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Abstract

Ballot-based auditing offers a much higher level of
statistical confidence for any given number of bal-
lots counted than does precinct-based auditing. Un-
fortunately, it also comes with the problem of effi-
ciently finding any particular ballot so that it can
be audited. Previous work on ballot-based auditing
has required modifying the ballots to add a serial
number which could be used for indexing. We de-
scribe a method for using scales and ballot weight
to quickly index into a stack of ballots. Prelimi-
nary experiments suggest that this method may be
a practical alternative that is compatible with exist-
ing hardware.

1 Introduction

Post-election audits play an important role in ensur-
ing the reliability, accuracy, and security of elections
conducted with the aid of untrustworthy computers.
However, while audits provide a way to assure that
votes have been counted correctly, auditing can con-
sume a significant amount of time and resources.

Current practice is to use precinct-based audits, in
which a random sample of precincts is selected and
then the ballots cast in those precincts are manu-
ally recounted; or machine-based audits, in which
a random sample of machines is selected and then
the votes cast on those machines are manually re-
counted. In either case, one samples by batches.
Unfortunately, the statistical effectiveness of audit-
ing is, roughly speaking, a function of the number
of batches (e.g., precincts) selected, not a function
of the total number of ballots recounted. At the
same time, the workload is roughly proportional to
the total number of ballots recounted. For instance,
if we want 95% confidence that at least 99% of the
batches were counted correctly, we need to randomly

sample and recount about 300 batches of ballots—
regardless of the number of ballots per batch [1].
Therefore, reducing the batch size improves the effi-
ciency of audits.

A number of other authors Neff [9], Johnson [7]
and Calandrino et al. [2, 3] have proposed “ballot-
based” auditing systems: those in which the unit
of auditing is a single ballot. In general, each bal-
lot is identified by its index into a stack of ballots
(e.g., the 7th ballot in the 3rd stack of ballots). Bal-
lots are sampled by choosing a random ballot out of
the universe of ballots and finding the appropriate
ballot in the appropriate stack, which is then com-
pared against the corresponding electronic record.
However, these systems lack a backwards-compatible
method for ballot selection. The difficulty lies in
finding the paper ballot that corresponds to the par-
ticular electronic record (randomly) chosen for au-
diting; previous systems required special equipment
for printing serial numbers on the ballots plus a brief
examination of every ballot to check that the serial
numbers were printed correctly.

Our proposal eliminates the need for special equip-
ment while preserving the efficiency benefits of
ballot-based auditing. Instead of printing serial
numbers on the ballots, we observe that if ballots
all have approximately the same mass it is possible
to use weight to determine the size of a stack of bal-
lots. This lets us index into a large stack of ballots
by pulling approximately the right number of bal-
lots from the stack and then quickly homing in on
the correct index with binary search-like methods,
iteratively adding or removing ballots until the cor-
rect ballot is found. In this way, we can efficiently
retrieve the ballots in our random sample so they
can be verified against the corresponding electronic
records. Another way to think about this is as hav-
ing an implicit sequence number which is read using
the scale.



2 Problem Statement

Our focus is on central-count systems, where ballots
are scanned at election headquarters (rather than at
the polling places), so that ballots can be stored in
the same order they are scanned. Put another way,
our proposal can be viewed as an auditable way of
scanning and counting a collection of ballots at a
central location under the control of election officials.
Our protocol consists of two phases: (i) scanning
the ballots, (ii) auditing the electronic ballot images.
The core of our proposal lies in the auditing phase.

We seek an auditing protocol that meets the fol-
lowing requirements:

� Ease of use. We want the auditing protocol
to be simple and easy for election officials to
conduct, and easy for observers to understand
and monitor. This will reduce the likelihood of
human error occurring during the audit.

� Efficiency. We want to minimize the time and
resources required to conduct an audit.

� Software-independence. Our audit process must
not place any reliance upon the correct func-
tioning of any computer or other complex tech-
nology [11]. The purpose of our protocol is to
verify that the election equipment has counted
the votes correctly, so it must be possible for an
election official or observer to see for themselves
that the vote count is accurate.

� Support for risk-limiting audits. The audit pro-
cess must be able to detect any error or fault
in the election equipment, whether accidental
or deliberate, if its magnitude is large enough
to change the outcome of an election. Our pro-
cess must be compatible with risk-limiting post-
election audit [12, 6]. In other words, it must be
possible to upper-bound the probability that an
outcome-changing error is not detected by the
audit.

� Transparency. Our audit process should be ac-
cessible and understandable by any observer.
After the audit, the observer should have suffi-
cient evidence to confirm the election count for
themselves, without trust in the equipment or
the election officials.

� Compatibility with legacy systems. The audit
process should be compatible with existing vot-
ing equipment: jurisdictions should not need to
replace their current scanning and tallying ma-
chines.

� Privacy. Our system should not compromise
the secrecy of the ballot. For instance, any in-
formation revealed for the purposes of auditing
must not reveal how voters voted.

� Coercion resistance. Our system should not en-
able vote-buying or voter coercion where it was
not already possible. For instance, any informa-
tion revealed for the purposes of auditing must
not enable voters to prove how they have voted.

We make several assumptions. First, we assume
the scanners produce an electronic record of each
ballot, and retain these records in the order that
ballots were scanned. Many deployed optical scan-
ners (Hart Ballot Now, Sequoia Optech) already re-
tain this information; for those that do not, changes
to the scanning software—but not the scanning
hardware—may be required. Second, we assume
that election officials are careful to store ballots in
the order they were scanned. Because we rely on the
correspondence between the order of electronic bal-
lot images and the order of the paper ballots them-
selves, our scheme requires officials to avoid disturb-
ing the order of the ballots, once they are output
and stacked by the scanner. We assume that this
can be assured through appropriate procedures and
processes.

As mentioned earlier, we assume all ballots are
centrally scanned. Our scheme could also be de-
ployed in jurisdictions that use precinct-based opti-
cal scan (where ballots are scanned at the polling
place), by re-scanning all of the ballots centrally,
though this would of course require scanning each
of those ballots a second time, as described by Ca-
landrino et al.[2].

We focus on ensuring that the collection of pa-
per ballots that is present at the time of the audit
matches the electronic records produced by scanners.
It is a separate problem to ensure that this collec-
tion of paper ballots exactly matches the ballots le-
gitimately cast by voters. Chain of custody issues,
while important, are out of scope for this paper; we
make no attempt to detect tampering with ballots
before they are scanned.

Comparison to prior work. Johnson [8], Neff [9]
and Calandrino et al. [2] have previously proposed
a variety of methods for ballot-based auditing. All
these methods are fairly similar. For concreteness,
we describe the method due to Calandrino et al. In
their method, the ballots are recounted using optical
scan machines augmented with a device that stamps
each ballot with a unique serial number as the ballot
is scanned. Serial numbers are assigned sequentially,



incrementing by one for each ballot scanned. Alter-
natively, a separate machine can be used to stamp
each ballot with a serial number. The stamped bal-
lot is then scanned and both the serial number and
ballot contents are read by the scanner. In either
case, the scanner remembers the association between
each ballot’s serial number and the votes on that bal-
lot. After all ballots have been counted, the voting
system produces a list L containing this association,
in electronic form; this list is retained by election of-
ficials for auditing purposes. Then, auditing involves
three steps. First, election officials check that the se-
rial numbers have been printed correctly by quickly
looking at the serial number on each ballot. Second,
election officials choose an appropriate set of serial
numbers at random, retrieve the corresponding pa-
per ballots, and manually inspect each such ballot
to check that its contents match what is found in
L. This provides assurance (to a given confidence
level depending on the number of audited ballots)
that no more than a given fraction of the ballots in
L have been miscounted. Finally, election officials
use independent software to tabulate votes from L.

Calandrino’s procedure meets many, but not all, of
our requirements. It is efficient, easy to use, and pro-
tects voter privacy. It is software-independent and
compatible with risk-limiting audits. However, it is
not compatible with legacy optical scan machines:
in their scheme, scanners must be augmented with a
special stamping device. This would require modifi-
cations to the hardware of currently deployed voting
systems, or design and certification of new equip-
ment for auditing.

Also, their scheme does not aim to provide trans-
parency for observers. Their scheme is focused on
enabling election officials to verify that the machines
have worked correctly, but observers do not have an
opportunity to do the same. It would be possible to
extend their scheme to provide transparency for ob-
servers, by publishing the list L and adopting trans-
parent random selection procedures—but this comes
at a cost. In particular, publishing the list L of bal-
lot images enables vote-buying and coercion: a voter
can“mark”their ballot by entering a write-in vote for
a unique candidate name in one contest, or by a spe-
cial pattern of votes in down-ballot contests. Con-
sequently, there is a tension between transparency
and coercion-resistance in their scheme.

Our proposal improves upon Calandrino’s scheme
primarily by eliminating the requirement for special
ballot-stamping hardware. Instead, our scheme can
be used with deployed optical scan equipment, with-
out any hardware changes or modifications to ex-
isting scanners. However, our scheme retains the

same tension between transparency and coercion-
resistance; we know of no non-cryptographic method
for resolving this tension.

3 Our Proposed Procedure

3.1 Overview

The main idea of our proposal is to improve upon
Calandrino’s scheme, as follows. Rather than print-
ing an explicit serial number on each ballot as it is
scanned, we treat the index of that ballot within its
stack as an implicit serial number. This index is not
printed anywhere on the ballot, but rather comes
from its position of the ballot in the stack.

Both procedures provide a way to count a collec-
tion of paper ballots with the aid of (untrusted) opti-
cal scanners in such a way that the final tally can be
verified to represent a correct count of the paper bal-
lots. We can view the audit process as cross-checking
three sets of data: the paper ballots, the electronic
record of those ballots, and the published vote tally.
We start by reviewing the general workflow, which is
common to our proposal and Calandrino’s scheme,
and shown in Figure 1.

We assume that the collection of paper ballots is
provided to us, and we do not concern ourselves with
where they came from. We also assume the paper
ballots have been shuffled in advance to prevent link-
ing ballots to vote order—this is also required in Ca-
landrino’s scheme and in any scheme where we pub-
lish the CVRs in scanned order. Our scheme consists
of 7 steps.

1. Scanning. The collection of ballots is divided
into conveniently sized batches. The batches do
not need to be all of the same size, but in prac-
tice we anticipate that each batch will contain
100–250 ballots (this limitation is discussed in
Section 5.1.1). For instance, a batch might hold
all of (or a subset of) the ballots cast within a
single polling place, or a subset of absentee bal-
lots. Election workers feed one batch at a time
into the optical scan machine. We assume that
the optical scan machine outputs the paper bal-
lots in a stack. For each batch, election officials
collect the stack of scanned ballots and place
them in a box for storage, taking care not to
disturb the order of the ballots, and label the
box with the batch number.

Scanning a batch of n ballots produces a se-
quence of electronic ballot images b1,b2, . . . ,bn,
where each ballot image records all of the
choices (votes) found on a single ballot. We



assume that these electronic ballot images are
produced in the order that ballots appear in the
output stack, so that the ith electronic ballot
image bi corresponds to the ith paper ballot in
that stack.

2. Tallying. Election management software col-
lects up all of the votes and produces a list of
vote totals, showing the total number of votes
cast for each candidate. The vote totals are
published. The software also prepares a list
of electronic ballot images b1, . . . ,bn for each
stack of ballots. These images can either be
real images, as in the Humboldt Election Trans-
parency Project1, or cast vote records which
merely show the choices selected for each con-
test. The latter is far more convenient for our
purposes, because what we are trying to audit
is ultimately the scanner’s interpretation of the
ballot. This information is recorded onto write-
once media (e.g., CD-ROM) in an open elec-
tronic format (e.g., comma-separated values),
and copies are distributed to auditors2. At this
point, the software is committed to a particular
vote count, and the audit can begin.

3. Tally verification. Auditors verify that the
published vote total for each candidate exactly
matches the number of votes for that candidate
found among the electronic ballot images pro-
vided to auditors. This step should be done
using independent software chosen by the audi-
tors, or performed using multiple independent
software implementations. If any discrepancy is
found, the system fails the audit and auditors
declare that they were not able to verify the
correctness of the published vote totals.

4. Stack size verification. For each stack of bal-
lots, election workers retrieve that stack of pa-
per ballots, count the number of ballots in the
stack, and verify that this matches the number

1http://humtp.com/
2Our scheme is agnostic about who serves as an auditor.

Election officials or third parties may play the role of audi-
tors, if they wish to check that the scanners worked correctly.
Alternatively, if we wish to allow members of the public to
verify for themselves that the scanners worked properly, bal-
lot images can be published on the Internet or distributed to
all observers in attendance during the audit process. Note
that auditors receive a list of ballot images, so a voter who
marked their ballot in advance may be able to prove how they
voted to an auditor. Therefore, auditors must be trusted not
to coerce voters or buy votes. Officials might choose to make
ballot images available to the general public in the interests of
transparency, and accept the risk of vote-buying and coercion.
As mentioned earlier, there is a tension between transparency
and coercion-resistance in our scheme.

of electronic ballot images for that stack. If any
discrepancy is found, the system fails the audit.
Note that this step involves counting only the
number of paper ballots in a stack, not count-
ing the number of votes for any candidate. We
elaborate below (see Section 3.2) on how this
can be done efficiently.

5. Random selection. We select a random sample
of the electronic ballot images, using a proce-
dure for verifiably random selection that can be
seen by observers and auditors to be fair and
unbiased [5, 4]. If there are m stacks, with ni
ballot images in the ith stack and a total of
N = n1 + · · ·+ nm ballot images, then this pro-
cess involves a random selection from the uni-
form distribution over all N ballot images. The
indices of the selected ballots are published.

6. Ballot retrieval. Election workers retrieve the
paper ballots corresponding to the indices se-
lected in the prior phase. This is done in two
steps: for each selected ballot, we retrieve the
box containing the stack it is contained in; then
we index into that stack to retrieve the partic-
ular ballot we are interested in. Assuming that
boxes are clearly labelled, finding the appropri-
ate stack should be relatively straightforward.
In section 3.3 we explain how to index into a
stack of ballots efficiently.

7. Manual comparison. Election workers manually
inspect each selected paper ballot to compare
the marks on it to the corresponding electronic
ballot image. It is important that every contest
on the ballot be inspected and compared; this
provides a reasonable way to detect human error
in the indexing process.

If few mismatches are found during this step, we
have strong evidence that the electronic ballot
images match the paper ballots, to within an er-
ror bound that can be calculated with standard
statistical methods [1, 10, 7].

3.2 Counting stack sizes

To verify stack sizes efficiently, we need some way
to quickly count the number of paper ballots in a
stack. We take advantage of the fact that ballot
weights are approximately constant from ballot to
ballot: we use a scale to measure the weight of the
entire stack of ballots, and then divide by the weight
of a single ballot to obtain an estimate of the num-
ber of ballots in the stack. This can be done fairly

http://humtp.com/
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Figure 1: The audit process: the collection of voted
ballots are scanned, the election management sys-
tem produces a tally from the electronic record and
the electronic record is made public. The observer
audits samples from the scanned ballots against the
electronic record to verify the scanner produced the
correct electronic record. The observer produces a
tally from the electronic record to verify the EMS-
produced correct tally.

quickly—more quickly than manually counting the
number of ballots one by one.

The mathematics are simple. Let µ denote the
average weight of a single ballot. Given a stack of
weight W , we can estimate the number of ballots in
the stack (n̂) by dividing and rounding to the near-
est integer, i.e., n̂ = bW/µ + 1

2c. Note that in prac-
tice µ will not be known precisely; instead, we will
need a calibration step to compute an estimate µ̂ of
µ. For instance, officials might gather 100 ballots,
weigh those 100 ballots, and divide by 100 to get
µ̂. Fortunately, the calibration step only needs to
be done once per audit.

This process can be greatly simplified with the
help of a counting scale, which produces an item
count as well as total mass. Counting scales are
readily available commodity items: we obtained the
counting scale used in our experiments for around
$230. With a counting scale, calibration is simple:
we place a large stack of a known number of bal-
lots on the scale, wait for it to stabilize, and then
enter the number of ballots into a keypad on the
scale. The scale then derives an estimate µ̂ of the
weight of a single ballot. The larger the stack used
for calibration, the more accurate µ̂ will be. In our
experiments, we used a stack of 350 ballots to cali-
brate the scale. We recommend that calibration be
performed after the election, shortly before the au-
dit, under the same environmental conditions as will
occur during the audit itself3.

Once the counting scale is calibrated, counting the
number of ballots in a stack is easy: we place the

3See also Appendix A for a discussion of several alterna-
tives and justification of this recommendation.

stack on the scale, wait for it to stabilize, and the
scale shows its estimate of the number of items on a
digital display. In summary, we have a simple and
efficient way to check that the number of paper bal-
lots in each stack matches the number of electronic
ballot images for that stack (step 4).

3.3 Retrieving a specific ballot

A counting scale also gives a convenient and efficient
way to index into a stack of ballots (see step 6). In
particular, given an index i and a stack of paper
ballots, one can use a counting scale to quickly find
the ith ballot in the stack.

Scale

1
2
3
4
5
6

Ballot Stack

12
11
10
9
8
7

Flipping

Figure 2: Flipping ballots onto the scale

We found that the easiest way to do this is to
place the full stack of ballots on the table next to
the scale, with the ballots ordered top to bottom,
and “flip” batches of the ballots onto the scale until
the scale reads the appropriate number. For exam-
ple, if we are looking for the 100th ballot, we might
grab a bunch of ballots from the top of the stack,
place those on the scale (flipping them as we do so)
and look at the read-out to see how many ballots
are currently on the scale. If the scale shows 87 bal-
lots, we might grab a few additional ballots from
the top of the stack on the table and check the read-
out again. If the readout now shows 105 ballots, we
would return several ballots from the scale to the
stack on the table. We continue in this way, in a
binary search-like fashion, until the scale shows 100
ballots. At that point, the top ballot on the scale is
the 100th ballot. As shown in Figure 2, at each step
along the way, the ballots on the scale are “upside
down” and the ballots on the table are in their orig-
inal orientation, which makes it easy to preserve the
order of the ballots.



We found in our experiments that this process
converged rapidly, with just a few steps. In particu-
lar, this process requires many fewer rounds than the
lgn rounds one might expect for a binary search, be-
cause we learned to “eyeball” things so that we could
pick roughly the desired number of ballots and thus
converge towards the desired result. In principle, a
similar process could be applied with a regular scale,
but the math might slow down the procedure con-
siderably and introduce an opportunity for human
errors to be introduced; with a counting scale, the
procedure is simple and straightforward.

3.4 Random selection

To assist in random selection of ballots, we recom-
mend that the election management software gener-
ate a table to help select a ballot at random. For
example, suppose we have three stacks, containing
300, 200, and 160 ballots, respectively. Then we
could use the following table for use in random se-
lection:

number location
1–300 stack 1

301–500 stack 2
501–660 stack 3

Random selection would then consist of selecting a
number uniformly at random between 1 and 660,
identifying the appropriate stack, and then subtract-
ing to obtain the index within the stack. For in-
stance, the random number 360 corresponds to the
60th ballot in stack 2. This table could be prepared
before the random selection process, and auditors
could easily verify that it was prepared correctly.

If we are using dice to generate random numbers,
this can be tweaked slightly to ease the process.
With the same example as above, we might generate
a slightly different table:

number location
000–299 stack 1
300–499 stack 2
500–659 stack 3
660–999 re-roll

Then we could roll three ten-sided dice to choose
a random number between 0 and 999, look up the
entry in the table, and re-roll if necessary (if the
chosen number was in the range 660 to 999).

Once the ballots to audit have been selected, it
is probably worth sorting them by stack and index
so that we don’t need to repeatedly find the same
stack. In addition, if we need to select two ballots
out of the same stack and we do so in order, then we

can checkpoint the stack at the first ballot and then
just add the required number of ballots, rather than
having to look through the entire stack each time.
Sorting by stacks also enables parallel auditing if we
have multiple scales.4

3.5 Practical considerations

It is crucial for this scheme that, once scanned, the
ballots stay in the same order. If a stack gets shuffled
or re-ordered after being scanned, there is clearly no
way to rely on a ballot’s index in the stack to identify
the ballot.

Maintaining ballot order would probably be a
good idea in Calandrino’s scheme as well: even with
the serial numbers stamped on the ballots, if the bal-
lots get shuffled finding the correct ballot becomes a
linear search process, which isn’t dramatically faster
than counting into the stack. However, Calandrino’s
scheme is much more robust to occasional human er-
ror that causes some ballots to be re-ordered, as the
ballots can be sorted back into the correct order (al-
though this is of course expensive). In contrast, our
scheme has the drawback that there is no direct way
to know whether the stack has been shuffled, so our
scheme would require strict protocols to ensure the
stacks stay in order; if the stacks get out of order,
then almost every ballot we check will not match and
the audit will fail. Our method of “flipping” stacks
onto and off of the scale from a large stack should
help maintain the order during the indexing oper-
ation, but still, considerable care will be required
whenever ballots are handled.

Our scheme also requires that batch sizes be small
enough to to avoid selection errors. In our experi-
ments we used a stack of 350 ballots without error.
However, our measurements (see Section 5.1.1) sug-
gest that in some cases stacks greater than 200–250
may show excessive errors and so it is safer to stick
with stacks around this size until we have more ex-
perience with actual error rates. We believe this
limitation is not serious, as larger stacks are already
fairly unwieldy. Note that these limits are not exact:
the easiest procedure is to estimate the thickness of
a stack of 200–250 ballots and then divide stacks by
eye.

3.6 Error handling

Because this process involves human processing,
mistakes may occur. It is important to have a pro-
cess that can tolerate occasional human error. Ac-
cordingly, we suggest error handling procedures for

4We owe this discussion to an anonymous reviewer.



two particular kinds of issues that we expect may
arise:

� Discrepancies in stack sizes. Suppose that dur-
ing step 4, we weigh a stack and find that the
number of paper ballots in the stack appears
to be different from the number of electronic
ballot images for that stack. What should elec-
tion workers do? One possibility is to divide the
stack of paper ballots into a few smaller chunks,
weigh each chunk, and then add up the number
of ballots in each chunk. Because the weighing
process is more accurate for smaller stacks, this
provides a quick check that may eliminate some
kinds of error (see Section 4). If the discrepancy
persists, the next step is to manually count the
number of ballots in the stack, using any of a
number of standard procedures—e.g., split up
the stack into groups of ten and count the num-
ber of groups by hand. If the discrepancy still
persists, it is likely that something went wrong
with the scanning or handling of paper ballots;
election officials will need to investigate, deter-
mine what went wrong, and take corrective ac-
tion. After the paper ballots or electronic ballot
images are corrected, the audit may need to be
re-started from scratch.

� Mismatch between the paper and electronic
record. Suppose that during step 7, we retrieve
a paper ballot and discover that the votes on
it do not appear to match the electronic ballot
image. What should we do?

There are two major possibilities: (1) our
weighing procedure has failed and we picked
the wrong ballot out of the stack and (2) we
have the right ballot (though the stack may
have been shuffled) and the electronic records
truly do not match. (We discuss the situation
where we picked the wrong ballot but by coinci-
dence it matches the electronic record in section
5.1.2.) We can eliminate the first possibility by
recounting the stack with our chosen ballot at
the top, either manually or by dividing it into
smaller stacks. Continuing with our previous
example where we are looking for the 100th bal-
lot, the recounting protocol would work as fol-
lows. Suppose the counting scale tells us that
we have 100 ballots on the scale, but when we
look at the top ballot it does not match the
electronic record for the 100th ballot. We would
then invoke the recounting protocol:

1. Flip the 100 ballots back onto their original
stack.

2. Using the procedure for retrieving a spe-
cific ballot, remove the top 50 ballots from
the stack and set them aside.

3. Again, use the procedure for retrieving a
specific ballot to create a stack of 50 ballots
on the scale. The top ballot should be the
100th ballot, ready for comparison against
the electronic record.

Since the weighing procedure for retrieving a
specific ballot is more accurate for smaller stack
sizes, dividing the stack into smaller sub-stacks
will reduce the chance of error in selecting the
correct ballot. Of course, depending on how
large the ballot index that you are looking for
is, you may wish to divide the stack into more
than two substacks. Furthermore, it is not nec-
essary to subdivide the stack evenly. In our ex-
ample, the second step could be done by eye-
balling roughly 50 ballots. If the first substack
that is placed on the scale and then set aside
has 54 ballots, then in the third step the 46th

ballot would need to be retrieved.

If the ballot index is small enough, it might be
easier to forego using the scale in the recount-
ing protocol and instead perform a manual re-
count. In this case, the 100 ballots would be
flipped back onto their original stack and then
the auditor would simply count off the first 100
ballots. However, some degree of transparency
is lost as observers are unable to easily see how
the ballots are being counted. Therefore we sug-
gest starting with divided weighings.

For handling an actual mismatch between a bal-
lot and electronic record there are several steps
we can take to deal with the possibility of an
occasional scanning error. It is known that op-
tical scan machines may fail to interpret some
kinds of marks in the same way as a human
would—particularly in the case of ambiguous or
improper marks or miscalibration of the scan-
ner. Consequently, we can expect a small prob-
ability that any given ballot may fail to match
due to this kind of occasional scanning error.
We anticipate that this kind of scanning error
will likely be readily identifiable, because it may
manifest as a mismatch in only a single contest
or a visibly ambiguous mark. If this kind of
expected scanner error is suspected, we recom-
mend recording this as a mismatch and contin-
uing on with the audit.

If the indexing appears to be correct, and there
remains a mismatch that does not seem to be at-



tributable to ordinary scanner error, there are
several possibilities. For ease of implementa-
tion, we suggest recording a mismatch and con-
tinuing on to the next selected ballot. Other
possibilities might be to examine adjacent ballot
images to see if they match the paper ballot, in
case of an off-by-one error, or to manually count
all contests on the entire stack of paper ballots
and compare it to a tally of all of the corre-
sponding electronic ballot images. However, the
former introduces subtle security issues, and the
latter is likely to be time-consuming. It is also
probably prudent to separately investigate such
errors in order to determine the cause —unex-
plained errors are troubling even if they do not
affect the winner of the contest.

The important thing is to record the number
of matches and mismatches, so that at the end
of the audit we can use statistical methods to
evaluate the degree of confidence provided by
the audit. Johnson [7] describes methods for
escalating ballot-based audits to obtain the ap-
propriate degree of confidence when individual
errors are detected. In some cases it may be eas-
ier to record a mismatch and move on than to
try to laboriously diagnose the cause of a mis-
match. However, it is important to note that
because our sample size is small one or two mis-
matches can imply a significant error in the re-
ported totals, so some care should be taken to
avoid them.

In general, whenever we detect some kind of er-
ror, we can always fall back to manual counting of
the ballots. Thus, except for the edge case where
we have undetected errors (see Section 5.1.2), one
can think of weighing as providing a fast, but po-
tentially imperfect method for finding ballots with
hand counting serving as a backup.5

4 Sources of Selection Errors

The primary new source of error that our system
introduces is that we may select the wrong ballot
(typically the one before or the one after). We know
of three major mis-selection mechanisms:

� Scale error. The simplest kind of error is simply
that our scale might report an incorrect value.
If the error were large enough, it might cause us
to misestimate the size of a given ballot stack.

� Ballot stack variance. Ballots are a manufac-
tured product and therefore their weights are

5We are grateful to an anonymous reviewer for this point.

not identical, but rather follow some distribu-
tion. This means that any given stack might
be composed of ballots which on average are
heavier or lighter than µ, leading to inaccurate
selections.

� Mis-estimating µ. As discussed in Appendix A,
we generally cannot measure µ directly. In-
stead, we must estimate µ by weighing some
convenient set of ballots of known size and di-
viding to find µ̂, which is an estimate of µ.
This calibration procedure can cause selection
errors if different ballot lots have different dis-
tributions.

The remainder of this section attempts to quantify
the magnitude and impact of these errors.

The first source of error is primarily a
cost/convenience issue. Nearly arbitrarily accu-
rate scales and balances are readily available at an
equally arbitrarily high price; although we expect far
cheaper scales will be adequate. So, while we cannot
discount this issue, the latter two issues are of more
immediate concern because they cannot be solved by
the purchase of better equipment: they present an
issue even if we are weighing on perfect scales.

4.1 Ballot Stack Variance

To analyze the impact of ballot stack variance, we
start with a simple model in which the weights of
ballots are normally distributed with mean µ and
standard deviation σ . If we randomly select a sam-
ple of n ballots from this distribution, we expect the
sum of the ballot weights W = ∑

n
i=1 wi to also be nor-

mally distributed with mean nµ and standard devi-
ation

√
nσ . Let n̂ = δ (W ) be the estimated number

of ballots given weight W . Now δ (W ) is only correct
if µ(n− 1

2 )≤W < µ(n+ 1
2 ). The width of this band

is constant, whereas the variation in W scales with√
n. Thus, as the number of ballots increases, vari-

ation in ballot weight accumulates and more of the
probability mass of the distribution falls outside the
correct band nµ±µ/2.

Figures 3 and 4 show this visually: the curve
shows the probability density function for total stack
weight for (µ = 1,σ = .015). The shaded region rep-
resents the fraction of total stack weights for which
δ (W ) is correct. Because the density function is
broader for n = 500 than for n = 100, far more of
the probability mass falls outside the correct region.
The exact error rate is of course dependent on the
ballot weight distribution, in this case the σ/µ ratio.
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Figure 3: Distribution of total weight: n = 100
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Figure 4: Distribution of total weight: n = 500

4.2 Mis-estimating µ

A related problem is errors in determining µ̂. Be-
cause we compute µ̂ from one set of ballots and then
use that to estimate the size of another, possibly dis-
joint, set of ballots, the value of µ̂ determined from
our calibration set may not be exactly the same as
the mean weight of the ballots we are actually trying
to count. Because this is a systematic rather than
a random error, even very small differences between
µ and µ̂ can have a significant impact on the error
rate. This is discussed further in Section 5.1.1.

In order to control for this effect, we recommend
that auditors sample multiple batches to determine
µ̂. In addition, the procedure of verifying that the
total batch weight is consistent with the reported
number of ballots in the batch provides a fairly sen-
sitive test for weight discrepancies.

5 Empirical Results

In order to evaluate the magnitude of these effects for
real ballots, we obtained two sets of unvoted ballots
from Doug Jones at the University of Iowa. These
are leftover sample Optech 4C scan ballots from
Maricopa County, Arizona, approximately 18×9.75”
in size. We labelled the two sets “A” and “B”. We
then performed experiments with two scales: one ex-
periment with a counting scale suitable for weighing
large stacks of ballots, and another experiment using

a high accuracy scale with a small range suitable for
weighing single ballots.

5.1 Distribution of Ballot Weights

As discussed above, our principal concern was to de-
termine whether the variation in ballot weights was
sufficiently large to produce significant errors. Thus,
our first set of measurements was intended to deter-
mine the distribution of ballot weights.6 Accord-
ingly, we individually weighed the first 100 ballots
from each box. The weighings were done with a
Acculab GS-200 lab scale (range 0-200g, readability
.1g). This scale has a rather small platform (5.125”
square), compared to the ballot size (18” × 9.75”),
with the result that the ballots hang substantially
over the side of the platform. We were forced to
raise the scale up in order to avoid letting the bal-
lots touch the table and affecting the measurement.
In addition, for some ballots the scale was unable to
converge on a single value for the final digit (e.g.,
oscillating between 21.9g and 22.0g). We attribute

6Note to scientifically minded readers: in SI units “grams”
refers to “mass”, which is an intrinsic property of the ballots
rather than “weight”, which depends on the particular gravi-
tational environment in which the measurements were taken.
However, the electronic scales in common use actually mea-
sure weight, or rather force, and simply translate it to mass
based on standardized assumptions about the gravitational
field. In accordance with lay practice, we will use the term
“weight” and report it in grams rather than Newtons, the SI
unit of force.



this to a combination of a ballot weighing roughly
in the middle and air current-induced instability.
In such cases we arbitrarily assigned the weight to
halfway between the two values. Finally, in some
cases we took several measurements (e.g., before or
after changing the battery on the scale), in which
case we averaged them.

Figures 5 and 6 show the distributions within each
batch, with the bins being .1g wide. In other words,
the values 21.10 and 21.15 are in the same bin. While
the distributions appear fairly different, their mean
weights differ by less than .1%, which is statistically
insignificant (t-test p = .35). However, the variance
is significantly different (Levene test, p < .01). This
suggests that there is some systematic difference be-
tween the boxes. It is unclear whether the ballots are
actually from different distributions or whether our
technique varied, as we weighed box A first and may
have been more practiced and/or attuned to scale in-
stabilities during the second set of weighings; we saw
many more such instabilities in box B (29) than box
A (8). Note that even box B, which appears to the
eye to be less normal, has a standard deviation of
less than 1% of the mean ballot weight.

As a double check, we weighed the first 350 ballots
in each stack using our lower resolution, higher range
scale, and the means are rather closer, suggesting
that we may be seeing the cumulative effect of small
weighing errors in each ballot. In future, we would
like to take individual measurements of more ballots
with a higher resolution scale in a more controlled
environment (see Section 7).

5.1.1 Projected Selection Error

Given the above distributions of ballot weight, it is
possible to estimate the error rate in ballot selection,
assuming that the scale we are using to count out
the ballots is error-free. We model the situation as
follows:

� Ballot weights are distributed according to some
probability density function ϕ(w) with true
mean µ.

� We randomly generate ballots from ϕ(w) and
compute the mean, which gives us an estimated
µ, µ̂.

� We randomly generate ballots B from ϕ(w). De-
note the weight of each ballot in the stack as
w1,w2, . . . ,wn.

Because the distribution for box B appears non-
normal, we decided not to fit a standard distribution
but rather to use numerical methods, assuming that

the measured distribution is the correct one, at least
for that stack of ballots.7 This reduces to sampling
our existing ballot stacks with replacement. We
wrote a simulator in Python to model this situation.
Our simulator first randomly generates 1000 ballots
to compute µ̂ and then generates a stack of 500 bal-
lots. For each position i in the stack, we determine
whether we could correctly estimate the stack size.
In other words, we check whether i ?= δ (∑i

j=1 w j), as-
suming that µ = µ̂. Figure 7 shows the results of this
procedure, with each simulation run 100,000 times.
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Figure 7: Simulated error rate

We can make several qualitativate observations
about this figure. First, the error rate increases
rapidly with increasing stack size, which is as we ex-
pected from the discussion in Section 4. Second, for
stacks of below about 230 ballots (for box A) and
190 ballots (for box B), our simulations produced
no errors at all. This implies that if we’re willing
to divide our ballots into suitably small stacks, we
can reduce the error rate arbitrarily. Third, the er-
ror rate for box B is much worse than the rate for
box A: even with stacks of 500 ballots, box A’s error
rate is < .5%, while a similar stack with box B has
an error rate exceeding 1%.

To evaluate the impact of mis-estimating µ̂, we
also ran simulations where we used one box to com-
pute µ̂ and then simulated selecting ballots from
the other box. Figure 8 shows the results of four
such simulations. We computed the mean in two

7Simulations using normal distributions with the same µ

and σ as these distributions produce similar results.
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Figure 6: Ballot weights: box B

ways, both directly and by the sampling procedure
described in the previous section. from the theoreti-
cal analysis in Section 4, errors in µ̂ result in signif-
icantly worse error rates in these cross-box simula-
tions than we saw in the previous section. Moreover,
using the true mean (even from the wrong box) pro-
duces somewhat better results than the resampled
mean, because we do not have to contend with the
variation due to sampling. Arguably, using the true
mean is more relevant here: we can think of both
boxes as being drawn from the same large pool of
ballots with Box A being used as our calibration
sample and Box B as being our auditing sample;
simulating resampling again introduces more error
than we would expect in the real world. Note that
this difference is more pronounced if the means are
closer (as our overall weighings suggest they might
be) and so systematic effects are smaller.

5.1.2 Impact of Mis-Selection

The above data suggests that while selection errors
will be reasonably rare, they will not be nonexistent.
If we are trying to select ballot i and actually select
ballot j 6= i, we need to consider four major cases:

� i scanned correctly but the contents of j do not
match i.

� i scanned correctly and by coincidence the con-
tents of j do match i.
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Figure 8: Simulated error rate: cross-box sampling

� i scanned incorrectly and the contents of j do
not match the scan results for i.

� i scanned incorrectly and by coincidence the
contents of j do match the scan results for i.

Only the first and fourth cases matter; in the sec-
ond and third cases the results are the same as if we



had actually selected i. However, in the first case
we get a “false reject”: a report of an error where
there was none. In the fourth case, we get a “false
accept”: a report of success where in fact the ballot
was scanned incorrectly.

As described in Section 3.6, dealing with false re-
jects does not seem particularly problematic, as long
as the rate is not too high: if the manual evaluation
of a ballot does not match the electronic records,
it is natural to go back and verify that the correct
ballot was selected by manual counting. This is in-
convenient but not particularly expensive as long as
it does not occur too often and the stacks are suffi-
ciently small.

False accepts are more problematic, because they
are harder to detect. If the false accept rate is rea-
sonably small, we can compensate by sampling frac-
tionally more ballots, as described by Johnson [7], in
the case where the error rate e is relatively small, we
can simply compensate by multiplying the number of
ballots to audit by 1/(1−e). We can compute a con-
servative estimate for the false accept rate by treat-
ing the misselection rate for maximal sized stacks
as if it applies to stacks of all sizes and by assum-
ing that all misselections are false accepts. However
in practice, misselections are much more likely to
result in false rejects than false accepts. Data from
the 2006 Sarasota County General Election indicates
that the chance of two randomly chosen ballots hav-
ing identical contents is less than 0.0005: over 99.9%
of random selection errors will result in false rejects
rather than false accepts. (Note that this calculation
depends on auditing the entire ballot. If single races
are audited or the ballot is unusually short, then the
chance of duplication is naturally higher. It would
be interesting to look at other sets of ballot data to
find projected matching rates.)

Of course, an attacker might attempt to maxi-
mize his chances of success by duplicating electronic
record i+1 (or i−1) onto record i, with the hope that
the misselection will work in his favor, but even then
it is equiprobable that the misselection will cause the
wrong ballot in the opposite direction to be selected.
In general, stack sizes must be chosen so that the
overall error rate (and hence the false reject rate) is
no higher than a few percent. Otherwise, explicit
error handling becomes too expensive. Thus, even
if we were to assume a worst case scenario that in
some election all errors are false accepts, we would
only need to oversample by a few percent in order
to compensate.

5.2 Selection Experiments

We also tried an end-to-end test using our counting
scale (Virtual Measurements & Control VW-330A-C
50kg x 0.002kg) and 350 ballots from box A. We cal-
ibrated the scale with the same stack and then one
of us (EKR) generated random indices while another
(CKS) used the scale and our ballot retrieval method
to find the correct ballot. Over the course of 20 tri-
als, the longest time it took to find the ballot was 31
seconds (on an early trial), with all remaining trials
taking less than 30 seconds. In each case the bal-
lot retrieval method resulted in selecting the correct
ballot.

5.3 Tampering with Ballot Weights

Our procedure relies on the approximate constancy
of ballot weights. If someone could significantly af-
fect the weight of the ballots, she would be able to
disrupt the auditing scheme. One way to change
the weight of a ballot is to tear off some part of
it. This might be done deliberately or accidentally,
especially in the situation where ballots have a per-
forated stub that should be removed by the voter.
Leaving this stub in place or tearing off a portion
of the ballot while removing the stub would affect
the total weight of the ballot. Some jurisdictions al-
ready take care to remove the stubs out of concern
for jamming the scanners, but our method would re-
quire that all stubs be removed prior to auditing.
Ballots with the stub still attached are easily de-
tected by the natural method of aligning the ballots
at the bottom and looking for over-long ballots. It is
harder to detect ballots which were torn in stub re-
moval. In our experience as pollworkers, this is rare,
but if future experience showed it to be a problem it
might be possible to modify scanners to have them
reject damaged ballots.

Another way to alter the weight of the ballot is by
adding mass, for example by getting the ballot wet.
To test this out, we wiped down one ballot with a
damp sponge and were able to increase the weight of
the ballot by 4.6g, roughly 20% of the ballot weight.
Three such ballots would be enough to introduce an
off-by-one error when we weigh the stack (due to
rounding). We then soaked the ballot in water; this
increased the weight by a total of 5.9g. This is a
significant amount; on the other hand, a wet ballot
might be easily noticed by election officials or might
have a chance to dry out before the auditing pro-
cedures begin. If, however, a ballot can be wiped
down with a solution such that additional mass re-
mains after the water has evaporated, that could af-
fect our indexing scheme and go unnoticed. If a mis-



selection occurs, a false reject or false accept results;
as discussed in section 5.1.2, a false reject is much
more likely than a false accept. In addition, a single
ballot can only affect the indexing of a single stack
of ballots; to introduce widespread error, many bal-
lots across many precincts would need to be altered.
Therefore, in the worst case, if a large number of
ballots, distributed across many precincts, become
altered, our scheme reduces to manual counting to
find the sampled ballots.

6 Discussion

In Section 2, we laid out eight stated goals: ease
of use, efficiency, software-independence, support
for risk-limiting audits, transparency, compatibility
with legacy systems, and privacy. Our system meets
some, but not all of these, as discussed below.

� Ease of use. The pseudo-binary search method
is straightforward and easy to use. In our exper-
iments we were able to find the correct ballot in
a stack of 350 rapidly. Our system of stacking
the ballots next to the scale and “flipping”more
ballots onto or off of the scale as needed ensures
that the stack remains in order.

� Efficiency. The equipment needed for our
scheme is modest: a simple counting scale. The
one we bought cost $230. The human resources
are also modest. For each ballot in the ran-
dom sample, we must: (i) find the appropri-
ate stack of ballots, (ii) select the paper bal-
lot at the appropriate index in that stack, and
(iii) manually audit the selected ballot. If the
stacks are labelled and organized appropriately,
we anticipate that it may take a minute or so
(this depends on the number of stacks, obvi-
ously) to locate the appropriate stack, which
corresponds to several hours if 300 ballots are
audited. Finally, Stevens estimates that it takes
6 seconds per contest to manually count a single
ballot [13]; in an election with 30 contests, this
corresponds to 3 minutes per ballot, or 15 hours
to recount 300 ballots, much more than the cost
of finding the ballots using our method.
Achieving a similar level of statistical confi-
dence from precinct-based or machine-based au-
dits would require recounting a very large num-
ber of ballots and a correspondingly large com-
mitment of time and resources. Because of re-
source constraints, jurisdictions that currently
use precinct- or machine-based audits make no
attempt to achieve 95% confidence (or anything
approaching such a degree of effectiveness).

� Software-independence. Our scheme does not
trust or rely upon correct operation of the scan-
ners or associated equipment. The only ma-
chinery introduced by our scheme is a count-
ing scale, which can be checked for accuracy
before the audit procedures begin. We assume
that the scale is a simple device whose failure
modes are well-understood and are consistent
from weighing to weighing, so that any failure
of the scale will become immediately obvious
during this preliminary check. Because scales
are generally computer controlled, in principle a
malicious insider with access to the scale might
tamper with one to cause it to read out incor-
rectly: the most powerful attack we know of
would be to install a radio receiver which would
let an external attacker override the scale read-
out. This threat could potentially be mitigated,
at a significant cost in terms of convenience, by
using a manual scale. Another potential mit-
igation would be to use the counting scale for
ballot selection but then a manual scale as a
double-check on the selected stack position.

� Support for risk-limiting audits. Our approach
is well-suited to use of risk-limiting audits.
Once the scanning is complete and a tally has
been committed, the sample size required to
meet the goals of the audit can be determined
using standard statistical techniques [1, 7]. Our
protocol focuses on selecting a specified num-
ber of ballots, not on calculating the required
sample size or confidence level.

� Transparency. Our system is largely, but not
completely, transparent. Any observer with a
view of the scale can verify that it was calibrated
and that the scale is reading the correct weight
and count for the desired ballot. One potential
threat to transparency is the manipulation of
the ballots themselves. Once the election offi-
cial handling the ballots has determined the cor-
rect stack size, he might be able to substitute
another ballot (such as the next ballot down)
for the actual audit. Both of these attacks only
work well if there is a nearby ballot which dupli-
cates the electronic record, but this is a natural
type of attack for a malicious scanner to mount.

� Compatibility with legacy systems. Our system
will work with any optical scanner equipment
that scans paper ballots, produces an electronic,
numbered list of those ballots and their content,
and outputs the scanned ballots into a stack in
the same order as the electronic list. We require



no special equipment for re-scanning or stamp-
ing the ballots.

� Privacy. Assuming that the ballots are shuffled
before being scanned, our system protects the
secrecy of the ballot.

� Coercion resistance. Unfortunately, our system
fails to achieve this criterion. If we want to al-
low independent observers to verify the election
outcome, we need to provide them with the list
of electronic ballot images before the audit be-
gins. However, this list of ballot images enables
voters to prove how they have voted, either with
a special write-in name or with pattern voting
in down-ballot contests. When voters can prove
how they voted, they can be coerced, or their
votes can be bought. We do not have a satis-
factory resolution to this tension between trans-
parency and coercion-resistance.

While ideally we would meet all eight goals, we
have improved the best previous ballot-based audit-
ing systems by proposing a system which is com-
patible with existing legacy systems. The major re-
maining deficiency is the tension between privacy
and coercion resistance. Designing a simple method
of resolving this tension is an open research problem.

7 Future Work

While the data presented in this paper suggests
that our proposal may be viable, significant amounts
of further work are required in order to determine
whether it is really practical. The most important
open question is to determine the level of variation
of the weights of real voted ballots, perhaps by col-
laborating with a registrar of voters to measure such
a set of ballots. In addition, it would be useful to use
a higher resolution scale than the one we have—at
the last minute we were able to obtain such a scale
but the initial experiments we performed exhibited
too much drift (about .1g variation over the course
of weighing 100 ballots) to give us better data than
the weighings reported here. We have contacted the
manufacturer but do not yet have a resolution of this
issue.

Another open question is how well our proposal
works in the field, including finding the right stack,
having untrained operators do weighings, etc. Before
the scheme could be deployed it would be important
to do an end-to-end study involving selection and
perhaps auditing of live ballots. This would help to
validate whether our initial measurements of time to
find a ballot scale to real-world use.

Finally, it would be important to determine
whether ballot order can be preserved between scan-
ning and auditing. One experimental approach
might be to select a number of boxes of stored ballots
and then re-scanning them (perhaps using technol-
ogy from the Humboldt ETP) to compare the res-
cans to the original CVRs.

All of these experiments are likely to require some
measure of cooperation from voting officials.

8 Summary

Previous authors have demonstrated that ballot-
based auditing can provide equivalent levels of sta-
tistical confidence to precinct-based audits while re-
quiring the audit of far fewer ballots. We have de-
scribed a method for ballot-based auditing that can
be applied to legacy ballot-scanning equipment with-
out requiring hardware changes to existing voting
systems. While we have presented preliminary evi-
dence to suggest that the method is practical, more
research is needed to answer some of the open ques-
tions that remain. An empirical end-to-end evalu-
ation of a deployment of our scheme would provide
information about the effort required to form the
stacks of ballots, the feasibility of keeping scanned
ballot stacks in order, the ease with which the correct
stack can be located, and a quantification of the effi-
ciency of our system as compared to precinct-based
auditing systems. We hope that this work will con-
tribute to the study of how to audit elections cost-
effectively.
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A Alternatives for Determining µ̂

The procedure described in this paper assumes that
µ̂ is determined just prior to the audit procedure.
This is the most transparent method since any ob-
server can verify that the correct procedure has been
observed, however it is not necessarily the most con-
venient. Two alternatives would be to have the
printer provide µ or to determine it prior to the elec-
tion.8

In principle, when the the printer produced a
batch of ballots they could also provide their true
µ value by weighing the entire batch. This would
have the advantage of the largest possible baseline
and thus allow the determination of the true mean
rather than a sample mean. However, it would also

8Note that gravitational variation is sufficiently large that
it is very important to calibrate the scale to local gravity if
µ is to be determined in a separate location from where the
audit is performed.

require a significant change in ballot printer behav-
ior and so is not incrementally deployable. For the
moment, therefore, we must assume that election of-
ficials will be responsible for estimating µ.

Election officials might also determine µ̂ imme-
diately prior to the election. Intuitively this seems
better than afterwards: the ballots are all assem-
bled in a single location and packaged in well-defined
units with known counts, so it seems easy to weigh
a large number of them (recall that the accuracy of
this measurement scales with the square root of the
number of ballots measured.) In principle, it might
be possible to weigh all the ballots in a precinct or
county before they are distributed without undue
effort. Unfortunately, in many cases election offi-
cials are not dealing with simple stacks of ballots
but rather ballots in boxes, wrapped in shrink wrap,
attached to pads, etc. The weight of the packag-
ing must then be determined and subtracted, which
seems problematic. It would of course be possible
to select some number of ballots for the purposes of
calibration and remove the packaging, but it’s not
clear that those ballots could then be returned to cir-
culation without unduly affecting local procedures.
This is especially true in counties where the ballots
are distributed on pads. Accordingly, we believe it
is currently most practical to determine µ̂ after the
election but prior to the audit.
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http://papers.ssrn.com/sol3/papers.cfm?abstract_id=640943
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=640943
http://vote.nist.gov/SI-in-voting.pdf
http://vote.nist.gov/SI-in-voting.pdf
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