
 1

StorageAgent: An Agent-based approach for dynamic resource sharing in a Storage Ser-
vice Provider (SSP) Infrastructure

Sandeep Uttamchandani
IBM Research Division

Almaden Research Center
San Jose, CA 95120-6099

sandeepu@us.ibm.com

Abstract

In a SSP Infrastructure, the resources of the Storage Server namely cache, memory and CPU are shared in an ad-
hoc manner among the clients. These resources play an important role in determining the overall Throughput and
Latency of data-access. In this paper, we propose StorageAgent: A systematic, secure and eff icient approach for
distributing resources. Built on agent-based semantics for dynamic resource sharing, StorageAgent achieves the
following goals. First, there is an eff icient utili zation of available resources as there are well -defined semantics for
lending and reclaiming resources. Second, security of data is ensured as access to borrowed resources is controlled
solely by trusted-agents. Third, fine-grain control and metering of resources used by individual clients is possible.

1. Introduction
The Storage Service Provider (SSP) market is predicted to
grow to $6 billi on in 2004 [6]. The fundamental parameters
that characterize the Qualit y of Service provided by a Stor-
age Service Provider (SSP) are overall Throughput and La-
tency of data-access. The value of these parameters does not
solely depend on the actual disk management, but is a resul-
tant effect of how the Storage Servers manage Memory,
Cache, CPU in addition to the actual disk management.
Throughout this paper, the term resource, refers to the com-
bination of the following: cache, main memory and CPU
cycles.

In a SSP Infrastructure, clients are staticall y allocated a
fixed amount of disk-space. The access to this data is con-
trolled by a Storage Server that sits in between the clients
and the actual storage-devices. Since the resources of the
Server have an impact on the overall Throughput and La-
tency of data-access, we need a well -defined and eff icient
mechanism to dynamicall y distribute these resources among
the clients. In the existing SSP infrastructure, the resources
are shared in an ad-hoc manner. One of the approaches is to
build a throttli ng mechanism that prevents a single client
from monopoli zing all the resources. This approach is not
very eff icient and has the following shortcomings. First, it
leads to under-utili zation, as the throttli ng approach is con-
servative and withholds resources even when they are avail-
able. Second, it does not ensure security of data present in
cache and memory. This is especiall y required if clients
belong to different organizations. Third, metering of re-
sources is not possible and the clients cannot be charged
based on the actual resources used.

In this paper, we propose StorageAgent: An Agent-based
architecture for dynamic resource sharing. In this architec-

ture, the clients are allocated to a fixed amount of resources,
proportional to their disk-space or I/O rate. When they need
additional resources, they can borrow it from other clients,
if available. The resources that are borrowed are managed
and controlled by spawning Software agents. These agents
have their own thread of control and keep track of the data
stored in the borrowed resources. They maintain security by
confining the data access. Finall y, when the resources need
to be reclaimed, the agents migrate to other locations.

By using agent semantics, StorageAgent represents a sys-
tematic approach for sharing resources among the clients
and achieves the following goals:

• Optimum utilization of the available resources.
As a boundary condition, it should be possible for
a single client to utili ze 100% of the resources if
none of the other clients are using them. At the
same time, there is a guarantee to reclaim these re-
sources whenever required.

• Security of data. StorageAgent ensures security
against disclosure and corruption of information.
Any access to the borrowed resources is via agents
that implement access control mechanisms.

• Metering of resources used by individual cli-
ents. Agents provide a fine-grained control of re-
sources. Thus it is possible to keep a track of the
actual resources used by an individual client.

The organization of the paper is as follows. Section 2 de-
scribes a few design issues of the StorageAgent architecture.
Section 3 gives detail s of the working of agents. In Section
4, we outline the architecture. Section 5 briefly describes the
related work followed by the conclusion and future work.

2. Design Issues

 2

This section discusses the following design issues of the
StorageAgent architecture:

• How are the resources partiti oned and allocated to
the clients.

• What performance metrics determine the need for
allocating additional resources.

• Defining Agent functionalit y for dynamic resource
sharing.

2.1. Resource Partitioning and Allocation
Each client is staticall y assigned a fixed amount of re-
sources i.e. cache, main memory and CPU cycles (Figure 1).
We refer to it as client-share. These are the minimum re-
sources that the client is always eligible for and can demand
them whenever required. If a particular client is not using all
its resources in the client-share, the platform can temporar-
il y allocate them to another client, with the guarantee that
these resources can be reclaimed whenever required.

Figure 1: Partitioning resources between the SSP clients

The logical partiti oning of the resources into client-shares is
achieved by a Resource-Manager (RM) built on top of the
operating system. The RM assigns each client-share, a fixed
address-space in cache and memory. It implements access-
control mechanisms to prevent clients from accessing data
in other client-shares. In order to allocate CPU-cycles to
each of the clients, the RM implements multiple queues,
with one queue for each client. It then allocates CPU-cycles
to each of these queues in a round-robin fashion.

The resources within a client-share are divided into blocks.
Blocks are the smallest unit of resource allocation. Initi all y,
when the client begins data-access, it is allocated 30% of the
blocks present in its client-share. More blocks are then allo-
cated incrementall y by tracking the QoS being deli vered to
the client. The detail s of QoS-tracking are given in the fol-
lowing section.

When the total number of blocks being used within a client-
share reaches a certain threshold value, the RM starts

searching for additional resources that can be borrowed
from other client-shares. If resources are available, software
agents are spawned that manage these borrowed resources.
In the agent terminology, the client-share that spawns these
agents is referred as the home-base [7]. Whenever agents are
spawned, 10% of the resources within the home-base are left
un-allocated and reserved as “ retract-space.” This is ex-
plained in the later sections.

2.2. Metrics for QoS tracking
To determine the need to allocate additional resources, a
performance monitor is implemented for each client-share.
It tracks the following system-conditions to determine the
QoS being deli vered:

• Number of page-faults encountered.
• Cache miss ratio.
• Checking for thrashing of data in memory.
• Number of physical to logical I/Os per transac-

tion.
• Length of queues for I/O and CPU.

By observing these system-level conditions, the perform-
ance monitor estimates the QoS and raises trigger-events for
additional data allocation.

2.3. Using Agents for dynamic resource sharing
The term Software agents has been traditionall y used for
pieces of logic that act autonomously on behalf of the user.
They are generall y divided into two categories: simple and
intelli gent agents. StorageAgent consists of simple agent
programs, primaril y designed to manage resources (Figure
2). It encapsulates a thread of control and is assigned a
unique name. Logic is built i nto the agent to execute the
following tasks:

• Track the location of data in the resources that are
allocated to it.

• Provide the home-base with the physical address
in response to data-access requests.

• Implement various poli cies for data management.
For example, the agent can implement different
page-replacement poli cies such as FIFO, LRU, etc
based on data-access pattern.

• Keep a track of the available resources and adver-
tise it to the home-base.

3. Working of Agents
This section describes the working of Agents and explains
the following:

• How is the data managed by the agents and their
response to data-access requests.

• How are the borrowed resources reclaimed.
• What are the mechanisms implemented for data

security.

3.1. Management of Data
When the client makes a data-access request, there are four
possible scenarios that can arise:

 3

(i) Data is already present in the client-share re-
sources.

(ii) Data is present in one of the agent-resources.
(iii) Data needs to be fetched from the disk, and

there is space available in the client-share.
(iv) Data needs to be fetched from the disk and

the only space available is in the agent-
resources.

Cases (i) and (iii) are straightforward. Cases (ii) and (iv)
involve agents and are described below.

Figure 2: Software Agents manage the borrowed re-
sources

3.1.1. Data is already present in agent-resources
To track the data maintained by the agents, each client-share
maintains a resource-table. This table is similar to the one
maintained by the operating system to track data in memory.
Each entry consists of pair of logical address of the data and
its physical location. The physical location can point to an
address in memory, cache or the name of the agent. The
agents maintain similar tables to track data. In case the data-
entry is not found, data is fetched from the physical device.

When the resource table entry points to an agent, the home-
base sends it a data-request message (Figure 3). After scan-
ning its resource-table, the agent replies with the actual
physical location of the data and a security-ticket to access
it. The detail s of the security mechanisms are given later in
the section.

3.1.2. Data is fetched from disk by the agent
When the data is not found in the resource-tables, it is
fetched from the device and copied in memory. If the old
data in the client-share needs to be flushed-out to make
space for the new one, the resources of the agents are
checked for unused space. Each agent constantly advertises
the resources that are available to it. The home-base then

selects the agent with maximum resources and sends the
request for data-fetch. The agent fetches the data and sends
the memory-address where the data is copied along with the
security access ticket.

3.2. Reclaiming resources
When 80% of the resources within a client-share are used-
up, it starts reclaiming the resources that have been leased to
the agents. Depending upon resource availabilit y, the agent
can select one of the four options to hand-over resources:

• Return to home-base: For this option, the agent
uses the “retract-space” that is kept unallocated in
the home-base. To minimize data transfer, only the
dirty pages are copied to the retract space. The
read-only data is discarded and resources are
handed-over. The purpose of retract-space is to en-
sure that the borrowed resources can be promptly
returned.

• Migrate to another client-share: If resources are
available, the agent can migrate to another client-
share. It needs to update the resource tables of the
home-base. The semantics of agent migration are
well -studied [7].

• Transfer data to another agent: It can transfer
the data to another agent belonging to the same
home-base. In this case a forwarding address is
used to redirect access requests.

• Demise of the agent: In case there are no re-
sources available in other client shares and even in
the retract-space of the home-base, the agent sends
a high-priority interrupt to the Resource Manager
(RM) to write-back all the dirty pages to disk. The
resource-table entries containing the agent address
are deleted.

Figure 3: Accessing data maintained by agents

3.3. Data Security
Security is one of the topics that is well -studied in the con-
text of mobile agents [2, 3, 4]. The conventional issues re-

 4

lated to agent security do not pose a threat in StorageAgent,
since all the agents are spawned and maintained by the plat-
form and the clients have no control on the actions per-
formed by the agents or the platform on which they operate.

The fundamental security concern in StorageAgent is to
prevent the client from unauthorized data-access in the re-
sources of other clients. This is particularly challenging
when resources are borrowed on other client-shares. In order
to prevent disclosure and corruption of data by mali cious
Users, we implement the following two mechanisms:

• Using tickets for accessing agent resources
The home-base cannot access the agent resources without
access-tickets. The agent sends these tickets in response to
data-access requests. The tickets are encrypted and carry the
following information: (i) The starting physical address
location (ii) The allowed access-byte-range (iii) The Time
To Live (TTL). The RM allows access to resources by de-
crypting the tickets. The TTL prevents multiple accesses by
forging.

• Data scrambling
Before handing over the borrowed resources, the agent
scrambles the data that is present in those resources. This
prevents disclosure of data, after the agent has migrated.

Figure 4: Components of the StorageAgent Architecture

4. Architecture
Figure 4 outli nes the various components of the Stor-
ageAgent architecture, that have been mentioned in the pre-
vious sections. The architecture mainly consists of the Re-
source Manager built on top of the Operating system along-
with the Agents that are spawned to manage shared-
resources. The Resource Manager can be implemented as a
part of the Operating system [5]. This will reduce context-
switches between User and Kernel space.

5. Related Work

There are numerous papers that address various issues re-
lated to the working of agents. The theoretical model of
Actors [1] supports concurrent mobile objects in a pro-
gramming environment. JavaSeal [2] along with [3, 4], im-
plement mechanisms for mobile agent security. Due to
space limitations, this section is not comprehensive.

6. Conclusion and Future work
This paper addresses the issue of dynamicall y sharing re-
sources namely cache, memory and CPU between clients
connected to a Storage Service Provider. By building an
architecture based on agent semantics, we have proposed a
systematic, eff icient and secure approach for resource shar-
ing. This architecture is relatively easy to implement and
can utili ze the current research in software agents to the
benefit of Storage Management.

In the future, the StorageAgent architecture can be extended
for load-management and resource-sharing among multiple
Storage Servers. Further, it should be possible to manage
each of the resources differently based on client-behavior.
For example, each client-share can implement different
page-replacement poli cies, etc.

7. References
[1] G. Agha, “Actors: A Model of Concurrent Computation
in Distributed Systems,” Artifi cial Intelli gence Series, MIT
Press, Cambridge, Mass., 1986.

[2] C. Bryce, and J. Vitek, “The JavaSeal Mobile Agent
Kernel,” Proceedings of the First International Symposium
on Agent Systems and Appli cations and Third International
Sympo-sium on Mobile Agents (ASA/MA’99), October 1999,
pp 103-117.

[3] R. Gray, D. Kotz, G. Cybenko, and D. Rus, “D’Agents:
Security in a Multiple-Language, Mobile-Agent System,” In
Giovanni Vigna, editor, Mobile Agent Security, Lecture
Notes in Computer Science, Springer-Verlag, 1998.

[4] D. Hagimont, and L. Ismail , “A Protection Scheme for
Mobile Agents on Java,” Proceedings of the 3rd ACM/IEEE
International Conference on Mobile Computing and Net-
working, September 1997.

[5] D. Johansen, R. van Renesse, and F. Schneider, “Operat-
ing system support for mobile agents,” Proceedings of the
5th. IEEE HOTOS Workshop, 4th-5th May, 1995.

[6] Survey of Storage Service Provider.
http://www.itaa.org/isec/pubs/e20017-09.pdf

[7] PAttie Maes , Software Agent Tutorial, ACM
SIGCHI Conference on Human Factors in Computing
Systems,1997.
http://pattie.www.media.mit.edu/people/pattie/CHI97/

