sb = disk;

 if(sb->magic != 0xEF53)
 return -1;

 if(sb->foo > 8192)
 return -1;

 x = y/sb->foo;
 return 0;
}

int fake_mount_exe(char* disk) {
 struct super_block *sb = disk;
 if(fork() == child) {
 constraint(sb->magic != 0xEF53);
 return -1;
 } else
 constraint(sb->magic == 0xEF53);

 if(fork() == child) {
 constraint(sb->foo > 8192);
 return -1;
 } else
 constraint(sb->foo <= 8192);

 x=y/sb->foo;
 return 0;
}

check_symbolic_div_by_zero(sb->foo);

Symbolic checks

 Key: Symbolic reasons about many
possible values simultaneously. Concrete
about just current ones (e.g. Purify).

 Symbolic checks:
 When reach dangerous op, EXE checks if any

input exists that could cause blow up.
 Builtin: x/0, x%0, NULL deref, mem overflow,

arithmetic overflow, symbolic assertion

Check symbolic div-by-0: x/y, y symbolic

 Found 2 bugs in ext2, copied to ext3

void check_sym_div_by_zero (y) {
 if(query(y==0) == satisfiable)

if(fork() == child) {
constraint(y != 0);
return;

} else {
constraint(y == 0);
solve_and_generate_disk();
error(“divided by 0!”)

}
}

More on EXE ([CCS’06])

 Handling C constructs
 Casts: untyped memory
 Bitfield
 Symbolic pointer, array index: disjunctions

 Limitations
 Constraint solving NP
 Uninstrumented functions
 Symbolic double dereference: concretize
 Symbolic loop: heuristic search

Outline

 How EXE works
 Apply EXE to Linux file systems
 Results

Results

 Checked ext2, ext3, and JFS mounts
 Ext2: four bugs.

 One buffer overflow  read and write
arbitrary kernel memory (next slide)

 Two div/mod by 0
 One kernel crash

 Ext3: four bugs (copied from ext2)
 JFS: one NULL pointer dereference
 Extremely easy-to-diagnose: just

mount!

Simplified: ext2 r/w kernel memory

int ext2_overflow(int block, unsigned count) {
 if(block < lower_bound

|| (block+count) > higher_bound)
return -1;

 while(count--)
bar(block++);

}
void bar(int block) {
 // B = power of 2
 int block_group = (block-A)/B;
 …
 //array length is 8
 … = array[block_group]
 …
 array[block_group] = …
 …
}

block is symbolic

block + count can overflow
and becomes negative!

block_group is symbolic

block can be large!
Symbolic read off bound

Symbolic write off bound

Pass block to bar

Related Work

 FS testing
 Mostly stress test for functionality bugs
 Linux ISO9660 FS handling flaw, Mar 2005

(http://lwn.net/Articles/128365/)

 Static analysis
 Model checking

 Symbolic model checking

 Input generation
 Using symbolic execution to generate testcases

BPF, Linux packet filters

 “We’ll never find bugs in that”
 heavily audited, well written open source

 Mark filter & packet as symbolic.
 Symbolic = turn check into generator
 Safe filter check: generates all valid filters of

length N.
 BPF Interpreter: will produce all valid filter

programs that pass check of length N.
 Filter on message: generates all packets that

accept, reject.

Results: BPF, trivial exploit.

Linux Filter

 Generated filter:

 offset=s[0].k passed in; len=2,4

Conclusion [Oakland’06, CCS’06]

 Automatic all-path execution, all-value
checking

 Make input symbolic.
 Run code.
 If operation concrete, do it.
 If symbolic, track constraints.
 Generate concrete solution at end (or on way),

feed back to code.

 Finds bugs in real code.
 Zero false positives.

Exponential forking?

 Only fork on symbolic branch
 Mixed execution: to reduce # of symbolic var, don’t

run everything symbolically. Mix concrete execution
and symbolic execution
 Example: x = y+z;
 if y, z both concrete, run as in uninstrumented
 Otherwise set “x == y + z”, record x = symbolic.

 Small set of symbolic values
 disk blocks (make_symbolic) and derived

 Result: most code runs concretely, small slice deals
w/ symbolics, small # of constraints
 Perhaps why worked on Linux mounts, sym on demand

