
1

Ballot permutations in

Prêt à Voter

Vanessa Teague

University of Melbourne

Joint work with Peter Y A Ryan

Luxembourg University

Summary

• This talk is about how we should construct

the candidate order in Prêt à Voter

– There are lots of alternatives available

– This is one more, arguably the best

– It’s only good for selecting one candidate

• Not for STV, IRV, AV etc.

2

Outline

• Intro to Prêt à Voter

• Existing ways of generating the candidate

ordering

• Some issues in some circumstances

• Our solution

– For prime numbers of candidates

– For composites

3

4

Prêt à Voter

• Uses pre-prepared ballot
forms that encode the vote
in familiar form.

• The candidate list is
randomised for each ballot
form.

• Information defining the
candidate list is encrypted
in an “onion” value printed
on each ballot form.

Red

Green

Chequered

Fuzzy

Cross

$rJ9*mn4R&8

5

Voter’s Ballot Receipt

$rJ9*mn4R&8

Qu8&km3?j908

• Various procedures to
ensure the onion
– Matches the candidate

list

– Doesn’t leak the
candidate list (except
with the right key)

• Tallying on a bulletin
board
– With proof of

correctness

Signature

Onion

Outline

• Intro to Prêt à Voter

• Existing ways of generating the candidate

ordering

• Some issues in some circumstances

• Our solution

– For prime numbers of candidates

– For composites

6

Existing ways of randomising

the candidate list
1. Print one ciphertext per candidate

[PaV05, Scratch & Vote, Xia et al EVT08]

• But might use too much space

2. Use cyclic shifts of a fixed order [Pav06]

• But depends on voter vigilance to verify

checkmarks aren’t shifted

3. Use a single ciphertext to encode a

random permutation [PaVwithPaillier08]

• But decryption on the BB may violate privacy
7

Full permutations in one

ciphertext
• Could we write a full permutation, but in

one ciphertext?

– Mix all the ({permutation}, {index}) pairs

– Decrypt the permutation on the BB and derive

the selected candidate name

– Vulnerable to a pattern-recognition (a.k.a.

“Italian”) attack when there are lots of

candidates, even for first-past-the-post

– Adding a cyclic shift, as in [PaVwithPaillier08],

doesn’t fix it
8

Outline

• Intro to Prêt à Voter

• Existing ways of generating the candidate

ordering

• Some issues in some circumstances

• Our solution

– For prime numbers of candidates

– For composites

9

Full permutations in one

ciphertext (con’t)
– The coercer visits the voter after he votes but

before tallying, and demands to know his

ballot permutation

– The voter could lie, but...

10

What was the

candidate order?

Full permutations in one

ciphertext (con’t)
• When the permutations are decrypted on

the BB, the coercer

– Looks for the claimed ballot permutation

• If n! > #voters, there’s only likely to be one vote

consistent with the voter’s story

• Or 0 if he lied

– Sees which candidate was chosen

– Rewards or punishes the voter

– (If the voter somehow knows another

tabulated permutation, he can resist coercion)
11

Cyclic shifts vs “defence in

depth”
• Perfectly hiding, but reliant on some voter

vigilance

• if an attacker can manipulate some

checkmarks undetected, she can

systematically skew the outcome.

– e.g. if Green is always two steps after Red,

attack a precinct where everyone votes Green

and shift checkmarks 2 steps to benefit Red

– Benaloh's hash chain of receipts would fix this

•except the immediate input attack 12

Outline

• Intro to Prêt à Voter

• Existing ways of generating the candidate

ordering

• Some issues in some circumstances

• Our solution

– For prime numbers of candidates

– For composites

13

Florentine squares

• Key property:

• For any two distinct candidates A and B

and for any shift t, there exists exactly one

row such that A and B are separated by t.

• So, assuming that the adversary doesn't

know the row, shifting the X is equally

likely to produce any other candidate.

14

Using Florentine squares

• Florentine squares are well known and

easy to construct when n is prime

– (n = #candidates)

• C = k.i mod n

– C = candidate,

– k = row,

– i = column

15

0 1 2 3 4 5 6

0 2 4 6 1 3 5

0 3 6 2 5 1 4

0 4 1 5 2 6 3

0 5 3 1 6 4 2

0 6 5 4 3 2 1

Using Florentine squares

• We still need a cyclic shift s

• Now each ballot has two onions:

– {k} k [1,n-1], the row of the Florentine square

– {s} s Zq*, a cyclic shift.

• The candidate order will be given by the k-th

row shifted cyclically upwards by:

k-1 s (mod n)

16

Extracting and tallying the vote

• Thus, for a ballot with k and s, for which

the voter chooses index i, their candidate

will be:

• i k + s (mod n)

• Thus we can transform the receipt

•(i, {k}, {s})

Using the additive homomorphism

To i{k} {s}= {i k + s}

• Which can be put through mixes.
17

Receipt freeness

• The coercer can try the same attack

• But the voter just lies about the cyclic shift

– Pretends that the true ballot permutation was

whatever he really received, shifted to please

the coercer
18

What was the

candidate order?

Non-prime numbers of

candidates
• We could just pad it out with NULL

candidates, or

• Construct the ballot permutation from Fp,

where p is the largest prime less than n

– Choose a random row of Fp

– Insert p+1, p+2, ... in random places until

enough candidates

– Apply a cyclic shift

19

Non-prime numbers of

candidates (con’t)
• Now there are 2 + (n-p) ciphertexts on the

ballot

– (n is the number of candidates, p the nearest

smaller prime)

• This retains the symmetry property

– so shifting the checkmark produces no

systematic shift from one candidate to another

20

Non-prime numbers of

candidates

Privacy and tabulation

• The tabulation reveals some, but not

much, info about the candidate selection

Whether the candidate came from the

Florentine square part or not,

but equally likely to be any candidate

• A coercer may try the pattern-based attack

–But again the voter just lies about the cyclic

shift
21

Attack models

• This seems to counter the skewing attack, or at

least ensure that the attacker can at best

randomise votes.

• But no good if she tries to manipulate the k and

s onions

• This seems best countered by applying

signatures to these and perhaps pre-posting

them to the WBB.

• Note: we can pre-audit such signatures, in

contrast to the signatures on the receipts.

22

23

Further work

• Other voting schemes

– AV, STV, etc

