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Abstract
Present day applications that require reliable data stor-

age use one of five commonly available RAID levels to
protect against data loss due to media or disk failures.
With a marked rise in the quantity of stored data and no
commensurate improvement in disk reliability, a greater
variety is becoming necessary to contain costs. Adding
new RAID codes to an implementation becomes cost
prohibitive since they require significant development,
testing and tuning efforts. We suggest a novel solution
to this problem: a generic RAID Engine and Optimizer
(REO). It is generic in that it works for any XOR-based
erasure (RAID) code and under any combination of sec-
tor or disk failures. REO can systematically deduce a
least cost reconstruction strategy for a read to lost pages
or for an update strategy for a flush of dirty pages. Us-
ing trace driven simulations we show that REO can au-
tomatically tune I/O performance to be competitive with
existing RAID implementations.

1 Introduction
Until recently, protecting customer data from loss due
to media failure and/or device failures meant storing it
using one of five RAID levels [32]. To handle higher
performance and reliability needs of customers, storage
vendors have deployed hierarchical codes like RAID 51.
These codes are offered as a result of juggling the in-
herent risk-reward trade-off from a software engineering
standpoint and not out of any merits, whether in stor-
age efficiency or performance. Since these codes can
be composed by re-using e.g., hierarchically, the basic
RAID set, source code added was minimal. This meant
that product marketing needs could be satisfied with low
test expense.

There were good reasons why only a few RAID codes
were supported in traditional RAID controller imple-
mentations (firmware). Firmware complexity grows
with every supported RAID code, increasing develop-
ment and test costs. When firmware becomes a large
collection of specific cases it becomes hard to do path
length optimizations. From a software maintainability
standpoint, a collection of if... then... else... code blocks
makes firmware readability harder and more prone to
bugs. Each roll out of a RAID code potentially requires
field upgrades.

Since deploying firmware changes is painful there is a
general mindset to avoid it at all costs. However, re-
cent trends in storage technology and customer focus
are forcing a re-evaluation. First, no single RAID code
satisfies all aspects of data storage. Supporting a vari-
ety of RAID codes becomes valuable for effective in-
formation lifecyle management where data should be
stored at performance, reliability and efficiency levels
that are proportionate to its business value. Second,
the nature of reference data is that while the dataset
grows from gigabytes to petabytes its reliability must re-
main relatively constant. Using the same RAID code
for all sizes is not practical since disk failures grow with
capacity[8, 36]. A third reason is the growing popular-
ity of modular systems where bricks [17] are the build-
ing blocks to systems that scale in capacity and perfor-
mance [36, 31, 2, 37]. Some of these systems [11] even
simplify management using fail-in-place strategies. An-
other trend is to use low cost serial ATA (SATA) disks
in building large systems [26]. SATA disks have hard
error rates that are 10x higher than comparable SCSI
disks [10, 18] while being 30–50% cheaper. Providing
high data reliability using less reliable disks requires a
greater variety of RAID codes.

In light of the tension to provide a variety of RAID
codes without compromising the quality, performance,
and maintainability of the firmware, we can draw up a
list of requirements for an ideal solution: (1) It should al-
low for adding new RAID codes without firmware com-
plexity, (2) It should easily support popular RAID codes
e.g., XOR-based ones which can be implemented effi-
ciently in hardware and/or software, (3) It should auto-
matically handles any RAID code related error handling
e.g., read error to a failed sector or disk, (4) Since error
handling constitutes a large fraction of any RAID im-
plementation, ideally, the solution should fold fault-free
and fault-ridden cases into common code paths. (4) It
should simplify nested error paths e.g., in the process
of reconstructing a lost block due to a previous failure,
a new sector or disk failure is discovered. While the
successful completion can occur only if the RAID code
permits, an ideal solution must figure out automatically
how to do reconstructions. (5) It should automatically
tune I/O performance by leveraging dynamic state e.g.,
cached pages. (6) It should offer informal arguments for
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correctness, if not formally provable.
Our contributions
We present our efforts at building a generic RAID En-

gine and Optimizer (REO) fits the above requirements.
It is generic in that it works for any XOR-based erasure
(RAID) codes (including N-way mirroring) and under
any combination of sector or disk failures. In a typi-
cal deployment REO routines are invoked by the block
data cache in the I/O stack to read, write, scrub, re-
build, or migrate data stored on disks using RAID codes.
REO can systematically deduce reconstruction and up-
date strategies and execute them. In addition, an online
optimizer within REO can select a least cost strategy for
every read or write based on the current cache content.
This optimizer can be configured to minimize any sys-
tem level objective e.g., disk I/O or memory bus usage.
By parameterizing fault state, REO can eliminate myr-
iads of cases including those involving nested recovery
into a single code path. Finally, by building on results
that have been formally proved, we can informally ar-
gue about the correctness of REO.

This paper is structured into a high level overview of
REO (Section 3) followed by detailed description (Sec-
tions 4- 6). While these sections focus on read and
write operations, Section 7 discusses scrub, rebuild, and
migrate. An evaluation of the efficacy of optimization
is discussed in Section 8. Some adaptations to future
trends in I/O architecture are presented in Section 9.

2 Related work
There has been no dearth of RAID codes proposed until
now e.g., EVENODD[3], generalized EVENODD [4],
X-code [42], RDP [12], WEAVER [19]. Recently, there
have been a few non-XOR code implementations [8, 33]
but these have remained niches since they offer no spe-
cial advantage over the simplicity of XOR based codes.

One past effort that has focused on providing
firmware environments that permit rapid prototyping
and evaluation of redundant disk array architectures was
RAIDframe[14]. It modularized the basic functions that
differentiate RAID architectures — mapping, encoding
and caching. Such a decomposition allowed each aspect
to be modified independently creating new designs. Ar-
ray operations were modeled as directed acyclic graphs
(DAGs), which specified the architectural dependencies
(and execution) between primitives. While it allowed
a structure to specify exception handling, RAIDframe
lacked any ability to automatically tune performance.

Recently, RAID system-on-chip (SOC) prod-
ucts [27], [6] and [25] have become available. The
Aristos SOC, which exemplifies this category, contains
an embedded processor, DMA/XOR engines and
host and disk interface logic. Since the processor is
programmable it is conceivable that they could support

a variety of RAID codes. However, the problem with
it is that all error paths must be specified as callbacks
(much like RAIDframe) which must be written by the
developer. Further, it is unclear to us how automated (if
at all) the performance tuning is.

3 Overview
REO is a set of routines invoked by a (block or file) data
cache when reading or writing data to a RAID coded vol-
ume e.g., RAID 1, RAID 5, EVENODD, etc., as shown
in Figure 1. In it, applications generate read and write
requests to the I/O subsystem that are serviced by a data
cache. With write-back caching, application writes are
copied to pages in the data cache and marked dirty. At a
later time, as determined by the page replacement policy,
dirty pages are flushed (written out) to disks. With read
caching, when possible, application reads are served out
of the data cache. On a read miss, the cache first fetches
the data from the disk(s) and then, returns it to the ap-
plication. Most data caches dynamically partition write-
back and read pages to handle a variety of application
workloads. In many RAID controllers and filers [23] the
write-back cache is protected from unexpected power
failure.

REO

Data cache

Application

...

read, write

read, flush (write),
rebuild, migrate, scrub

Device driver

Disk read, disk-write

Device driver

Application
Application

Figure 1: Figure shows a typical deployment of REO
within the I/O stack. One or more applications generate
read or write calls to RAID coded volumes. These re-
quests are first attempted to be served by the block data
cache. If a read miss occurs or a page needs to be flushed
then, REO routines are invoked. REO routines include
RAID housekeeping functions like rebuild, migrate and
scrub. These routines can support any RAID code, under
any set of sector or disk failures while simultaneously
considering the current cache state.
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3.1 Use cases for REO
REO routines are invoked by the data cache in four sce-
narios:

1. Read on a miss (reo_read): The virtualized
block address of the requested page(s) is translated
to its physical block address within the identified
disk. In the fault-free case, disk read(s) is issued. If
that disk (or particular sectors within it) has failed
then, a reconstruction must be done by REO by
reading related blocks according to the RAID code.
Sometimes, reconstruction is impossible in which
case a read error is returned.

2. Flush a dirty page (reo_write): When the cache
replacement policy has picked a victim (dirty) page
to be written to the disk, the virtual block address of
the victim is translated to its physical block address
within the identified disk. REO must identify the
dependent parity block(s) from the RAID code in-
formation and figure out how to update them. This
use case covers write-through writes e.g., when
write-back caching is disabled.

3. Rebuild a lost page (reo_rebuild): Generated
by an internal housekeeping routine to repair lost
data (due to sector or disk failure), REO must first
reconstruct the lost page using the redundant infor-
mation within the RAID code and then, write it to a
new location. Rebuild can be viewed as a compos-
ite operation – reconstruct read followed by write.

4. Migrate a page (reo_migrate): Triggered by
an administrative action, migration is invoked to
change the RAID code of a set of pages. Migra-
tion includes varying the span (rank) of disks (8-
disk RAID 5 to 5-disk RAID 5) and changing the
RAID code (RAID 5 to EVENODD). Like rebuild,
migration can be viewed as a composition – read,
using the old code, followed by write, using the
new code.

Since rebuild and migrate are compositions, we focus
primarily on describing reo_read and reo_write
operations. We defer discussing reo_rebuild and
reo_migrate to Section 7.

3.2 Two components of REO
REO routines can be functionally partitioned into two
components: a RAID Engine which figures out what is
to be done, and an Execution Engine which figures out
how it gets done. Figure 2 sketches this breakdown. The
RAID engine transforms the input arguments into an I/O
plan which comprises a set of blocks to be read, a set to
be XOR-ed, and a set to be written. Such an I/O plan is
input to the execution engine which issues the necessary
disk reads and writes and XOR operations.

In addition to the basic operation type (reo_read or

Operation + arguments
(read, write, rebuild,migrate)

RAID Engine

IO plan = (Read-set, XOR-set, Write-set)

Execution
Engine

Disk reads, writes

RAID Code, G
(generator matrix)

Layout
(Rotation, Stripe size,

element size…)

Clean and dirty pages in

W-neighbourhood, cv, dv

Optimization objective
(Minimize disk IO,

minimize memory BW,...)

If error due to
(new) disk or
sector failure

Fault configuration, f
(Disk/sectors failed)

Modify
Re-submitOptimizer

Figure 2: Figure shows a component breakdown of REO
into a RAID Engine and Execution Engine. The RAID
Engine takes inputs to compute an I/O plan. All its in-
puts are readily available within the meta-data, system
data structures and/or cache directory. An I/O plan in-
cludes a set of pages that must be read from the disks,
a set of pages that must be XOR-ed, and a set of pages
that must be written. Depending on the inputs some of
these sets may be empty. The Execution Engine detects
and handles error handling during the execution of an
I/O plan. If it encounters any errors then, it aborts the
I/O plan, modifies the fault configuration vector, and re-
submits the operation to the RAID Engine. An online
Optimizer within the RAID Engine selects strategies that
suit a configured system level objective.

reo_write) and their arguments — the page(s) block
address, starting virtual block address, and number of
bytes to be read or written — the RAID Engine requires
the following inputs to generate the I/O plan:

• A concise description of the RAID code, available
from the meta-data.

• A description of the physical arrangement of blocks
in the RAID code called the layout, available from
the meta-data.

• A description of known sector or disk failures
called the fault configuration, available from sys-
tem managed data structures.

• A list of clean and dirty pages presently in the data
cache surronding the page(s) to be read or written,
available from the data cache directory.

A final input to the RAID Engine is a resource opti-
mization objective. This can include (but not limited to)
criteria like minimizing disk I/O or minimizing mem-
ory bus bandwidth. This input guides the Optimizer, a
component within the RAID Engine, whenever it has a
choice of strategies for any read or write.
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P2

P3

X

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Left symmetric RAID5 on 5 disks

Shaded dirty pages to be flushed
No cached pages.

Strategy A
(P1, P2, P2) = (PC, PI, PC)

Shaded pages on left to be read.
Shaded pages on right to be written.

P1

P2

P3

P1

P2

P3

Strategy B
(P1, P2, P2) = (PI, PI, PC)

Shaded pages on left to be read.
Shaded pages on right to be written.

Strategy A

Strategy B

Figure 3: Figure illustrating two (of a total of eight) strategies possible while flushing a set of dirty pages for a 5-disk
left-symmetric RAID 5 coded volume. On the left, the shaded pages show the dirty pages that are within a single
stripe neighborhood of a victim page marked“X”. On the right, we show the resulting pages that would have to be
read and written if one strategy were chosen over the other.

The Optimizer has little variety for fault-free reads
where the only reasonable option is to read the required
page directly from the appropriate disk. For writes there
can be more choices. Each choice can require a different
number of disk reads and/or XOR operations. In such
cases, the configured objective function is used by the
optimizer to guide selection.

Before starting on an I/O plan, the Execution Engine
acquires all necessary page and stripe locks. Then, it
carries out the plan in three phases: first, it submits the
disk reads (if any); next, it performs the XOR operations
(if any); finally, it submits the disk writes (if any). Dur-
ing any of these steps, if it encounters failed sectors or
disks, it re-submits the entire operation to the RAID En-
gine along with the newly discovered fault state. In Fig-
ure 2 shows this resubmission step. One advantage of
such a structure is that the recovery code is no different
from the main code path.

3.3 Supporting mirrors
One popular RAID code that, at a first glance, appears
not to be XOR-based is RAID 1 and, more generally, N-
way mirroring. However, such codes are technically de-
generate cases of XOR-based erasure codes where each
additional copy can be thought of as parity computed
from the primary copy and implicit zero entries for a
comparable erasure code (RAID 1 with RAID 5, 3-way
mirror with EVENODD). Our RAID Engine leverages
this to include support for mirrors and striped mirror
codes like RAID 10. Without loss of generality, we as-
sume that RAID codes have parity elements in the rest
of the paper.

3.4 A RAID 5 example
Before describing the construction of reo_read and
reo_write, we work through an example write that
illustrates the choices available and how different I/O

plans entail different costs in terms of disk reads and
writes and the number of XORs. Figure 3 illustrates this
example for a left-symmetric RAID 5 code. In the left
figure, say that the dirty pages within a one stripe neigh-
bourhood of the victim page (marked “X”) are shaded
grey and flushed in a single operation. There are wo
strategies possible to perform this operation (shown on
right). Each strategy is illustrated by two sets of shaded
pages — read pages on left and dirty pages on right. As-
suming that a RAID controller can coalesce requests to
contiguous blocks on a disk, the approach on the top la-
belled “Strategy A” requires 4 reads, 6 writes, and 14
pages of memory bus usage for XOR, while “Strategy
B” requires 3 reads, 6 writes, and the transfer of 15 pages
on the memory bus.

Depending on the configured system level objective
REO will choose between these two strategies. Strategy
A would be appropriate if memory bus usage were to
be minimized; Strategy B is better for disk I/O. The two
strategies shown in Figure 3 are from a possible eight.

4 RAID engine
In order to describe the full construction of the RAID
Engine we first discuss each of its inputs in greater de-
tail.

4.1 Inputs

4.1.1 RAID code representation
In XOR-based erasure codes (RAID codes) any redun-
dant bit is a XOR of a number of data bits. For effi-
ciency, this relationship is applied to fix-size chunks of
bits called elements. An element typically consists of
one or more consecutive pages on disk. Each page is
made up of multiple sectors. An element can have ei-
ther data or parity pages but not a mix of the two. A
stripe is the set of data elements and all related par-
ity elements. A parity element in a stripe is a XOR of
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Figure 4: Physical arrangement of a stripe for a 5-disk
2-fault tolerant EVENODD code. Each strip contains 2
elements. There are 6 data and 4 parity elements in this
stripe.





















D1 D2 D3 D4 D5 D6 P1 P2 Q1 Q2
1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 1 0





















Figure 5: Generator matrix G for a 5-disk 2-fault tolerant
EVENODD corresponding to its physical arrangement.
The vertical lines mark column blocks that correspond to
elements within a single strip. Here, the parity arrange-
ment vector is (7,8,9,10)t .

some subset of data elements within that stripe. We say
that the parity element depends on those data elements.
The number of elements that comprise a stripe depends
both on the number of disks (called rank) and the coding
scheme. For example, the 2-fault tolerant EVENODD
code over 5 devices has 10 elements in each stripe (Fig-
ure 4). Within each stripe, e consecutive elements are
arranged contiguously on each storage device forming a
strip. For simplicity, we assume codes that have uniform
sized elements and strips.

The matrix representation of a RAID code is obtained
by expressing the XOR relationships between data ele-
ments and parity elements as a system of equations [28].
The matrix from such an organization is called its gen-
erator matrix, G. It is a N ×M binary matrix, where N
is the number of data elements in a stripe and M is the
total number of elements in a stripe (data and parity).
A column of G corresponds to data or parity element in
the stripe. A column component of G corresponding to
a data element will usually have a single 1. For a par-
ity element, the corresponding column component will
have multiple 1’s, one for each dependent data element.

If each element is k pages then, G can be rewritten
in terms of pages instead of elements by replacing each
element entry by an identity matrix of size k. Without
loss of generality and for a simpler exposition we as-
sume that each element corresponds to a single page and
use the terms elements and pages interchangeably.

4.1.2 Layout representation

Layout is the physical (on disk) arrangement of data and
parity pages within a stripe. Besides configuration pa-
rameters like the size of each page, much of the layout
can be discerned from the generator matrix G for the
RAID code and e, the number of pages per strip. As
mentioned in the previous section, G can be visualized as
blocks of e columns, each block corresponding to physi-
cal arrangement of a strip on the disk. When parity pages
are interspersed with data pages the layout is interleaved.
An example of an RAID code with interleaved layout is
the X-Code proposed by Xu and Bruck [42] (Figure 8).
Examples of codes with non-interleaved layouts include
RAID 5 and EVENODD.

For convenience, it is worthwhile to summarize the
location of parity pages within a stripe in a vector of col-
umn indicies corresponding to parity pages in G. We
call this vector the parity arrangement vector of dimen-
sion 1× (M−N).

To allow for even distribution of load across all disks
many layouts are cyclically shifted i.e., columns of the
basic codeword are rotated distributing the parity ele-
ments evenly on all disks. This shifting can be repre-
sented by a signed number s that defines the cyclical
shift of strips per stripe. The sign encodes the shift direc-
tion - negative for left-symmetric and positive for right-
symmetric. Some layouts have no cyclical shifting an
example of which is the WEAVER family described in
Hafner [19] (Figure 8).

4.1.3 Fault representation

The failure state of a page can be derived from two
sources - failure state of the disks and the bad sector ta-
ble. Both kinds of failure might be either discovered or
obtained from system meta-data. We encode the failure
state of a set of n pages as the fault configuration vector f
of dimension 1×n, where an entry for page i is marked 1
if that page has failed, otherwise 0. The fault configura-
tion vector gets modified if new errors are discovered in
while executing an I/O plan. This is shown in Figure 2.

4.1.4 Cache representation

In a write-back cache, the victim (dirty) page is deter-
mined by its replacement policy. While flushing the vic-
tim it is efficient to simultaneously flush dirty pages that
belong to the same stripe [38]. In REO, we extend this
idea by defining a W -neighborhood for a victim page.
This is defined as the set of all pages, clean or dirty, in
the data cache that are in a 2W + 1 stripe window cen-
tered around the victim’s stripe. This is shown in Fig-
ure 6. By choosing W > 0, REO can batch flush requests
of multiple pages thereby improving the throughput of
the disks.
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Figure 6: Figure sketches a W -neighborhood of a vic-
tim page chosen by the cache replacement policy based
on some page list (shown at the top). All dirty pages
within this 2W + 1 stripe window (centered around the
victim’s stripe) are written collectively at a time. Pres-
ence of clean pages within the window are leveraged to
reduce I/O or XOR.

The set of pages in the W -neighborhood of a victim
page can be partitioned into clean and dirty page sets.
Each set can be encoded as a binary vector, with a 1
denoting the page in cache. We denote the two vectors -
the clean data vector cv and the dirty data vector dv.

For write-through operations 0-neighborhood is used.

4.2 I/O plan output
As Figure 2 shows, an I/O plan is output by the RAID
Engine based on the inputs we have described. Formally,
an I/O plan is a 3-tuple (r,X ,w). r is a binary vector
encoding the set of disk read operations necessary; 1 de-
noting that that page needs to be read. Similarly, w is
a binary vector encoding the set of disk write operations
necessary. X is the set of XOR operations, each of which
is a list of pages to be XOR-ed giving a resultant data or
parity page. X can be encoded as a square matrix of di-
mension M×M where a column component i describes
the set of pages to be XOR-ed to compute parity page i.

4.3 REO read
If the pages needed can be read from good disk(s) then,
it is trivial to set r to the corresponding pages on those
disk(s). In this case both X and w are zero.

The challenging case for read is when reconstruction
is needed due to sector or disk failures. To derive a re-
construction strategy we employ the scheme described
by Hafner et al. [7]. For completeness, we summarize
their technique. Starting from the generator matrix G, a
modified matrix Ĝ is derived as follows: for every failed
sector, the entries corresponding to that column in G are
zeroed; for every failed disk, the columns corresponding

to pages on disk are zeroed. Formally, Ĝ is computed as
follows, Ĝ = G(IM − diag(f)), where IM is the identity
matrix of size M and diag(f) is the matrix derived by ap-
plying the fault configuration vector f as the diagonal of
the M×M matrix.

Next, using a variant of Gaussian elimination, a
pseudo-inverse R (Ĝ−1) is computed. R is of dimension
M ×N where the column component i corresponds to a
description of the set of surviving pages (data or parity)
that must be read and XOR-ed to reconstruct data page
i.

Two aspects of this scheme, both of which are dis-
cussed and proved by Hafner et al. [7], are central to
the RAID Engine’s construction. The first is a result
that shows that the pseudo-inverse technique will always
find, if the RAID code permits, a reconstruction scheme
using only the surviving pages (Theorem 1 in that ref-
erence). The second aspect is the non-uniqueness of R.
From linear algebra, since Ĝ describes an over-specified
system of equations, its inverse will not be unique. Each
pseudo-inverse of Ĝ defines a read strategy. Given a re-
source optimization objective, an online optimizer can
pick a suitable strategy and its relevant pseudo-inverse
R. Column components of R that correspond to lost and
required pages are extracted to r and X . Since some of
the required pages might already be in cache, r should
be logically AND-ed with the clean cache vector cv to
yield the set of pages that the Execution Engine must
read from disk. Note that in the case of reconstruct reads,
w is zero.

4.4 REO write

4.4.1 Identifying affected parity pages

Recollect that the victim page to be written out is ex-
panded to include the W -neighborhood of dirty pages.
The dirty data vector dv is the set of pages to be written
out including the victim. In any RAID code the changed
content of data pages must be reflected to its dependent
parity pages. Consequently, the first step is to identify
all dependent parity pages. This can be determined by
logically AND-ing the dirty data vector with each col-
umn component of a parity page in Ĝ. Every resultant
non-zero vector implies that the surviving parity page
must be updated as part of writing dv. Parity pages with
resulting zero column implies either that the parity page
is unaffected or that the parity page cannot be written
because of a sector or disk failure.

In this step we encode the list of affected parity pages
as a binary vector where an entry for a parity page is set
to 1 if that page is affected, 0 otherwise. We denote this
as the affected parity vector.
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4.4.2 Selecting a write strategy

The next step is to pick how each affected parity page
is to be updated. In RAID 5 any parity element can be
updated using one of two approaches — parity incre-
ment (PI) or parity compute (PC). With PI (a.k.a. read-
modify-write), the RAID controller first reads on-disk
versions of the modified data and parity pages; computes
the parity difference between the new and old version of
the data page and applies this increment (delta parity)
to the old parity to compute the new parity. In PC, it
reads all unmodified data pages from disk that a parity
page depends on, XORs them with the dirty pages and
computes the parity page.

The problem is how to generalize this for any RAID
code under any fault configuration. To solve this, first
we extend the RAID 5 approach to all RAID codes as-
suming fault-free configurations and then, we generalize
it to allow arbitrary faults.

The extension for a write to a fault-free RAID coded
volume is as follows: Any correct update of dirty pages
in a RAID coded stripe is some combination of parity
increment (PI) or parity compute (PC) for each of the
affected parity pages. Note that updates that reuse results
from one parity update (a.k.a. delta parity) for another
can be re-written in a form showing as if each parity
page were updated separately. Each instantiation of a PI
or PC for non-zero entries in the affected parity vector
defines a write strategy.

This generalization allows one to systematically enu-
merate all possible write strategies. For any write, if
p parity pages are affected then, there will be 2p write
strategies. Since each write strategy translates to a dif-
ferent I/O plan, the optimizer can pick one that best
matches the resource optimization objective.

To handle sector or disk failures the above extension is
amended to allow reconstruction of the pages needed for
PI or PC before the update of the parity page proceeds.
Strategy for the necessary reconstruction(s) is chosen us-
ing the approach outlined for reo_read.

4.4.3 Deriving an I/O plan

Given a write strategy, for each affected parity page, one
can compute the pages to be read, XOR-ed and written
independently. REO calculates the I/O plan by combin-
ing the sub-plans for the affected parity pages. This is
done by picking column components from the pseudo-
inverse and translating the write strategy — PI or PC —
into the necessary reads, XORs and writes. The read set
is computed mindful of the clean page vector cv.

If the sub-plan for affected parity page k is denoted
by (rk,Xk,wk) then the combined I/O plan is derived by

summing all the individual sub-plans.

r =
_

k∈parity

rk;X = 
k∈parity

Xk;w =
_

k∈parity

wk

This combined plan is submitted to the Execution En-
gine.

4.5 An EVENODD example

We work out an example reo_write assuming a fault-
free configuration of the EVENODD code with a rank of
5 disks. The physical arrangement and generator matrix
for this RAID code is shown in Figure 5. This code has
two pages per strip (e = 2), 6 data pages (N = 6) and a
total of 10 pages per stripe (M = 10) The parity arrange-
ment vector is (7,8,9,10)t .

Let’s say that there were two dirty pages - D1 and D3.
Then,

dv =

















1
0
1
0
0
0

















Say there are no clean pages (cv = 0) and being fault-
free (f = 0), Ĝ = G(IM −diag(f)) = G.

In the first step, the RAID Engine computes the set of
affected parity pages, by AND-ing the dirty page vector
with Ĝ for each parity page. Below is a tabulation of this
step for each parity page in the stripe.

P1 P2 Q1 Q2
1 0 1 0
0 0 0 0
1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

Notice that in this write, P2 is unaffected. This is in-
ferred by the zero column component.

Step 2 is to pick a write strategy. Say, the RAID En-
gine picks

strategyA =









P1
P2
Q1
Q2









=









PC
-

PC
PI









(1)

In Step 3 sub-plans are computed for each affected
parity page. The sub-plan for P1 is
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rP1 =
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The sub-plan for Q1 is

rQ1 =
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The sub-plan for Q2 is

rQ2 =
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Note that the entry “2” denotes the XOR-ing of the
old and new versions of the element.

Finally, the sub-plans are combined to give the I/O
plan for this operation:

r =
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;X =





































P1 Q1 Q2
1 1 0
0 0 0
1 0 2
0 1 0
1 1 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1





































;w =
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For brevity, only the non-zero columns of X are shown
above. The number atop the horizontal line denotes the
column index.

For an example read operation we refer the reader to
Section 7 of Hafner et al. [7].

5 Optimizer

In the previous section we discussed how the RAID En-
gine can enumerate all possible read or write strategies.
In this section we discuss the Optimizer’s online selec-
tion process. Since each strategy translates to an I/O
plan, the Optimizer drives selection by defining a mea-
sure of goodness for an I/O plan.

5.1 Measures for an I/O plan

For the sake of exposition we describe two plausible
measures for a I/O plan.

• The number of distinct disk read and write com-
mands needed to execute an I/O plan. Denoted
IOC, this metric is intended to measure disk over-
head i.e., total seeks and rotations. In its simplest
version, this measure may weight all seeks and/or
rotations equally. Minimizing IOC leads to lower
disk overhead in service requests which effectively
improves the throughput of the disk.

• The number of cache pages input to and output
from XOR operations in executing an I/O plan. De-
noted XOR, this measures the memory overhead in-
curred. Minimizing XOR leads to lower memory
bandwidth usage.

Note that alternate measures are possible. For exam-
ple another metric could use variable seek and rotational
costs. Yet another could use a measure of disk queue
lengths. By using IOC and XOR our intent is to build
a framework within which an Optimizer could be built
around an objective function appropriate to the deploy-
ment scenario.

5.2 Costing an I/O plan

Given IOC and XOR as plausible metrics, the Optimizer
can guide selection by costing plans from competing
strategies. We describe how the Optimizer can computes
these metrics from r, X , and w.

To compute IOC, both r and w are interpreted as being
blocked. In the resulting vectors, a count of the number
of vertical runs of non-zero entries within each block
is IOC since a vertical run of non-zero entries can be
submitted as one sequential I/O.

To compute XOR, simply sum up all elements in X
and the affected parity vector.

In the example in Section 4.5, IOC = 7 and XOR = 13
for the resultant plan.
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If the RAID Engine had chosen the following strategy
instead of the one in Equation 1,

strategyB =









P1
P2
Q1
Q2









n =









PC
-

PI
PI









(2)

then, IOC = 8 while XOR = 12.

5.3 Selecting strategy
For a given operation, having defined the space of all
possible strategies and some metric for any I/O plan, the
Optimizer can employ any well-known search technique
e.g., exhaustive search, dynamic programming, greedy,
randomization, simulated annealing, to find the least-
cost plan. The one constraint in selecting a technique
is that it must be amenable to online computation. Since
strategy selection is done for each I/O that requires do-
ing disk reads and writes, some time spent selecting is
acceptable. However, the time spent searching should
be well worth the resulting savings in disk I/O.

5.3.1 Optimal approach
Technically, it is possible to exhaustively search for the
least cost I/O plan. For reconstruct reads, each distinct
pseudo-inverse leads to a strategy. For each strategy the
metric for a resulting I/O plan can be computed. The
number of distinct pseudo-inverses is exponential in the
dimension of its null space and therefore impractical
to enumerate for an implementation. A more practical
heuristic is described in Hafner et. al. [7] which com-
putes pseudo-inverses that are sparsest which potentially
means least IOC or XOR.

For writes, an exhaustive enumeration of all strategies
for a given operation has exponential complexity w.r.t.
the total number of affected parity pages. For a given
operation, the number of affected parity pages grows if a
larger neighborhood is used and/or when higher fault tol-
erant RAID code is employed. Since exhaustive search
can be CPU intensive, more practical heuristics are nec-
essary. We describe two such heuristics - BASELINE
and GRADIENT. BASELINE represents existing RAID
implementations. We suggest GRADIENT as an effec-
tive heuristic among a set of search techniques (men-
tioned earlier) that we experimented with.

5.3.2 BASELINE heuristic
Most RAID 5 implementations (including Linux
md[40]) employ a simple majority rule to determine a
strategy for a write. If a majority of pages for a stripe
are dirty then, PC is chosen. Else, PI is chosen. Under
degraded mode, they revert to PI. Similarly, for EVEN-
ODD and higher distance codes, thresholding algorithms

Algorithm 1 GRADIENT(AffectedParityVec)
1. pv = sort(AffectedParityVec) {Sort affected pari-

ties in layout order.}
2. strategy = φ {Initialize.}
3. i = 0 {Iterate on each affected parity.}
4. while i < pv.size() do
5. if failed(pv[i]) then {Sectors for parity lost.}
6. i = i + 1
7. continue
8. end if
9. strategyA = strategy {Copy strategy so far.}

10. strategyA[i] = PI {If PI for next affected parity.}
11. cA = cost(strategyA)
12. strategyB = strategy {Copy strategy so far.}
13. strategyB[i] = PC {If PC for next affected parity.}

14. cB = cost(strategyB)
15. if cA > cB then {PC is a better option}
16. strategy[i] = PC
17. else
18. strategy[i] = PI
19. end if
20. i = i + 1 {Move to next affected parity.}
21. end while
22. return strategy

has been suggested to determine the strategy for an en-
tire stripe. The thresholding employed to select between
PI and PC for all affected parity elements in the stripe is
typically based on comparing the number of dirty pages
within the stripe with a pre-computed table based on
rank etc.

When dealing with failures, structure within the
RAID code can be exploited to minimize recursive re-
constructions [21]. The complexity of this generator is
O(p) (p is the number of affected parity) for RAID 5
and nearly constant for thresholding schemes. In all im-
plementations we have examined, a window size of 1 is
typical i.e., a 0-neighborhood.

5.3.3 GRADIENT heuristic

The GRADIENT heuristic picks a write strategy by in-
crementally assigning PI or PC to each non-zero entry
in the affected parity vector. As each affected parity is
assigned the heuristic favors the assignment that results
in a lower cost (based on IOC or XOR).

GRADIENT, outlined in the algorithm below, im-
proves on BASELINE since a strategy for the next af-
fected parity page is chosen based on the strategies as-
signed to previous parity pages. In the algorithm we
have omitted obvious inputs like G, f, cv, dv, etc. The
problem with GRADIENT is that, like any gradient
method, there is no guarantee that it will find the optimal
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plan. since it cannot avoid getting stuck in local mini-
mas. While the complexity of this generator is compa-
rable to BASELINE, it does requires invoking the cost-
ing routine twice for each affected parity page (lines 11
and 14). GRADIENT uses a (static) configured window
size. Finding an efficient heuristic for all layouts under
all workloads remains an open problem.

6 Execution engine
The Execution Engine employs well-known techniques
in firmware design to execute an I/O plan. We summa-
rize its role for clarity and completeness. As would be
needed for higher throughput, multiple I/O plans will run
concurrently within the Execution Engine. Each plan
gets executed in three phases. In Phase 1, any reads are
submitted and completed. In Phase 2, any XORs are cal-
culated. Finally, in Phase 3, any writes are submitted and
completed.

Prior to Phase 1, the Execution Engine re-blocks r and
w just as was done in section 5.2. The resultant read
and write matrices are used by the Execution Engine to
coalesce multiple adjacent disk read/write requests into
blocks of sequential I/Os.

6.1 Handling concurrent plans
The Execution Engine must ensure that all three phases
are executed as part of a single transaction i.e., there
is no interleaving of two concurrently executing IO
plans that overlap. RAID controllers must reads, XORs
and writes atomically to satisfy the “atomic parity up-
date” requirement [38]. If multiple I/O plans overlap
on disk sectors then, the Execution Engine must en-
sure that a consistent ordering of data and parity is
seen by each operation. Any robust solution employs
one of two techniques — on-disk log [35] or persistent
memory (NVRAM). The latter approach is commonly
employed in commercial RAID controllers since most
do write-back caching which already requires this. In
these implementations, a stripe lock table, kept in per-
sistent memory, maintains the lock state of stripes being
touched by concurrent I/O plans. The Execution Engine
must acquire all locks for stripes in the W -neighborhood
before beginning execution. To avoid deadlocks, all re-
sources necessary to complete an I/O plan must be ac-
quired in advance of the plan’s execution and in a well-
know order.

6.2 Handling failures
During plan execution, various kinds of errors can occur.
Errors that arise out of disk timeout or faulty XOR-ing
can be easily retried by the Execution Engine. Handling
errors that arise due to discovering a new media or disk
failure during a plan execution requires a different tack.
In this case, we suggest that the Execution Engine abort

the plan and resubmit the entire operation to the RAID
engine with an updated fault configuration vector. The
RAID engine can compute a new (possibly better) plan
that reflects the new fault state. As a side effect, the Exe-
cution Engine could update any fault meta-data managed
by the system.

This step of unifying the error path with the good path
in REO is possible because of the generality with which
faults are handled. The elimination of potentially nested
recovery paths contributes to its simplicity.

7 Other RAID operations
Besides read and write, all RAID controllers must sup-
port rebuild. Rebuild is the operation of reconstructing
failed pages within a stripe and writing them to new disk
locations. The rate at which rebuild is done is a primary
determinant of data availability [15]. In this section we
discuss how reo_rebuild can be made generic to the
RAID code.

Most RAID implementations also support RAID mi-
gration, a process of re-laying data that was stored in one
layout to another. Migration can include changing stripe
size or its rank (5-disk RAID 5 code to 7-disk RAID 5
code) or changing the RAID code itself (5-disk 1-fault
tolerant RAID 5 code to 7-disk 2-fault tolerant EVEN-
ODD code). We discuss how REO can be used to sup-
port arbitrary RAID migrations.

If stripes have lost more elements from media or disk
failure(s) then, the RAID code can protect against then,
none of these operations can complete successfully. This
is due to the inherent limitation of the RAID code and
not of REO.

7.1 REO rebuild
Rebuild occurs when there is a sector or disk failure. In
the former case, rebuild is typically done for the affected
stripe which can be scattered over the volume. In the lat-
ter case (disk failure), rebuilds are batched. Within each
batch, multiple stripes are rebuilt simultaneously since it
translates to sequential disk reads and writes. Keeping a
deep queue is essential to speeding up rebuilds [30]. In
both cases, the basic logic for reo_rebuild remains
the same.

A rebuild for a set of lost pages within a stripe is exe-
cuted in two steps. In Step 1, reo_read is executed for
the set of lost pages. A read strategy for reconstructing
the failed pages is picked by the RAID Engine and the
resultant I/O plan is executed by the Execution Engine.
In Step 2, an I/O plan with w set to the reconstructed
pages is submitted to the execution engine. r and X for
such an I/O plan are zero. Note that the I/O plan in Step
2 is slightly different from one generated for a similar
reo_write— in some cases, parity pages do not need
to be written during rebuild.
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In some implementations the entire stripe is read and
written out instead of just accessing the minimum pages
needed for reconstruction. This is done to detect any
lurking sector failures. reo_rebuild can be suitably
modified to reflect this design decision. Some layouts
[29] include spare space for rebuild within the stripe.
Such information can be easily captured in the layout
input to REO.

7.2 REO migrate
In RAID migration, a volume arranged in a source layout
is re-arranged into a target layout. Typically, for space
efficiency, this migration is done in-place i.e., the same
set of sectors and disks in the source layout are reused
for the target layout. Migration proceeds in strides, i.e.,
multiple stripes. Typically, this multiple is either deter-
mined by the lowest common multiple (LCM) of stride
sizes of the source and target layouts, or by the stride
size of the target layout alone. Sometimes, a staging
area on disk is used to store temporary results if cache
memory is limited. In both cases, the basic steps within
reo_migrate are the same.

In a simple version, reo_migrate is executed in 2
steps. In Step 1, all data pages from the source layout are
read using reo_read. Any reconstructions, if needed,
are done in this step. In Step 2, the list of data pages
for the target layout is input to reo_write as if all the
parity pages were lost. Given this input, a good heuristic
will invariably pick PC for all affected parity elements.

In an alternate implementation of reo_migrate, all
pages (data and parity) in the source layout are read in
Step 1. In Step 2, if possible, parity pages from this
layout are reused as partial results for computing par-
ity pages of the target page. Reusing parity pages from
the source layout has the potential to reduce the memory
bandwidth needed for the migration. However, it has
the disadvantage that errors that have crept in due to bad
sectors get propagated to the target layout.

7.3 Sundry operations
Two other operations commonly implemented are ini-
tialization and scrubbing. Initialization is layout inde-
pendent in that all regions of a volume must be zero-ed.
This is typically done in batches by writing sufficiently
large writes with zeroes.

Scrubbing is a periodic scan of every stripe to check
for latent hard errors. In REO, scrubbing is implemented
by using a parity check matrix H for a RAID code
which is computed from its generator matrix G. H is
a M × (M −N) matrix where each column component
corresponds to a parity page in the RAID code. If all
pages with entry 1 in that column are XOR-ed then, the
result must be a zero page. A resultant non-zero page
implies an inconsistent parity. H is derived from G by

H =





































P1 P2 Q1 Q2
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 1
1 0 1 1
0 1 1 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





































Figure 7: Parity check matrix H for a 5-disk 2-fault tol-
erant EVENODD code (Figure 5). H is used to detect
inconsistent pages. H is derived by rearranging column
blocks in G into row blocks and including an identity
matrix that corresponds to the parity pages.

rearranging column blocks of G into row blocks in H
and including an identity matrix (corresponding to the
parity pages). Figure 7 shows an example parity check
matrix for the 5-disk 2-fault tolerant EVENODD code.

Rectifying stripes that fail parity check is challeng-
ing. With higher fault tolerant codes it is possible to de-
duce the location of the error. This is not possible with
RAID 5. In some deployments silently correcting such
errors is unacceptable. In cases where it is acceptable,
the parity element is assumed to be wrong and fixed.

8 Evaluation

In this section we report results on aspects of REO that
are amenable to quantitative evaluation. We present em-
pirical results from our experience in adding more than
a dozen RAID codes into our simulator. The efficacy
of the Optimizer for real workloads is shown by trace
driven simulations. Other aspects such as correctness
can be shown informally leveraging results proved else-
where [7].

8.1 Versatility

Table 1 lists a representative set of RAID codes that we
implemented in a simulator. These codes vary in fault
tolerance, physical arrangement, efficiency, and perfor-
mance. A visual guide to stripes of these codes is shows
in Figure 8. To date, we have added more than a dozen
RAID codes. Adding a new code meant specifying its
generator matrix and its layout, a task that averaged
about 15 minutes. We believe that this empirical data
can be cautiously extrapolated to real implementations
while noting that it excludes the ensuing system test ef-
fort.
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Fault tolerance Code Rank Shift Strip size Stripe size (data only) Storage efficiency

1 RAID5 8 -1 24 KB 168 KB 0.875
2 EVENODD2 7 -2 24 KB 168 KB 0.778
2 RDP 8 -2 24 KB 144 KB 0.750
2 X–Code 7 0 20 KB 140 KB 0.714
3 EVENODD3 8 -3 24 KB 168 KB 0.700
3 WEAVER3 8 - 24 KB 96 KB 0.500

Table 1: RAID codes and their layouts used in our evaluations. These layouts vary in physical arrangement, efficiency
and performance. EVENODD2 and EVENODD3 are the EVENODD codes for 2 and 3 fault-tolerance respectively.
WEAVER3 is the WEAVER code for 3 fault-tolerance. For fairness, we chose layout setting such that the strip size
and rank remained relatively same across RAID codes.

1 fault tolerant codes 2 fault tolerant codes 3 fault tolerant codes

RAID 5

EVENODD2

RDP

X-code

EVENODD3

WEAVER3

WEAVER2

Figure 8: A visual guide to RAID codes studied. Each
square corresponds to an element on a disk. Columns
of elements are physically layed contiguously on a disk.
White squares represent data elements while shaded
squares represent parity elements.

8.2 Efficacy of Optimizer

Although not central to the value proposition of REO,
we have attempted to quantify the benefits of the Opti-
mizer within the RAID Engine. For this we built a sim-
ulation model that included memory and I/O buses and
integrated it into disksim [13], a disk simulator with
fairly accurate disk and array models. We simulated the
setup shown in Figure 1.

8.2.1 Setup

Table 2 lists the fixed parameters for our experiment and
their values. We chose parameters corresponding to a
modest RAID adapter [22].

To realistically quantify the value of the Optimizer we
chose trace workloads summarized in Table 3. DS1, P5,
P13 and P14 are described by Hsu [20] while TP1, TP2

Parameter Setting

Cache size 128 MB
Page size 4 KB
Memory bus bandwidth 1 GBps
I/O bus bandwidth 500 MBps
Disk capacity 18 GB
Disk interconnect BW 150 MBps
Speed 7200 RPM
Single track seek 1.086 ms
Full seek 12.742 ms
Replacement policy LRU
Window size (W) 0 or 2
Total write ops 100000

Table 2: Parameters used in evaluating the efficacy of
Optimizer. Values were chosen to reflect a modest RAID
controller. Window size was zero for BASELINE and
two for GRADIENT.

and SPC1 are publicly available [39]. Given varying du-
rations and intensities of these traces we ran our exper-
iments for a fixed number (100,000) of write I/Os. We
did two transformations on the raw traces. First we time
shifted them to begin at t = 0. Second, we folded multi-
ple LUNs in each trace into a single LUN using appro-
priate block offsets.

The traces in Table 3 all have a fair amount of random
I/O in them. This was a deliberate choice (over picking
predominantly sequential workloads) in order to make it
more challenging for the Optimizer.

While running a trace, the simulator generated each
I/O at the (relative) time specified in the trace. Af-
ter 100,000 writes were generated, the workload was
stopped and the remaining dirty pages in the cache were
flushed. The run was deemed complete when there were
no more dirty pages left. At the end of the run we ex-
tracted total access time from each disk in the volume.
Access time for a disk request is the sum of the position-
ing time (includes seek, rotation, head switching, and
settling times) and transfer time. The total access time
is computed by summing the access times for all disk
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Name Description LUNs Total Size(GB) Write(%) Duration

DS1 SAP workload 13 46.91 90 35 mins
TP1 Transaction processing 24 26.01 60 48 mins
TP2 Transaction processing 19 8.25 17 1 hr
P5 Workstation file system workload 2 5.54 70 4 hr
P13 Workstation file system workload 3 3.24 57 26 hr
P14 Workstation file system workload 3 6.04 71 10 hr
SPC1 Storage performance council benchmark [39] 1 7.50 60 56 mins

Table 3: Traces used in this study. We show statistics for the first 100000 write I/Os of each trace that were used in
our evaluations.

requests (read and write). For a given workload, total
access time is a good measure of the total work done by
the disks. During each run we counted the total number
of bytes moved on the memory bus. We call this count
the memory bus usage.

GRADIENT’s objective was set to minimize IOC
over XOR since disks tend to be the bottleneck. For
faults we modeled static configurations where n disks in
a rank were marked as failed for a n failure configuration
prior to starting the trace playback. REO performed all
I/O assuming such a degraded layout.

To factor out sensitivity to system settings and trace
specific patterns, we normalized the total disk access
time and the average memory bandwidths for GRADI-
ENT to those for BASELINE. In Table 4 we show these
normalized values. Total disk access time and average
memory bandwidth are both lower-the-better measures.
This implies that a value below 1.0 means that the opti-
mizer using GRADIENT “outperformed” BASELINE.

For brevity, we averaged the results from each of the
six application traces (excluding the synthetic bench-
mark SPC1) for the same layout and fault configuration.
This summary from equally weighted summarization of
the database and filesystem traces is labeled “Prototypi-
cal Workload” in Table 4. The results for SPC1 trace are
shown in separate columns.

8.2.2 Discussion of results

Table 4 summarizes the comparison of GRADIENT to
the BASELINE which approximates IBM ServeRAID
adapters[22]. Since GRADIENT was setup to minimize
disk I/Os, we observe that for both workloads, entries in
the “Total access time” columns are less than 1.0, a mea-
sure of outperformance by GRADIENT. Of interest are
the entries in the “Memory bus usage” columns. In some
settings e.g., EVENODD3 with 3 faults, the savings in
disk access times comes at the expense of increased
memory bus usage. This occurs because the heuristic
favors a strategy that minimizes IOC over XOR. An ex-
ample case when this can occur is if, during a write, PI is
chosen for an initial set of affected parity pages within a
window. Even when it might be cheaper from a memory

bandwidth standpoint to choose PC for the subsequent
affected parity pages within the window, the heuristic
will favor PI in order to minimize IOC. This leads to
increased memory bus usage at the expense of reduced
disk I/O.

Another reason why GRADIENT outperforms
BASELINE on total access times for RAID 5 layouts is
because of a bigger window size. Bigger window sizes
improve the possibility for fewer and larger sequential
I/Os.

On average, there was a modest (4—8%) reduction
in disk service times using GRADIENT. The fact that
the Optimizer can be competitive w.r.t. other hand tuned
RAID implementations is the more important take away
rather than the magnitude of its outperformance.

8.3 CPU overhead
Since we used simulations, we could not measure CPU
overheads for REO overall or for GRADIENT (over
BASELINE). A true measure of CPU overhead is highly
sensitive to how a specific implementation is written or
the compiler flags used, deployment environment, etc.
Such factors are hard to extrapolate to any implemen-
tation. However, given the relative speeds of processors
and disks, and the modest overhead a costing routine im-
poses, we believe it to be minor compared to the reduced
disk service time.

9 Adaptations
In this section we discuss adaptations of REO to future
trends in I/O architecture.

9.1 XOR architectures
Traditional RAID controllers have included hardware
support for XOR. An XOR engine, typically built into
the memory controller, allows the embedded processor
to offload XOR calculations [24]. The approach for
computing XOR cost metric discussed in Section 5 re-
flects the presence of an XOR engine. One recent trend
to reduce this cost is to use commodity processors to do
XOR as well as I/O handling. This allows leveraging L2
data caches in these processors by combining multiple
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Code Disk failures
Prototypical workload SPC1 workload

Total Access
Time

Memory bus
usage

Total access
time

Memory bus
usage

RAID5
0 0.93 0.99 0.90 1.00
1 0.97 0.99 0.93 0.99

EVENODD2
0 0.97 0.99 0.93 0.90
1 0.98 0.96 0.94 0.98
2 0.99 1.08 0.92 1.17

RDP
0 0.98 0.99 0.97 0.93
1 0.97 0.94 0.95 1.00
2 0.98 1.04 0.93 1.25

X–Code
0 0.99 1.01 0.96 0.98
1 0.98 0.85 0.97 0.90
2 0.98 0.88 0.95 0.97

EVENODD3

0 0.97 0.91 0.92 0.82
1 0.96 0.94 0.92 0.98
2 0.97 1.07 0.90 1.19
3 0.97 1.10 0.88 1.31

WEAVER3

0 0.97 0.99 0.96 0.98
1 0.93 0.83 0.99 0.90
2 0.97 0.84 1.00 0.92
3 0.98 0.86 1.00 0.97

Table 4: Results from trace experiments. All entries in the table are normalized measures for GRADIENT w.r.t.
BASELINE. An entry lower than 1.0 implies that the optimizer using GRADIENT “outperformed” BASELINE for
that particular setting. Entries under “Prototypical workload” were obtained by averaging individual results for the
three database and three filesystem traces. Disk failures were were assumed to be known at start of the run. Notice
that, under some layouts and fault configuration, GRADIENT minimizes total access times as the expense of memory
bus usage. This is consistent with its resource optimization objective of minimizing disk I/O. REO with GRADIENT
is able to modestly reduce disk I/O at the expense of increased memory bus usage for common workloads.

memory fetches for a set of XOR operations with over-
lapping inputs into a single fetch (for each) of operands.
Chunks of operand pages are fetched into the L2 cache
and the resultant pages are stored into the L2 cache.

Adapting REO to this XOR architecture is simple.
First, a change must be made to the algorithm that costs
an IO plan for XOR. From Section 5.2, while comput-
ing the total XOR cost for an IO plan, one can count the
number of non-zero entries in X in lieu of summing up
all its entries. This costing change reflects the memory
bandwith used when the processor calculates XOR. The
second change is to the execution engine that computes
XORs. If the CPU were to do the XOR operations in the
I/O plan in Section 4.5 then, using the costing scheme in
the previous paragraph XOR = 10.

In our experience with REO, this change of XOR
calculation eliminated the memory bandwidth penalty
EVENODD incurred over RDP reported by Corbett et
al. [12] since common sub-expressions get automatically
eliminated. Such optimizations are possible for deploy-
ments that use XOR engines at the expense of additional
CPU overhead.

9.2 Hierarchical RAID architectures

Hierarchical RAID schemes are structured in layers
where one RAID code is used at the top level and an-
other at the lower level. Such layering can boost fault-
tolerance at the expense of storage efficiency. For some-
time now, commercial RAID controllers have supported
RAID 51, a hierarchical scheme which layers a RAID 5
layout over a RAID 1 layout. Of greater relevance
to new RAID systems are novel intra-disk redundancy
schemes like those proposed by Dholakia et. al. [10].
The goal of their scheme (called SPIDRE) is to build
intra-disk redundancy aimed at reducing hard error rates
in presence of correlated failures. In their analysis they
show that hierarchical RAID schemes that used EVEN-
ODD over disks that internally used SPIDRE had 1000x
better data reliability over plain EVENODD over the
same disks for common correlated sector errors.

REO can be adapted to handle such RAID scheme.
To do so, one must the tensor for the product code.
Working off this tensor, REO can generate I/O plans for
the hierarchical RAID scheme. Any hierarchical RAID
scheme will increase the number of affected parity pages
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for a read or write emphasizing the need for an efficient
heuristic for strategy selection.

9.3 Distributed RAID architectures
Another trend in storage architectures is the rise of clus-
tered storage systems [36, 9]. In these systems, data is
striped across nodes, each of which has a network con-
nection, processor, memory and a bunch of disks. Lay-
outs span nodes instead of disks in traditional RAID sys-
tems. Such architectures can allow for scaling of capac-
ity, reliability and performance at low cost [34].

Adapting to such distributed architectures requires
changes to the Execution Engine. Access and updates
to data striped using distributed RAID must include
some serialization and recovery protocol to handle (a)
transient errors from the network and/or nodes, (b) ac-
cess to data from multiple clients [1], and (c) untrusted
nodes [16]. Any of these proposed schemes can be im-
plemented within the Execution Engine without changes
to the RAID Engine.

10 Conclusions
We have shown REO to be an ideal solution to the prob-
lem of providing a variety of RAID codes without in-
creasing firmware complexity. To our knowledge, REO
is unique in its ability to be simultaneously flexible (sup-
porting any XOR-based RAID code), simple (unifying
fault-free and fault-ridden code paths), and self-tuning.
Not only is it competitive relative to existing RAID
implementations, but provides modest performance im-
provements for a wide range of workloads.

One possible future work would be to leverage REO
for adapting data layout based on reliability, perfor-
mance and efficiency attributes [41, 5].
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