Parallel Shuffling and its Application to Prét a Voter

Kim Ramchen
kramchen@gmail.com

Vanessa Teague

Department of Computer Science and Software Engineering

University of Melbourne

vteaguelcsse.unimelb.edu.au

Abstract

We consider the problem of verifiable parallel shuffling
in which the same shuffle is simultaneously performed
on two or more lists of input ciphertexts, each list en-
crypted under a different key. We present three paral-
lelisations of shuffle proofs from different paradigms.
The properties of each protocol are analyzed and con-
trasted, and their suitability for electronic voting dis-
cussed. We show how parallel shuffling solves the
problem of verifiable distributed ballot construction in
the Prét a Voter electronic voting scheme. In con-
junction with the use of a new cryptographic primitive
for partially-homomorphic addition, the incorporation of
parallel shuffling is shown to produce schemes with su-
perior privacy properties to existing protocols. We addi-
tionally present several original attacks on Prét a Voter
and demonstrate that our modified schemes are immune.

1 Introduction

A shuffle is a permutation and re-encryption of a set of
input ciphertexts. A mix-net is a series of chained servers
each of which applies a shuffle to some input ciphertexts,
before passing the output to the next server. In an elec-
tronic voting context, one possible use of a mix-net is to
untraceably shuffle encrypted votes prior to decryption,
ensuring an individual’s vote is private.

In recent years much effort has gone into designing ef-
ficient verifiable shuffle arguments, for use in mix-nets.
There have been a number of approaches for verifiably
shuffling a list of homomorphic encryptions, beginning
with the classic proof by Sako and Kilian [SK95]. Later
Furukawa and Sako [FSO1] used characterisations of
permutation matrices to achieve a much more efficient
proof, a technique extended by Groth [GLO7]. A third

paradigm by Neff [NefO1], for EI Gamal ciphertexts, is
based upon the observation that a polynomial is invari-
ant under a permutation of its roots, and makes use of
the fact that the number of roots of a polynomial over Z,
(where ¢ is prime) is bounded by the degree. This tech-
nique has been refined in [NefO4] and later extended to
arbitrary homomorphic cryptosystems in [Gro05].

In this paper, we focus on constructing efficient pro-
tocols for verifiable parallel shuffling, in which a mix
server verifiably applies the same shuffle to several in-
put vectors. Although the problem has been examined in
[GroOS] and [NefO4] in the case that all ciphertexts are
encrypted under the same public key, our work is the first
to explicitly address the case that the input vectors are
each encrypted under distinct public keys. We present
one solution for verifiable parallel shuffling, which is a
generalisation of the classic shuffle proof of Sako and
Killian. Although the generalisation is straightforward,
we are not aware of its being published before. We sketch
another solution based on [GLO7]. Appendix B contains
a final scheme based on a proof by Neff [NefO4], suitable
for El Gamal ciphertexts. The latter schemes are con-
siderably more efficient but also more complicated. The
parallelisations maintain the same privacy properties as
the original protocols. For example, the parallelisation
of Neff’s proof is shown to be permutation hiding as de-
fined in [NSNKO06].

1.1 Applications: Prét a Voter

Prét a Voter is an end to end electronic voting system,
which satisfies the requirements of correctness, privacy
and voter-friendliness [RS06, Rya08]. We have chosen
to focus on Prét a Voter because its user interface is eas-
ily adapted to expressive voting schemes such as Sin-
gle Transferable Vote (STV), Range Voting and Borda.
These are the main applications of the ballot construc-

tions described in this work. In Prét a Voter, as in other
verifiable voting systems, achieving coercion-resistance
even in single-value elections such as First Past the Post
is a challenging problem. Although the basic design of
Prét a Voter is receipt-free (meaning that a voter can-
not prove how they voted), various subtle coercion at-
tacks have been demonstrated against particular versions
[XSHTO08, RT09]. When allowing ranked-voting sys-
tems such as STV, the problem becomes much harder
again [Hea07, XSHTOS, BMNT].

In this paper we illustrate a number of new weaknesses
relating to ballot construction in existing schemes that
could result in coercible or incomplete elections. Co-
ercible means that voters can prove how they voted and
hence sell their votes; incomplete means that the tally
may not be exactly correct even when the proof transcript
is valid. We then present efficient alternatives that avoid
such problems. In particular we present a primitive based
on El Gamal that allows homomorphic modular addition
of a plaintext message with an encrypted message at no
cost. This construction is perfectly suited for tabulating
votes in single-value elections, eliminating the possibil-
ities of incompleteness or coercion that exist in current
schemes.

We show how parallel shuffling dovetails with this ap-
proach, and more generally how it leads to verifiable
ballot construction in both single-value and ranked-
voting elections, which in turn yields improved coercion-
resistance.

Structure of the Paper We devote Section 2 to the
cryptographic background that the rest of the paper
utilises, including the modular addition primitive that is
employed in the discussion of Prét a Voter. In Section 3
we present a parallelisation of a verifiable shuffle proto-
col, with a sketch of two more and a comparison of their
properties and suitability for Electronic Voting. In Sec-
tion 4 we discuss weaknesses with Prét a Voter schemes
and show how parallel shuffling resolves them.

2 Cryptographic Preliminaries

2.1 Homomorphic Encryption

We require a cryptosystem with homomorphic encryp-
tion, that is the encryption function homomorphically
maps from a message (plaintext) space to a ciphertext
space. This simply means that some public operation
can be performed on ciphertexts which reflects an opera-

tion on the private underlying messages. We will discuss
protocols which either specifically require additive ho-
momorphism (typically in a voting context), or in which
the homomorphism does not matter (e.g. in shuffling).

2.1.1 Example - Additive El Gamal

Let g, p be large primes with g|p— 1. Let G be a subgroup
of Z, of order q with generator g. The private key is s
chosen from [0, ¢ — 1]. Let h = g¢°, then the public key
is (p,q, g, h). Encryption and decryption of a message
m € [0,¢q — 1] with randomness r uniformly selected
from [0, ¢ — 1] are given by:

Ep(m;r) = (9", 9™h")
Doi((x,y)) = log, 2= =m

We get an additive homomorphism:

ro+ri mo+mi hTo +r1)

Epi(mo;ro) - Epk(mair) = (g . g
= Epr(mo +may;ro +11)

We also get homomorphic scalar multiplication:
(9", 9™h")" = (9", g"h")

Note in this scheme decryption is only practical for small
m owing to the difficulty of the discrete log problem,
however this is an acceptable restriction in many appli-
cations, including electronic voting.

The Paillier [Pai99] cryptosystem also has an addi-
tive homomorphism, without requiring a small message
space.

2.2 Scalar Homomorphism Modulo N

In this section we present a scheme in which an unen-
crypted value can be added to an encrypted one, produc-
ing a ciphertext which is the sum of the original two val-
ues modulo a public integer N.

The setup is the same as for El Gamal encryption over
Z,, with g an element of (large prime) order g. Sup-
pose N | ¢ — 1. Then an element o € Z of order N
in ZZ exists and is easy to construct.! In [HSvV09] this

root of unity was used to construct an efficient proof of

1One way to do so is to find a generator 7 of Z (i.e. the exponent

—1
group) and set = N Finding r is not difficult providing ¢ — 1
is easily factored and does not have too many small factors - since a
random element in Z is a generator with probability %.

rotation. However it also yields a “partial” homomor-
phism, which allows us to compose a plaintext message
with another encrypted message (mod N). We have,
taking superscripts of o modulo N:

l+m

(gr,galh’d)am = (g’"/,ga hrl), that is:

a™ ® E(al) = BE(a!™™)

Of course to allow decryption we require relatively small
N due to the necessity of extracting a message m from
"

(0%

When we actually use this, we will want N to be the
number of candidates in the election. This should still be
a reasonable constraint to satisfy.

3 Parallel Shuffling

In this section we formalise verifiable parallel shuffling
and give one detailed example, based on a classic shuf-
fle proof. Although the extension is straightforard, we
have not seen it elsewhere in the literature. We include
it here for the sake of having a concrete, easily under-
stood example. Two other, more efficient but more com-
plicated solutions, are contained in Section 3.3 and Ap-
pendix B. We conclude this section with a comparison
of their properties, and discuss their suitability for elec-
tronic voting generally, though our specific applications
are for Prét a Voter.

3.1 Definition of parallel shuffling

Informally, we wish to be able to prove that the same
shuffle 7 has been applied to each vector of input cipher-
texts {e] }. We refer to this problem as Shufp,,, and
define it formally as follows:

Definition Shufp,.,

Let B/ :1 < 7 < J be semantically secure homomor-
phic encryption schemes, each with a corresponding ran-
domizer space R7.

Common input: .J vectors of input ciphertexts:
{e}}, ..., {eJywith1 <i<k

and J vectors of corresponding output ciphertexts:

{EB}}, ... {E/Ywith1<i<k

Prover’s input: A permutation 7 € Sy, re-encryption
factors 3] € R?,1 < j < J so that for each j:

3

El =el - E(0;8]):1<i<k

To be proved: That 7, defined above, exists.

We now give three different solutions to Shu fpg., each
based on a different shuffle proof.

3.2 Parallel Sako-Killian

The protocol is a parallelisation of a proof in [SK95]
which is itself based on classic technique for zero knowl-
edge proofs introduced in [GMWO91]. The prover begins
by generating a random shuffle o and applying it to each
list of input ciphertexts, producing intermediate shuffled
lists. The verifier challenges the prover to reveal either
the permutation that takes the input lists to the interme-
diate lists, or the permutation that takes the intermediate
lists to the outputs. A more formal protocol description is
given in Algorithm 1. The security properties and proofs
are very similar to those in [SK95].

We use the notation iid to refer to random variables that
are independent and identically distributed.

Algorithm 1 Parallel Sako-Killian shuffle proof
for Repeat ¢ times do
P picks o £ U(S,,), 7/ iid U(R7) and sends:

Il =e - E0:)) (1)

V challenges with bit b.
ifb=0then
P reveals o, v/
V accepts if (1) holds.
end if
if b # 0 then ‘ ‘ ‘
Preveals ¢ = o~ 'm, 8] = B} =) 1
V accepts if:
E] = fﬁa@ - E7(0;67)
end if
end for

Theorem 3.1 Algorithm I is a sound, complete and zero
knowledge protocol for Shu fpgr.

Proof A straightforward extension of the proof in
[SK95].

A disadvantage of this approach is that the communica-
tion complexity is O(tn.J).

3.3 Permutation Matrices

The most efficient shuffle proof based on permutation
matrices is [GLO7], which, using commitment schemes
is actually an argument.> One advantage of the commit-
ment approach is that it is easily and efficiently paral-
lelised. At a conceptual level, once a permutation 7 has
been committed, any set of input-ouput ciphertexts that
has been shuffled by 7 needs only to be linked to the
commitments. The exact mechanics of how this is done
would require reproduction of the arguments in [GLO7],
however it suffices to say that every additional shuffle to
be proved requires just one extra message to be sent. The
property of being parallelisable is discussed in [Gro05]
for the shuffle argument there (which was actually based
on the Neff-paradigm), however the parallelisation tech-
nique for [GL07] is identical, so the reader is referred to
[Gro05].

3.4 Comparison of Parallel Shuffles

Appendix B contains a description of how to extend
Neff’s polynomial approach [NefO4] to parallel shuf-
fling.

The choice of which parallel shuffle proof to use de-
pends somewhat on the application. Ignoring efficiency,
the parallelisation in Section 3.2 of Sako and Killian’s
classic proof is very attractive, as it is simple, generic,
attains arbitrary soundness given enough rounds, and is
perfect zero knowledge. However in practice efficiency
is usually paramount and perfect zero knowledge is actu-
ally an unnecessary requirement. In fact, as the input to
the shuffle proof is encrypted and the semantic security
of encryption schemes themselves depend upon compu-
tational indistinguishability assumptions, computational
zero knowledge is sufficient.

The permutation matrix approach sketched in Sec-
tion 3.3, based on [GLO7], is the most efficient, and is
computational zero knowledge. The use of an integer
commitment scheme there allows an argument based on
a neat characterisation of a permutation matrix over Z.
The round complexity is only 3, desirable in the non-
interactive case as it reduces the computational work in
the Fiat-Shamir heuristic etc. A disadvantage is that it re-
lies on computationally binding rather than statistically

2The distinction and why it is important is discussed in Section 3.4.

binding commitment schemes, so it is technically not
a proof, but an argument. This means that the sound-
ness and hence trustworthiness of the protocol is based
on computational constraints.

In contrast, the parallelisation in Appendix B of Neff’s
proof [Nef04] is a true proof, as it is unconditionally
sound. It is not computational zero knowledge, however
it satisfies the weaker privacy notion of permutation hid-
ing, which is sufficient for our purposes.

One important disadvantage of [GLO7] for electronic
voting is that using commitment schemes that are only
computationally binding, results in an election protocol
that is not universally verifiable. The integrity of the
election relies upon a good source of randomness, either
a common random string, a random oracle (implemented
in practice with a strong hash function), or a value jointly
generated by some authorities (in which case it must be
assumed they don’t all collude). Although Neff’s proto-
col relies on similar assumptions, it is only for the pri-
vacy, not the integrity, of the election. The permissibility
of universal verifiability is a clear advantage of “Shuffle
of ElGamal Pairs” [Nef04] over shuffle protocols based
on computationally binding commitments, and hence of
the parallelisation in Appendix B over the parallelisation
in Section 3.3.

4 Applications to Prét a Voter

This section is divided into three parts. In the first we
present an overview of the important constructions that
underlie Prét a Voter, though the reader is referred to
[RS06, Rya08] for full details. In the second we dis-
cuss a number of weaknesses with existing Prét a Voter
schemes, and finally we show how parallel shuffling can
efficiently solve them.

Notation Let v be the number of voters, and n the
number of candidates. We will use [z] to denote an en-
cryption of x, and the following notation for homomor-
phic encryption:

[(m)] @ [(m2)] = [(m1 +m2)]

4.1 Overview of Prét a Voter

A cornerstone of the Prét a Voter voter-verified system is
the construction of the ballot form. A ballot form has a
list of candidates printed down the left side, which is one

Slytherin !
Gryffindor !
Hufflepuff @ x
Ravenclaw '
[[SHReg | [[s]]Tel

Figure 1: Single Value Election. Suppose the canonical
ordering is alphabetical. The cyclic shift is 3, s0 Op¢ =
[3] 1., The checkmark index value is r = 2. The voter’s
preference index with respect to the canonical order is
hence r + s =2+ 3 = 1 mod 4.

of n possible cyclic shifts of some public canonical can-
didate ordering (say an alphabetical list of candidates).
At the bottom of the right side is a cryptographic “onion”
encoding of the cyclic shift. In the booth, the voter marks
a cross against their preferred candidate. Fig. 1 shows a
completed ballot. Our conventions are that candidates
are numbered from O to n — 1, cyclic shifts push the can-
didate names upward, and voter checkmark positions are
numbered downwards starting from 0.

The voter then detaches the right side from the left, dis-
cards the left side and retains only the right side of the
form - known as a “receipt”. Casting their vote consists
of placing their receipt under a reader which records the
index position r of the checkmark and the cryptographic
“onion” Op¢; at the bottom of the right side.> The pair
(r, ©71¢;) is sent to a publicly visible bulletin board (BB),
and the voter checks that it appears there. The voter’s re-
ceipt is then digitally signed and they retain it.

The clever construction of the receipt makes the scheme:

1. Voter-verified. The voter can verify their vote is
cast as intended simply by ensuring that the pair
(r,O71¢) that resides on their receipt corresponds
to that displayed on the BB. The correctness of gen-
eration of ballot forms, ensures that the receipt is a
true representation of the voter’s preference.

2. Receipt-free. It is impossible for a coercer to learn
how a voter voted, even if the voter is under the co-
ercer’s control. The plaintext on the voter’s receipt
is only the index value r, which could have been
with respect to any possible cyclic shift of a canon-
ical ordering. Therefore a a voter’s receipt reveals
nothing to a coercer.*

3In this paper an “onion” is a simple ciphertext.

4Providing the coercer doesn’t obtain the discarded left strips, oth-
erwise in theory a coercer could associate both sides of a ballot form
from physical markings, and trivially learn the vote.

4.1.1 Anonymous Tabulation by Re-encryption

We have discussed why the scheme has the cast as in-
tended property, in this section we discuss why the
scheme has the counted as cast property.

Once the votes appear on the BB, they must be decrypted,
so that the result of the election can be determined. How-
ever due to the public nature of postings to the BB, it is
not satisfactory to simply decrypt the voters’ receipts as
they appear on the BB, or else a coercer could obtain a
receipt from a voter and then note what the decrypted
vote is. The solution is to pass the receipts through a
re-encryption mix-net.> The mix-net consists of a num-
ber of parties, each of whom shuffles the input (here re-
ceipts) according to a private permutation, then proves
the output really is the input permuted. Provided that at
least one of the parties is honest, that is does not reveal
their permutation, the privacy of the election will be pre-
served.

One catch is that the receipts are of the form (r, [s],,;)-
We cannot simply pass the receipt as a pair through the
mix, since the r-value is invariant (even though the ci-
phertext is re-encrypted and hence untraceable - the r-
value may allow tracing of votes through the mix). The
solution is to absorb the r-value into the onion via homo-
morphic encryption:

[rlrer @ []rer = [r + sl re
([r] 4., is formed with zero randomness).

The single ciphertext is easily amenable to mixing, af-
ter which a threshold set of decryption tellers decrypt the
output, recovering r + s. This value (mod n) is pre-
cisely the index of the voter’s preference in the public
canonical ordering of candidates.

4.1.2 Generation of Encrypted Ballot Forms

We require that no single entity determines the encrypted
candidate order that will appear on a voter’s ballot form.
This is because if a single authority generated [s] .,
they would be able to decrypt a voter’s receipt when it
is posted (pre-mixing). The solution in [RS06] is to use
a set of [clerks who will, for every ballot form, jointly
generate the seed value, s, that will be used to construct
the cyclic shift of candidates that will be printed on that
form.® All clerks would have to collude to determine s

5In this paper when we refer to a “mix” or “shuffle”, we will always
mean a re-encryption mix-net.

The registrars will calculate the cyclic shift as s (mod n), and
print the corresponding candidate order on the form.

from [s] ;. Also s must be encrypted under the pub-
lic key of the registrars - the authorities responsible for
printing the candidate ordering on a ballot form. The
joint generation of s is done as follows. For each tenta-
tive ballot in a batch, the jth clerk is passed the following
pair by the j — 1th clerk:

(Isj-1] peg> [si—1l7er)

She generates a random value 5 and outputs:

([[Sj]]Reg, [[Sj]]Tel) =

([[Sj_lﬂch © [gegs [si-1l7er ® [S17er)-

These onion pairs are then mixed, and passed to the next
clerk. The result after all [clerks are finished, is the pair:

([[S]]Reg’ [[S]]Tel)

This registrars’ onion and tellers’ onion can now be
printed to the bottom left and right corners respectively
of a blank ballot form. The Teller’s onion is covered
with a scratch strip or similar, then the form is passed
to the registrar for decryption. The registrar decrypts the
registrar’s onion (on the left side) and prints the candi-
dates’ names in order. The ballot is now available for
auditing, to check that both onions and the plaintext can-
didate order match. If it is not audited, it can be voted
on, after which the voter destroys the left side with the
candidate list and the registrar’s onion, then removes the
scratch strip to expose the tellers’ onion. The right side,
with the tellers’ onion and voter’s checkmark, is scanned
and posted on the bulletin board. Covering the tellers’
onion prevents anyone, including the Registrar, from re-
membering its value and the corresponding candidate or-
der, and finding them later on the bulletin board.

4.1.3 Accommodating Ranked Voting

The demands of accommodating single-value elections
(e.g. FPTP) and ranked-voting elections (e.g. STV) in
Prét a Voter are different [Hea07, XSHT07]. The former
requires the reconstruction of a vote from a receipt with a
plaintext index r and encrypted candidate permutation o,
while the latter requires reconstruction from a plaintext
index permutation m, and encrypted candidate permuta-
tion o. That is, the voter’s actual preference permutation
1 with respect to a canonical candidate ordering is 7,.0.
Fig. 2 shows the ranked-voting case.

We note that obtaining coercion-resistance in ranked-
voting elections when plaintext votes are revealed is in-
herently difficult due to the [ralian Attack [BT94]. The
attack exploits the fact that the number of all possible

Ravenclaw | 4
Hufflepuft | 3
Gryffindor | 1
Slytherin | 2
(8)Reg | (8)Tel

Figure 2: Ranked Voting Election. Suppose the canoni-
cal ordering is alphabetical. The candidate permutation
iso = (%gff). The index permutation is m, = (}é?;‘)

The voter’s preference permutation is hence y = m,0 =
(G HR S)
1342/

votes is enormously larger than the number of actual
votes in an election. By assigning a particular preference
permutation to a voter, a coercer can determine whether
that voter obeyed simply by observing whether the per-
mutation appears or not in the revealed votes. Moreover
the fact that a coercer desires preferred candidate(s) to be
elected scarcely hinders their coercion leverage, as dis-
cussed in [BMNT].

4.2 Weaknesses in Ballot Construction

In this section we discuss a number of weaknesses in Prét
a Voter associated with ballot construction in existing
schemes that result in either coercion, or elections that
are incomplete. We then show how parallel shuffling is
an efficient solution to these problems.

4.2.1 Verifiable Equivalence of Ballot Onions

To ensure the correctness of ballot forms, the equivalence
of [s] g, and [s] 7., must be verifiable/auditable.

In [Rya08] the joint generation of onions and auditing are
done simultaneously, by having all onions published in a
single step. Namely, to form w ballots, each of [clerks
publish a column of w pairs, yielding a w x [matrix. In
each row, auditors select a proportion (say half) of the
pairs in each row, and require the clerks to decrypt them.
Assuming no clerk is found to be cheating, the unaudited
pairs in each row are homomorphically summed, yield-
ing a single onion pair for each ballot.

Although highly convenient, this cut and choose proto-
col has the disadvantage that if only k clerks are honest
(i.e. keep their plaintexts secret), then the other clerks
in collusion learn the final seed values, and hence candi-
date permutations of a proportion of 2% ballots. For very
small &, this may lead to practical coercion, if a coercer
colludes with the dishonest clerks.

Zhe (Joson) Xia [Xia09] suggested a simple solution to
this problem: each clerk should produce a column with
two different w values in each row, then one should be
chosen at random for audit while the other is used to con-
tribute to the onion. In Section 4.3 we present a different
verifiable distributed ballot construction based on paral-
lel shuffling. Both solutions require all clerks to collude
to discover any s values. In our solution there is a neg-
ligible probability that a cheating ballot construction au-
thority can construct a convincing proof; in Xia’s there is
a higher probability, though the probability is low enough
that it would probably make no difference in a real elec-
tion.

4.2.2 Unrestricted Seed Values

In this section we discuss why the approach of having
the seed s generated from the entire plaintext space leads
to aspects of incompleteness and coercibility. Recall that
the plaintext space is very large, being the size of the
prime-order subgroup that El Gamal runs in.

Incompleteness Observe that for the absorption of the
index value r in the tabulation phase to work, we have to
avoid overflow in the composition with the seed value
s. Recall that n is the number of candidates, and let
0,...,9 — 1 be the (large) range of plaintexts. In the
version given in Section 4.1.1, the value of the s that
is jointly generated must not lie in {¢ — n,...,q — 1}.
If it does, it is possible that » + s > ¢, which means
that the decrypted candidate number will come out as
(r + s mod ¢) mod n, which is not in general equal to
the correct value, » + s mod n.

In general, regardless of our encoding there will always
be a range of n numbers, which s must avoid. If s can
assume any value from the plaintext space, then the pro-
tocol is technically incomplete. The probability of over-
flow is certainly negligible if s is generated uniformly
from the whole range, however if (some or all) clerks
can collude to produce overflow problems, then they can
alter the outcome of the election.

Coercion As described in [XSHTO08], the possibility of
coercion arises post-tabulation, when the value (r + s)
(mod M) is made public. If corrupt registrars, having
secretly recorded a list of all the seed values, could iden-
tify s from this value, then they could infer and thus
link the ballot to its result.

As noted in [RS06], this is unlikely to lead to feasible co-
ercion per se, because only the registrars learn the value

of s, and they have no obvious way to link it to a partic-
ular voter because they do not see the teller onion. How-
ever a practical attack arises if a target voter can prove
which s value was used to generate their ballot.” We note
that one scenario in which this occurs is if the voter is al-
lowed to see [s] ., on their ballot form. This provides a
method of linking a voter to their ballot.

The attack can be summarised in three steps:

1. Corrupt registrars secretly record the association be-
tween every onion [s] 5. , and its decrypted s value
in the candidates printing phase.

2. A target voter is then asked to memorize [s]p,,
on their ballot (even the first few characters would
probably identify it).

3. Registrars hence learn the voter’s s value, and there-
fore post-tabulation, their r value (in all likelihood).

One solution would be to attempt to limit the range of
s. It is suggested in [RS06, XSHTO8] that honest clerks
could contribute in a way which results in s taking on
O(nV/1) and O(nl) values respectively. However the
problem now is that a single malicious clerk has even
more control over s. Apart from frustrating attempts to
limit s, they could even mount the overflow attack de-
scribed earlier with significant probability.

The other obvious solution is to prevent the voter from
seeing [s] ., atall, in fact [RS06] suggest that this onion
could be destroyed after use. However the cost of phys-
ically implementing this in a way that also allows audit-
ing, may well be greater than the alternative we propose
below, which never requires [s] ,, to be hidden.

4.3 Improved Ballot Construction

We present two distributed ballot constructions, one for
single-candidate selection, and one for more expressive
voting schemes, which address the incompleteness and
coercion issues described above.

Modular Seed Composition A way to avoid the prob-
lems of incompleteness and coercion is to use the
“partial” homomorphism modulo N, described in Sec-
tion 2.2. We will choose the group so that the modulus
N is equal to the number of candidates, n.

7Compare this to the attack of [RT09] surveyed in Appendix C,
where a coercer demands to know o from a voter.

Specifically we instantiate an El Gamal scheme in a
group (g) of prime order ¢ = 1 (mod n) and compute
a of order n. We form public keys PK ey, = (g, hr),
PKre; = (g,hr). Then we can absorb an index value
into the teller onion, since: Er;(s)@a™" = Epe(s—r).

Since the onions now encode o rather than s, the ballot
generation process must change, we show how parallel
shuffling solves this.

Verifiable Joint Generation of Ballot Onions The
aim is to produce ballots of the form (g7, g* hp™"),
(972, g% hr)], where s € Zy,.

[clerks will generate v ballots (or possibly more in prac-
tice to allow auditing). The following ciphertexts with
zero-randomness are passed as input to the 1st clerk.

(10T regs -+ 0" g 0D rers - [0") -

When the jth clerk is passed the following pair by the
7 — 1th clerk:

([IIOéUj?l(O)]]Reg7 cety [[ao-jil(w_l)]]RegL
[[[agjfl(o)]]Tev EERR) [[O‘Ujfl(v_l)]]Tel]) .

she thinks of a private permutation ¢; €g Sy, and shuf-
fles the lists in parallel, outputting:

([[[a¢jgj71(0)]]Reg7 e [[O‘%Ujil(vil)ﬂReg}’
[as73-2 O gy [a®ses 2D])

The result after all clerks are finished is:

([Haol(o)]]Regv cet [[aal(v_l)]]Reg]a
H[aol(O)]]TeU R [[am(v_l)ﬂTez])

where oy = ¢ ... 1.

By “zipping” the two output lists together, and taking the
corresponding pairs, v ballots are formed. The parallel
mixing process is made verifiable by Shu fpg.

The communication complexity of the above process is
O(vl), which is the same as [RS06], [Rya08]. Even
though the hidden constant may be larger due to the use
of mixing, the benefits are:

e The ballot generation process is now complete.

e The decryption of mixed receipts avoids the coer-
cion issue described in Section 4.2.2. If at least one
ballot generation clerk and at least one decryption
clerk keep their permutations secret, we know of no
way the others can infer which ballots correspond
to which decrypted votes.

e If a voter is handed a ballot, each cyclic candidate
ordering is essentially equiprobable.

Note that the first and last point hold if we use parallel
shuffling alone, without the special encoding.

4.3.1 Verifiable Ballot Generation in Ranked Voting

In general ranked voting has not been coercion-
resistantly achieved in Prét a Voter, we refer to Ap-
pendix C for a characterisation of the challenge that
this problem poses. An exception is [HeaO7], however
details of how to efficiently verify ballot construction
are omitted from that paper. What we describe next is
how Shufpg. solves precisely this problem, leading to
an efficiently verifiable coercion-resistant ranked-voting
scheme.

Candidate Permutation Representation In [Hea(07]
an encrypted candidate permutation ¢ is represented via
a vector of onions (one onion holding each candidate
identifier), note that this approach is also suggested in
[Rya08].

Joint Generation of Ballot Onions For convenience,
let the candidate identifiers be the integers 1,...,n. [
clerks can jointly generate an encrypted ballot form, us-
ing a similar construction to the single-value case de-
scribed in the previous section. To generate a ballot form,
we start off with a pair of vectors:

<[[1]]Reg’ R [nﬂReg> = ([gers-- - Inlper)

For 1 < j < [the jth clerk sequentially applies shuffle
¢; in parallel to the above vectors, the result is:

([gegs -+ > lo1(0)] geg) = {[o1(Wpess - - -

Provided at least one clerk is honest, 0 =: o, L is uni-
formly chosen from S,,. The left and right vectors form
the tellers’ and registrars’ encryptions of o respectively.
Once again the process is made verifiable by Shu fpg-.

Anonymous Tabulation Absorbing the plaintext part
of the receipt, 7., into the rest of the receipt is very easy
and publicly computable. The vector of onions is sim-
ply permuted according to m,.. The new receipts are now
passed through a re-encryption mixnet to break the voter-
vote correspondence (that is shuffling occurs between re-
ceipts; the order of encrypted candidate identifiers within

) [[Jl (n)ﬂ Tel>

a receipt is unchanged). This is achievable by parallel
shuffling. We first zip the votes together, forming n vec-
tors each of which is v ciphertexts long. These are then
shuffled in parallel and the output is zipped. In this case
all the ciphertexts are under one public key (that of the
Tellers), so we do not strictly require Shu fpg, and could
instead use the “ElGamal Sequence Shuffle Proof Proto-
col” in [Nef04].

5 Conclusion

We have defined verifiable parallel shuffling and pre-
sented efficient parallelisations of three shuffle zero
knowledge proofs. Of these, the parallelisation of
[NefO4] is both highly efficient and unconditionally
sound, making it ideal for electronic voting. We also re-
viewed the Prét a Voter electronic voting scheme, and
discussed several problems in existing approaches. We
presented a cryptographic primitive that allows modular
addition of a encrypted message with a plaintext mes-
sage. The accompanying ballot generation process en-
sures a uniform distribution of cyclic candidate order-
ings, and can be made verifiable by parallel shuffling
proofs. The combined process hence yields a coercion
resistant scheme for single-value elections. Parallel shuf-
fling is also applicable to verifiable ballot generation in
ranked-voting elections. Future directions include find-
ing other applications of the modular homomorphism
and of parallel shuffling.

6 Acknowledgements

Thanks to Peter Ryan, Zhe (Joson) Xia and several
anonymous reviewers for helpful comments on this
work.

References
[BMN*] Josh Benaloh, Tal Moran, Lee Naish, Kim
Ramchen, and Vanessa Teague. Shuffle-
Sum: Coercion-Resistant Verifiable Tallying
for STV Voting. To appear in IEEE Transac-
tions on Information Forensics & Security,
special issue on Electronic Voting.

Dan Boneh. The Decision Diffie-Hellman
Problem. In Proceedings of the Third Algo-
rithmic Number Theory Symposium, LNCS
1423, pages 48-63. Springer-Verlag, 1998.

[Bon98]

[BT94]

[FSO1]

[GLO7]

[GMWO1]

[Gro05]

[Hea07]

[HSvV09]

[NefO1]

[Nef04]

[NRI7]

[NSNO4]

J. Benaloh and D. Tuinstra. Receipt-free
secret-ballot elections. In Symposium on
Theory of Computing, pages 544 — 553.
ACM, 1994.

Jun Furukawa and Kazue Sako. An Effi-
cient Scheme for Proving a Shuffle. In Proc.
CRYPTO 01, LNCS 2139, pages 368-387.
Springer-Verlag, 2001.

Jens Groth and Steve Lu. Verifiable Shuf-
fle of Large Size Ciphertexts. In Proc. PKC
’07, LNCS 4450, pages 377-392. Springer-
Verlag, 2007.

Oded Goldreich, Silvio Micali, and Avi
Wigderson. Proofs that Yield Nothing but
Their Validity or All Languages in NP Have
Zero-Knowledge Proof Systems. J. ACM,
38(3):690-728, 1991.

Jens Groth. A Verifiable Secret Shuf-
fle of Homomorphic Encryptions
(Updated). www.brics.dk/~jg/

JournalShuffle.pdf, 2005.

James Heather. Implementing STV securely
in Prét a Voter. In Proceedings of the 20th
IEEE Computer Security Foundations Sym-
posium (CSF °07), pages 157-169. IEEE
Computer Society, 2007.

Sebastiaan Hoogh, Berry Schoenmakers,
Boris §korié, and José Villegas. Verifiable
Rotation of Homomorphic Encryptions. In
Proc. PKC ’09, LNCS 5443, pages 393-410.
Springer-Verlag, 2009.

C. Andrew Neff. A Verifiable Secret Shuffle
and its Application to E-Voting. In Proceed-
ings of the 8th ACM Conference on Com-
puter and Communications Security (CCS
’01), pages 116-125. ACM, 2001.

C. Andrew Neff. Verifiable Mixing (Shuf-
fling) of ElGamal Pairs. Technical report,
VOTEHERE, 2004.

Moni Naor and Omer Reingold. Number-
Theoretic Constructions of Efficient Pseudo-
random Functions. In Proceedings of the
38th Annual Symposium on Foundations of
Computer Science (FOCS ’97), pages 458—
467. IEEE, 1997.

L. Nguyen and R. Safavi-Naini. An Effi-
cient Verifiable Shuffle with Perfect Zero-
knowledge Proof System. In Cryptographic

Algorithms and their Uses, pages 40-56,
2004.

[NSNKO6] L. Nguyen, R. Safavi-Naini, and K. Kuro-
sawa. Verifiable Shuffles: a Formal Model
and a Paillier-based Three-round Construc-
tion with Provable Security. International
Journal of Information Security, 5(4):241—
255, 2006.

[Pai99] P. Paillier. Public-key cryptosystems based
on composite degree residuosity classes. In
Advances in Cryptology - Eurocrypt 99,
1999. LNCS 1592.

[RS06] Peter Ryan and Steve Schneider. Prét a
Voter with Re-encryption Mixes. In Pro-
ceedings of the 11th European Symposium
on Research in Computer Science (ESORICS
'06), LNCS 4189, pages 313-326. Springer-
Verlag, 2006.

[RTO09] Peter Ryan and Vanessa Teague. Permuta-
tions in Prét a Voter. In Proceedings of the
Workshop on Trustworthy Elections (WOTE
’09), 2009.

[Rya08] Peter Ryan. Prét a Voter with Paillier en-
cryption. Mathematical and Computer Mod-
elling, 48(9-10):1646-1662, 2008.

[SK95] K. Sako and J. Kilian. Receipt-Free Mix-
Type Voting Scheme — A Practical Solution
to the Implementation of a Voting Booth. In
Proc. EUROCRYPT 95, LNCS 921, pages
393-403. Springer-Verlag, 1995.

[Xia09] Zhe Xia, 2009. pers. comm.

[XSH'07] Z. Xia, S. Schneider, J. Heather, P. Ryan,
D. Lundin, R. Peel, and P. Howard. Prét
a Voter: all in one. In Proc. Workshop on
Trustworthy elections (WOTE 07), pages 47—
56, 2007.

[XSHTO8] Zhe Xia, Steve Schneider, James Heather,
and Jacques Traoré. Analysis, Improvement,
and Simplification of Prét a Voter with Pail-
lier Encryption. In Proceedings of the Work-
shop on Trustworthy Elections (WOTE’ 08),
2008.

A The Decision Diffie Hellman assumption

The DDH assumption is a computational hardness as-
sumption involving distributions related to certain group

10

families. An example of a group family in which the

DDH is believed to hold is @, 4: the subgroup of Z; of

order ¢, where p and ¢ | p— 1 are primes, with ¢ > p'/10

[Bon9s].

Definition A.1 Let G = {G,} be a set of finite cyclic
groups. Let TG be a randomized algorithm that given a
natural number n (in unary), outputs in polynomial time
an index p and a generator g of a group G, € G. The
DDH assumption for G is that the following distributions
are computationally indistinguishable:

Dppr = <P7979a,9b79ab> :
(p,9) & TG(n),a,b €r {1,...,|Gp|}

DALL - <pvgvga,gbvgc> :
(p,9) & IG(n),a,b,c €r {1,..., |Gy}

This is equivalent to [Bon98], for all probabilistic poly-
nomial time (PPT) algorithms A:

|P[A(p.g,9% 9", 9°") = “true”] — P[A(p,g,9% ¢", 9°) = “true”]|
is a negligible function of n.

Lemma A.2 Suppose that the distributions:
Dl £ <pug7 ha (97'17h7'1>7 EERE (gnu h"'l)> :
d
(p,9) < ZG(n),h €r Gy,ri €r{1,...,|Gyl}

R é <p7g7h) (g/rl’hSl))"'7(grl7hSl)> :

<pag> <i Ig(n)7h €R Gpariasi €R {L LR |GP|}

are distinguishable with work W and probability e. Then
Dppr and D 411, are distinguishable with work W; +
O(1) and probability e.

Proof The proof follows from the well-known notion of
random self reducibility (see e.g. [NR97, Bon98]) and
underpins the notion of ciphertext indistinguishability or
IND-CPA for El Gamal. We note that ciphertexts from
Dy, Ry correspond to uniformly drawn ciphertexts en-
crypting 0, and any plaintext respectively.

B El Gamal Ciphertexts

We present a parallelisation of the ElGamal k-Shuffle
Proof Protocol [Nef04], which being unconditionally

sound, is ideal for use in electronic voting. Since our pro-
tocol is very similar and indeed reduces to the ElGamal
k-Shuffle Proof Protocol in the single public-key case,
we have written this section with careful references to
the corresponding sections in [Nef04].

B.1 Introduction

We require a group G = (g) of prime order ¢, in which
the DDH assumption holds. [Nef04] used a subgroup
of the multiplicative group Z}, p a large prime. Then
qlp — 1. By enforcing gcd(qu (p—1)) = g, there is a

unique order ¢ subgroup [NefO4].

Notation We introduce some more nota-
tion into the definition of Shufps- in Sec-
tion 3.1. Call the J input vectors of ciphertexts:

{(X14, Y1,0)},- - {(X 4, Yy4)} and the J output vec-
tors of ciphertexts {(X1,, Y1)}, .-, {(Xss, Yii)}-
These, as well as g and public keys, (g;, h;), are all
publicly known elements of (g) = G.

Then the prover, P, knows §3;; € Z4 and 7 € S}, such
that foreach1 < j < J,forall1 <i < k:

(Xjsis Vi) = (Xjm(iys Yimeiy) - (95770, hyPrm),

@)

‘P is required to convince verifier,), of the existence of
B;,; and 7 satisfying the above equations, without reveal-
ing any information about them.

B.2 Neff’s Shuffle Protocol

For completeness we summarise the ideas behind the El-
Gamal k-Shuffle Proof Protocol, however the reader is
referred to the original paper for the full details. The
main mathematical tool is the Schwartz-Zippel lemma,
which says that if a nonzero polynomial is evaluated at
a randomly chosen point then the probability it evaluates
to zero is small.

Lemma B.1 (Schwartz-Zippel) Let p be a multivariate
polynomial of degree d with coefficients from Z. Then
the probability that p(x1,...,x,) = 0 for indepen-
dently chosen x1, ..., Tm €R Zq is at most g.

Ford =1, given fixed (c1,...,cm) # 0 and c:

1

P[clx1+-~-+cmxm:c]S;:xiERZq

11

Definition B.2 (Simple £-Shuffle [Nef04]) Suppose
(X AYiYE_ |, g,T are public elements of (g) = G.
‘P is required to convince V of the existence of v € Z,
and w € Sy, such that ' = g7 and for all 1 < i < k:
Y, = X:(i) - without revealing any information about
log, X;,log, Yi, v orm.

Theorem B.3 (Theorem 1 [Nef04]) The Simple k-
Shuffle Proof Protocol[Nef04] is a sound, complete and
honest verifier zero knowledge implementation of the
Simple k-Shuffle.

The key idea of the El Gamal k-Shuffle Proof Protocol
is to use the Simple k-Shuffle Proof Protocol to prove a
commitment to the secret shuffle 7, and link the com-
mitment to the El Gamal ciphertexts, the details can be
found in [NefO4].

B.3 Parallel Shuffling: Single Key

We recall that in the case that the public keys (g;, h;) are
the one and the same, then the Schwartz-Zippel lemma
leads to a trivial solution to parallel shuffling: the ElGa-
mal Sequence Shuffle Proof Protocol [Nef04]. The veri-
fier generates e; € Z,. For 1 <7 < k the ciphertexts

<

(X, Y5)

(Xj,,Yj,4)9

<.
I
—

(Xj,Y5,4)9

=
m
oy

<
Il
—

are formed. The ElGamal k-Shuffle Proof ProEocql is
then run to show the permuted equivalence of {(X;,Y;)}
and {(X;,Y;)}.

B.4 Parallel Shuffling: Distinct Keys

The procedure in the previous section is enabled by the
fact that homomorphic operators can element-wise com-
bine the ciphertexts from different input vectors into
a single ciphertext. However clearly when the public
keys are distinct, the protocol itself needs to parallelised,
which we call the Parallel EIGamal k-Shuffle Proof Pro-
tocol.

Before presenting the parallelisation in Section B.4.1 we
note the following changes to the ElGamal k-Shuffle
Proof Protocol.

e PEGA: 2, 3,4,6 are identical to [NefO4] and serve
to commit to a permutation 7.

e PEGA: 1,5, 7 are parallelised from [NefO4] to each
set of input and output ciphertexts. We briefly de-
scribe what these steps in conjunction show, how-
ever a fuller explanation is in the original paper. For
each 1 < j < J define:

loggj Xji=:xj,, loghj Yii=1vj:
log,, Xji =: Tji, logy, Yji

I
<
=

foralll <i<k.
Applying Lemma 6 [Nef04] there exists mg € Sy,
such that foreach 1 < 5 < J:

k
D oy (T — Uii) — D bilwji — yj)
=1

is a constant, yet {b; }¥_, are random.

Then by Lemma 4 [Nef04]: 8

Tji = Yji = Tjmo(i) — Yjmo(d)

except with probability atmost 2. This shows pre-
cisely that (2) holds except with negligible proba-
bility.

The protocol properties derive largely from the original.
Both protocols are permutation hiding [NSNKO06] - see
Section B.4.4. The soundness error is linear in the num-
ber of input vectors. The parallelisation is efficient, re-
quiring only a few additional messages per additional in-
put vector.

8Essentially the Schwartz-Zippel lemma where the polynomial is
evaluated on points whose co-ordinates are all different and non-zero.

12

B.4.1 Parallel ElIGamal k-Shuffle Proof Protocol

PEGA.1.

PEGA.2.

PEGA.3.

PEGA 4.

PEGA.S.

Let v, a;, us, w;, 7j €g Zg. P computes

r=g"
A =g
Ci = A;Yr(z) = g’yaW(i)
Ui =g"
Wi =g""

k
_ +3F wiBy i Wr=1(i)—u,
My = gy PR=iPieo TT X '

i=1

Kk
Iy TS wiBh i Wr=1(i)—u,
M =h 1 @ Yl,i
=1

k

k)) Wr—1(i)—uy

M; = gJT.I+Ei:1w16J,W(z) HXJJ (1) —ug
=1

k
M} _ hJTJ-‘er:lwiﬂJ,w(i) Hyfiﬂ’l(i)*ui

=1

and reveals the ordered sequences
Ai, Gy, Uy, Wi and - Mj;, M} along with
I'to V.

V chooses p; €r Z,, computes
B; = g" JU;
and returns p; as a challenge to P.
P computes b; = p; — u;, then computes
di = Ybr(s)
Di =B, =g"

and reveals D; to V.

V generates A €r Z, and returns it to P as a
challenge.

‘P computes o; and T j where
03 = W; + br(s)

k
T =—T1+ Z br (i) B1,7(5)

i=1

k
T;=—-T;+ Z br(i)B1,m(s)

i=1

and reveals the ordered sequences o;, T ; to V.

PEGA.6. P and V execute the Simple k-Shuffle on the
tuple

({AiBi)\}a {CiDiA}a g,1).

PEGA.7. Finally, V evaluates:

k
O = HXfiin,i_pi

i=1

k
/ \Oi —pi
) = HYLin,i g
i=1

k
Vv Oi —pi
o, = XX

i=1

k
A T = Pi
J HYJ.,iYJ,z
i=1

and checks that

@ = W;D;
Mygm = @
M{hlll = (I)/l

Mjg;m = @y
M}h]l" = CI){]

B.4.2 Completeness

The protocol does not introduce any additional zero
conditions.” Therefore, as discussed in 72./ [Nef04],
the probability of completion failure is at most @,
which is negligible.

B.4.3 Soundness

We follow the original proof of soundness (72.3
[Nef04]). Corollary 6 [Nef04] establishes that the chance
there exists unique wy € Sy such that:

3)
“
9These are conditions that occur with negligible probability but

reveal something about 7, they are mainly disallowed to make zero
knowledge stricter.

Ci = Qo (i)

di = bﬂo(i)

13

holds is at least 1 — 2’“(1—“.

Suppose now that such a 7 exists. For 1 < 57 < J,
define:

o the statement False; to be: {3i,1 < ¢ < k :
logy (Xji/ Xjmo(i)) 7 108, (Vi) Yimoi) }-

e the event Accept; to be: {P chooses {p;} and A so
that V accepts M;g;~ = ®; and Mjh;% = ' }.

Applying Lemma 6 [Nef04]:

Falsej = P[Accept;] < %

Suppose there exists S C {1,...,J}, S # 0 such that
False; holds for all j € S, applying the union bound:

_ 2[S]
T g

PlUjesAccept;| < e 5 P[Accept]
Forgery occurs if:

e unique 7 such that (3), (4) hold does not exist.

e A set S described above exists.

Again applying the union bound, the total forgery prob-

ability is at most 2E+L 4 27 — 2k42/41
y q q q

B.4.4 Permutation Hiding

It has been suggested in [NSNO4] that zero knowledge
of Neff’s proof is an open question. However we show
that with minor modifications Neff’s simulation demon-
strates IND-CPAg or permutation hiding as defined in
[NSNKO6]. It is also readily shown that the proof does
not satisfy the stronger notion of IND-CTAg or indistin-
guishability under chosen transcript attacks, also defined
in [NSNKO06]. These statements hold identically for the
parallelisation and are discussed below.

IND-CPAs The notion of IND-CPAg is an analogue
of ciphertext security under chosen plaintext attack and
specifies a game between a shuffle and a PPT adversary
as follows:

1. A random instance of a cryptosystem with security
parameter n is generated.

2. The adversary selects two permutations (1), 7(2)
L(P)

and the input; plaintexts, L;,’,
L» Lin .
C B ’ and ciphertexts, L;,, to the shuffle.

encryption factors,

3. The honest shuffle selects a permutation, 7(;), ran-
domly and outputs shuffled ciphertexts, L.+, and a
proof transcript, VIEWY; (pk, Lin, Lout).

4. The adversary has negligible (in n) chance greater
than % of guessing which permutation was used us-

ing all the available information.

Equivalently, the following two challenges are computa-
tionally indistinguishable

(p)
0™ (Lin, L), Ci™ , Lows, VIEW] (pk, Lin, Lout))

m

Lout = Liy, permuted by m(q)

(p)
OW(Q) <_(LGyL(p) Cgﬁ 7Lout7 V]EW\’E(pk>LG7Lout)) .

m

Lout = Lin permuted by 7o)

This leads to a common technique to prove IND-CPAg,
namely it suffices to prove the computational indistin-
guishability of the challenges

- L
0™ ¢—(Lin, L), C™ , Lows, VIEW (pk, Lin, Lout))

n

Lout = Lin, permuted by (q)

(p)
0% ¢ (Lin, LE), CE, Lout, VIEWE (ph, Lin, Lout))

wm

Loyt = uniformly random ciphertexts

One can then argue that by symmetry, 0" and o9
are computationally indistinguishable. Thus it follows
0™ 0™ are computationally indistinguishable.

We apply this technique to explain why Neff’s argument
shows IND-CPAg.

Definition B.4 Ler SSi(T) be the result of running the
Simple k-Shuffle simulator (T1.4[Nef04]) on a tuple T.

Clearly if T is of the form (XZ-,X;(i),g,gw) : X; €
G, € Zg4, then by honest verifier zero knowledge the
distribution produced by the simulator is identical to that
produced by a real prover and honest verifier running the
Simple k-Shuffle. If 7 is not of that form, the simulator
will produce some other distribution.

14

Theorem B.5 Suppose that the challenges:
(1) L L(ZD) CLSLZ) L
o <_(oy Hgn Epk s Hout

— . . . = i ;= v
I'= 977 Azu BZ? CZ - Aﬂ-(l)(i)’ DZ - Bﬂ'(l)(i)’

TP
D;’

gPi

W, =
B,

SSK(A;B}, C;D},g.T),
k Y i —pi k [—pi
M, — Hi:l Xj,iXJ}i P M = Hi:l sz YM g

J T » g 7;

gj h;?

0is Pis Tjs A, Ui =

Lout = Lip permuted by (q),
Ai?Bi GR g7’730iapi7zj7)\ ER Zq

(p)
(p) LML
L; CYE‘p,c) Loutv

mn
F:g’yvAiaBivc’ivDiv
gpi .
Bi 3W7, =
SSk(A;B},CiD}, g,T),

k
ITies

YOi Y. . ~Pi
Xj,iXm

09 (—(LG,

Tri
O-ivp’iazjv)\aU’i: ’
D;
E o —pi
B Hi:l Ygz YJZ
= =
i
hj

’
»

M] = T
9j

L+ = uniformly random ciphertexts,
Aiv Bia Ci, D’L €Rr ga Y5 Ois Piana A €Rr Zq

can be distinguished with work W and probability e.
Then Dy(jy2) and Ry(j12) defined in Appendix A,
Lemma A.2, can be distinguished with work W + O(kJ)
and probability e.

Proof We argue that using only L;,,, Lgﬁ), Cég? and op-
erations on sets of k.J and 2k ciphertexts thepadversary
will output a transcript. If the ciphertexts are drawn from
Dy, (y42), the algorithm will output o™®, while if they

are drawn from Ry (y42)), the algorithm will output o9.

1. The first operation is that the k.J input ciphertexts
L;, after being permuted, are either multiplied by
kJ ciphertexts from Dy(j12) or Ri(j42). In the
former case the shuffle is valid, while in the latter,
only uniformly random ciphertexts result (revealing
no information about 7(1)).

2. The second operation is 73.3-4 [NefO4], which
we reproduce here. Given 2k ciphertexts

{(Dris Y1) Yimy, { (P21, 2i) }izy s set:
N ER Zq
(A;,C;) = (¢1i,¢¥m1>(i))
(Bi; Di) = (d2is Yy, ()
I'=nh"

Clearly v = nlog, h is unknown, however it is
uniform over Z,. It is easy to see if the 2k ci-
phertexts are from Dy, r42), then the distribution of
(4;, B;, C;, D;,T) is that required for 0™, while
otherwise it is uniform over G471 which is that
required for 09.

The Simple k-Shuffle simulator is then run on the
input (4;B},C;D},g,T), where A\ €r Z,. By

Definition B.4 this produces the correct transcript
for either o™ or o09.

3. All that remains is to choose o;, p;, T; €R Z4 and
compute U;, Wy, M;, M7 I

Lemma A.2 and Theorem B.5 prove that if 0™® and
09 are distinguishable with work W and probability ¢,
then Dppy and D 411 are distinguishable with work
W + O(kJ) and probability e. If the DDH assumption
holds then the Parallel ElGamal k-Shuffle Proof Protocol
is IND-CPAg - taking J = 1 implies the original is also.

IND-CTAs The notion of IND-CTAg is an analogue
of ciphertext security against chosen ciphertext attacks.
Here, after the challenge is generated by the shuffle, an
adversary is allowed access to an oracle which returns the
permutation of any valid transcript, excluding the chal-
lenge itself.

It is easily seen that neither the original nor the paralleli-
sation satisfy IND-CTAg since, e.g., the modifications
My < g1 My,
M « hi M,
Ty T — 1

lead to a different valid transcript that can be passed to
the oracle - revealing the permutation of the challenge.

C Analysis of Ranked Voting in Prét a
Voter

The first pre-requisite for coercion-resistant ranked vot-
ing is the use of arbitrary candidate permutations. Re-
call that a coercer can demand a particular preference

15

permutation p from a voter. Since a coercer may ob-
tain a voter’s index permutation 7, from their receipt,
the coercer must be convinced that the candidate permu-
tation that appeared on the voter’s ballot could have been
7.~ 'p. The number of possible y that a coercer may
choose from is typically very large (e.g. a non-negligible
fraction of n!), so the number of candidate permutations
that could have appeared on the voter’s ballot form, must
be correspondingly as large to prevent coercion.

An attack based on a similar idea appears in [RT09] -
there a coercer demands to know the candidate permuta-
tion that appeared on a voter’s ballot just after they have
left the booth, but before public tabulation begins.'® If
tabulation later reveals too much about which candidate
permutations actually appeared on ballots, the coercer
may use this to check the voter’s obedience.

Suppose p., is the proportion of permutations that the co-
ercer may choose from, and suppose ps,s is the threshold
probability of a voter’s obedience, above which a coercer
will give a voter the benefit of the doubt. To achieve
coercion-resistance:

1. A ranked voting scheme must allow at least
PeoPsusn! possible candidate permutations.

2. A voting scheme, single-value or ranked, in the
anonymous tabulation phase, must maintain that a
proportion of at least p, s of all possible candidate
permutations, could have appeared on actual bal-
lots.

[RS06] only allows candidate permutations to be chosen
that are cyclic shifts. Aside from the attacks described
in Section 4.2.2, (2) is satisfied, however naturally (1) is
not.

[Rya08] proposed a method which allows arbitrary can-
didate permutations to be chosen, so (1) is satisfied.
However that method suffers from the attack already de-
scribed, so that (2) is not satisfied. The attack results in
a proportion of only %% = ﬁ of possible candidate
permutations plausibly appearing on ballots. Unless n is
very small, this is almost certainly smaller then pg.,s.

By reducing the space of possible permutations, [RT09]
has shown how to satisfy (2). However they note that
this breaks (1), so the scheme is suitable for single-value
elections but not for the ranked voting case.

100nce tabulation has occurred it is easy for the voter to retrospec-
tively pick a plausible candidate permutation.

