Rethink the Sync!

Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn
University of Michigan

File systems serve two opposing masters: durability and per-
formance. A file operation guarantees durability if data is writ-
ten to disk before the operation completes. However, since disk
writes are time-consuming, synchronous operations perform
poorly. For example, use of synchronous I/O degrades perfor-
mance by two orders of magnitude for disk-intensive bench-
marks.

File systems often sacrifice durability to provide reason-
able performance. Most current file systems provide an asyn-
chronous I/O abstraction by default: file modifications are typi-
cally committed to disk long after a file operation returns. This
is fast, but not safe. In the absence of explicit synchronization
operations such as fsync, users often view output that depends
on uncommitted modifications. If a system loses data due to
crash or power failure, the viewed output is incorrect because it
depends on data that has been lost.

Making all file system calls synchronous provides a cleaner
abstraction. Any output seen by a user or an application run-
ning on another computer is durable; i.e., it will not be lost due
to a subsequent OS crash or power failure. Synchronous I/O
also guarantees ordering; i.e., if an operation A causally follows
another operation B, the effects of B are never visible unless the
effects of A are also visible. Finally, synchronous I/O simplifies
applications since programmers do not need to manually pro-
vide ordering and durability for their data using system calls
such as fsync. However, despite these clear benefits, most file
systems eschew synchronous I/O because it assumed to be too
slow. We believe this assumption is wrong.

One can view an abstraction such as synchronous I/O as a set
of guarantees provided to external clients. Asynchronous I/O
improves performance by substantially weakening the guaran-
tees. Our approach is fundamentally different: we provide the
same guarantees but change the client to which the guarantees
are provided. Operating systems currently take an application-
centric view; they guarantee durability and ordering for each
system call made by an application. This is correct but too
conservative. Instead, we propose a user-centric view, which
we call visible synchrony, in which ordering and durability are
guaranteed not to the application, but to any external entity that
observes application output.

From the viewpoint of an external observer such as a user
or an application running on another computer, the behavior
of an externally synchronous system is identical to the behav-
ior of a system that uses traditional synchronous I/O. Visible
synchrony guarantees durability by buffering output until the
prior file system modifications upon which that output depends

have been committed to disk. Thus, an external observer never
sees output that depends on uncommitted modifications. Visi-
ble synchrony guarantees ordering by writing modifications to
disk in the order that they were generated by applications. This
ensures that, after a crash, an external observer will not see a
modification unless all other modifications that causally pre-
cede that modification are observable.

We are currently implementing visible synchrony in the
Linux kernel using mechanisms developed as part of the Specu-
lator project [1]. When an application performs a synchronous
I/0O operation, the operating system adds the modifications to a
file system transaction (we use ext3 in data journaling mode for
this purpose). The operating system returns control to the appli-
cation without waiting for the transaction to commit. However,
the operating system also taints the process that performed the
I/0 with a causal dependency that specifies that the application
is not allowed to externalize any output until the transaction
is committed. If the application writes to the network, screen,
or other device, its output is buffered by the OS and released
only when all disk transactions on which the output depends
have been committed. If a process with such dependencies in-
teracts with another process on the same computer through IPC
mechanisms such as pipes, the file cache, or shared memory,
the other process inherits the same dependencies so that it also
cannot externalize output until the transaction commits. The
performance of visible synchrony is generally quite good since
applications can perform computation and initiate further I/O
operations while waiting for a transaction to commit. In most
cases, the output is delayed by at most the time to commit a sin-
gle transaction—this is typically much less than the perception
threshold of a human user.

Our results to date are promising. We have modified ext3 to
provide visible synchrony for all file system operations. For I/O
intensive benchmarks such as Postmark and an Andrew-style
build, the performance of ext3 with visible synchrony is within
6% of the default asynchronous implementation. In contrast,
conventional synchronous I/O is over two orders of magnitude
slower. Even if synchronous I/O only commits modifications to
the disk write cache (allowing data to be lost on power failure),
it is still over 40% slower than visible synchrony.

References

[1] NIGHTINGALE, E. B., CHEN, P. M., AND FLINN, J. Speculative execu-
tion in a distributed file system. In Proceedings of the 20th ACM Sympo-
sium on Operating Systems Principles (Brighton, United Kingdom, Octo-
ber 2005), pp. 191-205.



