StorageAgent: An Agent-based approach for dynamic resource sharing in a Storage Ser -
vice Provider (SSP) Infrastructure

Sandegp Uttamchandani
IBM Research Division
Almaden Research Center
SanJose, CA 951206099
sancegu@us.ibm.com

Abstract

In a SSPInfrastructure, the resources of the Storage Server namely cade, memory and CPU are shared in an ad-
hoc manner among the dients. These resources play an important role in determining the overall Throughpa and
Latency of data-access In this paper, we propose StorageAgent: A systematic, seaure and efficient approach for
distributing resources. Built on agent-based semantics for dynamic resource sharing, StorageAgent achieves the
following gals. Fird, there isan efficient utili zation o avail able resources as there ae well-defined semantics for
lending and redaiming resources. Second, seaurity of datais ensured as accessto barowed resourcesis controll ed
solely by trusted-agents. Third, fine-grain control and metering d resources used byindividual clientsis possble.

1. Introduction

The Storage Service Provider (SSPH market is predicted to
grow to $6 hilli onin 2004[6]. The fundamental parameters
that charaderize the Quality of Service provided by a Stor-
age Service Provider (SSB are overal Throughpu and La-
tency of data-access The value of these parameters does not
solely depend onthe adual disk management, but is aresul-
tant effed of how the Storage Servers manage Memory,
Cadhe, CPU in addtion to the adua disk management.
Throughot this paper, the term resource, refers to the com-
bination d the following: cade, main memory and CPU
cycles.

In a SSP Infrastructure, clients are staticdly alocaed a
fixed amount of disk-space The accssto this data is con-
trolled by a Storage Server that sits in between the dients
and the adua storage-devices. Since the resources of the
Server have a impad on the overal Throughpu and La-
tency of data-access we neal a well-defined and efficient
mechanism to dyremicdly distribute these resources among
the dients. In the eisting SSPinfrastructure, the resources
are shared in an ad-hoc manner. One of the gproachesisto
build a throttling mechanism that prevents a single dient
from monopdizing al the resources. This approach is not
very efficient and hes the foll owing shortcomings. First, it
leads to under-utili zation, as the throttling approacd is con-
servative and withhdds resources even when they are avail-
able. Seoond, it does not ensure seaurity of data present in
cae aad memory. This is espedally required if clients
belong to dfferent organizaions. Third, metering d re-
sources is not posshle and the dients canna be darged
based onthe adual resources used.

In this paper, we propose StorageAgent: An Agent-based
architedure for dynamic resource sharing. In this architec-

ture, the dients are dl ocated to afixed amourt of resources,
propational to their disk-spaceor 1/O rate. When they need
additional resources, they can barow it from other clients,
if available. The resources that are borrowed are managed
and controlled by spawning Software ggents. These gents
have their own thread of control and keep tradk of the data
stored in the borrowed resources. They maintain seaurity by
confining the data accss Finally, when the resources need
to beredaimed, the ayents migrate to ather locations.

By using agent semantics, StorageAgent represents a sys-
tematic goproach for sharing resources among the dients
and achieves the following gals:

e Optimum utilization of the available resour ces.
As a boundry condtion, it shoud be possble for
a single dient to uilize 100% of the resources if
nore of the other clients are using them. At the
same time, there is a guaranteeto redaim these re-
sources whenever required.

e Security of data. StorageAgent ensures saurity
against disclosure and corruption o information.
Any accessto the borrowed resources is via agents
that implement accesscontrol mechanisms.

e Metering of resources used by individual cli-
ents. Agents provide afine-grained control of re-
sources. Thus it is posshle to kegp a tradk of the
adual resources used by an individual client.

The organizaion d the paper is as follows. Sedion 2 &
scribes a few design isaues of the StorageAgent architedure.
Sedion 3 gves details of the working d agents. In Sedion
4, we outline the achitedure. Sedion 5 briefly describes the
related work foll owed bythe conclusion and future work.

2. Design Issues

This sdion dscusss the following design isues of the

StorageAgent architedure:
¢ How are the resources partitioned and all ocated to
the dients.

¢ What performance metrics determine the need for
al ocating additi onal resources.

e Defining Agent functionality for dynamic resource
sharing.

2.1. Resour ce Partitioning and Allocation

Each client is daticdly assgned a fixed amourt of re-
sources i.e. cache, main memory and CPU cycles (Figure 1).
We refer to it as client-share. These ae the minimum re-
sources that the dient is aways eligible for and can demand
them whenever required. If aparticular client is not using all
its resources in the dient-share, the platform can temporar-
ily alocae them to ancther client, with the guarantee that
these resources can be redaimed whenever required.

‘ Chentl ‘ ‘ Client2 ‘ ‘ Client3 ‘ ‘ Client4 ‘
SSP Interface
{Chient.share;)
:\ Cache | ! [Cache | | [Cache | | Cache |
I 1
I 1
1 1 Resources
: Memory ! Memory Memory Memory ARSI
1 1 Server
I 1
I 1
:‘ @GR ‘: ‘ CPU ‘ ‘ CPU ‘ ‘ CPU ‘
I 1

| Storage

N

Figure 1: Partitioning resour ces between the SSP clients

The logicd partitioning d the resources into client-sharesis
achieved by a ResourceeManager (RM) built on top d the
operating system. The RM assgns ead client-share, a fixed
addressspacein cache and memory. It implements accss
control mechanisms to prevent clients from accessng data
in oher client-shares. In order to alocae CPU-cycles to
eath o the dients, the RM implements multiple queues,
with ore queue for ead client. It then all ocates CPU-cycles
to eat of these queuesin aroundrobin fashion.

The resources within a dient-share ae divided into Hocks.
Blocks are the small est unit of resource dlocation. Initialy,
when the dient begins data-access it is al ocaed 30% of the
blocks present in its client-share. More blocks are then all o-
caed incrementally by tradking the QoS being dcelivered to
the dient. The detail s of QoS-tracking are given in the fol-
lowing sedion.

When the total number of blocks being used within a dient-
share reades a ceatain threshold value, the RM starts

seaching for additional resources that can be borrowed
from other client-shares. If resources are avail able, software
agents are spawned that manage these borrowed resources.
In the agent termindlogy, the dient-share that spawns these
agentsisreferred as the home-base [7]. Whenever agents are
spawned, 10% of the resources within the home-base ae left
un-alocaed and reserved as “retrad-space” This is ex-
plained in the later sedions.

2.2. Metricsfor QoStracking
To determine the neead to alocate alditional resources, a
performance monitor is implemented for ead client-share.
It tradks the following system-condtions to determine the
QoS being dtlivered:

¢ Number of page-faults encourtered.

e Cache missratio.

¢ Chedingfor thrashing d datain memory.

¢ Number of physicd to logicd 1/Os per transac-

tion.

¢ Length of queuesfor I/O and CPU.
By observing these system-level condtions, the perform-
ance monitor estimates the QoS and raises trigger-events for
additional data dl ocation.

2.3. Using Agentsfor dynamic resour ce sharing

The term Software aents has been traditionally used for
pieces of logic that ad autonamously on behalf of the user.
They are generaly divided into two caegories: simple and
intelligent agents. StorageAgent consists of simple aent
programs, primarily designed to manage resources (Figure
2). It encepsulates a thread of control and is assgned a
unique name. Logic is built into the agent to exeaute the

foll owing tasks:
*« Trad the locaion d datain the resources that are
dlocaed to it.

¢ Provide the home-base with the physicd address
in resporse to data-accessrequests.

¢ Implement various pdlicies for data management.
For example, the aent can implement different
page-replacement pdlicies such as FIFO, LRU, etc
based on dita-accesspattern.

¢« Keg atradck of the avail able resources and adver-
tise it to the home-base.

3. Working of Agents
This ®dion describes the working d Agents and explains
the following:
¢ How is the data managed by the agents and their
resporse to data-accessrequests.
e How are the borrowed resources redaimed.
e What are the mechanisms implemented for data
seaurity.

3.1. Management of Data
When the dient makes a data-accessrequest, there ae four
possble scenarios that can arise:

(i) Datais alrealy present in the client-share re-
SOUrcCes.
(i) Datais present in ore of the agent-resources.
(iii) Data neals to be fetched from the disk, and
thereis gace aailable in the dient-share.
(iv) Data nedls to be fetched from the disk and
the only space aailable is in the gent-
resources.
Cases (i) and (iii) are straightforward. Cases (ii) and (iv)
involve ggents and are described below.

Software Agent

Thread

Security

]

Res Teacking

Memory

Borrowed Resources

Figure 2: Software Agents manage the borrowed re-
sour ces

3.1.1. Datais already present in agent-resour ces

To trad the data maintained bythe gyents, ead client-share
maintains a resource-table. This table is smilar to the one
maintained by the operating system to track data in memory.
Each entry consists of pair of logicd addressof the data and
its physicd locaion. The physicd locaion can pdnt to an
address in memory, cade or the name of the agent. The
agents maintain simil ar tables to track data. In case the data-
entry isnot found datais fetched from the physicd device

When the resource table entry paints to an agent, the home-
base sends it a data-request message (Figure 3). After scan-
ning its resource-table, the agent replies with the adual
physicd locaion d the data and a seaurity-ticket to acces
it. The detail s of the seaurity mechanisms are given later in
the sedion.

3.1.2. Dataisfetched from disk by the agent

When the data is not found in the resource-tables, it is
fetched from the device ad copied in memory. If the old
data in the dient-share neals to be flushed-out to make
space for the new one, the resources of the gents are
chedked for unused space Each agent constantly advertises
the resources that are available to it. The home-base then

seleds the gyent with maximum resources and sends the
reguest for data-fetch. The agent fetches the data and sends
the memory-addresswhere the datais copied alongwith the
seaurity accessticket.

3.2. Reclaiming resour ces

When 80% of the resources within a dient-share ae used-
up, it starts redaiming the resources that have been leased to
the agents. Depending uponresource avail ability, the agent
can seled one of the four options to hand-over resources:

¢ Return to home-base: For this option, the aggent
uses the “retrad-space” that is kept unallocated in
the home-base. To minimize data transfer, only the
dirty pages are mpied to the retrad space The
read-only data is discarded and resources are
handed-over. The purpose of retrad-spaceis to en-
sure that the borrowed resources can be promptly
returned.

e Migrate to another client-share: If resources are
avail able, the ggent can migrate to ancther client-
share. It neals to update the resource tables of the
home-base. The semantics of agent migration are
well -studied [7].

e Transfer data to another agent: It can transfer
the data to ancther agent belongng to the same
home-base. In this case aforwarding address is
used to redired accessrequests.

e Demise of the agent: In case there ae no re-
sources avail able in ather client shares andevenin
the retrad-spaceof the home-base, the ggent sends
a high-priority interrupt to the Resource Manager
(RM) to write-badk all the dirty pagesto disk. The
resource-table entries containing the agent address
are deleted.

Client-share 2 5% Used)

Software
Agent

Chent-share 3 50 tsed)

AN
AN

Clhient-share 4 30% Used

2> Performance Monitor

Figure 3: Accessing data maintained by agents

3.3. Data Security
Seaurity is one of the topics that is well-studied in the n-
text of mobile ayents [2, 3, 4]. The mnventional iswues re-

StorageAgent
Architecture

lated to agent seaurity do nd pose athrea in StorageAgent,
since dl the agents are spawned and maintained by the plat-
form and the dients have no control on the adions per-
formed bythe agents or the platform on which they operate.

The fundamental seaurity concern in StorageAgent is to
prevent the dient from unauthorized data-accessin the re-
sources of other clients. This is particularly challenging
when resources are borrowed on dher client-shares. In order
to prevent disclosure and corruption d data by malicious
Users, we implement the foll owing two medhanisms:

e Usingticketsfor accessing agent resources
The home-base caina access the aent resources withou
accesstickets. The gent sends these tickets in resporse to
data-accessrequests. The tickets are encrypted and carry the
following information: (i) The starting physicd address
location (ii) The dlowed accesshbyte-range (iii) The Time
To Live (TTL). The RM allows accessto resources by de-
crypting the tickets. The TTL prevents multiple acceses by
forging.

e Datascrambling
Before handing ower the borrowed resources, the ayent
scrambles the data that is present in those resources. This
prevents disclosure of data, after the agent has migrated.

Resource ~ 1racking
Allocation | A)

Security ?e;{fz;l;:: L

Figure 4: Components of the StorageAgent Architecture

4. Architecture

Figure 4 oulines the various comporents of the Stor-
ageAgent architedure, that have been mentioned in the pre-
vious dions. The achitedure mainly consists of the Re-
source Manager built ontop d the Operating system along
with the Agents that are spawned to manage shared-
resources. The Resource Manager can be implemented as a
part of the Operating system [5]. This will reduce mntext-
switches between User and Kernel space

5. Related Work

There ae numerous papers that address various issues re-
lated to the working o agents. The theoreticd model of
Actors [1] suppats concurrent mobile objeds in a pro-
gramming environment. JavaSed [2] alongwith [3, 4], im-
plement mechanisms for mobile aent seaurity. Due to
spacelimitations, this ssdionis not comprehensive.

6. Conclusion and Futurework

This paper addresss the isuue of dynamicdly sharing re-
sources namely cadie, memory and CPU between clients
conreded to a Storage Service Provider. By bulding an
architedure based on agent semantics, we have proposed a
systematic, efficient and seaure gproach for resource shar-
ing. This architedure is relatively easy to implement and
can uilize the aurrent reseach in software agents to the
benefit of Storage Management.

In the future, the StorageAgent architedure can be extended
for load-management and resource-sharing among multiple
Storage Servers. Further, it shodd be possble to manage
ead of the resources differently based on client-behavior.
For example, ead client-share can implement different
page-replacament padlicies, etc.

7. References

[1] G. Agha, “Actors: A Model of Concurrent Computation
in Distributed Systems,” Artificial Intelli gence Series, MIT
Press Cambridge, Mass, 1986

[2] C. Bryce and J. Vitek, “The JavaSed Mobile Agent
Kernel,” Procealings of the First Internationd Symposium
on Agent Systems and Applications and Third Internationd
Sympo-sium on Mohile Agents (ASA/MA’'99), October 1999
pp 103117.

[3] R. Gray, D. Kotz, G. Cybenko, and D. Rus, “D’ Agents:
Seaurity in a Multiple-Language, Mobile-Agent System,” In
Giovanni Vigna, editor, Mobile Agent Seaurity, Ledure
Notesin Computer Science, Springer-Verlag, 1998

[4] D. Hagimont, and L. Ismail, “A Protedion Scheme for
Mobile Agents on Java,” Procealings of the 3rd ACM/IEEE
Internationd Conference on Mobile Computing and Net-
working, September 1997

[5] D. Johansen, R. van Reness, and F. Schneider, “ Operat-
ing system suppat for mobile agents,” Proceelings of the
5th. IEEEHOTOS Workshop, 4th-5th May, 1995

[6] Survey of Storage Service
http://www.itaaorg/isedpubs/e2001 #09.pdf

[7] PAttie Maes , Software Agent Tutoria, ACM
SIGCHI Conference on Human Fadors in Computing
Systems, 1997

http://pattie.www.media.mit.edwpeopl e/ pattie/CHI97/

Provider.

