Ballot permutations In
Prét a Voter

Vanessa Teague
University of Melbourne
Joint work with Peter Y A Ryan

Luxembourg University

Summary

 This talk Is about how we should construct
the candidate order in Prét a Voter

— There are lots of alternatives available
— This Is one more, arguably the best

— It's only good for selecting one candidate
* Not for STV, IRV, AV etc.

Outline

Intro to Prét a Voter

Existing ways of generating the candidate
ordering

Some Issues In some circumstances

Our solution
— For prime numbers of candidates
— For composites

Prét a Voter

» Uses pre-prepared ballot . Red
forms that encode the vote

In familiar form. . Green "

* The candidate list is —
randomised for each ballot [afaq Chequered

form. -
* Information defining the

candldate Ilst IS encrypted ' ') Cross
In an “onion” value printed |

on each ballot form. $rJ9*mn4R&S

Voter’'s Ballot Receipt

Onion $rJ9*mn4R&8
Qu’8&km 3?j908

Signature /

 \arious procedures to
ensure the onion
— Matches the candidate
list
— Doesn’t leak the

candidate list (except
with the right key)

 Tallying on a bulletin
board

— With proof of
correctness

Outline

Intro to Prét a Voter

Existing ways of generating the candidate
ordering

Some Issues In some circumstances

Our solution
— For prime numbers of candidates
— For composites

Existing ways of randomising

the candidate list

1. Print one ciphertext per candidate
[PaV05, Scratch & Vote, Xia et al EVTOS8]

* But might use too much space

2. Use cyclic shifts of a fixed order [PavO6]

« But depends on voter vigilance to verify
checkmarks aren’t shifted

3. Use a single ciphertext to encode a
random permutation [PaVwithPaillierO8]

* But decryption on the BB may violate privacy
s

Full permutations in one

ciphertext

* Could we write a full permutation, but in
one ciphertext?

— Mix all the ({permutation}, {index}) pairs

— Decrypt the permutation on the BB and derive
the selected candidate name

— Vulnerable to a pattern-recognition (a.k.a.
“Italian™) attack when there are lots of
candidates, even for first-past-the-post

— Adding a cyclic shift, as in [PaVwithPaillier08],
doesn't fix it

8

Outline

Intro to Prét a Voter

Existing ways of generating the candidate
ordering

Some Issues In some circumstances

Our solution
— For prime numbers of candidates
— For composites

Full permutations in one
ciphertext (con't)

— The coercer visits the voter after he votes but
before tallying, and demands to know his
ballot permutation

What was the

candidate order?

— The voter could lie, but...

10

Full permutations in one

ciphertext (con't)
* When the permutations are decrypted on
the BB, the coercer

— Looks for the claimed ballot permutation

* If n! > #voters, there’s only likely to be one vote
consistent with the voter’s story

e Or0if he lied
— Sees which candidate was chosen
— Rewards or punishes the voter

— (If the voter somehow knows another

tabulated permutation, he can resist coercion)
11

Cyclic shifts vs “defence in
depth”

» Perfectly hiding, but reliant on some voter
vigilance

* If an attacker can manipulate some
checkmarks undetected, she can
systematically skew the outcome.

—e.qg. If Green Is always two steps after Red,
attack a precinct where everyone votes Green
and shift checkmarks 2 steps to benefit Red

— Benaloh's hash chain of receipts would fix this
except the immediate input attack 12

Outline

Intro to Prét a Voter

Existing ways of generating the candidate
ordering

Some Issues In some circumstances

Our solution
— For prime numbers of candidates
— For composites

13

Florentine squares

* Key property:
* For any two distinct candidates A and B

and for any shift t, there exists exactly one
row such that A and B are separated by t.

* S0, assuming that the adversary doesn't
know the row, shifting the X is equally
likely to produce any other candidate.

14

Using Florentine squares

* Florentine squares are well known and
easy to construct when n Is prime

— (n = #candidates)

« C=kimodn
— C = candidate, N S i I S S
_ O 2 4 6 1 3 5
—k =row, O 3 6 2 5 1 4
—1 = column 0O 4 1 5 2 6 3
O 5 3 1 6 4 2
O 6 5 4 3 2 1

15

Using Florentine squares

* We still need a cyclic shift s

* Now each ballot has two onions:
—{k} ke [1,n-1], the row of the Florentine square
—{s} seZ,*, acyclic shift.

* The candidate order will be given by the k-th
row shifted cyclically upwards by:

kis (mod n)

16

Extracting and tallying the vote

Thus, for a ballot with k and s, for which
the voter chooses index I, their candidate
will be:
I-kk + s (mod n)
Thus we can transform the receipt
(i, {k}, {s})
+Using the additive homomorphism @
oT0 Uk} ® {s}={i-k + s}

Which can be put through mixes. .

Receilpt freeness

* The coercer can try the same attack
What was the

candidate order?

« But the voter just lies about the cyclic shift

— Pretends that the true ballot permutation was
whatever he really received, shifted to please

the coercer 18

Non-prime numbers of

candidates

* We could just pad it out with NULL
candidates, or

» Construct the ballot permutation from F,
where p Is the largest prime less than n
— Choose a random row of F

— Insert p+1, p+2, ... in random places until
enough candidates

— Apply a cyclic shift

19

Non-prime numbers of

candidates (con't)

* Now there are 2 + (n-p) ciphertexts on the
ballot

— (n Is the number of candidates, p the nearest
smaller prime)

* This retains the symmetry property

— so shifting the checkmark produces no
systematic shift from one candidate to another

20

Non-prime numbers of
candidates
Privacy and tabulation

 The tabulation reveals some, but not
much, info about the candidate selection

Whether the candidate came from the
Florentine square part or not,

but equally likely to be any candidate

» A coercer may try the pattern-based attack

—But again the voter just lies about the cyclic

shift
21

Attack models

This seems to counter the skewing attack, or at
least ensure that the attacker can at best
randomise votes.

But no good if she tries to manipulate the k and
S onions

This seems best countered by applying
signatures to these and perhaps pre-posting
them to the WBB.

Note: we can pre-audit such signatures, in
contrast to the signatures on the receipts.
22

Further work

* Other voting schemes
— AV, STV, etc

23

