
POSIX IO extensions for HPC

Brent Welch, Panasas, [welch@panasas.com]

There is a group of HPC afficiandos that are defining some
new POSIX file system APIS that are cluster and parallel processing
friendly. I presented slides on this at SC05, and can easily replay
the information in, e.g., 5 minutes or less.

Here is an outline of the information:

POSIX IO APIs (open, close, read, write, stat) have semantics that can
make it hard to achieve high performance when large clusters of
machines access shared storage.

A working group (see next slide) of HPC users is drafting some proposed
API additions for POSIX that will provide standard ways to achieve
higher performance.

Primary approach is either to relax semantics that can be expensive, or
to provide more information to inform the storage system about access
patterns.

POSIX was created when a single computer owned its own file system.

Network file systems like NFS chose not to implement strict POSIX
semantics in all cases (e.g., lazy access time propagation)

Heavily shared files (e.g., from clusters) can be very expensive for
file systems that provide POSIX semantics, or have undefined contents
for file systems that bend the rules

The goal is to create a standard way to provide high performance and
good semantics

Ordering (stream of bytes idea needs to move towards distributed
vectors of units)
 readx(), writex()

Coherence (last writer wins and other such things can be optional)
 lazyio_propogate(), lazyio_synchronize()

Metadata (lazy attributes issues)
 statlite()

Locking schemes for cooperating processes
 lockg()

Shared file descriptors (group file opens)
 openg(), sutoc()

Portability of hinting for layouts and other information (file system
provides optimal access strategy in standard call)

The full slide deck has excerpts from the POSIX man pages
that the group is creating so the APIs have meat behind them.

